mp_machdep.c revision 234208
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * Copyright (c) 2003, by Peter Wemm
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the developer may NOT be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/amd64/amd64/mp_machdep.c 234208 2012-04-13 07:18:19Z avg $");
29
30#include "opt_cpu.h"
31#include "opt_kstack_pages.h"
32#include "opt_sched.h"
33#include "opt_smp.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/bus.h>
38#include <sys/cpuset.h>
39#ifdef GPROF
40#include <sys/gmon.h>
41#endif
42#include <sys/kernel.h>
43#include <sys/ktr.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/memrange.h>
47#include <sys/mutex.h>
48#include <sys/pcpu.h>
49#include <sys/proc.h>
50#include <sys/sched.h>
51#include <sys/smp.h>
52#include <sys/sysctl.h>
53
54#include <vm/vm.h>
55#include <vm/vm_param.h>
56#include <vm/pmap.h>
57#include <vm/vm_kern.h>
58#include <vm/vm_extern.h>
59
60#include <x86/apicreg.h>
61#include <machine/clock.h>
62#include <machine/cputypes.h>
63#include <machine/cpufunc.h>
64#include <x86/mca.h>
65#include <machine/md_var.h>
66#include <machine/pcb.h>
67#include <machine/psl.h>
68#include <machine/smp.h>
69#include <machine/specialreg.h>
70#include <machine/tss.h>
71
72#define WARMBOOT_TARGET		0
73#define WARMBOOT_OFF		(KERNBASE + 0x0467)
74#define WARMBOOT_SEG		(KERNBASE + 0x0469)
75
76#define CMOS_REG		(0x70)
77#define CMOS_DATA		(0x71)
78#define BIOS_RESET		(0x0f)
79#define BIOS_WARM		(0x0a)
80
81/* lock region used by kernel profiling */
82int	mcount_lock;
83
84int	mp_naps;		/* # of Applications processors */
85int	boot_cpu_id = -1;	/* designated BSP */
86
87extern  struct pcpu __pcpu[];
88
89/* AP uses this during bootstrap.  Do not staticize.  */
90char *bootSTK;
91static int bootAP;
92
93/* Free these after use */
94void *bootstacks[MAXCPU];
95
96/* Temporary variables for init_secondary()  */
97char *doublefault_stack;
98char *nmi_stack;
99void *dpcpu;
100
101struct pcb stoppcbs[MAXCPU];
102struct pcb **susppcbs;
103void **suspfpusave;
104
105/* Variables needed for SMP tlb shootdown. */
106vm_offset_t smp_tlb_addr1;
107vm_offset_t smp_tlb_addr2;
108volatile int smp_tlb_wait;
109
110#ifdef COUNT_IPIS
111/* Interrupt counts. */
112static u_long *ipi_preempt_counts[MAXCPU];
113static u_long *ipi_ast_counts[MAXCPU];
114u_long *ipi_invltlb_counts[MAXCPU];
115u_long *ipi_invlrng_counts[MAXCPU];
116u_long *ipi_invlpg_counts[MAXCPU];
117u_long *ipi_invlcache_counts[MAXCPU];
118u_long *ipi_rendezvous_counts[MAXCPU];
119static u_long *ipi_hardclock_counts[MAXCPU];
120#endif
121
122extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
123
124/*
125 * Local data and functions.
126 */
127
128static volatile cpuset_t ipi_nmi_pending;
129
130/* used to hold the AP's until we are ready to release them */
131static struct mtx ap_boot_mtx;
132
133/* Set to 1 once we're ready to let the APs out of the pen. */
134static volatile int aps_ready = 0;
135
136/*
137 * Store data from cpu_add() until later in the boot when we actually setup
138 * the APs.
139 */
140struct cpu_info {
141	int	cpu_present:1;
142	int	cpu_bsp:1;
143	int	cpu_disabled:1;
144	int	cpu_hyperthread:1;
145} static cpu_info[MAX_APIC_ID + 1];
146int cpu_apic_ids[MAXCPU];
147int apic_cpuids[MAX_APIC_ID + 1];
148
149/* Holds pending bitmap based IPIs per CPU */
150static volatile u_int cpu_ipi_pending[MAXCPU];
151
152static u_int boot_address;
153static int cpu_logical;			/* logical cpus per core */
154static int cpu_cores;			/* cores per package */
155
156static void	assign_cpu_ids(void);
157static void	set_interrupt_apic_ids(void);
158static int	start_all_aps(void);
159static int	start_ap(int apic_id);
160static void	release_aps(void *dummy);
161
162static u_int	hyperthreading_cpus;	/* logical cpus sharing L1 cache */
163static int	hyperthreading_allowed = 1;
164static u_int	bootMP_size;
165
166static void
167mem_range_AP_init(void)
168{
169	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
170		mem_range_softc.mr_op->initAP(&mem_range_softc);
171}
172
173static void
174topo_probe_amd(void)
175{
176	int core_id_bits;
177	int id;
178
179	/* AMD processors do not support HTT. */
180	cpu_logical = 1;
181
182	if ((amd_feature2 & AMDID2_CMP) == 0) {
183		cpu_cores = 1;
184		return;
185	}
186
187	core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
188	    AMDID_COREID_SIZE_SHIFT;
189	if (core_id_bits == 0) {
190		cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
191		return;
192	}
193
194	/* Fam 10h and newer should get here. */
195	for (id = 0; id <= MAX_APIC_ID; id++) {
196		/* Check logical CPU availability. */
197		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
198			continue;
199		/* Check if logical CPU has the same package ID. */
200		if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
201			continue;
202		cpu_cores++;
203	}
204}
205
206/*
207 * Round up to the next power of two, if necessary, and then
208 * take log2.
209 * Returns -1 if argument is zero.
210 */
211static __inline int
212mask_width(u_int x)
213{
214
215	return (fls(x << (1 - powerof2(x))) - 1);
216}
217
218static void
219topo_probe_0x4(void)
220{
221	u_int p[4];
222	int pkg_id_bits;
223	int core_id_bits;
224	int max_cores;
225	int max_logical;
226	int id;
227
228	/* Both zero and one here mean one logical processor per package. */
229	max_logical = (cpu_feature & CPUID_HTT) != 0 ?
230	    (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
231	if (max_logical <= 1)
232		return;
233
234	/*
235	 * Because of uniformity assumption we examine only
236	 * those logical processors that belong to the same
237	 * package as BSP.  Further, we count number of
238	 * logical processors that belong to the same core
239	 * as BSP thus deducing number of threads per core.
240	 */
241	if (cpu_high >= 0x4) {
242		cpuid_count(0x04, 0, p);
243		max_cores = ((p[0] >> 26) & 0x3f) + 1;
244	} else
245		max_cores = 1;
246	core_id_bits = mask_width(max_logical/max_cores);
247	if (core_id_bits < 0)
248		return;
249	pkg_id_bits = core_id_bits + mask_width(max_cores);
250
251	for (id = 0; id <= MAX_APIC_ID; id++) {
252		/* Check logical CPU availability. */
253		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
254			continue;
255		/* Check if logical CPU has the same package ID. */
256		if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
257			continue;
258		cpu_cores++;
259		/* Check if logical CPU has the same package and core IDs. */
260		if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
261			cpu_logical++;
262	}
263
264	KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
265	    ("topo_probe_0x4 couldn't find BSP"));
266
267	cpu_cores /= cpu_logical;
268	hyperthreading_cpus = cpu_logical;
269}
270
271static void
272topo_probe_0xb(void)
273{
274	u_int p[4];
275	int bits;
276	int cnt;
277	int i;
278	int logical;
279	int type;
280	int x;
281
282	/* We only support three levels for now. */
283	for (i = 0; i < 3; i++) {
284		cpuid_count(0x0b, i, p);
285
286		/* Fall back if CPU leaf 11 doesn't really exist. */
287		if (i == 0 && p[1] == 0) {
288			topo_probe_0x4();
289			return;
290		}
291
292		bits = p[0] & 0x1f;
293		logical = p[1] &= 0xffff;
294		type = (p[2] >> 8) & 0xff;
295		if (type == 0 || logical == 0)
296			break;
297		/*
298		 * Because of uniformity assumption we examine only
299		 * those logical processors that belong to the same
300		 * package as BSP.
301		 */
302		for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
303			if (!cpu_info[x].cpu_present ||
304			    cpu_info[x].cpu_disabled)
305				continue;
306			if (x >> bits == boot_cpu_id >> bits)
307				cnt++;
308		}
309		if (type == CPUID_TYPE_SMT)
310			cpu_logical = cnt;
311		else if (type == CPUID_TYPE_CORE)
312			cpu_cores = cnt;
313	}
314	if (cpu_logical == 0)
315		cpu_logical = 1;
316	cpu_cores /= cpu_logical;
317}
318
319/*
320 * Both topology discovery code and code that consumes topology
321 * information assume top-down uniformity of the topology.
322 * That is, all physical packages must be identical and each
323 * core in a package must have the same number of threads.
324 * Topology information is queried only on BSP, on which this
325 * code runs and for which it can query CPUID information.
326 * Then topology is extrapolated on all packages using the
327 * uniformity assumption.
328 */
329static void
330topo_probe(void)
331{
332	static int cpu_topo_probed = 0;
333
334	if (cpu_topo_probed)
335		return;
336
337	CPU_ZERO(&logical_cpus_mask);
338	if (mp_ncpus <= 1)
339		cpu_cores = cpu_logical = 1;
340	else if (cpu_vendor_id == CPU_VENDOR_AMD)
341		topo_probe_amd();
342	else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
343		/*
344		 * See Intel(R) 64 Architecture Processor
345		 * Topology Enumeration article for details.
346		 *
347		 * Note that 0x1 <= cpu_high < 4 case should be
348		 * compatible with topo_probe_0x4() logic when
349		 * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
350		 * or it should trigger the fallback otherwise.
351		 */
352		if (cpu_high >= 0xb)
353			topo_probe_0xb();
354		else if (cpu_high >= 0x1)
355			topo_probe_0x4();
356	}
357
358	/*
359	 * Fallback: assume each logical CPU is in separate
360	 * physical package.  That is, no multi-core, no SMT.
361	 */
362	if (cpu_cores == 0 || cpu_logical == 0)
363		cpu_cores = cpu_logical = 1;
364	cpu_topo_probed = 1;
365}
366
367struct cpu_group *
368cpu_topo(void)
369{
370	int cg_flags;
371
372	/*
373	 * Determine whether any threading flags are
374	 * necessry.
375	 */
376	topo_probe();
377	if (cpu_logical > 1 && hyperthreading_cpus)
378		cg_flags = CG_FLAG_HTT;
379	else if (cpu_logical > 1)
380		cg_flags = CG_FLAG_SMT;
381	else
382		cg_flags = 0;
383	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
384		printf("WARNING: Non-uniform processors.\n");
385		printf("WARNING: Using suboptimal topology.\n");
386		return (smp_topo_none());
387	}
388	/*
389	 * No multi-core or hyper-threaded.
390	 */
391	if (cpu_logical * cpu_cores == 1)
392		return (smp_topo_none());
393	/*
394	 * Only HTT no multi-core.
395	 */
396	if (cpu_logical > 1 && cpu_cores == 1)
397		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
398	/*
399	 * Only multi-core no HTT.
400	 */
401	if (cpu_cores > 1 && cpu_logical == 1)
402		return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
403	/*
404	 * Both HTT and multi-core.
405	 */
406	return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
407	    CG_SHARE_L1, cpu_logical, cg_flags));
408}
409
410/*
411 * Calculate usable address in base memory for AP trampoline code.
412 */
413u_int
414mp_bootaddress(u_int basemem)
415{
416
417	bootMP_size = mptramp_end - mptramp_start;
418	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
419	if (((basemem * 1024) - boot_address) < bootMP_size)
420		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
421	/* 3 levels of page table pages */
422	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
423
424	return mptramp_pagetables;
425}
426
427void
428cpu_add(u_int apic_id, char boot_cpu)
429{
430
431	if (apic_id > MAX_APIC_ID) {
432		panic("SMP: APIC ID %d too high", apic_id);
433		return;
434	}
435	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
436	    apic_id));
437	cpu_info[apic_id].cpu_present = 1;
438	if (boot_cpu) {
439		KASSERT(boot_cpu_id == -1,
440		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
441		    boot_cpu_id));
442		boot_cpu_id = apic_id;
443		cpu_info[apic_id].cpu_bsp = 1;
444	}
445	if (mp_ncpus < MAXCPU) {
446		mp_ncpus++;
447		mp_maxid = mp_ncpus - 1;
448	}
449	if (bootverbose)
450		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
451		    "AP");
452}
453
454void
455cpu_mp_setmaxid(void)
456{
457
458	/*
459	 * mp_maxid should be already set by calls to cpu_add().
460	 * Just sanity check its value here.
461	 */
462	if (mp_ncpus == 0)
463		KASSERT(mp_maxid == 0,
464		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
465	else if (mp_ncpus == 1)
466		mp_maxid = 0;
467	else
468		KASSERT(mp_maxid >= mp_ncpus - 1,
469		    ("%s: counters out of sync: max %d, count %d", __func__,
470			mp_maxid, mp_ncpus));
471}
472
473int
474cpu_mp_probe(void)
475{
476
477	/*
478	 * Always record BSP in CPU map so that the mbuf init code works
479	 * correctly.
480	 */
481	CPU_SETOF(0, &all_cpus);
482	if (mp_ncpus == 0) {
483		/*
484		 * No CPUs were found, so this must be a UP system.  Setup
485		 * the variables to represent a system with a single CPU
486		 * with an id of 0.
487		 */
488		mp_ncpus = 1;
489		return (0);
490	}
491
492	/* At least one CPU was found. */
493	if (mp_ncpus == 1) {
494		/*
495		 * One CPU was found, so this must be a UP system with
496		 * an I/O APIC.
497		 */
498		mp_maxid = 0;
499		return (0);
500	}
501
502	/* At least two CPUs were found. */
503	return (1);
504}
505
506/*
507 * Initialize the IPI handlers and start up the AP's.
508 */
509void
510cpu_mp_start(void)
511{
512	int i;
513
514	/* Initialize the logical ID to APIC ID table. */
515	for (i = 0; i < MAXCPU; i++) {
516		cpu_apic_ids[i] = -1;
517		cpu_ipi_pending[i] = 0;
518	}
519
520	/* Install an inter-CPU IPI for TLB invalidation */
521	setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
522	setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
523	setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
524
525	/* Install an inter-CPU IPI for cache invalidation. */
526	setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
527
528	/* Install an inter-CPU IPI for all-CPU rendezvous */
529	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
530
531	/* Install generic inter-CPU IPI handler */
532	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
533	       SDT_SYSIGT, SEL_KPL, 0);
534
535	/* Install an inter-CPU IPI for CPU stop/restart */
536	setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
537
538	/* Install an inter-CPU IPI for CPU suspend/resume */
539	setidt(IPI_SUSPEND, IDTVEC(cpususpend), SDT_SYSIGT, SEL_KPL, 0);
540
541	/* Set boot_cpu_id if needed. */
542	if (boot_cpu_id == -1) {
543		boot_cpu_id = PCPU_GET(apic_id);
544		cpu_info[boot_cpu_id].cpu_bsp = 1;
545	} else
546		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
547		    ("BSP's APIC ID doesn't match boot_cpu_id"));
548
549	/* Probe logical/physical core configuration. */
550	topo_probe();
551
552	assign_cpu_ids();
553
554	/* Start each Application Processor */
555	start_all_aps();
556
557	set_interrupt_apic_ids();
558}
559
560
561/*
562 * Print various information about the SMP system hardware and setup.
563 */
564void
565cpu_mp_announce(void)
566{
567	const char *hyperthread;
568	int i;
569
570	printf("FreeBSD/SMP: %d package(s) x %d core(s)",
571	    mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
572	if (hyperthreading_cpus > 1)
573	    printf(" x %d HTT threads", cpu_logical);
574	else if (cpu_logical > 1)
575	    printf(" x %d SMT threads", cpu_logical);
576	printf("\n");
577
578	/* List active CPUs first. */
579	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
580	for (i = 1; i < mp_ncpus; i++) {
581		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
582			hyperthread = "/HT";
583		else
584			hyperthread = "";
585		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
586		    cpu_apic_ids[i]);
587	}
588
589	/* List disabled CPUs last. */
590	for (i = 0; i <= MAX_APIC_ID; i++) {
591		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
592			continue;
593		if (cpu_info[i].cpu_hyperthread)
594			hyperthread = "/HT";
595		else
596			hyperthread = "";
597		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
598		    i);
599	}
600}
601
602/*
603 * AP CPU's call this to initialize themselves.
604 */
605void
606init_secondary(void)
607{
608	struct pcpu *pc;
609	struct nmi_pcpu *np;
610	u_int64_t msr, cr0;
611	u_int cpuid;
612	int cpu, gsel_tss, x;
613	struct region_descriptor ap_gdt;
614
615	/* Set by the startup code for us to use */
616	cpu = bootAP;
617
618	/* Init tss */
619	common_tss[cpu] = common_tss[0];
620	common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
621	common_tss[cpu].tss_iobase = sizeof(struct amd64tss) +
622	    IOPAGES * PAGE_SIZE;
623	common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
624
625	/* The NMI stack runs on IST2. */
626	np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
627	common_tss[cpu].tss_ist2 = (long) np;
628
629	/* Prepare private GDT */
630	gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
631	for (x = 0; x < NGDT; x++) {
632		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
633		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL + 1))
634			ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
635	}
636	ssdtosyssd(&gdt_segs[GPROC0_SEL],
637	    (struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
638	ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
639	ap_gdt.rd_base =  (long) &gdt[NGDT * cpu];
640	lgdt(&ap_gdt);			/* does magic intra-segment return */
641
642	/* Get per-cpu data */
643	pc = &__pcpu[cpu];
644
645	/* prime data page for it to use */
646	pcpu_init(pc, cpu, sizeof(struct pcpu));
647	dpcpu_init(dpcpu, cpu);
648	pc->pc_apic_id = cpu_apic_ids[cpu];
649	pc->pc_prvspace = pc;
650	pc->pc_curthread = 0;
651	pc->pc_tssp = &common_tss[cpu];
652	pc->pc_commontssp = &common_tss[cpu];
653	pc->pc_rsp0 = 0;
654	pc->pc_tss = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
655	    GPROC0_SEL];
656	pc->pc_fs32p = &gdt[NGDT * cpu + GUFS32_SEL];
657	pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
658	pc->pc_ldt = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
659	    GUSERLDT_SEL];
660
661	/* Save the per-cpu pointer for use by the NMI handler. */
662	np->np_pcpu = (register_t) pc;
663
664	wrmsr(MSR_FSBASE, 0);		/* User value */
665	wrmsr(MSR_GSBASE, (u_int64_t)pc);
666	wrmsr(MSR_KGSBASE, (u_int64_t)pc);	/* XXX User value while we're in the kernel */
667
668	lidt(&r_idt);
669
670	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
671	ltr(gsel_tss);
672
673	/*
674	 * Set to a known state:
675	 * Set by mpboot.s: CR0_PG, CR0_PE
676	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
677	 */
678	cr0 = rcr0();
679	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
680	load_cr0(cr0);
681
682	/* Set up the fast syscall stuff */
683	msr = rdmsr(MSR_EFER) | EFER_SCE;
684	wrmsr(MSR_EFER, msr);
685	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
686	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
687	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
688	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
689	wrmsr(MSR_STAR, msr);
690	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
691
692	/* Disable local APIC just to be sure. */
693	lapic_disable();
694
695	/* signal our startup to the BSP. */
696	mp_naps++;
697
698	/* Spin until the BSP releases the AP's. */
699	while (!aps_ready)
700		ia32_pause();
701
702	/* Initialize the PAT MSR. */
703	pmap_init_pat();
704
705	/* set up CPU registers and state */
706	cpu_setregs();
707
708	/* set up SSE/NX registers */
709	initializecpu();
710
711	/* set up FPU state on the AP */
712	fpuinit();
713
714	/* A quick check from sanity claus */
715	cpuid = PCPU_GET(cpuid);
716	if (PCPU_GET(apic_id) != lapic_id()) {
717		printf("SMP: cpuid = %d\n", cpuid);
718		printf("SMP: actual apic_id = %d\n", lapic_id());
719		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
720		panic("cpuid mismatch! boom!!");
721	}
722
723	/* Initialize curthread. */
724	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
725	PCPU_SET(curthread, PCPU_GET(idlethread));
726
727	mca_init();
728
729	mtx_lock_spin(&ap_boot_mtx);
730
731	/* Init local apic for irq's */
732	lapic_setup(1);
733
734	/* Set memory range attributes for this CPU to match the BSP */
735	mem_range_AP_init();
736
737	smp_cpus++;
738
739	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
740	printf("SMP: AP CPU #%d Launched!\n", cpuid);
741
742	/* Determine if we are a logical CPU. */
743	/* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
744	if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
745		CPU_SET(cpuid, &logical_cpus_mask);
746
747	if (bootverbose)
748		lapic_dump("AP");
749
750	if (smp_cpus == mp_ncpus) {
751		/* enable IPI's, tlb shootdown, freezes etc */
752		atomic_store_rel_int(&smp_started, 1);
753		smp_active = 1;	 /* historic */
754	}
755
756	/*
757	 * Enable global pages TLB extension
758	 * This also implicitly flushes the TLB
759	 */
760
761	load_cr4(rcr4() | CR4_PGE);
762	load_ds(_udatasel);
763	load_es(_udatasel);
764	load_fs(_ufssel);
765	mtx_unlock_spin(&ap_boot_mtx);
766
767	/* Wait until all the AP's are up. */
768	while (smp_started == 0)
769		ia32_pause();
770
771	/* Start per-CPU event timers. */
772	cpu_initclocks_ap();
773
774	sched_throw(NULL);
775
776	panic("scheduler returned us to %s", __func__);
777	/* NOTREACHED */
778}
779
780/*******************************************************************
781 * local functions and data
782 */
783
784/*
785 * We tell the I/O APIC code about all the CPUs we want to receive
786 * interrupts.  If we don't want certain CPUs to receive IRQs we
787 * can simply not tell the I/O APIC code about them in this function.
788 */
789static void
790set_interrupt_apic_ids(void)
791{
792	u_int i, apic_id;
793
794	for (i = 0; i < MAXCPU; i++) {
795		apic_id = cpu_apic_ids[i];
796		if (apic_id == -1)
797			continue;
798		if (cpu_info[apic_id].cpu_disabled)
799			continue;
800
801		/* Don't let hyperthreads service interrupts. */
802		if (hyperthreading_cpus > 1 &&
803		    apic_id % hyperthreading_cpus != 0)
804			continue;
805
806		intr_add_cpu(i);
807	}
808}
809
810/*
811 * Assign logical CPU IDs to local APICs.
812 */
813static void
814assign_cpu_ids(void)
815{
816	u_int i;
817
818	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
819	    &hyperthreading_allowed);
820
821	/* Check for explicitly disabled CPUs. */
822	for (i = 0; i <= MAX_APIC_ID; i++) {
823		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
824			continue;
825
826		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
827			cpu_info[i].cpu_hyperthread = 1;
828
829			/*
830			 * Don't use HT CPU if it has been disabled by a
831			 * tunable.
832			 */
833			if (hyperthreading_allowed == 0) {
834				cpu_info[i].cpu_disabled = 1;
835				continue;
836			}
837		}
838
839		/* Don't use this CPU if it has been disabled by a tunable. */
840		if (resource_disabled("lapic", i)) {
841			cpu_info[i].cpu_disabled = 1;
842			continue;
843		}
844	}
845
846	if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
847		hyperthreading_cpus = 0;
848		cpu_logical = 1;
849	}
850
851	/*
852	 * Assign CPU IDs to local APIC IDs and disable any CPUs
853	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
854	 *
855	 * To minimize confusion for userland, we attempt to number
856	 * CPUs such that all threads and cores in a package are
857	 * grouped together.  For now we assume that the BSP is always
858	 * the first thread in a package and just start adding APs
859	 * starting with the BSP's APIC ID.
860	 */
861	mp_ncpus = 1;
862	cpu_apic_ids[0] = boot_cpu_id;
863	apic_cpuids[boot_cpu_id] = 0;
864	for (i = boot_cpu_id + 1; i != boot_cpu_id;
865	     i == MAX_APIC_ID ? i = 0 : i++) {
866		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
867		    cpu_info[i].cpu_disabled)
868			continue;
869
870		if (mp_ncpus < MAXCPU) {
871			cpu_apic_ids[mp_ncpus] = i;
872			apic_cpuids[i] = mp_ncpus;
873			mp_ncpus++;
874		} else
875			cpu_info[i].cpu_disabled = 1;
876	}
877	KASSERT(mp_maxid >= mp_ncpus - 1,
878	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
879	    mp_ncpus));
880}
881
882/*
883 * start each AP in our list
884 */
885static int
886start_all_aps(void)
887{
888	vm_offset_t va = boot_address + KERNBASE;
889	u_int64_t *pt4, *pt3, *pt2;
890	u_int32_t mpbioswarmvec;
891	int apic_id, cpu, i;
892	u_char mpbiosreason;
893
894	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
895
896	/* install the AP 1st level boot code */
897	pmap_kenter(va, boot_address);
898	pmap_invalidate_page(kernel_pmap, va);
899	bcopy(mptramp_start, (void *)va, bootMP_size);
900
901	/* Locate the page tables, they'll be below the trampoline */
902	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
903	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
904	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
905
906	/* Create the initial 1GB replicated page tables */
907	for (i = 0; i < 512; i++) {
908		/* Each slot of the level 4 pages points to the same level 3 page */
909		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
910		pt4[i] |= PG_V | PG_RW | PG_U;
911
912		/* Each slot of the level 3 pages points to the same level 2 page */
913		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
914		pt3[i] |= PG_V | PG_RW | PG_U;
915
916		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
917		pt2[i] = i * (2 * 1024 * 1024);
918		pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
919	}
920
921	/* save the current value of the warm-start vector */
922	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
923	outb(CMOS_REG, BIOS_RESET);
924	mpbiosreason = inb(CMOS_DATA);
925
926	/* setup a vector to our boot code */
927	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
928	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
929	outb(CMOS_REG, BIOS_RESET);
930	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
931
932	/* start each AP */
933	for (cpu = 1; cpu < mp_ncpus; cpu++) {
934		apic_id = cpu_apic_ids[cpu];
935
936		/* allocate and set up an idle stack data page */
937		bootstacks[cpu] = (void *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
938		doublefault_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
939		nmi_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
940		dpcpu = (void *)kmem_alloc(kernel_map, DPCPU_SIZE);
941
942		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
943		bootAP = cpu;
944
945		/* attempt to start the Application Processor */
946		if (!start_ap(apic_id)) {
947			/* restore the warmstart vector */
948			*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
949			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
950		}
951
952		CPU_SET(cpu, &all_cpus);	/* record AP in CPU map */
953	}
954
955	/* restore the warmstart vector */
956	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
957
958	outb(CMOS_REG, BIOS_RESET);
959	outb(CMOS_DATA, mpbiosreason);
960
961	/* number of APs actually started */
962	return mp_naps;
963}
964
965
966/*
967 * This function starts the AP (application processor) identified
968 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
969 * to accomplish this.  This is necessary because of the nuances
970 * of the different hardware we might encounter.  It isn't pretty,
971 * but it seems to work.
972 */
973static int
974start_ap(int apic_id)
975{
976	int vector, ms;
977	int cpus;
978
979	/* calculate the vector */
980	vector = (boot_address >> 12) & 0xff;
981
982	/* used as a watchpoint to signal AP startup */
983	cpus = mp_naps;
984
985	/*
986	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
987	 * and running the target CPU. OR this INIT IPI might be latched (P5
988	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
989	 * ignored.
990	 */
991
992	/* do an INIT IPI: assert RESET */
993	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
994	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
995
996	/* wait for pending status end */
997	lapic_ipi_wait(-1);
998
999	/* do an INIT IPI: deassert RESET */
1000	lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
1001	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
1002
1003	/* wait for pending status end */
1004	DELAY(10000);		/* wait ~10mS */
1005	lapic_ipi_wait(-1);
1006
1007	/*
1008	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1009	 * latched, (P5 bug) this 1st STARTUP would then terminate
1010	 * immediately, and the previously started INIT IPI would continue. OR
1011	 * the previous INIT IPI has already run. and this STARTUP IPI will
1012	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1013	 * will run.
1014	 */
1015
1016	/* do a STARTUP IPI */
1017	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1018	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1019	    vector, apic_id);
1020	lapic_ipi_wait(-1);
1021	DELAY(200);		/* wait ~200uS */
1022
1023	/*
1024	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1025	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1026	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1027	 * recognized after hardware RESET or INIT IPI.
1028	 */
1029
1030	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1031	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1032	    vector, apic_id);
1033	lapic_ipi_wait(-1);
1034	DELAY(200);		/* wait ~200uS */
1035
1036	/* Wait up to 5 seconds for it to start. */
1037	for (ms = 0; ms < 5000; ms++) {
1038		if (mp_naps > cpus)
1039			return 1;	/* return SUCCESS */
1040		DELAY(1000);
1041	}
1042	return 0;		/* return FAILURE */
1043}
1044
1045#ifdef COUNT_XINVLTLB_HITS
1046u_int xhits_gbl[MAXCPU];
1047u_int xhits_pg[MAXCPU];
1048u_int xhits_rng[MAXCPU];
1049static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
1050SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
1051    sizeof(xhits_gbl), "IU", "");
1052SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
1053    sizeof(xhits_pg), "IU", "");
1054SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
1055    sizeof(xhits_rng), "IU", "");
1056
1057u_int ipi_global;
1058u_int ipi_page;
1059u_int ipi_range;
1060u_int ipi_range_size;
1061SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
1062SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
1063SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
1064SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW,
1065    &ipi_range_size, 0, "");
1066
1067u_int ipi_masked_global;
1068u_int ipi_masked_page;
1069u_int ipi_masked_range;
1070u_int ipi_masked_range_size;
1071SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
1072    &ipi_masked_global, 0, "");
1073SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
1074    &ipi_masked_page, 0, "");
1075SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
1076    &ipi_masked_range, 0, "");
1077SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
1078    &ipi_masked_range_size, 0, "");
1079#endif /* COUNT_XINVLTLB_HITS */
1080
1081/*
1082 * Send an IPI to specified CPU handling the bitmap logic.
1083 */
1084static void
1085ipi_send_cpu(int cpu, u_int ipi)
1086{
1087	u_int bitmap, old_pending, new_pending;
1088
1089	KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
1090
1091	if (IPI_IS_BITMAPED(ipi)) {
1092		bitmap = 1 << ipi;
1093		ipi = IPI_BITMAP_VECTOR;
1094		do {
1095			old_pending = cpu_ipi_pending[cpu];
1096			new_pending = old_pending | bitmap;
1097		} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
1098		    old_pending, new_pending));
1099		if (old_pending)
1100			return;
1101	}
1102	lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1103}
1104
1105/*
1106 * Flush the TLB on all other CPU's
1107 */
1108static void
1109smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1110{
1111	u_int ncpu;
1112
1113	ncpu = mp_ncpus - 1;	/* does not shootdown self */
1114	if (ncpu < 1)
1115		return;		/* no other cpus */
1116	if (!(read_rflags() & PSL_I))
1117		panic("%s: interrupts disabled", __func__);
1118	mtx_lock_spin(&smp_ipi_mtx);
1119	smp_tlb_addr1 = addr1;
1120	smp_tlb_addr2 = addr2;
1121	atomic_store_rel_int(&smp_tlb_wait, 0);
1122	ipi_all_but_self(vector);
1123	while (smp_tlb_wait < ncpu)
1124		ia32_pause();
1125	mtx_unlock_spin(&smp_ipi_mtx);
1126}
1127
1128static void
1129smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1130{
1131	int cpu, ncpu, othercpus;
1132
1133	othercpus = mp_ncpus - 1;
1134	if (CPU_ISFULLSET(&mask)) {
1135		if (othercpus < 1)
1136			return;
1137	} else {
1138		CPU_CLR(PCPU_GET(cpuid), &mask);
1139		if (CPU_EMPTY(&mask))
1140			return;
1141	}
1142	if (!(read_rflags() & PSL_I))
1143		panic("%s: interrupts disabled", __func__);
1144	mtx_lock_spin(&smp_ipi_mtx);
1145	smp_tlb_addr1 = addr1;
1146	smp_tlb_addr2 = addr2;
1147	atomic_store_rel_int(&smp_tlb_wait, 0);
1148	if (CPU_ISFULLSET(&mask)) {
1149		ncpu = othercpus;
1150		ipi_all_but_self(vector);
1151	} else {
1152		ncpu = 0;
1153		while ((cpu = cpusetobj_ffs(&mask)) != 0) {
1154			cpu--;
1155			CPU_CLR(cpu, &mask);
1156			CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__,
1157			    cpu, vector);
1158			ipi_send_cpu(cpu, vector);
1159			ncpu++;
1160		}
1161	}
1162	while (smp_tlb_wait < ncpu)
1163		ia32_pause();
1164	mtx_unlock_spin(&smp_ipi_mtx);
1165}
1166
1167void
1168smp_cache_flush(void)
1169{
1170
1171	if (smp_started)
1172		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
1173}
1174
1175void
1176smp_invltlb(void)
1177{
1178
1179	if (smp_started) {
1180		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
1181#ifdef COUNT_XINVLTLB_HITS
1182		ipi_global++;
1183#endif
1184	}
1185}
1186
1187void
1188smp_invlpg(vm_offset_t addr)
1189{
1190
1191	if (smp_started) {
1192		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
1193#ifdef COUNT_XINVLTLB_HITS
1194		ipi_page++;
1195#endif
1196	}
1197}
1198
1199void
1200smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
1201{
1202
1203	if (smp_started) {
1204		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
1205#ifdef COUNT_XINVLTLB_HITS
1206		ipi_range++;
1207		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1208#endif
1209	}
1210}
1211
1212void
1213smp_masked_invltlb(cpuset_t mask)
1214{
1215
1216	if (smp_started) {
1217		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
1218#ifdef COUNT_XINVLTLB_HITS
1219		ipi_masked_global++;
1220#endif
1221	}
1222}
1223
1224void
1225smp_masked_invlpg(cpuset_t mask, vm_offset_t addr)
1226{
1227
1228	if (smp_started) {
1229		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
1230#ifdef COUNT_XINVLTLB_HITS
1231		ipi_masked_page++;
1232#endif
1233	}
1234}
1235
1236void
1237smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2)
1238{
1239
1240	if (smp_started) {
1241		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
1242#ifdef COUNT_XINVLTLB_HITS
1243		ipi_masked_range++;
1244		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1245#endif
1246	}
1247}
1248
1249void
1250ipi_bitmap_handler(struct trapframe frame)
1251{
1252	struct trapframe *oldframe;
1253	struct thread *td;
1254	int cpu = PCPU_GET(cpuid);
1255	u_int ipi_bitmap;
1256
1257	critical_enter();
1258	td = curthread;
1259	td->td_intr_nesting_level++;
1260	oldframe = td->td_intr_frame;
1261	td->td_intr_frame = &frame;
1262	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1263	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
1264#ifdef COUNT_IPIS
1265		(*ipi_preempt_counts[cpu])++;
1266#endif
1267		sched_preempt(td);
1268	}
1269	if (ipi_bitmap & (1 << IPI_AST)) {
1270#ifdef COUNT_IPIS
1271		(*ipi_ast_counts[cpu])++;
1272#endif
1273		/* Nothing to do for AST */
1274	}
1275	if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
1276#ifdef COUNT_IPIS
1277		(*ipi_hardclock_counts[cpu])++;
1278#endif
1279		hardclockintr();
1280	}
1281	td->td_intr_frame = oldframe;
1282	td->td_intr_nesting_level--;
1283	critical_exit();
1284}
1285
1286/*
1287 * send an IPI to a set of cpus.
1288 */
1289void
1290ipi_selected(cpuset_t cpus, u_int ipi)
1291{
1292	int cpu;
1293
1294	/*
1295	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1296	 * of help in order to understand what is the source.
1297	 * Set the mask of receiving CPUs for this purpose.
1298	 */
1299	if (ipi == IPI_STOP_HARD)
1300		CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
1301
1302	while ((cpu = cpusetobj_ffs(&cpus)) != 0) {
1303		cpu--;
1304		CPU_CLR(cpu, &cpus);
1305		CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1306		ipi_send_cpu(cpu, ipi);
1307	}
1308}
1309
1310/*
1311 * send an IPI to a specific CPU.
1312 */
1313void
1314ipi_cpu(int cpu, u_int ipi)
1315{
1316
1317	/*
1318	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1319	 * of help in order to understand what is the source.
1320	 * Set the mask of receiving CPUs for this purpose.
1321	 */
1322	if (ipi == IPI_STOP_HARD)
1323		CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
1324
1325	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1326	ipi_send_cpu(cpu, ipi);
1327}
1328
1329/*
1330 * send an IPI to all CPUs EXCEPT myself
1331 */
1332void
1333ipi_all_but_self(u_int ipi)
1334{
1335	cpuset_t other_cpus;
1336
1337	other_cpus = all_cpus;
1338	CPU_CLR(PCPU_GET(cpuid), &other_cpus);
1339
1340	if (IPI_IS_BITMAPED(ipi)) {
1341		ipi_selected(other_cpus, ipi);
1342		return;
1343	}
1344
1345	/*
1346	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1347	 * of help in order to understand what is the source.
1348	 * Set the mask of receiving CPUs for this purpose.
1349	 */
1350	if (ipi == IPI_STOP_HARD)
1351		CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
1352
1353	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1354	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1355}
1356
1357int
1358ipi_nmi_handler()
1359{
1360	u_int cpuid;
1361
1362	/*
1363	 * As long as there is not a simple way to know about a NMI's
1364	 * source, if the bitmask for the current CPU is present in
1365	 * the global pending bitword an IPI_STOP_HARD has been issued
1366	 * and should be handled.
1367	 */
1368	cpuid = PCPU_GET(cpuid);
1369	if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
1370		return (1);
1371
1372	CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
1373	cpustop_handler();
1374	return (0);
1375}
1376
1377/*
1378 * Handle an IPI_STOP by saving our current context and spinning until we
1379 * are resumed.
1380 */
1381void
1382cpustop_handler(void)
1383{
1384	u_int cpu;
1385
1386	cpu = PCPU_GET(cpuid);
1387
1388	savectx(&stoppcbs[cpu]);
1389
1390	/* Indicate that we are stopped */
1391	CPU_SET_ATOMIC(cpu, &stopped_cpus);
1392
1393	/* Wait for restart */
1394	while (!CPU_ISSET(cpu, &started_cpus))
1395	    ia32_pause();
1396
1397	CPU_CLR_ATOMIC(cpu, &started_cpus);
1398	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
1399
1400	if (cpu == 0 && cpustop_restartfunc != NULL) {
1401		cpustop_restartfunc();
1402		cpustop_restartfunc = NULL;
1403	}
1404}
1405
1406/*
1407 * Handle an IPI_SUSPEND by saving our current context and spinning until we
1408 * are resumed.
1409 */
1410void
1411cpususpend_handler(void)
1412{
1413	u_int cpu;
1414
1415	cpu = PCPU_GET(cpuid);
1416
1417	if (savectx(susppcbs[cpu])) {
1418		ctx_fpusave(suspfpusave[cpu]);
1419		wbinvd();
1420		CPU_SET_ATOMIC(cpu, &stopped_cpus);
1421	} else {
1422		pmap_init_pat();
1423		load_cr3(susppcbs[cpu]->pcb_cr3);
1424		initializecpu();
1425		PCPU_SET(switchtime, 0);
1426		PCPU_SET(switchticks, ticks);
1427	}
1428
1429	/* Wait for resume */
1430	while (!CPU_ISSET(cpu, &started_cpus))
1431		ia32_pause();
1432
1433	CPU_CLR_ATOMIC(cpu, &started_cpus);
1434	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
1435
1436	/* Resume MCA and local APIC */
1437	mca_resume();
1438	lapic_setup(0);
1439}
1440
1441/*
1442 * This is called once the rest of the system is up and running and we're
1443 * ready to let the AP's out of the pen.
1444 */
1445static void
1446release_aps(void *dummy __unused)
1447{
1448
1449	if (mp_ncpus == 1)
1450		return;
1451	atomic_store_rel_int(&aps_ready, 1);
1452	while (smp_started == 0)
1453		ia32_pause();
1454}
1455SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1456
1457#ifdef COUNT_IPIS
1458/*
1459 * Setup interrupt counters for IPI handlers.
1460 */
1461static void
1462mp_ipi_intrcnt(void *dummy)
1463{
1464	char buf[64];
1465	int i;
1466
1467	CPU_FOREACH(i) {
1468		snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
1469		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1470		snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
1471		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1472		snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
1473		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1474		snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
1475		intrcnt_add(buf, &ipi_invlcache_counts[i]);
1476		snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
1477		intrcnt_add(buf, &ipi_preempt_counts[i]);
1478		snprintf(buf, sizeof(buf), "cpu%d:ast", i);
1479		intrcnt_add(buf, &ipi_ast_counts[i]);
1480		snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
1481		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1482		snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
1483		intrcnt_add(buf, &ipi_hardclock_counts[i]);
1484	}
1485}
1486SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1487#endif
1488
1489