mp_machdep.c revision 241371
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * Copyright (c) 2003, by Peter Wemm
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the developer may NOT be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/amd64/amd64/mp_machdep.c 241371 2012-10-09 12:22:43Z attilio $");
29
30#include "opt_cpu.h"
31#include "opt_kstack_pages.h"
32#include "opt_sched.h"
33#include "opt_smp.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/bus.h>
38#include <sys/cpuset.h>
39#ifdef GPROF
40#include <sys/gmon.h>
41#endif
42#include <sys/kernel.h>
43#include <sys/ktr.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/memrange.h>
47#include <sys/mutex.h>
48#include <sys/pcpu.h>
49#include <sys/proc.h>
50#include <sys/sched.h>
51#include <sys/smp.h>
52#include <sys/sysctl.h>
53
54#include <vm/vm.h>
55#include <vm/vm_param.h>
56#include <vm/pmap.h>
57#include <vm/vm_kern.h>
58#include <vm/vm_extern.h>
59
60#include <x86/apicreg.h>
61#include <machine/clock.h>
62#include <machine/cputypes.h>
63#include <machine/cpufunc.h>
64#include <x86/mca.h>
65#include <machine/md_var.h>
66#include <machine/pcb.h>
67#include <machine/psl.h>
68#include <machine/smp.h>
69#include <machine/specialreg.h>
70#include <machine/tss.h>
71
72#define WARMBOOT_TARGET		0
73#define WARMBOOT_OFF		(KERNBASE + 0x0467)
74#define WARMBOOT_SEG		(KERNBASE + 0x0469)
75
76#define CMOS_REG		(0x70)
77#define CMOS_DATA		(0x71)
78#define BIOS_RESET		(0x0f)
79#define BIOS_WARM		(0x0a)
80
81/* lock region used by kernel profiling */
82int	mcount_lock;
83
84int	mp_naps;		/* # of Applications processors */
85int	boot_cpu_id = -1;	/* designated BSP */
86
87extern  struct pcpu __pcpu[];
88
89/* AP uses this during bootstrap.  Do not staticize.  */
90char *bootSTK;
91static int bootAP;
92
93/* Free these after use */
94void *bootstacks[MAXCPU];
95
96/* Temporary variables for init_secondary()  */
97char *doublefault_stack;
98char *nmi_stack;
99void *dpcpu;
100
101struct pcb stoppcbs[MAXCPU];
102struct pcb **susppcbs;
103
104/* Variables needed for SMP tlb shootdown. */
105vm_offset_t smp_tlb_addr1;
106vm_offset_t smp_tlb_addr2;
107volatile int smp_tlb_wait;
108
109#ifdef COUNT_IPIS
110/* Interrupt counts. */
111static u_long *ipi_preempt_counts[MAXCPU];
112static u_long *ipi_ast_counts[MAXCPU];
113u_long *ipi_invltlb_counts[MAXCPU];
114u_long *ipi_invlrng_counts[MAXCPU];
115u_long *ipi_invlpg_counts[MAXCPU];
116u_long *ipi_invlcache_counts[MAXCPU];
117u_long *ipi_rendezvous_counts[MAXCPU];
118static u_long *ipi_hardclock_counts[MAXCPU];
119#endif
120
121extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
122
123/*
124 * Local data and functions.
125 */
126
127static volatile cpuset_t ipi_nmi_pending;
128
129/* used to hold the AP's until we are ready to release them */
130static struct mtx ap_boot_mtx;
131
132/* Set to 1 once we're ready to let the APs out of the pen. */
133static volatile int aps_ready = 0;
134
135/*
136 * Store data from cpu_add() until later in the boot when we actually setup
137 * the APs.
138 */
139struct cpu_info {
140	int	cpu_present:1;
141	int	cpu_bsp:1;
142	int	cpu_disabled:1;
143	int	cpu_hyperthread:1;
144} static cpu_info[MAX_APIC_ID + 1];
145int cpu_apic_ids[MAXCPU];
146int apic_cpuids[MAX_APIC_ID + 1];
147
148/* Holds pending bitmap based IPIs per CPU */
149static volatile u_int cpu_ipi_pending[MAXCPU];
150
151static u_int boot_address;
152static int cpu_logical;			/* logical cpus per core */
153static int cpu_cores;			/* cores per package */
154
155static void	assign_cpu_ids(void);
156static void	set_interrupt_apic_ids(void);
157static int	start_all_aps(void);
158static int	start_ap(int apic_id);
159static void	release_aps(void *dummy);
160
161static u_int	hyperthreading_cpus;	/* logical cpus sharing L1 cache */
162static int	hyperthreading_allowed = 1;
163static u_int	bootMP_size;
164
165static void
166mem_range_AP_init(void)
167{
168	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
169		mem_range_softc.mr_op->initAP(&mem_range_softc);
170}
171
172static void
173topo_probe_amd(void)
174{
175	int core_id_bits;
176	int id;
177
178	/* AMD processors do not support HTT. */
179	cpu_logical = 1;
180
181	if ((amd_feature2 & AMDID2_CMP) == 0) {
182		cpu_cores = 1;
183		return;
184	}
185
186	core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
187	    AMDID_COREID_SIZE_SHIFT;
188	if (core_id_bits == 0) {
189		cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
190		return;
191	}
192
193	/* Fam 10h and newer should get here. */
194	for (id = 0; id <= MAX_APIC_ID; id++) {
195		/* Check logical CPU availability. */
196		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
197			continue;
198		/* Check if logical CPU has the same package ID. */
199		if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
200			continue;
201		cpu_cores++;
202	}
203}
204
205/*
206 * Round up to the next power of two, if necessary, and then
207 * take log2.
208 * Returns -1 if argument is zero.
209 */
210static __inline int
211mask_width(u_int x)
212{
213
214	return (fls(x << (1 - powerof2(x))) - 1);
215}
216
217static void
218topo_probe_0x4(void)
219{
220	u_int p[4];
221	int pkg_id_bits;
222	int core_id_bits;
223	int max_cores;
224	int max_logical;
225	int id;
226
227	/* Both zero and one here mean one logical processor per package. */
228	max_logical = (cpu_feature & CPUID_HTT) != 0 ?
229	    (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
230	if (max_logical <= 1)
231		return;
232
233	/*
234	 * Because of uniformity assumption we examine only
235	 * those logical processors that belong to the same
236	 * package as BSP.  Further, we count number of
237	 * logical processors that belong to the same core
238	 * as BSP thus deducing number of threads per core.
239	 */
240	if (cpu_high >= 0x4) {
241		cpuid_count(0x04, 0, p);
242		max_cores = ((p[0] >> 26) & 0x3f) + 1;
243	} else
244		max_cores = 1;
245	core_id_bits = mask_width(max_logical/max_cores);
246	if (core_id_bits < 0)
247		return;
248	pkg_id_bits = core_id_bits + mask_width(max_cores);
249
250	for (id = 0; id <= MAX_APIC_ID; id++) {
251		/* Check logical CPU availability. */
252		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
253			continue;
254		/* Check if logical CPU has the same package ID. */
255		if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
256			continue;
257		cpu_cores++;
258		/* Check if logical CPU has the same package and core IDs. */
259		if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
260			cpu_logical++;
261	}
262
263	KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
264	    ("topo_probe_0x4 couldn't find BSP"));
265
266	cpu_cores /= cpu_logical;
267	hyperthreading_cpus = cpu_logical;
268}
269
270static void
271topo_probe_0xb(void)
272{
273	u_int p[4];
274	int bits;
275	int cnt;
276	int i;
277	int logical;
278	int type;
279	int x;
280
281	/* We only support three levels for now. */
282	for (i = 0; i < 3; i++) {
283		cpuid_count(0x0b, i, p);
284
285		/* Fall back if CPU leaf 11 doesn't really exist. */
286		if (i == 0 && p[1] == 0) {
287			topo_probe_0x4();
288			return;
289		}
290
291		bits = p[0] & 0x1f;
292		logical = p[1] &= 0xffff;
293		type = (p[2] >> 8) & 0xff;
294		if (type == 0 || logical == 0)
295			break;
296		/*
297		 * Because of uniformity assumption we examine only
298		 * those logical processors that belong to the same
299		 * package as BSP.
300		 */
301		for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
302			if (!cpu_info[x].cpu_present ||
303			    cpu_info[x].cpu_disabled)
304				continue;
305			if (x >> bits == boot_cpu_id >> bits)
306				cnt++;
307		}
308		if (type == CPUID_TYPE_SMT)
309			cpu_logical = cnt;
310		else if (type == CPUID_TYPE_CORE)
311			cpu_cores = cnt;
312	}
313	if (cpu_logical == 0)
314		cpu_logical = 1;
315	cpu_cores /= cpu_logical;
316}
317
318/*
319 * Both topology discovery code and code that consumes topology
320 * information assume top-down uniformity of the topology.
321 * That is, all physical packages must be identical and each
322 * core in a package must have the same number of threads.
323 * Topology information is queried only on BSP, on which this
324 * code runs and for which it can query CPUID information.
325 * Then topology is extrapolated on all packages using the
326 * uniformity assumption.
327 */
328static void
329topo_probe(void)
330{
331	static int cpu_topo_probed = 0;
332
333	if (cpu_topo_probed)
334		return;
335
336	CPU_ZERO(&logical_cpus_mask);
337	if (mp_ncpus <= 1)
338		cpu_cores = cpu_logical = 1;
339	else if (cpu_vendor_id == CPU_VENDOR_AMD)
340		topo_probe_amd();
341	else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
342		/*
343		 * See Intel(R) 64 Architecture Processor
344		 * Topology Enumeration article for details.
345		 *
346		 * Note that 0x1 <= cpu_high < 4 case should be
347		 * compatible with topo_probe_0x4() logic when
348		 * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
349		 * or it should trigger the fallback otherwise.
350		 */
351		if (cpu_high >= 0xb)
352			topo_probe_0xb();
353		else if (cpu_high >= 0x1)
354			topo_probe_0x4();
355	}
356
357	/*
358	 * Fallback: assume each logical CPU is in separate
359	 * physical package.  That is, no multi-core, no SMT.
360	 */
361	if (cpu_cores == 0 || cpu_logical == 0)
362		cpu_cores = cpu_logical = 1;
363	cpu_topo_probed = 1;
364}
365
366struct cpu_group *
367cpu_topo(void)
368{
369	int cg_flags;
370
371	/*
372	 * Determine whether any threading flags are
373	 * necessry.
374	 */
375	topo_probe();
376	if (cpu_logical > 1 && hyperthreading_cpus)
377		cg_flags = CG_FLAG_HTT;
378	else if (cpu_logical > 1)
379		cg_flags = CG_FLAG_SMT;
380	else
381		cg_flags = 0;
382	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
383		printf("WARNING: Non-uniform processors.\n");
384		printf("WARNING: Using suboptimal topology.\n");
385		return (smp_topo_none());
386	}
387	/*
388	 * No multi-core or hyper-threaded.
389	 */
390	if (cpu_logical * cpu_cores == 1)
391		return (smp_topo_none());
392	/*
393	 * Only HTT no multi-core.
394	 */
395	if (cpu_logical > 1 && cpu_cores == 1)
396		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
397	/*
398	 * Only multi-core no HTT.
399	 */
400	if (cpu_cores > 1 && cpu_logical == 1)
401		return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
402	/*
403	 * Both HTT and multi-core.
404	 */
405	return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
406	    CG_SHARE_L1, cpu_logical, cg_flags));
407}
408
409/*
410 * Calculate usable address in base memory for AP trampoline code.
411 */
412u_int
413mp_bootaddress(u_int basemem)
414{
415
416	bootMP_size = mptramp_end - mptramp_start;
417	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
418	if (((basemem * 1024) - boot_address) < bootMP_size)
419		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
420	/* 3 levels of page table pages */
421	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
422
423	return mptramp_pagetables;
424}
425
426void
427cpu_add(u_int apic_id, char boot_cpu)
428{
429
430	if (apic_id > MAX_APIC_ID) {
431		panic("SMP: APIC ID %d too high", apic_id);
432		return;
433	}
434	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
435	    apic_id));
436	cpu_info[apic_id].cpu_present = 1;
437	if (boot_cpu) {
438		KASSERT(boot_cpu_id == -1,
439		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
440		    boot_cpu_id));
441		boot_cpu_id = apic_id;
442		cpu_info[apic_id].cpu_bsp = 1;
443	}
444	if (mp_ncpus < MAXCPU) {
445		mp_ncpus++;
446		mp_maxid = mp_ncpus - 1;
447	}
448	if (bootverbose)
449		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
450		    "AP");
451}
452
453void
454cpu_mp_setmaxid(void)
455{
456
457	/*
458	 * mp_maxid should be already set by calls to cpu_add().
459	 * Just sanity check its value here.
460	 */
461	if (mp_ncpus == 0)
462		KASSERT(mp_maxid == 0,
463		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
464	else if (mp_ncpus == 1)
465		mp_maxid = 0;
466	else
467		KASSERT(mp_maxid >= mp_ncpus - 1,
468		    ("%s: counters out of sync: max %d, count %d", __func__,
469			mp_maxid, mp_ncpus));
470}
471
472int
473cpu_mp_probe(void)
474{
475
476	/*
477	 * Always record BSP in CPU map so that the mbuf init code works
478	 * correctly.
479	 */
480	CPU_SETOF(0, &all_cpus);
481	if (mp_ncpus == 0) {
482		/*
483		 * No CPUs were found, so this must be a UP system.  Setup
484		 * the variables to represent a system with a single CPU
485		 * with an id of 0.
486		 */
487		mp_ncpus = 1;
488		return (0);
489	}
490
491	/* At least one CPU was found. */
492	if (mp_ncpus == 1) {
493		/*
494		 * One CPU was found, so this must be a UP system with
495		 * an I/O APIC.
496		 */
497		mp_maxid = 0;
498		return (0);
499	}
500
501	/* At least two CPUs were found. */
502	return (1);
503}
504
505/*
506 * Initialize the IPI handlers and start up the AP's.
507 */
508void
509cpu_mp_start(void)
510{
511	int i;
512
513	/* Initialize the logical ID to APIC ID table. */
514	for (i = 0; i < MAXCPU; i++) {
515		cpu_apic_ids[i] = -1;
516		cpu_ipi_pending[i] = 0;
517	}
518
519	/* Install an inter-CPU IPI for TLB invalidation */
520	setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
521	setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
522	setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
523
524	/* Install an inter-CPU IPI for cache invalidation. */
525	setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
526
527	/* Install an inter-CPU IPI for all-CPU rendezvous */
528	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
529
530	/* Install generic inter-CPU IPI handler */
531	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
532	       SDT_SYSIGT, SEL_KPL, 0);
533
534	/* Install an inter-CPU IPI for CPU stop/restart */
535	setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
536
537	/* Install an inter-CPU IPI for CPU suspend/resume */
538	setidt(IPI_SUSPEND, IDTVEC(cpususpend), SDT_SYSIGT, SEL_KPL, 0);
539
540	/* Set boot_cpu_id if needed. */
541	if (boot_cpu_id == -1) {
542		boot_cpu_id = PCPU_GET(apic_id);
543		cpu_info[boot_cpu_id].cpu_bsp = 1;
544	} else
545		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
546		    ("BSP's APIC ID doesn't match boot_cpu_id"));
547
548	/* Probe logical/physical core configuration. */
549	topo_probe();
550
551	assign_cpu_ids();
552
553	/* Start each Application Processor */
554	start_all_aps();
555
556	set_interrupt_apic_ids();
557}
558
559
560/*
561 * Print various information about the SMP system hardware and setup.
562 */
563void
564cpu_mp_announce(void)
565{
566	const char *hyperthread;
567	int i;
568
569	printf("FreeBSD/SMP: %d package(s) x %d core(s)",
570	    mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
571	if (hyperthreading_cpus > 1)
572	    printf(" x %d HTT threads", cpu_logical);
573	else if (cpu_logical > 1)
574	    printf(" x %d SMT threads", cpu_logical);
575	printf("\n");
576
577	/* List active CPUs first. */
578	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
579	for (i = 1; i < mp_ncpus; i++) {
580		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
581			hyperthread = "/HT";
582		else
583			hyperthread = "";
584		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
585		    cpu_apic_ids[i]);
586	}
587
588	/* List disabled CPUs last. */
589	for (i = 0; i <= MAX_APIC_ID; i++) {
590		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
591			continue;
592		if (cpu_info[i].cpu_hyperthread)
593			hyperthread = "/HT";
594		else
595			hyperthread = "";
596		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
597		    i);
598	}
599}
600
601/*
602 * AP CPU's call this to initialize themselves.
603 */
604void
605init_secondary(void)
606{
607	struct pcpu *pc;
608	struct nmi_pcpu *np;
609	u_int64_t msr, cr0;
610	u_int cpuid;
611	int cpu, gsel_tss, x;
612	struct region_descriptor ap_gdt;
613
614	/* Set by the startup code for us to use */
615	cpu = bootAP;
616
617	/* Init tss */
618	common_tss[cpu] = common_tss[0];
619	common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
620	common_tss[cpu].tss_iobase = sizeof(struct amd64tss) +
621	    IOPAGES * PAGE_SIZE;
622	common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
623
624	/* The NMI stack runs on IST2. */
625	np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
626	common_tss[cpu].tss_ist2 = (long) np;
627
628	/* Prepare private GDT */
629	gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
630	for (x = 0; x < NGDT; x++) {
631		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
632		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL + 1))
633			ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
634	}
635	ssdtosyssd(&gdt_segs[GPROC0_SEL],
636	    (struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
637	ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
638	ap_gdt.rd_base =  (long) &gdt[NGDT * cpu];
639	lgdt(&ap_gdt);			/* does magic intra-segment return */
640
641	/* Get per-cpu data */
642	pc = &__pcpu[cpu];
643
644	/* prime data page for it to use */
645	pcpu_init(pc, cpu, sizeof(struct pcpu));
646	dpcpu_init(dpcpu, cpu);
647	pc->pc_apic_id = cpu_apic_ids[cpu];
648	pc->pc_prvspace = pc;
649	pc->pc_curthread = 0;
650	pc->pc_tssp = &common_tss[cpu];
651	pc->pc_commontssp = &common_tss[cpu];
652	pc->pc_rsp0 = 0;
653	pc->pc_tss = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
654	    GPROC0_SEL];
655	pc->pc_fs32p = &gdt[NGDT * cpu + GUFS32_SEL];
656	pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
657	pc->pc_ldt = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
658	    GUSERLDT_SEL];
659
660	/* Save the per-cpu pointer for use by the NMI handler. */
661	np->np_pcpu = (register_t) pc;
662
663	wrmsr(MSR_FSBASE, 0);		/* User value */
664	wrmsr(MSR_GSBASE, (u_int64_t)pc);
665	wrmsr(MSR_KGSBASE, (u_int64_t)pc);	/* XXX User value while we're in the kernel */
666
667	lidt(&r_idt);
668
669	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
670	ltr(gsel_tss);
671
672	/*
673	 * Set to a known state:
674	 * Set by mpboot.s: CR0_PG, CR0_PE
675	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
676	 */
677	cr0 = rcr0();
678	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
679	load_cr0(cr0);
680
681	/* Set up the fast syscall stuff */
682	msr = rdmsr(MSR_EFER) | EFER_SCE;
683	wrmsr(MSR_EFER, msr);
684	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
685	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
686	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
687	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
688	wrmsr(MSR_STAR, msr);
689	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
690
691	/* Disable local APIC just to be sure. */
692	lapic_disable();
693
694	/* signal our startup to the BSP. */
695	mp_naps++;
696
697	/* Spin until the BSP releases the AP's. */
698	while (!aps_ready)
699		ia32_pause();
700
701	/* Initialize the PAT MSR. */
702	pmap_init_pat();
703
704	/* set up CPU registers and state */
705	cpu_setregs();
706
707	/* set up SSE/NX registers */
708	initializecpu();
709
710	/* set up FPU state on the AP */
711	fpuinit();
712
713	/* A quick check from sanity claus */
714	cpuid = PCPU_GET(cpuid);
715	if (PCPU_GET(apic_id) != lapic_id()) {
716		printf("SMP: cpuid = %d\n", cpuid);
717		printf("SMP: actual apic_id = %d\n", lapic_id());
718		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
719		panic("cpuid mismatch! boom!!");
720	}
721
722	/* Initialize curthread. */
723	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
724	PCPU_SET(curthread, PCPU_GET(idlethread));
725
726	mca_init();
727
728	mtx_lock_spin(&ap_boot_mtx);
729
730	/* Init local apic for irq's */
731	lapic_setup(1);
732
733	/* Set memory range attributes for this CPU to match the BSP */
734	mem_range_AP_init();
735
736	smp_cpus++;
737
738	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
739	printf("SMP: AP CPU #%d Launched!\n", cpuid);
740
741	/* Determine if we are a logical CPU. */
742	/* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
743	if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
744		CPU_SET(cpuid, &logical_cpus_mask);
745
746	if (bootverbose)
747		lapic_dump("AP");
748
749	if (smp_cpus == mp_ncpus) {
750		/* enable IPI's, tlb shootdown, freezes etc */
751		atomic_store_rel_int(&smp_started, 1);
752		smp_active = 1;	 /* historic */
753	}
754
755	/*
756	 * Enable global pages TLB extension
757	 * This also implicitly flushes the TLB
758	 */
759
760	load_cr4(rcr4() | CR4_PGE);
761	load_ds(_udatasel);
762	load_es(_udatasel);
763	load_fs(_ufssel);
764	mtx_unlock_spin(&ap_boot_mtx);
765
766	/* Wait until all the AP's are up. */
767	while (smp_started == 0)
768		ia32_pause();
769
770	/* Start per-CPU event timers. */
771	cpu_initclocks_ap();
772
773	sched_throw(NULL);
774
775	panic("scheduler returned us to %s", __func__);
776	/* NOTREACHED */
777}
778
779/*******************************************************************
780 * local functions and data
781 */
782
783/*
784 * We tell the I/O APIC code about all the CPUs we want to receive
785 * interrupts.  If we don't want certain CPUs to receive IRQs we
786 * can simply not tell the I/O APIC code about them in this function.
787 * We also do not tell it about the BSP since it tells itself about
788 * the BSP internally to work with UP kernels and on UP machines.
789 */
790static void
791set_interrupt_apic_ids(void)
792{
793	u_int i, apic_id;
794
795	for (i = 0; i < MAXCPU; i++) {
796		apic_id = cpu_apic_ids[i];
797		if (apic_id == -1)
798			continue;
799		if (cpu_info[apic_id].cpu_bsp)
800			continue;
801		if (cpu_info[apic_id].cpu_disabled)
802			continue;
803
804		/* Don't let hyperthreads service interrupts. */
805		if (hyperthreading_cpus > 1 &&
806		    apic_id % hyperthreading_cpus != 0)
807			continue;
808
809		intr_add_cpu(i);
810	}
811}
812
813/*
814 * Assign logical CPU IDs to local APICs.
815 */
816static void
817assign_cpu_ids(void)
818{
819	u_int i;
820
821	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
822	    &hyperthreading_allowed);
823
824	/* Check for explicitly disabled CPUs. */
825	for (i = 0; i <= MAX_APIC_ID; i++) {
826		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
827			continue;
828
829		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
830			cpu_info[i].cpu_hyperthread = 1;
831
832			/*
833			 * Don't use HT CPU if it has been disabled by a
834			 * tunable.
835			 */
836			if (hyperthreading_allowed == 0) {
837				cpu_info[i].cpu_disabled = 1;
838				continue;
839			}
840		}
841
842		/* Don't use this CPU if it has been disabled by a tunable. */
843		if (resource_disabled("lapic", i)) {
844			cpu_info[i].cpu_disabled = 1;
845			continue;
846		}
847	}
848
849	if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
850		hyperthreading_cpus = 0;
851		cpu_logical = 1;
852	}
853
854	/*
855	 * Assign CPU IDs to local APIC IDs and disable any CPUs
856	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
857	 *
858	 * To minimize confusion for userland, we attempt to number
859	 * CPUs such that all threads and cores in a package are
860	 * grouped together.  For now we assume that the BSP is always
861	 * the first thread in a package and just start adding APs
862	 * starting with the BSP's APIC ID.
863	 */
864	mp_ncpus = 1;
865	cpu_apic_ids[0] = boot_cpu_id;
866	apic_cpuids[boot_cpu_id] = 0;
867	for (i = boot_cpu_id + 1; i != boot_cpu_id;
868	     i == MAX_APIC_ID ? i = 0 : i++) {
869		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
870		    cpu_info[i].cpu_disabled)
871			continue;
872
873		if (mp_ncpus < MAXCPU) {
874			cpu_apic_ids[mp_ncpus] = i;
875			apic_cpuids[i] = mp_ncpus;
876			mp_ncpus++;
877		} else
878			cpu_info[i].cpu_disabled = 1;
879	}
880	KASSERT(mp_maxid >= mp_ncpus - 1,
881	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
882	    mp_ncpus));
883}
884
885/*
886 * start each AP in our list
887 */
888static int
889start_all_aps(void)
890{
891	vm_offset_t va = boot_address + KERNBASE;
892	u_int64_t *pt4, *pt3, *pt2;
893	u_int32_t mpbioswarmvec;
894	int apic_id, cpu, i;
895	u_char mpbiosreason;
896
897	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
898
899	/* install the AP 1st level boot code */
900	pmap_kenter(va, boot_address);
901	pmap_invalidate_page(kernel_pmap, va);
902	bcopy(mptramp_start, (void *)va, bootMP_size);
903
904	/* Locate the page tables, they'll be below the trampoline */
905	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
906	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
907	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
908
909	/* Create the initial 1GB replicated page tables */
910	for (i = 0; i < 512; i++) {
911		/* Each slot of the level 4 pages points to the same level 3 page */
912		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
913		pt4[i] |= PG_V | PG_RW | PG_U;
914
915		/* Each slot of the level 3 pages points to the same level 2 page */
916		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
917		pt3[i] |= PG_V | PG_RW | PG_U;
918
919		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
920		pt2[i] = i * (2 * 1024 * 1024);
921		pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
922	}
923
924	/* save the current value of the warm-start vector */
925	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
926	outb(CMOS_REG, BIOS_RESET);
927	mpbiosreason = inb(CMOS_DATA);
928
929	/* setup a vector to our boot code */
930	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
931	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
932	outb(CMOS_REG, BIOS_RESET);
933	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
934
935	/* start each AP */
936	for (cpu = 1; cpu < mp_ncpus; cpu++) {
937		apic_id = cpu_apic_ids[cpu];
938
939		/* allocate and set up an idle stack data page */
940		bootstacks[cpu] = (void *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
941		doublefault_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
942		nmi_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
943		dpcpu = (void *)kmem_alloc(kernel_map, DPCPU_SIZE);
944
945		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
946		bootAP = cpu;
947
948		/* attempt to start the Application Processor */
949		if (!start_ap(apic_id)) {
950			/* restore the warmstart vector */
951			*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
952			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
953		}
954
955		CPU_SET(cpu, &all_cpus);	/* record AP in CPU map */
956	}
957
958	/* restore the warmstart vector */
959	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
960
961	outb(CMOS_REG, BIOS_RESET);
962	outb(CMOS_DATA, mpbiosreason);
963
964	/* number of APs actually started */
965	return mp_naps;
966}
967
968
969/*
970 * This function starts the AP (application processor) identified
971 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
972 * to accomplish this.  This is necessary because of the nuances
973 * of the different hardware we might encounter.  It isn't pretty,
974 * but it seems to work.
975 */
976static int
977start_ap(int apic_id)
978{
979	int vector, ms;
980	int cpus;
981
982	/* calculate the vector */
983	vector = (boot_address >> 12) & 0xff;
984
985	/* used as a watchpoint to signal AP startup */
986	cpus = mp_naps;
987
988	ipi_startup(apic_id, vector);
989
990	/* Wait up to 5 seconds for it to start. */
991	for (ms = 0; ms < 5000; ms++) {
992		if (mp_naps > cpus)
993			return 1;	/* return SUCCESS */
994		DELAY(1000);
995	}
996	return 0;		/* return FAILURE */
997}
998
999#ifdef COUNT_XINVLTLB_HITS
1000u_int xhits_gbl[MAXCPU];
1001u_int xhits_pg[MAXCPU];
1002u_int xhits_rng[MAXCPU];
1003static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
1004SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
1005    sizeof(xhits_gbl), "IU", "");
1006SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
1007    sizeof(xhits_pg), "IU", "");
1008SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
1009    sizeof(xhits_rng), "IU", "");
1010
1011u_int ipi_global;
1012u_int ipi_page;
1013u_int ipi_range;
1014u_int ipi_range_size;
1015SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
1016SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
1017SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
1018SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW,
1019    &ipi_range_size, 0, "");
1020
1021u_int ipi_masked_global;
1022u_int ipi_masked_page;
1023u_int ipi_masked_range;
1024u_int ipi_masked_range_size;
1025SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
1026    &ipi_masked_global, 0, "");
1027SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
1028    &ipi_masked_page, 0, "");
1029SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
1030    &ipi_masked_range, 0, "");
1031SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
1032    &ipi_masked_range_size, 0, "");
1033#endif /* COUNT_XINVLTLB_HITS */
1034
1035/*
1036 * Init and startup IPI.
1037 */
1038void
1039ipi_startup(int apic_id, int vector)
1040{
1041
1042	/*
1043	 * first we do an INIT IPI: this INIT IPI might be run, resetting
1044	 * and running the target CPU. OR this INIT IPI might be latched (P5
1045	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1046	 * ignored.
1047	 */
1048	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1049	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
1050	lapic_ipi_wait(-1);
1051	DELAY(10000);		/* wait ~10mS */
1052
1053	/*
1054	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1055	 * latched, (P5 bug) this 1st STARTUP would then terminate
1056	 * immediately, and the previously started INIT IPI would continue. OR
1057	 * the previous INIT IPI has already run. and this STARTUP IPI will
1058	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1059	 * will run.
1060	 */
1061	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1062	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1063	    vector, apic_id);
1064	lapic_ipi_wait(-1);
1065	DELAY(200);		/* wait ~200uS */
1066
1067	/*
1068	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1069	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1070	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1071	 * recognized after hardware RESET or INIT IPI.
1072	 */
1073	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1074	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1075	    vector, apic_id);
1076	lapic_ipi_wait(-1);
1077	DELAY(200);		/* wait ~200uS */
1078}
1079
1080/*
1081 * Send an IPI to specified CPU handling the bitmap logic.
1082 */
1083static void
1084ipi_send_cpu(int cpu, u_int ipi)
1085{
1086	u_int bitmap, old_pending, new_pending;
1087
1088	KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
1089
1090	if (IPI_IS_BITMAPED(ipi)) {
1091		bitmap = 1 << ipi;
1092		ipi = IPI_BITMAP_VECTOR;
1093		do {
1094			old_pending = cpu_ipi_pending[cpu];
1095			new_pending = old_pending | bitmap;
1096		} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
1097		    old_pending, new_pending));
1098		if (old_pending)
1099			return;
1100	}
1101	lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1102}
1103
1104/*
1105 * Flush the TLB on all other CPU's
1106 */
1107static void
1108smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1109{
1110	u_int ncpu;
1111
1112	ncpu = mp_ncpus - 1;	/* does not shootdown self */
1113	if (ncpu < 1)
1114		return;		/* no other cpus */
1115	if (!(read_rflags() & PSL_I))
1116		panic("%s: interrupts disabled", __func__);
1117	mtx_lock_spin(&smp_ipi_mtx);
1118	smp_tlb_addr1 = addr1;
1119	smp_tlb_addr2 = addr2;
1120	atomic_store_rel_int(&smp_tlb_wait, 0);
1121	ipi_all_but_self(vector);
1122	while (smp_tlb_wait < ncpu)
1123		ia32_pause();
1124	mtx_unlock_spin(&smp_ipi_mtx);
1125}
1126
1127static void
1128smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1129{
1130	int cpu, ncpu, othercpus;
1131
1132	othercpus = mp_ncpus - 1;
1133	if (CPU_ISFULLSET(&mask)) {
1134		if (othercpus < 1)
1135			return;
1136	} else {
1137		CPU_CLR(PCPU_GET(cpuid), &mask);
1138		if (CPU_EMPTY(&mask))
1139			return;
1140	}
1141	if (!(read_rflags() & PSL_I))
1142		panic("%s: interrupts disabled", __func__);
1143	mtx_lock_spin(&smp_ipi_mtx);
1144	smp_tlb_addr1 = addr1;
1145	smp_tlb_addr2 = addr2;
1146	atomic_store_rel_int(&smp_tlb_wait, 0);
1147	if (CPU_ISFULLSET(&mask)) {
1148		ncpu = othercpus;
1149		ipi_all_but_self(vector);
1150	} else {
1151		ncpu = 0;
1152		while ((cpu = cpusetobj_ffs(&mask)) != 0) {
1153			cpu--;
1154			CPU_CLR(cpu, &mask);
1155			CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__,
1156			    cpu, vector);
1157			ipi_send_cpu(cpu, vector);
1158			ncpu++;
1159		}
1160	}
1161	while (smp_tlb_wait < ncpu)
1162		ia32_pause();
1163	mtx_unlock_spin(&smp_ipi_mtx);
1164}
1165
1166void
1167smp_cache_flush(void)
1168{
1169
1170	if (smp_started)
1171		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
1172}
1173
1174void
1175smp_invltlb(void)
1176{
1177
1178	if (smp_started) {
1179		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
1180#ifdef COUNT_XINVLTLB_HITS
1181		ipi_global++;
1182#endif
1183	}
1184}
1185
1186void
1187smp_invlpg(vm_offset_t addr)
1188{
1189
1190	if (smp_started) {
1191		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
1192#ifdef COUNT_XINVLTLB_HITS
1193		ipi_page++;
1194#endif
1195	}
1196}
1197
1198void
1199smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
1200{
1201
1202	if (smp_started) {
1203		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
1204#ifdef COUNT_XINVLTLB_HITS
1205		ipi_range++;
1206		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1207#endif
1208	}
1209}
1210
1211void
1212smp_masked_invltlb(cpuset_t mask)
1213{
1214
1215	if (smp_started) {
1216		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
1217#ifdef COUNT_XINVLTLB_HITS
1218		ipi_masked_global++;
1219#endif
1220	}
1221}
1222
1223void
1224smp_masked_invlpg(cpuset_t mask, vm_offset_t addr)
1225{
1226
1227	if (smp_started) {
1228		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
1229#ifdef COUNT_XINVLTLB_HITS
1230		ipi_masked_page++;
1231#endif
1232	}
1233}
1234
1235void
1236smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2)
1237{
1238
1239	if (smp_started) {
1240		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
1241#ifdef COUNT_XINVLTLB_HITS
1242		ipi_masked_range++;
1243		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1244#endif
1245	}
1246}
1247
1248void
1249ipi_bitmap_handler(struct trapframe frame)
1250{
1251	struct trapframe *oldframe;
1252	struct thread *td;
1253	int cpu = PCPU_GET(cpuid);
1254	u_int ipi_bitmap;
1255
1256	critical_enter();
1257	td = curthread;
1258	td->td_intr_nesting_level++;
1259	oldframe = td->td_intr_frame;
1260	td->td_intr_frame = &frame;
1261	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1262	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
1263#ifdef COUNT_IPIS
1264		(*ipi_preempt_counts[cpu])++;
1265#endif
1266		sched_preempt(td);
1267	}
1268	if (ipi_bitmap & (1 << IPI_AST)) {
1269#ifdef COUNT_IPIS
1270		(*ipi_ast_counts[cpu])++;
1271#endif
1272		/* Nothing to do for AST */
1273	}
1274	if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
1275#ifdef COUNT_IPIS
1276		(*ipi_hardclock_counts[cpu])++;
1277#endif
1278		hardclockintr();
1279	}
1280	td->td_intr_frame = oldframe;
1281	td->td_intr_nesting_level--;
1282	critical_exit();
1283}
1284
1285/*
1286 * send an IPI to a set of cpus.
1287 */
1288void
1289ipi_selected(cpuset_t cpus, u_int ipi)
1290{
1291	int cpu;
1292
1293	/*
1294	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1295	 * of help in order to understand what is the source.
1296	 * Set the mask of receiving CPUs for this purpose.
1297	 */
1298	if (ipi == IPI_STOP_HARD)
1299		CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
1300
1301	while ((cpu = cpusetobj_ffs(&cpus)) != 0) {
1302		cpu--;
1303		CPU_CLR(cpu, &cpus);
1304		CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1305		ipi_send_cpu(cpu, ipi);
1306	}
1307}
1308
1309/*
1310 * send an IPI to a specific CPU.
1311 */
1312void
1313ipi_cpu(int cpu, u_int ipi)
1314{
1315
1316	/*
1317	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1318	 * of help in order to understand what is the source.
1319	 * Set the mask of receiving CPUs for this purpose.
1320	 */
1321	if (ipi == IPI_STOP_HARD)
1322		CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
1323
1324	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1325	ipi_send_cpu(cpu, ipi);
1326}
1327
1328/*
1329 * send an IPI to all CPUs EXCEPT myself
1330 */
1331void
1332ipi_all_but_self(u_int ipi)
1333{
1334	cpuset_t other_cpus;
1335
1336	other_cpus = all_cpus;
1337	CPU_CLR(PCPU_GET(cpuid), &other_cpus);
1338
1339	if (IPI_IS_BITMAPED(ipi)) {
1340		ipi_selected(other_cpus, ipi);
1341		return;
1342	}
1343
1344	/*
1345	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1346	 * of help in order to understand what is the source.
1347	 * Set the mask of receiving CPUs for this purpose.
1348	 */
1349	if (ipi == IPI_STOP_HARD)
1350		CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
1351
1352	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1353	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1354}
1355
1356int
1357ipi_nmi_handler()
1358{
1359	u_int cpuid;
1360
1361	/*
1362	 * As long as there is not a simple way to know about a NMI's
1363	 * source, if the bitmask for the current CPU is present in
1364	 * the global pending bitword an IPI_STOP_HARD has been issued
1365	 * and should be handled.
1366	 */
1367	cpuid = PCPU_GET(cpuid);
1368	if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
1369		return (1);
1370
1371	CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
1372	cpustop_handler();
1373	return (0);
1374}
1375
1376/*
1377 * Handle an IPI_STOP by saving our current context and spinning until we
1378 * are resumed.
1379 */
1380void
1381cpustop_handler(void)
1382{
1383	u_int cpu;
1384
1385	cpu = PCPU_GET(cpuid);
1386
1387	savectx(&stoppcbs[cpu]);
1388
1389	/* Indicate that we are stopped */
1390	CPU_SET_ATOMIC(cpu, &stopped_cpus);
1391
1392	/* Wait for restart */
1393	while (!CPU_ISSET(cpu, &started_cpus))
1394	    ia32_pause();
1395
1396	CPU_CLR_ATOMIC(cpu, &started_cpus);
1397	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
1398
1399	if (cpu == 0 && cpustop_restartfunc != NULL) {
1400		cpustop_restartfunc();
1401		cpustop_restartfunc = NULL;
1402	}
1403}
1404
1405/*
1406 * Handle an IPI_SUSPEND by saving our current context and spinning until we
1407 * are resumed.
1408 */
1409void
1410cpususpend_handler(void)
1411{
1412	u_int cpu;
1413
1414	cpu = PCPU_GET(cpuid);
1415
1416	if (savectx(susppcbs[cpu])) {
1417		ctx_fpusave(susppcbs[cpu]->pcb_fpususpend);
1418		wbinvd();
1419		CPU_SET_ATOMIC(cpu, &suspended_cpus);
1420	} else {
1421		pmap_init_pat();
1422		initializecpu();
1423		PCPU_SET(switchtime, 0);
1424		PCPU_SET(switchticks, ticks);
1425
1426		/* Indicate that we are resumed */
1427		CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1428	}
1429
1430	/* Wait for resume */
1431	while (!CPU_ISSET(cpu, &started_cpus))
1432		ia32_pause();
1433
1434	CPU_CLR_ATOMIC(cpu, &started_cpus);
1435
1436	/* Resume MCA and local APIC */
1437	mca_resume();
1438	lapic_setup(0);
1439}
1440
1441/*
1442 * This is called once the rest of the system is up and running and we're
1443 * ready to let the AP's out of the pen.
1444 */
1445static void
1446release_aps(void *dummy __unused)
1447{
1448
1449	if (mp_ncpus == 1)
1450		return;
1451	atomic_store_rel_int(&aps_ready, 1);
1452	while (smp_started == 0)
1453		ia32_pause();
1454}
1455SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1456
1457#ifdef COUNT_IPIS
1458/*
1459 * Setup interrupt counters for IPI handlers.
1460 */
1461static void
1462mp_ipi_intrcnt(void *dummy)
1463{
1464	char buf[64];
1465	int i;
1466
1467	CPU_FOREACH(i) {
1468		snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
1469		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1470		snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
1471		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1472		snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
1473		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1474		snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
1475		intrcnt_add(buf, &ipi_invlcache_counts[i]);
1476		snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
1477		intrcnt_add(buf, &ipi_preempt_counts[i]);
1478		snprintf(buf, sizeof(buf), "cpu%d:ast", i);
1479		intrcnt_add(buf, &ipi_ast_counts[i]);
1480		snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
1481		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1482		snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
1483		intrcnt_add(buf, &ipi_hardclock_counts[i]);
1484	}
1485}
1486SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1487#endif
1488
1489