mp_machdep.c revision 222756
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * Copyright (c) 2003, by Peter Wemm
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the developer may NOT be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/amd64/amd64/mp_machdep.c 222756 2011-06-06 14:23:13Z avg $");
29
30#include "opt_cpu.h"
31#include "opt_kstack_pages.h"
32#include "opt_mp_watchdog.h"
33#include "opt_sched.h"
34#include "opt_smp.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#ifdef GPROF
40#include <sys/gmon.h>
41#endif
42#include <sys/kernel.h>
43#include <sys/ktr.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/memrange.h>
47#include <sys/mutex.h>
48#include <sys/pcpu.h>
49#include <sys/proc.h>
50#include <sys/sched.h>
51#include <sys/smp.h>
52#include <sys/sysctl.h>
53
54#include <vm/vm.h>
55#include <vm/vm_param.h>
56#include <vm/pmap.h>
57#include <vm/vm_kern.h>
58#include <vm/vm_extern.h>
59
60#include <x86/apicreg.h>
61#include <machine/clock.h>
62#include <machine/cputypes.h>
63#include <machine/cpufunc.h>
64#include <x86/mca.h>
65#include <machine/md_var.h>
66#include <machine/mp_watchdog.h>
67#include <machine/pcb.h>
68#include <machine/psl.h>
69#include <machine/smp.h>
70#include <machine/specialreg.h>
71#include <machine/tss.h>
72
73#define WARMBOOT_TARGET		0
74#define WARMBOOT_OFF		(KERNBASE + 0x0467)
75#define WARMBOOT_SEG		(KERNBASE + 0x0469)
76
77#define CMOS_REG		(0x70)
78#define CMOS_DATA		(0x71)
79#define BIOS_RESET		(0x0f)
80#define BIOS_WARM		(0x0a)
81
82/* lock region used by kernel profiling */
83int	mcount_lock;
84
85int	mp_naps;		/* # of Applications processors */
86int	boot_cpu_id = -1;	/* designated BSP */
87
88extern  struct pcpu __pcpu[];
89
90/* AP uses this during bootstrap.  Do not staticize.  */
91char *bootSTK;
92static int bootAP;
93
94/* Free these after use */
95void *bootstacks[MAXCPU];
96
97/* Temporary variables for init_secondary()  */
98char *doublefault_stack;
99char *nmi_stack;
100void *dpcpu;
101
102struct pcb stoppcbs[MAXCPU];
103struct pcb **susppcbs = NULL;
104
105/* Variables needed for SMP tlb shootdown. */
106vm_offset_t smp_tlb_addr1;
107vm_offset_t smp_tlb_addr2;
108volatile int smp_tlb_wait;
109
110#ifdef COUNT_IPIS
111/* Interrupt counts. */
112static u_long *ipi_preempt_counts[MAXCPU];
113static u_long *ipi_ast_counts[MAXCPU];
114u_long *ipi_invltlb_counts[MAXCPU];
115u_long *ipi_invlrng_counts[MAXCPU];
116u_long *ipi_invlpg_counts[MAXCPU];
117u_long *ipi_invlcache_counts[MAXCPU];
118u_long *ipi_rendezvous_counts[MAXCPU];
119static u_long *ipi_hardclock_counts[MAXCPU];
120#endif
121
122extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
123
124/*
125 * Local data and functions.
126 */
127
128static volatile cpumask_t ipi_nmi_pending;
129
130/* used to hold the AP's until we are ready to release them */
131static struct mtx ap_boot_mtx;
132
133/* Set to 1 once we're ready to let the APs out of the pen. */
134static volatile int aps_ready = 0;
135
136/*
137 * Store data from cpu_add() until later in the boot when we actually setup
138 * the APs.
139 */
140struct cpu_info {
141	int	cpu_present:1;
142	int	cpu_bsp:1;
143	int	cpu_disabled:1;
144	int	cpu_hyperthread:1;
145} static cpu_info[MAX_APIC_ID + 1];
146int cpu_apic_ids[MAXCPU];
147int apic_cpuids[MAX_APIC_ID + 1];
148
149/* Holds pending bitmap based IPIs per CPU */
150static volatile u_int cpu_ipi_pending[MAXCPU];
151
152static u_int boot_address;
153static int cpu_logical;			/* logical cpus per core */
154static int cpu_cores;			/* cores per package */
155
156static void	assign_cpu_ids(void);
157static void	set_interrupt_apic_ids(void);
158static int	start_all_aps(void);
159static int	start_ap(int apic_id);
160static void	release_aps(void *dummy);
161
162static int	hlt_logical_cpus;
163static u_int	hyperthreading_cpus;	/* logical cpus sharing L1 cache */
164static cpumask_t	hyperthreading_cpus_mask;
165static int	hyperthreading_allowed = 1;
166static struct	sysctl_ctx_list logical_cpu_clist;
167static u_int	bootMP_size;
168
169static void
170mem_range_AP_init(void)
171{
172	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
173		mem_range_softc.mr_op->initAP(&mem_range_softc);
174}
175
176static void
177topo_probe_amd(void)
178{
179	int core_id_bits;
180	int id;
181
182	/* AMD processors do not support HTT. */
183	cpu_logical = 1;
184
185	if ((amd_feature2 & AMDID2_CMP) == 0) {
186		cpu_cores = 1;
187		return;
188	}
189
190	core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
191	    AMDID_COREID_SIZE_SHIFT;
192	if (core_id_bits == 0) {
193		cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
194		return;
195	}
196
197	/* Fam 10h and newer should get here. */
198	for (id = 0; id <= MAX_APIC_ID; id++) {
199		/* Check logical CPU availability. */
200		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
201			continue;
202		/* Check if logical CPU has the same package ID. */
203		if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
204			continue;
205		cpu_cores++;
206	}
207}
208
209/*
210 * Round up to the next power of two, if necessary, and then
211 * take log2.
212 * Returns -1 if argument is zero.
213 */
214static __inline int
215mask_width(u_int x)
216{
217
218	return (fls(x << (1 - powerof2(x))) - 1);
219}
220
221static void
222topo_probe_0x4(void)
223{
224	u_int p[4];
225	int pkg_id_bits;
226	int core_id_bits;
227	int max_cores;
228	int max_logical;
229	int id;
230
231	/* Both zero and one here mean one logical processor per package. */
232	max_logical = (cpu_feature & CPUID_HTT) != 0 ?
233	    (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
234	if (max_logical <= 1)
235		return;
236
237	/*
238	 * Because of uniformity assumption we examine only
239	 * those logical processors that belong to the same
240	 * package as BSP.  Further, we count number of
241	 * logical processors that belong to the same core
242	 * as BSP thus deducing number of threads per core.
243	 */
244	if (cpu_high >= 0x4) {
245		cpuid_count(0x04, 0, p);
246		max_cores = ((p[0] >> 26) & 0x3f) + 1;
247	} else
248		max_cores = 1;
249	core_id_bits = mask_width(max_logical/max_cores);
250	if (core_id_bits < 0)
251		return;
252	pkg_id_bits = core_id_bits + mask_width(max_cores);
253
254	for (id = 0; id <= MAX_APIC_ID; id++) {
255		/* Check logical CPU availability. */
256		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
257			continue;
258		/* Check if logical CPU has the same package ID. */
259		if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
260			continue;
261		cpu_cores++;
262		/* Check if logical CPU has the same package and core IDs. */
263		if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
264			cpu_logical++;
265	}
266
267	KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
268	    ("topo_probe_0x4 couldn't find BSP"));
269
270	cpu_cores /= cpu_logical;
271	hyperthreading_cpus = cpu_logical;
272}
273
274static void
275topo_probe_0xb(void)
276{
277	u_int p[4];
278	int bits;
279	int cnt;
280	int i;
281	int logical;
282	int type;
283	int x;
284
285	/* We only support three levels for now. */
286	for (i = 0; i < 3; i++) {
287		cpuid_count(0x0b, i, p);
288
289		/* Fall back if CPU leaf 11 doesn't really exist. */
290		if (i == 0 && p[1] == 0) {
291			topo_probe_0x4();
292			return;
293		}
294
295		bits = p[0] & 0x1f;
296		logical = p[1] &= 0xffff;
297		type = (p[2] >> 8) & 0xff;
298		if (type == 0 || logical == 0)
299			break;
300		/*
301		 * Because of uniformity assumption we examine only
302		 * those logical processors that belong to the same
303		 * package as BSP.
304		 */
305		for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
306			if (!cpu_info[x].cpu_present ||
307			    cpu_info[x].cpu_disabled)
308				continue;
309			if (x >> bits == boot_cpu_id >> bits)
310				cnt++;
311		}
312		if (type == CPUID_TYPE_SMT)
313			cpu_logical = cnt;
314		else if (type == CPUID_TYPE_CORE)
315			cpu_cores = cnt;
316	}
317	if (cpu_logical == 0)
318		cpu_logical = 1;
319	cpu_cores /= cpu_logical;
320}
321
322/*
323 * Both topology discovery code and code that consumes topology
324 * information assume top-down uniformity of the topology.
325 * That is, all physical packages must be identical and each
326 * core in a package must have the same number of threads.
327 * Topology information is queried only on BSP, on which this
328 * code runs and for which it can query CPUID information.
329 * Then topology is extrapolated on all packages using the
330 * uniformity assumption.
331 */
332static void
333topo_probe(void)
334{
335	static int cpu_topo_probed = 0;
336
337	if (cpu_topo_probed)
338		return;
339
340	logical_cpus_mask = 0;
341	if (mp_ncpus <= 1)
342		cpu_cores = cpu_logical = 1;
343	else if (cpu_vendor_id == CPU_VENDOR_AMD)
344		topo_probe_amd();
345	else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
346		/*
347		 * See Intel(R) 64 Architecture Processor
348		 * Topology Enumeration article for details.
349		 *
350		 * Note that 0x1 <= cpu_high < 4 case should be
351		 * compatible with topo_probe_0x4() logic when
352		 * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
353		 * or it should trigger the fallback otherwise.
354		 */
355		if (cpu_high >= 0xb)
356			topo_probe_0xb();
357		else if (cpu_high >= 0x1)
358			topo_probe_0x4();
359	}
360
361	/*
362	 * Fallback: assume each logical CPU is in separate
363	 * physical package.  That is, no multi-core, no SMT.
364	 */
365	if (cpu_cores == 0 || cpu_logical == 0)
366		cpu_cores = cpu_logical = 1;
367	cpu_topo_probed = 1;
368}
369
370struct cpu_group *
371cpu_topo(void)
372{
373	int cg_flags;
374
375	/*
376	 * Determine whether any threading flags are
377	 * necessry.
378	 */
379	topo_probe();
380	if (cpu_logical > 1 && hyperthreading_cpus)
381		cg_flags = CG_FLAG_HTT;
382	else if (cpu_logical > 1)
383		cg_flags = CG_FLAG_SMT;
384	else
385		cg_flags = 0;
386	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
387		printf("WARNING: Non-uniform processors.\n");
388		printf("WARNING: Using suboptimal topology.\n");
389		return (smp_topo_none());
390	}
391	/*
392	 * No multi-core or hyper-threaded.
393	 */
394	if (cpu_logical * cpu_cores == 1)
395		return (smp_topo_none());
396	/*
397	 * Only HTT no multi-core.
398	 */
399	if (cpu_logical > 1 && cpu_cores == 1)
400		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
401	/*
402	 * Only multi-core no HTT.
403	 */
404	if (cpu_cores > 1 && cpu_logical == 1)
405		return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
406	/*
407	 * Both HTT and multi-core.
408	 */
409	return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
410	    CG_SHARE_L1, cpu_logical, cg_flags));
411}
412
413/*
414 * Calculate usable address in base memory for AP trampoline code.
415 */
416u_int
417mp_bootaddress(u_int basemem)
418{
419
420	bootMP_size = mptramp_end - mptramp_start;
421	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
422	if (((basemem * 1024) - boot_address) < bootMP_size)
423		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
424	/* 3 levels of page table pages */
425	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
426
427	return mptramp_pagetables;
428}
429
430void
431cpu_add(u_int apic_id, char boot_cpu)
432{
433
434	if (apic_id > MAX_APIC_ID) {
435		panic("SMP: APIC ID %d too high", apic_id);
436		return;
437	}
438	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
439	    apic_id));
440	cpu_info[apic_id].cpu_present = 1;
441	if (boot_cpu) {
442		KASSERT(boot_cpu_id == -1,
443		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
444		    boot_cpu_id));
445		boot_cpu_id = apic_id;
446		cpu_info[apic_id].cpu_bsp = 1;
447	}
448	if (mp_ncpus < MAXCPU) {
449		mp_ncpus++;
450		mp_maxid = mp_ncpus - 1;
451	}
452	if (bootverbose)
453		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
454		    "AP");
455}
456
457void
458cpu_mp_setmaxid(void)
459{
460
461	/*
462	 * mp_maxid should be already set by calls to cpu_add().
463	 * Just sanity check its value here.
464	 */
465	if (mp_ncpus == 0)
466		KASSERT(mp_maxid == 0,
467		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
468	else if (mp_ncpus == 1)
469		mp_maxid = 0;
470	else
471		KASSERT(mp_maxid >= mp_ncpus - 1,
472		    ("%s: counters out of sync: max %d, count %d", __func__,
473			mp_maxid, mp_ncpus));
474}
475
476int
477cpu_mp_probe(void)
478{
479
480	/*
481	 * Always record BSP in CPU map so that the mbuf init code works
482	 * correctly.
483	 */
484	all_cpus = 1;
485	if (mp_ncpus == 0) {
486		/*
487		 * No CPUs were found, so this must be a UP system.  Setup
488		 * the variables to represent a system with a single CPU
489		 * with an id of 0.
490		 */
491		mp_ncpus = 1;
492		return (0);
493	}
494
495	/* At least one CPU was found. */
496	if (mp_ncpus == 1) {
497		/*
498		 * One CPU was found, so this must be a UP system with
499		 * an I/O APIC.
500		 */
501		mp_maxid = 0;
502		return (0);
503	}
504
505	/* At least two CPUs were found. */
506	return (1);
507}
508
509/*
510 * Initialize the IPI handlers and start up the AP's.
511 */
512void
513cpu_mp_start(void)
514{
515	int i;
516
517	/* Initialize the logical ID to APIC ID table. */
518	for (i = 0; i < MAXCPU; i++) {
519		cpu_apic_ids[i] = -1;
520		cpu_ipi_pending[i] = 0;
521	}
522
523	/* Install an inter-CPU IPI for TLB invalidation */
524	setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
525	setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
526	setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
527
528	/* Install an inter-CPU IPI for cache invalidation. */
529	setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
530
531	/* Install an inter-CPU IPI for all-CPU rendezvous */
532	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
533
534	/* Install generic inter-CPU IPI handler */
535	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
536	       SDT_SYSIGT, SEL_KPL, 0);
537
538	/* Install an inter-CPU IPI for CPU stop/restart */
539	setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
540
541	/* Install an inter-CPU IPI for CPU suspend/resume */
542	setidt(IPI_SUSPEND, IDTVEC(cpususpend), SDT_SYSIGT, SEL_KPL, 0);
543
544	/* Set boot_cpu_id if needed. */
545	if (boot_cpu_id == -1) {
546		boot_cpu_id = PCPU_GET(apic_id);
547		cpu_info[boot_cpu_id].cpu_bsp = 1;
548	} else
549		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
550		    ("BSP's APIC ID doesn't match boot_cpu_id"));
551
552	/* Probe logical/physical core configuration. */
553	topo_probe();
554
555	assign_cpu_ids();
556
557	/* Start each Application Processor */
558	start_all_aps();
559
560	set_interrupt_apic_ids();
561}
562
563
564/*
565 * Print various information about the SMP system hardware and setup.
566 */
567void
568cpu_mp_announce(void)
569{
570	const char *hyperthread;
571	int i;
572
573	printf("FreeBSD/SMP: %d package(s) x %d core(s)",
574	    mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
575	if (hyperthreading_cpus > 1)
576	    printf(" x %d HTT threads", cpu_logical);
577	else if (cpu_logical > 1)
578	    printf(" x %d SMT threads", cpu_logical);
579	printf("\n");
580
581	/* List active CPUs first. */
582	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
583	for (i = 1; i < mp_ncpus; i++) {
584		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
585			hyperthread = "/HT";
586		else
587			hyperthread = "";
588		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
589		    cpu_apic_ids[i]);
590	}
591
592	/* List disabled CPUs last. */
593	for (i = 0; i <= MAX_APIC_ID; i++) {
594		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
595			continue;
596		if (cpu_info[i].cpu_hyperthread)
597			hyperthread = "/HT";
598		else
599			hyperthread = "";
600		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
601		    i);
602	}
603}
604
605/*
606 * AP CPU's call this to initialize themselves.
607 */
608void
609init_secondary(void)
610{
611	struct pcpu *pc;
612	struct nmi_pcpu *np;
613	u_int64_t msr, cr0;
614	int cpu, gsel_tss, x;
615	struct region_descriptor ap_gdt;
616
617	/* Set by the startup code for us to use */
618	cpu = bootAP;
619
620	/* Init tss */
621	common_tss[cpu] = common_tss[0];
622	common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
623	common_tss[cpu].tss_iobase = sizeof(struct amd64tss) +
624	    IOPAGES * PAGE_SIZE;
625	common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
626
627	/* The NMI stack runs on IST2. */
628	np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
629	common_tss[cpu].tss_ist2 = (long) np;
630
631	/* Prepare private GDT */
632	gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
633	for (x = 0; x < NGDT; x++) {
634		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
635		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL + 1))
636			ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
637	}
638	ssdtosyssd(&gdt_segs[GPROC0_SEL],
639	    (struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
640	ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
641	ap_gdt.rd_base =  (long) &gdt[NGDT * cpu];
642	lgdt(&ap_gdt);			/* does magic intra-segment return */
643
644	/* Get per-cpu data */
645	pc = &__pcpu[cpu];
646
647	/* prime data page for it to use */
648	pcpu_init(pc, cpu, sizeof(struct pcpu));
649	dpcpu_init(dpcpu, cpu);
650	pc->pc_apic_id = cpu_apic_ids[cpu];
651	pc->pc_prvspace = pc;
652	pc->pc_curthread = 0;
653	pc->pc_tssp = &common_tss[cpu];
654	pc->pc_commontssp = &common_tss[cpu];
655	pc->pc_rsp0 = 0;
656	pc->pc_tss = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
657	    GPROC0_SEL];
658	pc->pc_fs32p = &gdt[NGDT * cpu + GUFS32_SEL];
659	pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
660	pc->pc_ldt = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
661	    GUSERLDT_SEL];
662
663	/* Save the per-cpu pointer for use by the NMI handler. */
664	np->np_pcpu = (register_t) pc;
665
666	wrmsr(MSR_FSBASE, 0);		/* User value */
667	wrmsr(MSR_GSBASE, (u_int64_t)pc);
668	wrmsr(MSR_KGSBASE, (u_int64_t)pc);	/* XXX User value while we're in the kernel */
669
670	lidt(&r_idt);
671
672	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
673	ltr(gsel_tss);
674
675	/*
676	 * Set to a known state:
677	 * Set by mpboot.s: CR0_PG, CR0_PE
678	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
679	 */
680	cr0 = rcr0();
681	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
682	load_cr0(cr0);
683
684	/* Set up the fast syscall stuff */
685	msr = rdmsr(MSR_EFER) | EFER_SCE;
686	wrmsr(MSR_EFER, msr);
687	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
688	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
689	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
690	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
691	wrmsr(MSR_STAR, msr);
692	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
693
694	/* Disable local APIC just to be sure. */
695	lapic_disable();
696
697	/* signal our startup to the BSP. */
698	mp_naps++;
699
700	/* Spin until the BSP releases the AP's. */
701	while (!aps_ready)
702		ia32_pause();
703
704	/* Initialize the PAT MSR. */
705	pmap_init_pat();
706
707	/* set up CPU registers and state */
708	cpu_setregs();
709
710	/* set up SSE/NX registers */
711	initializecpu();
712
713	/* set up FPU state on the AP */
714	fpuinit();
715
716	/* A quick check from sanity claus */
717	if (PCPU_GET(apic_id) != lapic_id()) {
718		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
719		printf("SMP: actual apic_id = %d\n", lapic_id());
720		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
721		panic("cpuid mismatch! boom!!");
722	}
723
724	/* Initialize curthread. */
725	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
726	PCPU_SET(curthread, PCPU_GET(idlethread));
727
728	mca_init();
729
730	mtx_lock_spin(&ap_boot_mtx);
731
732	/* Init local apic for irq's */
733	lapic_setup(1);
734
735	/* Set memory range attributes for this CPU to match the BSP */
736	mem_range_AP_init();
737
738	smp_cpus++;
739
740	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
741	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
742
743	/* Determine if we are a logical CPU. */
744	/* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
745	if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
746		logical_cpus_mask |= PCPU_GET(cpumask);
747
748	/* Determine if we are a hyperthread. */
749	if (hyperthreading_cpus > 1 &&
750	    PCPU_GET(apic_id) % hyperthreading_cpus != 0)
751		hyperthreading_cpus_mask |= PCPU_GET(cpumask);
752
753	/* Build our map of 'other' CPUs. */
754	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
755
756	if (bootverbose)
757		lapic_dump("AP");
758
759	if (smp_cpus == mp_ncpus) {
760		/* enable IPI's, tlb shootdown, freezes etc */
761		atomic_store_rel_int(&smp_started, 1);
762		smp_active = 1;	 /* historic */
763	}
764
765	/*
766	 * Enable global pages TLB extension
767	 * This also implicitly flushes the TLB
768	 */
769
770	load_cr4(rcr4() | CR4_PGE);
771	load_ds(_udatasel);
772	load_es(_udatasel);
773	load_fs(_ufssel);
774	mtx_unlock_spin(&ap_boot_mtx);
775
776	/* Wait until all the AP's are up. */
777	while (smp_started == 0)
778		ia32_pause();
779
780	/* Start per-CPU event timers. */
781	cpu_initclocks_ap();
782
783	sched_throw(NULL);
784
785	panic("scheduler returned us to %s", __func__);
786	/* NOTREACHED */
787}
788
789/*******************************************************************
790 * local functions and data
791 */
792
793/*
794 * We tell the I/O APIC code about all the CPUs we want to receive
795 * interrupts.  If we don't want certain CPUs to receive IRQs we
796 * can simply not tell the I/O APIC code about them in this function.
797 * We also do not tell it about the BSP since it tells itself about
798 * the BSP internally to work with UP kernels and on UP machines.
799 */
800static void
801set_interrupt_apic_ids(void)
802{
803	u_int i, apic_id;
804
805	for (i = 0; i < MAXCPU; i++) {
806		apic_id = cpu_apic_ids[i];
807		if (apic_id == -1)
808			continue;
809		if (cpu_info[apic_id].cpu_bsp)
810			continue;
811		if (cpu_info[apic_id].cpu_disabled)
812			continue;
813
814		/* Don't let hyperthreads service interrupts. */
815		if (hyperthreading_cpus > 1 &&
816		    apic_id % hyperthreading_cpus != 0)
817			continue;
818
819		intr_add_cpu(i);
820	}
821}
822
823/*
824 * Assign logical CPU IDs to local APICs.
825 */
826static void
827assign_cpu_ids(void)
828{
829	u_int i;
830
831	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
832	    &hyperthreading_allowed);
833
834	/* Check for explicitly disabled CPUs. */
835	for (i = 0; i <= MAX_APIC_ID; i++) {
836		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
837			continue;
838
839		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
840			cpu_info[i].cpu_hyperthread = 1;
841#if defined(SCHED_ULE)
842			/*
843			 * Don't use HT CPU if it has been disabled by a
844			 * tunable.
845			 */
846			if (hyperthreading_allowed == 0) {
847				cpu_info[i].cpu_disabled = 1;
848				continue;
849			}
850#endif
851		}
852
853		/* Don't use this CPU if it has been disabled by a tunable. */
854		if (resource_disabled("lapic", i)) {
855			cpu_info[i].cpu_disabled = 1;
856			continue;
857		}
858	}
859
860	/*
861	 * Assign CPU IDs to local APIC IDs and disable any CPUs
862	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
863	 *
864	 * To minimize confusion for userland, we attempt to number
865	 * CPUs such that all threads and cores in a package are
866	 * grouped together.  For now we assume that the BSP is always
867	 * the first thread in a package and just start adding APs
868	 * starting with the BSP's APIC ID.
869	 */
870	mp_ncpus = 1;
871	cpu_apic_ids[0] = boot_cpu_id;
872	apic_cpuids[boot_cpu_id] = 0;
873	for (i = boot_cpu_id + 1; i != boot_cpu_id;
874	     i == MAX_APIC_ID ? i = 0 : i++) {
875		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
876		    cpu_info[i].cpu_disabled)
877			continue;
878
879		if (mp_ncpus < MAXCPU) {
880			cpu_apic_ids[mp_ncpus] = i;
881			apic_cpuids[i] = mp_ncpus;
882			mp_ncpus++;
883		} else
884			cpu_info[i].cpu_disabled = 1;
885	}
886	KASSERT(mp_maxid >= mp_ncpus - 1,
887	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
888	    mp_ncpus));
889}
890
891/*
892 * start each AP in our list
893 */
894static int
895start_all_aps(void)
896{
897	vm_offset_t va = boot_address + KERNBASE;
898	u_int64_t *pt4, *pt3, *pt2;
899	u_int32_t mpbioswarmvec;
900	int apic_id, cpu, i;
901	u_char mpbiosreason;
902
903	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
904
905	/* install the AP 1st level boot code */
906	pmap_kenter(va, boot_address);
907	pmap_invalidate_page(kernel_pmap, va);
908	bcopy(mptramp_start, (void *)va, bootMP_size);
909
910	/* Locate the page tables, they'll be below the trampoline */
911	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
912	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
913	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
914
915	/* Create the initial 1GB replicated page tables */
916	for (i = 0; i < 512; i++) {
917		/* Each slot of the level 4 pages points to the same level 3 page */
918		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
919		pt4[i] |= PG_V | PG_RW | PG_U;
920
921		/* Each slot of the level 3 pages points to the same level 2 page */
922		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
923		pt3[i] |= PG_V | PG_RW | PG_U;
924
925		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
926		pt2[i] = i * (2 * 1024 * 1024);
927		pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
928	}
929
930	/* save the current value of the warm-start vector */
931	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
932	outb(CMOS_REG, BIOS_RESET);
933	mpbiosreason = inb(CMOS_DATA);
934
935	/* setup a vector to our boot code */
936	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
937	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
938	outb(CMOS_REG, BIOS_RESET);
939	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
940
941	/* start each AP */
942	for (cpu = 1; cpu < mp_ncpus; cpu++) {
943		apic_id = cpu_apic_ids[cpu];
944
945		/* allocate and set up an idle stack data page */
946		bootstacks[cpu] = (void *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
947		doublefault_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
948		nmi_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
949		dpcpu = (void *)kmem_alloc(kernel_map, DPCPU_SIZE);
950
951		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
952		bootAP = cpu;
953
954		/* attempt to start the Application Processor */
955		if (!start_ap(apic_id)) {
956			/* restore the warmstart vector */
957			*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
958			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
959		}
960
961		all_cpus |= (1 << cpu);		/* record AP in CPU map */
962	}
963
964	/* build our map of 'other' CPUs */
965	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
966
967	/* restore the warmstart vector */
968	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
969
970	outb(CMOS_REG, BIOS_RESET);
971	outb(CMOS_DATA, mpbiosreason);
972
973	/* number of APs actually started */
974	return mp_naps;
975}
976
977
978/*
979 * This function starts the AP (application processor) identified
980 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
981 * to accomplish this.  This is necessary because of the nuances
982 * of the different hardware we might encounter.  It isn't pretty,
983 * but it seems to work.
984 */
985static int
986start_ap(int apic_id)
987{
988	int vector, ms;
989	int cpus;
990
991	/* calculate the vector */
992	vector = (boot_address >> 12) & 0xff;
993
994	/* used as a watchpoint to signal AP startup */
995	cpus = mp_naps;
996
997	/*
998	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
999	 * and running the target CPU. OR this INIT IPI might be latched (P5
1000	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1001	 * ignored.
1002	 */
1003
1004	/* do an INIT IPI: assert RESET */
1005	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1006	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
1007
1008	/* wait for pending status end */
1009	lapic_ipi_wait(-1);
1010
1011	/* do an INIT IPI: deassert RESET */
1012	lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
1013	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
1014
1015	/* wait for pending status end */
1016	DELAY(10000);		/* wait ~10mS */
1017	lapic_ipi_wait(-1);
1018
1019	/*
1020	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1021	 * latched, (P5 bug) this 1st STARTUP would then terminate
1022	 * immediately, and the previously started INIT IPI would continue. OR
1023	 * the previous INIT IPI has already run. and this STARTUP IPI will
1024	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1025	 * will run.
1026	 */
1027
1028	/* do a STARTUP IPI */
1029	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1030	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1031	    vector, apic_id);
1032	lapic_ipi_wait(-1);
1033	DELAY(200);		/* wait ~200uS */
1034
1035	/*
1036	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1037	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1038	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1039	 * recognized after hardware RESET or INIT IPI.
1040	 */
1041
1042	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1043	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1044	    vector, apic_id);
1045	lapic_ipi_wait(-1);
1046	DELAY(200);		/* wait ~200uS */
1047
1048	/* Wait up to 5 seconds for it to start. */
1049	for (ms = 0; ms < 5000; ms++) {
1050		if (mp_naps > cpus)
1051			return 1;	/* return SUCCESS */
1052		DELAY(1000);
1053	}
1054	return 0;		/* return FAILURE */
1055}
1056
1057#ifdef COUNT_XINVLTLB_HITS
1058u_int xhits_gbl[MAXCPU];
1059u_int xhits_pg[MAXCPU];
1060u_int xhits_rng[MAXCPU];
1061SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
1062SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
1063    sizeof(xhits_gbl), "IU", "");
1064SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
1065    sizeof(xhits_pg), "IU", "");
1066SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
1067    sizeof(xhits_rng), "IU", "");
1068
1069u_int ipi_global;
1070u_int ipi_page;
1071u_int ipi_range;
1072u_int ipi_range_size;
1073SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
1074SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
1075SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
1076SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW,
1077    &ipi_range_size, 0, "");
1078
1079u_int ipi_masked_global;
1080u_int ipi_masked_page;
1081u_int ipi_masked_range;
1082u_int ipi_masked_range_size;
1083SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
1084    &ipi_masked_global, 0, "");
1085SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
1086    &ipi_masked_page, 0, "");
1087SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
1088    &ipi_masked_range, 0, "");
1089SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
1090    &ipi_masked_range_size, 0, "");
1091#endif /* COUNT_XINVLTLB_HITS */
1092
1093/*
1094 * Flush the TLB on all other CPU's
1095 */
1096static void
1097smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1098{
1099	u_int ncpu;
1100
1101	ncpu = mp_ncpus - 1;	/* does not shootdown self */
1102	if (ncpu < 1)
1103		return;		/* no other cpus */
1104	if (!(read_rflags() & PSL_I))
1105		panic("%s: interrupts disabled", __func__);
1106	mtx_lock_spin(&smp_ipi_mtx);
1107	smp_tlb_addr1 = addr1;
1108	smp_tlb_addr2 = addr2;
1109	atomic_store_rel_int(&smp_tlb_wait, 0);
1110	ipi_all_but_self(vector);
1111	while (smp_tlb_wait < ncpu)
1112		ia32_pause();
1113	mtx_unlock_spin(&smp_ipi_mtx);
1114}
1115
1116static void
1117smp_targeted_tlb_shootdown(cpumask_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1118{
1119	int ncpu, othercpus;
1120
1121	othercpus = mp_ncpus - 1;
1122	if (mask == (cpumask_t)-1) {
1123		ncpu = othercpus;
1124		if (ncpu < 1)
1125			return;
1126	} else {
1127		mask &= ~PCPU_GET(cpumask);
1128		if (mask == 0)
1129			return;
1130		ncpu = bitcount32(mask);
1131		if (ncpu > othercpus) {
1132			/* XXX this should be a panic offence */
1133			printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
1134			    ncpu, othercpus);
1135			ncpu = othercpus;
1136		}
1137		/* XXX should be a panic, implied by mask == 0 above */
1138		if (ncpu < 1)
1139			return;
1140	}
1141	if (!(read_rflags() & PSL_I))
1142		panic("%s: interrupts disabled", __func__);
1143	mtx_lock_spin(&smp_ipi_mtx);
1144	smp_tlb_addr1 = addr1;
1145	smp_tlb_addr2 = addr2;
1146	atomic_store_rel_int(&smp_tlb_wait, 0);
1147	if (mask == (cpumask_t)-1)
1148		ipi_all_but_self(vector);
1149	else
1150		ipi_selected(mask, vector);
1151	while (smp_tlb_wait < ncpu)
1152		ia32_pause();
1153	mtx_unlock_spin(&smp_ipi_mtx);
1154}
1155
1156/*
1157 * Send an IPI to specified CPU handling the bitmap logic.
1158 */
1159static void
1160ipi_send_cpu(int cpu, u_int ipi)
1161{
1162	u_int bitmap, old_pending, new_pending;
1163
1164	KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
1165
1166	if (IPI_IS_BITMAPED(ipi)) {
1167		bitmap = 1 << ipi;
1168		ipi = IPI_BITMAP_VECTOR;
1169		do {
1170			old_pending = cpu_ipi_pending[cpu];
1171			new_pending = old_pending | bitmap;
1172		} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
1173		    old_pending, new_pending));
1174		if (old_pending)
1175			return;
1176	}
1177	lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1178}
1179
1180void
1181smp_cache_flush(void)
1182{
1183
1184	if (smp_started)
1185		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
1186}
1187
1188void
1189smp_invltlb(void)
1190{
1191
1192	if (smp_started) {
1193		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
1194#ifdef COUNT_XINVLTLB_HITS
1195		ipi_global++;
1196#endif
1197	}
1198}
1199
1200void
1201smp_invlpg(vm_offset_t addr)
1202{
1203
1204	if (smp_started) {
1205		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
1206#ifdef COUNT_XINVLTLB_HITS
1207		ipi_page++;
1208#endif
1209	}
1210}
1211
1212void
1213smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
1214{
1215
1216	if (smp_started) {
1217		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
1218#ifdef COUNT_XINVLTLB_HITS
1219		ipi_range++;
1220		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1221#endif
1222	}
1223}
1224
1225void
1226smp_masked_invltlb(cpumask_t mask)
1227{
1228
1229	if (smp_started) {
1230		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
1231#ifdef COUNT_XINVLTLB_HITS
1232		ipi_masked_global++;
1233#endif
1234	}
1235}
1236
1237void
1238smp_masked_invlpg(cpumask_t mask, vm_offset_t addr)
1239{
1240
1241	if (smp_started) {
1242		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
1243#ifdef COUNT_XINVLTLB_HITS
1244		ipi_masked_page++;
1245#endif
1246	}
1247}
1248
1249void
1250smp_masked_invlpg_range(cpumask_t mask, vm_offset_t addr1, vm_offset_t addr2)
1251{
1252
1253	if (smp_started) {
1254		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
1255#ifdef COUNT_XINVLTLB_HITS
1256		ipi_masked_range++;
1257		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1258#endif
1259	}
1260}
1261
1262void
1263ipi_bitmap_handler(struct trapframe frame)
1264{
1265	struct trapframe *oldframe;
1266	struct thread *td;
1267	int cpu = PCPU_GET(cpuid);
1268	u_int ipi_bitmap;
1269
1270	critical_enter();
1271	td = curthread;
1272	td->td_intr_nesting_level++;
1273	oldframe = td->td_intr_frame;
1274	td->td_intr_frame = &frame;
1275	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1276	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
1277#ifdef COUNT_IPIS
1278		(*ipi_preempt_counts[cpu])++;
1279#endif
1280		sched_preempt(td);
1281	}
1282	if (ipi_bitmap & (1 << IPI_AST)) {
1283#ifdef COUNT_IPIS
1284		(*ipi_ast_counts[cpu])++;
1285#endif
1286		/* Nothing to do for AST */
1287	}
1288	if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
1289#ifdef COUNT_IPIS
1290		(*ipi_hardclock_counts[cpu])++;
1291#endif
1292		hardclockintr();
1293	}
1294	td->td_intr_frame = oldframe;
1295	td->td_intr_nesting_level--;
1296	critical_exit();
1297}
1298
1299/*
1300 * send an IPI to a set of cpus.
1301 */
1302void
1303ipi_selected(cpumask_t cpus, u_int ipi)
1304{
1305	int cpu;
1306
1307	/*
1308	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1309	 * of help in order to understand what is the source.
1310	 * Set the mask of receiving CPUs for this purpose.
1311	 */
1312	if (ipi == IPI_STOP_HARD)
1313		atomic_set_int(&ipi_nmi_pending, cpus);
1314
1315	CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
1316	while ((cpu = ffs(cpus)) != 0) {
1317		cpu--;
1318		cpus &= ~(1 << cpu);
1319		ipi_send_cpu(cpu, ipi);
1320	}
1321}
1322
1323/*
1324 * send an IPI to a specific CPU.
1325 */
1326void
1327ipi_cpu(int cpu, u_int ipi)
1328{
1329
1330	/*
1331	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1332	 * of help in order to understand what is the source.
1333	 * Set the mask of receiving CPUs for this purpose.
1334	 */
1335	if (ipi == IPI_STOP_HARD)
1336		atomic_set_int(&ipi_nmi_pending, 1 << cpu);
1337
1338	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1339	ipi_send_cpu(cpu, ipi);
1340}
1341
1342/*
1343 * send an IPI to all CPUs EXCEPT myself
1344 */
1345void
1346ipi_all_but_self(u_int ipi)
1347{
1348
1349	if (IPI_IS_BITMAPED(ipi)) {
1350		ipi_selected(PCPU_GET(other_cpus), ipi);
1351		return;
1352	}
1353
1354	/*
1355	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1356	 * of help in order to understand what is the source.
1357	 * Set the mask of receiving CPUs for this purpose.
1358	 */
1359	if (ipi == IPI_STOP_HARD)
1360		atomic_set_int(&ipi_nmi_pending, PCPU_GET(other_cpus));
1361
1362	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1363	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1364}
1365
1366int
1367ipi_nmi_handler()
1368{
1369	cpumask_t cpumask;
1370
1371	/*
1372	 * As long as there is not a simple way to know about a NMI's
1373	 * source, if the bitmask for the current CPU is present in
1374	 * the global pending bitword an IPI_STOP_HARD has been issued
1375	 * and should be handled.
1376	 */
1377	cpumask = PCPU_GET(cpumask);
1378	if ((ipi_nmi_pending & cpumask) == 0)
1379		return (1);
1380
1381	atomic_clear_int(&ipi_nmi_pending, cpumask);
1382	cpustop_handler();
1383	return (0);
1384}
1385
1386/*
1387 * Handle an IPI_STOP by saving our current context and spinning until we
1388 * are resumed.
1389 */
1390void
1391cpustop_handler(void)
1392{
1393	cpumask_t cpumask;
1394	u_int cpu;
1395
1396	cpu = PCPU_GET(cpuid);
1397	cpumask = PCPU_GET(cpumask);
1398
1399	savectx(&stoppcbs[cpu]);
1400
1401	/* Indicate that we are stopped */
1402	atomic_set_int(&stopped_cpus, cpumask);
1403
1404	/* Wait for restart */
1405	while (!(started_cpus & cpumask))
1406	    ia32_pause();
1407
1408	atomic_clear_int(&started_cpus, cpumask);
1409	atomic_clear_int(&stopped_cpus, cpumask);
1410
1411	if (cpu == 0 && cpustop_restartfunc != NULL) {
1412		cpustop_restartfunc();
1413		cpustop_restartfunc = NULL;
1414	}
1415}
1416
1417/*
1418 * Handle an IPI_SUSPEND by saving our current context and spinning until we
1419 * are resumed.
1420 */
1421void
1422cpususpend_handler(void)
1423{
1424	cpumask_t cpumask;
1425	register_t cr3, rf;
1426	u_int cpu;
1427
1428	cpu = PCPU_GET(cpuid);
1429	cpumask = PCPU_GET(cpumask);
1430
1431	rf = intr_disable();
1432	cr3 = rcr3();
1433
1434	if (savectx(susppcbs[cpu])) {
1435		wbinvd();
1436		atomic_set_int(&stopped_cpus, cpumask);
1437	} else {
1438		pmap_init_pat();
1439		PCPU_SET(switchtime, 0);
1440		PCPU_SET(switchticks, ticks);
1441	}
1442
1443	/* Wait for resume */
1444	while (!(started_cpus & cpumask))
1445		ia32_pause();
1446
1447	atomic_clear_int(&started_cpus, cpumask);
1448	atomic_clear_int(&stopped_cpus, cpumask);
1449
1450	/* Restore CR3 and enable interrupts */
1451	load_cr3(cr3);
1452	mca_resume();
1453	lapic_setup(0);
1454	intr_restore(rf);
1455}
1456
1457/*
1458 * This is called once the rest of the system is up and running and we're
1459 * ready to let the AP's out of the pen.
1460 */
1461static void
1462release_aps(void *dummy __unused)
1463{
1464
1465	if (mp_ncpus == 1)
1466		return;
1467	atomic_store_rel_int(&aps_ready, 1);
1468	while (smp_started == 0)
1469		ia32_pause();
1470}
1471SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1472
1473static int
1474sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
1475{
1476	cpumask_t mask;
1477	int error;
1478
1479	mask = hlt_cpus_mask;
1480	error = sysctl_handle_int(oidp, &mask, 0, req);
1481	if (error || !req->newptr)
1482		return (error);
1483
1484	if (logical_cpus_mask != 0 &&
1485	    (mask & logical_cpus_mask) == logical_cpus_mask)
1486		hlt_logical_cpus = 1;
1487	else
1488		hlt_logical_cpus = 0;
1489
1490	if (! hyperthreading_allowed)
1491		mask |= hyperthreading_cpus_mask;
1492
1493	if ((mask & all_cpus) == all_cpus)
1494		mask &= ~(1<<0);
1495	hlt_cpus_mask = mask;
1496	return (error);
1497}
1498SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
1499    0, 0, sysctl_hlt_cpus, "IU",
1500    "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
1501
1502static int
1503sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
1504{
1505	int disable, error;
1506
1507	disable = hlt_logical_cpus;
1508	error = sysctl_handle_int(oidp, &disable, 0, req);
1509	if (error || !req->newptr)
1510		return (error);
1511
1512	if (disable)
1513		hlt_cpus_mask |= logical_cpus_mask;
1514	else
1515		hlt_cpus_mask &= ~logical_cpus_mask;
1516
1517	if (! hyperthreading_allowed)
1518		hlt_cpus_mask |= hyperthreading_cpus_mask;
1519
1520	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1521		hlt_cpus_mask &= ~(1<<0);
1522
1523	hlt_logical_cpus = disable;
1524	return (error);
1525}
1526
1527static int
1528sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
1529{
1530	int allowed, error;
1531
1532	allowed = hyperthreading_allowed;
1533	error = sysctl_handle_int(oidp, &allowed, 0, req);
1534	if (error || !req->newptr)
1535		return (error);
1536
1537#ifdef SCHED_ULE
1538	/*
1539	 * SCHED_ULE doesn't allow enabling/disabling HT cores at
1540	 * run-time.
1541	 */
1542	if (allowed != hyperthreading_allowed)
1543		return (ENOTSUP);
1544	return (error);
1545#endif
1546
1547	if (allowed)
1548		hlt_cpus_mask &= ~hyperthreading_cpus_mask;
1549	else
1550		hlt_cpus_mask |= hyperthreading_cpus_mask;
1551
1552	if (logical_cpus_mask != 0 &&
1553	    (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
1554		hlt_logical_cpus = 1;
1555	else
1556		hlt_logical_cpus = 0;
1557
1558	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1559		hlt_cpus_mask &= ~(1<<0);
1560
1561	hyperthreading_allowed = allowed;
1562	return (error);
1563}
1564
1565static void
1566cpu_hlt_setup(void *dummy __unused)
1567{
1568
1569	if (logical_cpus_mask != 0) {
1570		TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
1571		    &hlt_logical_cpus);
1572		sysctl_ctx_init(&logical_cpu_clist);
1573		SYSCTL_ADD_PROC(&logical_cpu_clist,
1574		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1575		    "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
1576		    sysctl_hlt_logical_cpus, "IU", "");
1577		SYSCTL_ADD_UINT(&logical_cpu_clist,
1578		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1579		    "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
1580		    &logical_cpus_mask, 0, "");
1581
1582		if (hlt_logical_cpus)
1583			hlt_cpus_mask |= logical_cpus_mask;
1584
1585		/*
1586		 * If necessary for security purposes, force
1587		 * hyperthreading off, regardless of the value
1588		 * of hlt_logical_cpus.
1589		 */
1590		if (hyperthreading_cpus_mask) {
1591			SYSCTL_ADD_PROC(&logical_cpu_clist,
1592			    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1593			    "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
1594			    0, 0, sysctl_hyperthreading_allowed, "IU", "");
1595			if (! hyperthreading_allowed)
1596				hlt_cpus_mask |= hyperthreading_cpus_mask;
1597		}
1598	}
1599}
1600SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
1601
1602int
1603mp_grab_cpu_hlt(void)
1604{
1605	cpumask_t mask;
1606#ifdef MP_WATCHDOG
1607	u_int cpuid;
1608#endif
1609	int retval;
1610
1611	mask = PCPU_GET(cpumask);
1612#ifdef MP_WATCHDOG
1613	cpuid = PCPU_GET(cpuid);
1614	ap_watchdog(cpuid);
1615#endif
1616
1617	retval = 0;
1618	while (mask & hlt_cpus_mask) {
1619		retval = 1;
1620		__asm __volatile("sti; hlt" : : : "memory");
1621	}
1622	return (retval);
1623}
1624
1625#ifdef COUNT_IPIS
1626/*
1627 * Setup interrupt counters for IPI handlers.
1628 */
1629static void
1630mp_ipi_intrcnt(void *dummy)
1631{
1632	char buf[64];
1633	int i;
1634
1635	CPU_FOREACH(i) {
1636		snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
1637		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1638		snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
1639		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1640		snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
1641		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1642		snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
1643		intrcnt_add(buf, &ipi_preempt_counts[i]);
1644		snprintf(buf, sizeof(buf), "cpu%d:ast", i);
1645		intrcnt_add(buf, &ipi_ast_counts[i]);
1646		snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
1647		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1648		snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
1649		intrcnt_add(buf, &ipi_hardclock_counts[i]);
1650	}
1651}
1652SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1653#endif
1654
1655