mp_machdep.c revision 191405
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * Copyright (c) 2003, by Peter Wemm
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the developer may NOT be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/amd64/amd64/mp_machdep.c 191405 2009-04-22 21:40:37Z jhb $");
29
30#include "opt_cpu.h"
31#include "opt_kstack_pages.h"
32#include "opt_mp_watchdog.h"
33#include "opt_sched.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/bus.h>
38#ifdef GPROF
39#include <sys/gmon.h>
40#endif
41#include <sys/kernel.h>
42#include <sys/ktr.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/memrange.h>
46#include <sys/mutex.h>
47#include <sys/pcpu.h>
48#include <sys/proc.h>
49#include <sys/sched.h>
50#include <sys/smp.h>
51#include <sys/sysctl.h>
52
53#include <vm/vm.h>
54#include <vm/vm_param.h>
55#include <vm/pmap.h>
56#include <vm/vm_kern.h>
57#include <vm/vm_extern.h>
58
59#include <machine/apicreg.h>
60#include <machine/cputypes.h>
61#include <machine/cpufunc.h>
62#include <machine/md_var.h>
63#include <machine/mp_watchdog.h>
64#include <machine/pcb.h>
65#include <machine/psl.h>
66#include <machine/smp.h>
67#include <machine/specialreg.h>
68#include <machine/tss.h>
69
70#define WARMBOOT_TARGET		0
71#define WARMBOOT_OFF		(KERNBASE + 0x0467)
72#define WARMBOOT_SEG		(KERNBASE + 0x0469)
73
74#define CMOS_REG		(0x70)
75#define CMOS_DATA		(0x71)
76#define BIOS_RESET		(0x0f)
77#define BIOS_WARM		(0x0a)
78
79/* lock region used by kernel profiling */
80int	mcount_lock;
81
82int	mp_naps;		/* # of Applications processors */
83int	boot_cpu_id = -1;	/* designated BSP */
84
85extern  struct pcpu __pcpu[];
86
87/* AP uses this during bootstrap.  Do not staticize.  */
88char *bootSTK;
89static int bootAP;
90
91/* Free these after use */
92void *bootstacks[MAXCPU];
93
94/* Temporary holder for double fault stack */
95char *doublefault_stack;
96char *nmi_stack;
97
98/* Hotwire a 0->4MB V==P mapping */
99extern pt_entry_t *KPTphys;
100
101/* SMP page table page */
102extern pt_entry_t *SMPpt;
103
104struct pcb stoppcbs[MAXCPU];
105struct xpcb *stopxpcbs = NULL;
106
107/* Variables needed for SMP tlb shootdown. */
108vm_offset_t smp_tlb_addr1;
109vm_offset_t smp_tlb_addr2;
110volatile int smp_tlb_wait;
111
112extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
113
114#ifdef STOP_NMI
115volatile cpumask_t ipi_nmi_pending;
116
117static void	ipi_nmi_selected(u_int32_t cpus);
118#endif
119
120/*
121 * Local data and functions.
122 */
123
124#ifdef STOP_NMI
125/*
126 * Provide an alternate method of stopping other CPUs. If another CPU has
127 * disabled interrupts the conventional STOP IPI will be blocked. This
128 * NMI-based stop should get through in that case.
129 */
130static int stop_cpus_with_nmi = 1;
131SYSCTL_INT(_debug, OID_AUTO, stop_cpus_with_nmi, CTLTYPE_INT | CTLFLAG_RW,
132    &stop_cpus_with_nmi, 0, "");
133TUNABLE_INT("debug.stop_cpus_with_nmi", &stop_cpus_with_nmi);
134#else
135#define	stop_cpus_with_nmi	0
136#endif
137
138static u_int logical_cpus;
139
140/* used to hold the AP's until we are ready to release them */
141static struct mtx ap_boot_mtx;
142
143/* Set to 1 once we're ready to let the APs out of the pen. */
144static volatile int aps_ready = 0;
145
146/*
147 * Store data from cpu_add() until later in the boot when we actually setup
148 * the APs.
149 */
150struct cpu_info {
151	int	cpu_present:1;
152	int	cpu_bsp:1;
153	int	cpu_disabled:1;
154	int	cpu_hyperthread:1;
155} static cpu_info[MAX_APIC_ID + 1];
156int cpu_apic_ids[MAXCPU];
157int apic_cpuids[MAX_APIC_ID + 1];
158
159/* Holds pending bitmap based IPIs per CPU */
160static volatile u_int cpu_ipi_pending[MAXCPU];
161
162static u_int boot_address;
163
164static void	assign_cpu_ids(void);
165static void	set_interrupt_apic_ids(void);
166static int	start_all_aps(void);
167static int	start_ap(int apic_id);
168static void	release_aps(void *dummy);
169
170static int	hlt_logical_cpus;
171static u_int	hyperthreading_cpus;
172static cpumask_t	hyperthreading_cpus_mask;
173static int	hyperthreading_allowed = 1;
174static struct	sysctl_ctx_list logical_cpu_clist;
175static u_int	bootMP_size;
176
177static void
178mem_range_AP_init(void)
179{
180	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
181		mem_range_softc.mr_op->initAP(&mem_range_softc);
182}
183
184struct cpu_group *
185cpu_topo(void)
186{
187	if (cpu_cores == 0)
188		cpu_cores = 1;
189	if (cpu_logical == 0)
190		cpu_logical = 1;
191	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
192		printf("WARNING: Non-uniform processors.\n");
193		printf("WARNING: Using suboptimal topology.\n");
194		return (smp_topo_none());
195	}
196	/*
197	 * No multi-core or hyper-threaded.
198	 */
199	if (cpu_logical * cpu_cores == 1)
200		return (smp_topo_none());
201	/*
202	 * Only HTT no multi-core.
203	 */
204	if (cpu_logical > 1 && cpu_cores == 1)
205		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, CG_FLAG_HTT));
206	/*
207	 * Only multi-core no HTT.
208	 */
209	if (cpu_cores > 1 && cpu_logical == 1)
210		return (smp_topo_1level(CG_SHARE_NONE, cpu_cores, 0));
211	/*
212	 * Both HTT and multi-core.
213	 */
214	return (smp_topo_2level(CG_SHARE_NONE, cpu_cores,
215	    CG_SHARE_L1, cpu_logical, CG_FLAG_HTT));
216}
217
218/*
219 * Calculate usable address in base memory for AP trampoline code.
220 */
221u_int
222mp_bootaddress(u_int basemem)
223{
224
225	bootMP_size = mptramp_end - mptramp_start;
226	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
227	if (((basemem * 1024) - boot_address) < bootMP_size)
228		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
229	/* 3 levels of page table pages */
230	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
231
232	return mptramp_pagetables;
233}
234
235void
236cpu_add(u_int apic_id, char boot_cpu)
237{
238
239	if (apic_id > MAX_APIC_ID) {
240		panic("SMP: APIC ID %d too high", apic_id);
241		return;
242	}
243	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
244	    apic_id));
245	cpu_info[apic_id].cpu_present = 1;
246	if (boot_cpu) {
247		KASSERT(boot_cpu_id == -1,
248		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
249		    boot_cpu_id));
250		boot_cpu_id = apic_id;
251		cpu_info[apic_id].cpu_bsp = 1;
252	}
253	if (mp_ncpus < MAXCPU) {
254		mp_ncpus++;
255		mp_maxid = mp_ncpus -1;
256	}
257	if (bootverbose)
258		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
259		    "AP");
260}
261
262void
263cpu_mp_setmaxid(void)
264{
265
266	/*
267	 * mp_maxid should be already set by calls to cpu_add().
268	 * Just sanity check its value here.
269	 */
270	if (mp_ncpus == 0)
271		KASSERT(mp_maxid == 0,
272		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
273	else if (mp_ncpus == 1)
274		mp_maxid = 0;
275	else
276		KASSERT(mp_maxid >= mp_ncpus - 1,
277		    ("%s: counters out of sync: max %d, count %d", __func__,
278			mp_maxid, mp_ncpus));
279}
280
281int
282cpu_mp_probe(void)
283{
284
285	/*
286	 * Always record BSP in CPU map so that the mbuf init code works
287	 * correctly.
288	 */
289	all_cpus = 1;
290	if (mp_ncpus == 0) {
291		/*
292		 * No CPUs were found, so this must be a UP system.  Setup
293		 * the variables to represent a system with a single CPU
294		 * with an id of 0.
295		 */
296		mp_ncpus = 1;
297		return (0);
298	}
299
300	/* At least one CPU was found. */
301	if (mp_ncpus == 1) {
302		/*
303		 * One CPU was found, so this must be a UP system with
304		 * an I/O APIC.
305		 */
306		mp_maxid = 0;
307		return (0);
308	}
309
310	/* At least two CPUs were found. */
311	return (1);
312}
313
314/*
315 * Initialize the IPI handlers and start up the AP's.
316 */
317void
318cpu_mp_start(void)
319{
320	int i;
321	u_int threads_per_cache, p[4];
322
323	/* Initialize the logical ID to APIC ID table. */
324	for (i = 0; i < MAXCPU; i++) {
325		cpu_apic_ids[i] = -1;
326		cpu_ipi_pending[i] = 0;
327	}
328
329	/* Install an inter-CPU IPI for TLB invalidation */
330	setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
331	setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
332	setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
333
334	/* Install an inter-CPU IPI for cache invalidation. */
335	setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
336
337	/* Install an inter-CPU IPI for all-CPU rendezvous */
338	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
339
340	/* Install generic inter-CPU IPI handler */
341	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
342	       SDT_SYSIGT, SEL_KPL, 0);
343
344	/* Install an inter-CPU IPI for CPU stop/restart */
345	setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
346
347	/* Install an inter-CPU IPI for CPU suspend/resume */
348	setidt(IPI_SUSPEND, IDTVEC(cpususpend), SDT_SYSIGT, SEL_KPL, 0);
349
350	/* Set boot_cpu_id if needed. */
351	if (boot_cpu_id == -1) {
352		boot_cpu_id = PCPU_GET(apic_id);
353		cpu_info[boot_cpu_id].cpu_bsp = 1;
354	} else
355		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
356		    ("BSP's APIC ID doesn't match boot_cpu_id"));
357
358	/* Setup the initial logical CPUs info. */
359	logical_cpus = logical_cpus_mask = 0;
360	if (cpu_feature & CPUID_HTT)
361		logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
362
363	/*
364	 * Work out if hyperthreading is *really* enabled.  This
365	 * is made really ugly by the fact that processors lie: Dual
366	 * core processors claim to be hyperthreaded even when they're
367	 * not, presumably because they want to be treated the same
368	 * way as HTT with respect to per-cpu software licensing.
369	 * At the time of writing (May 12, 2005) the only hyperthreaded
370	 * cpus are from Intel, and Intel's dual-core processors can be
371	 * identified via the "deterministic cache parameters" cpuid
372	 * calls.
373	 */
374	/*
375	 * First determine if this is an Intel processor which claims
376	 * to have hyperthreading support.
377	 */
378	if ((cpu_feature & CPUID_HTT) && cpu_vendor_id == CPU_VENDOR_INTEL) {
379		/*
380		 * If the "deterministic cache parameters" cpuid calls
381		 * are available, use them.
382		 */
383		if (cpu_high >= 4) {
384			/* Ask the processor about the L1 cache. */
385			for (i = 0; i < 1; i++) {
386				cpuid_count(4, i, p);
387				threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
388				if (hyperthreading_cpus < threads_per_cache)
389					hyperthreading_cpus = threads_per_cache;
390				if ((p[0] & 0x1f) == 0)
391					break;
392			}
393		}
394
395		/*
396		 * If the deterministic cache parameters are not
397		 * available, or if no caches were reported to exist,
398		 * just accept what the HTT flag indicated.
399		 */
400		if (hyperthreading_cpus == 0)
401			hyperthreading_cpus = logical_cpus;
402	}
403
404	assign_cpu_ids();
405
406	/* Start each Application Processor */
407	start_all_aps();
408
409	set_interrupt_apic_ids();
410}
411
412
413/*
414 * Print various information about the SMP system hardware and setup.
415 */
416void
417cpu_mp_announce(void)
418{
419	const char *hyperthread;
420	int i;
421
422	/* List active CPUs first. */
423	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
424	for (i = 1; i < mp_ncpus; i++) {
425		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
426			hyperthread = "/HT";
427		else
428			hyperthread = "";
429		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
430		    cpu_apic_ids[i]);
431	}
432
433	/* List disabled CPUs last. */
434	for (i = 0; i <= MAX_APIC_ID; i++) {
435		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
436			continue;
437		if (cpu_info[i].cpu_hyperthread)
438			hyperthread = "/HT";
439		else
440			hyperthread = "";
441		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
442		    i);
443	}
444}
445
446/*
447 * AP CPU's call this to initialize themselves.
448 */
449void
450init_secondary(void)
451{
452	struct pcpu *pc;
453	struct nmi_pcpu *np;
454	u_int64_t msr, cr0;
455	int cpu, gsel_tss, x;
456	struct region_descriptor ap_gdt;
457
458	/* Set by the startup code for us to use */
459	cpu = bootAP;
460
461	/* Init tss */
462	common_tss[cpu] = common_tss[0];
463	common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
464	common_tss[cpu].tss_iobase = sizeof(struct amd64tss) +
465	    IOPAGES * PAGE_SIZE;
466	common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
467
468	/* The NMI stack runs on IST2. */
469	np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
470	common_tss[cpu].tss_ist2 = (long) np;
471
472	/* Prepare private GDT */
473	gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
474	for (x = 0; x < NGDT; x++) {
475		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
476		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL + 1))
477			ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
478	}
479	ssdtosyssd(&gdt_segs[GPROC0_SEL],
480	    (struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
481	ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
482	ap_gdt.rd_base =  (long) &gdt[NGDT * cpu];
483	lgdt(&ap_gdt);			/* does magic intra-segment return */
484
485	/* Get per-cpu data */
486	pc = &__pcpu[cpu];
487
488	/* prime data page for it to use */
489	pcpu_init(pc, cpu, sizeof(struct pcpu));
490	pc->pc_apic_id = cpu_apic_ids[cpu];
491	pc->pc_prvspace = pc;
492	pc->pc_curthread = 0;
493	pc->pc_tssp = &common_tss[cpu];
494	pc->pc_commontssp = &common_tss[cpu];
495	pc->pc_rsp0 = 0;
496	pc->pc_tss = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
497	    GPROC0_SEL];
498	pc->pc_fs32p = &gdt[NGDT * cpu + GUFS32_SEL];
499	pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
500	pc->pc_ldt = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
501	    GUSERLDT_SEL];
502
503	/* Save the per-cpu pointer for use by the NMI handler. */
504	np->np_pcpu = (register_t) pc;
505
506	wrmsr(MSR_FSBASE, 0);		/* User value */
507	wrmsr(MSR_GSBASE, (u_int64_t)pc);
508	wrmsr(MSR_KGSBASE, (u_int64_t)pc);	/* XXX User value while we're in the kernel */
509
510	lidt(&r_idt);
511
512	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
513	ltr(gsel_tss);
514
515	/*
516	 * Set to a known state:
517	 * Set by mpboot.s: CR0_PG, CR0_PE
518	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
519	 */
520	cr0 = rcr0();
521	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
522	load_cr0(cr0);
523
524	/* Set up the fast syscall stuff */
525	msr = rdmsr(MSR_EFER) | EFER_SCE;
526	wrmsr(MSR_EFER, msr);
527	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
528	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
529	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
530	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
531	wrmsr(MSR_STAR, msr);
532	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
533
534	/* Disable local APIC just to be sure. */
535	lapic_disable();
536
537	/* signal our startup to the BSP. */
538	mp_naps++;
539
540	/* Spin until the BSP releases the AP's. */
541	while (!aps_ready)
542		ia32_pause();
543
544	/* Initialize the PAT MSR. */
545	pmap_init_pat();
546
547	/* set up CPU registers and state */
548	cpu_setregs();
549
550	/* set up SSE/NX registers */
551	initializecpu();
552
553	/* set up FPU state on the AP */
554	fpuinit();
555
556	/* A quick check from sanity claus */
557	if (PCPU_GET(apic_id) != lapic_id()) {
558		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
559		printf("SMP: actual apic_id = %d\n", lapic_id());
560		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
561		panic("cpuid mismatch! boom!!");
562	}
563
564	/* Initialize curthread. */
565	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
566	PCPU_SET(curthread, PCPU_GET(idlethread));
567
568	mtx_lock_spin(&ap_boot_mtx);
569
570	/* Init local apic for irq's */
571	lapic_setup(1);
572
573	/* Set memory range attributes for this CPU to match the BSP */
574	mem_range_AP_init();
575
576	smp_cpus++;
577
578	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
579	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
580
581	/* Determine if we are a logical CPU. */
582	if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
583		logical_cpus_mask |= PCPU_GET(cpumask);
584
585	/* Determine if we are a hyperthread. */
586	if (hyperthreading_cpus > 1 &&
587	    PCPU_GET(apic_id) % hyperthreading_cpus != 0)
588		hyperthreading_cpus_mask |= PCPU_GET(cpumask);
589
590	/* Build our map of 'other' CPUs. */
591	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
592
593	if (bootverbose)
594		lapic_dump("AP");
595
596	if (smp_cpus == mp_ncpus) {
597		/* enable IPI's, tlb shootdown, freezes etc */
598		atomic_store_rel_int(&smp_started, 1);
599		smp_active = 1;	 /* historic */
600	}
601
602	/*
603	 * Enable global pages TLB extension
604	 * This also implicitly flushes the TLB
605	 */
606
607	load_cr4(rcr4() | CR4_PGE);
608	load_ds(_udatasel);
609	load_es(_udatasel);
610	load_fs(_ufssel);
611	mtx_unlock_spin(&ap_boot_mtx);
612
613	/* wait until all the AP's are up */
614	while (smp_started == 0)
615		ia32_pause();
616
617	sched_throw(NULL);
618
619	panic("scheduler returned us to %s", __func__);
620	/* NOTREACHED */
621}
622
623/*******************************************************************
624 * local functions and data
625 */
626
627/*
628 * We tell the I/O APIC code about all the CPUs we want to receive
629 * interrupts.  If we don't want certain CPUs to receive IRQs we
630 * can simply not tell the I/O APIC code about them in this function.
631 * We also do not tell it about the BSP since it tells itself about
632 * the BSP internally to work with UP kernels and on UP machines.
633 */
634static void
635set_interrupt_apic_ids(void)
636{
637	u_int i, apic_id;
638
639	for (i = 0; i < MAXCPU; i++) {
640		apic_id = cpu_apic_ids[i];
641		if (apic_id == -1)
642			continue;
643		if (cpu_info[apic_id].cpu_bsp)
644			continue;
645		if (cpu_info[apic_id].cpu_disabled)
646			continue;
647
648		/* Don't let hyperthreads service interrupts. */
649		if (hyperthreading_cpus > 1 &&
650		    apic_id % hyperthreading_cpus != 0)
651			continue;
652
653		intr_add_cpu(i);
654	}
655}
656
657/*
658 * Assign logical CPU IDs to local APICs.
659 */
660static void
661assign_cpu_ids(void)
662{
663	u_int i;
664
665	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
666	    &hyperthreading_allowed);
667
668	/* Check for explicitly disabled CPUs. */
669	for (i = 0; i <= MAX_APIC_ID; i++) {
670		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
671			continue;
672
673		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
674			cpu_info[i].cpu_hyperthread = 1;
675#if defined(SCHED_ULE)
676			/*
677			 * Don't use HT CPU if it has been disabled by a
678			 * tunable.
679			 */
680			if (hyperthreading_allowed == 0) {
681				cpu_info[i].cpu_disabled = 1;
682				continue;
683			}
684#endif
685		}
686
687		/* Don't use this CPU if it has been disabled by a tunable. */
688		if (resource_disabled("lapic", i)) {
689			cpu_info[i].cpu_disabled = 1;
690			continue;
691		}
692	}
693
694	/*
695	 * Assign CPU IDs to local APIC IDs and disable any CPUs
696	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
697	 *
698	 * To minimize confusion for userland, we attempt to number
699	 * CPUs such that all threads and cores in a package are
700	 * grouped together.  For now we assume that the BSP is always
701	 * the first thread in a package and just start adding APs
702	 * starting with the BSP's APIC ID.
703	 */
704	mp_ncpus = 1;
705	cpu_apic_ids[0] = boot_cpu_id;
706	apic_cpuids[boot_cpu_id] = 0;
707	for (i = boot_cpu_id + 1; i != boot_cpu_id;
708	     i == MAX_APIC_ID ? i = 0 : i++) {
709		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
710		    cpu_info[i].cpu_disabled)
711			continue;
712
713		if (mp_ncpus < MAXCPU) {
714			cpu_apic_ids[mp_ncpus] = i;
715			apic_cpuids[i] = mp_ncpus;
716			mp_ncpus++;
717		} else
718			cpu_info[i].cpu_disabled = 1;
719	}
720	KASSERT(mp_maxid >= mp_ncpus - 1,
721	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
722	    mp_ncpus));
723}
724
725/*
726 * start each AP in our list
727 */
728static int
729start_all_aps(void)
730{
731	vm_offset_t va = boot_address + KERNBASE;
732	u_int64_t *pt4, *pt3, *pt2;
733	u_int32_t mpbioswarmvec;
734	int apic_id, cpu, i;
735	u_char mpbiosreason;
736
737	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
738
739	/* install the AP 1st level boot code */
740	pmap_kenter(va, boot_address);
741	pmap_invalidate_page(kernel_pmap, va);
742	bcopy(mptramp_start, (void *)va, bootMP_size);
743
744	/* Locate the page tables, they'll be below the trampoline */
745	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
746	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
747	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
748
749	/* Create the initial 1GB replicated page tables */
750	for (i = 0; i < 512; i++) {
751		/* Each slot of the level 4 pages points to the same level 3 page */
752		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
753		pt4[i] |= PG_V | PG_RW | PG_U;
754
755		/* Each slot of the level 3 pages points to the same level 2 page */
756		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
757		pt3[i] |= PG_V | PG_RW | PG_U;
758
759		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
760		pt2[i] = i * (2 * 1024 * 1024);
761		pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
762	}
763
764	/* save the current value of the warm-start vector */
765	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
766	outb(CMOS_REG, BIOS_RESET);
767	mpbiosreason = inb(CMOS_DATA);
768
769	/* setup a vector to our boot code */
770	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
771	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
772	outb(CMOS_REG, BIOS_RESET);
773	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
774
775	/* start each AP */
776	for (cpu = 1; cpu < mp_ncpus; cpu++) {
777		apic_id = cpu_apic_ids[cpu];
778
779		/* allocate and set up an idle stack data page */
780		bootstacks[cpu] = (void *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
781		doublefault_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
782		nmi_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
783
784		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
785		bootAP = cpu;
786
787		/* attempt to start the Application Processor */
788		if (!start_ap(apic_id)) {
789			/* restore the warmstart vector */
790			*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
791			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
792		}
793
794		all_cpus |= (1 << cpu);		/* record AP in CPU map */
795	}
796
797	/* build our map of 'other' CPUs */
798	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
799
800	/* restore the warmstart vector */
801	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
802
803	outb(CMOS_REG, BIOS_RESET);
804	outb(CMOS_DATA, mpbiosreason);
805
806	/* number of APs actually started */
807	return mp_naps;
808}
809
810
811/*
812 * This function starts the AP (application processor) identified
813 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
814 * to accomplish this.  This is necessary because of the nuances
815 * of the different hardware we might encounter.  It isn't pretty,
816 * but it seems to work.
817 */
818static int
819start_ap(int apic_id)
820{
821	int vector, ms;
822	int cpus;
823
824	/* calculate the vector */
825	vector = (boot_address >> 12) & 0xff;
826
827	/* used as a watchpoint to signal AP startup */
828	cpus = mp_naps;
829
830	/*
831	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
832	 * and running the target CPU. OR this INIT IPI might be latched (P5
833	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
834	 * ignored.
835	 */
836
837	/* do an INIT IPI: assert RESET */
838	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
839	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
840
841	/* wait for pending status end */
842	lapic_ipi_wait(-1);
843
844	/* do an INIT IPI: deassert RESET */
845	lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
846	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
847
848	/* wait for pending status end */
849	DELAY(10000);		/* wait ~10mS */
850	lapic_ipi_wait(-1);
851
852	/*
853	 * next we do a STARTUP IPI: the previous INIT IPI might still be
854	 * latched, (P5 bug) this 1st STARTUP would then terminate
855	 * immediately, and the previously started INIT IPI would continue. OR
856	 * the previous INIT IPI has already run. and this STARTUP IPI will
857	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
858	 * will run.
859	 */
860
861	/* do a STARTUP IPI */
862	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
863	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
864	    vector, apic_id);
865	lapic_ipi_wait(-1);
866	DELAY(200);		/* wait ~200uS */
867
868	/*
869	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
870	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
871	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
872	 * recognized after hardware RESET or INIT IPI.
873	 */
874
875	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
876	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
877	    vector, apic_id);
878	lapic_ipi_wait(-1);
879	DELAY(200);		/* wait ~200uS */
880
881	/* Wait up to 5 seconds for it to start. */
882	for (ms = 0; ms < 5000; ms++) {
883		if (mp_naps > cpus)
884			return 1;	/* return SUCCESS */
885		DELAY(1000);
886	}
887	return 0;		/* return FAILURE */
888}
889
890/*
891 * Flush the TLB on all other CPU's
892 */
893static void
894smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
895{
896	u_int ncpu;
897
898	ncpu = mp_ncpus - 1;	/* does not shootdown self */
899	if (ncpu < 1)
900		return;		/* no other cpus */
901	if (!(read_rflags() & PSL_I))
902		panic("%s: interrupts disabled", __func__);
903	mtx_lock_spin(&smp_ipi_mtx);
904	smp_tlb_addr1 = addr1;
905	smp_tlb_addr2 = addr2;
906	atomic_store_rel_int(&smp_tlb_wait, 0);
907	ipi_all_but_self(vector);
908	while (smp_tlb_wait < ncpu)
909		ia32_pause();
910	mtx_unlock_spin(&smp_ipi_mtx);
911}
912
913static void
914smp_targeted_tlb_shootdown(u_int mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
915{
916	int ncpu, othercpus;
917
918	othercpus = mp_ncpus - 1;
919	if (mask == (u_int)-1) {
920		ncpu = othercpus;
921		if (ncpu < 1)
922			return;
923	} else {
924		mask &= ~PCPU_GET(cpumask);
925		if (mask == 0)
926			return;
927		ncpu = bitcount32(mask);
928		if (ncpu > othercpus) {
929			/* XXX this should be a panic offence */
930			printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
931			    ncpu, othercpus);
932			ncpu = othercpus;
933		}
934		/* XXX should be a panic, implied by mask == 0 above */
935		if (ncpu < 1)
936			return;
937	}
938	if (!(read_rflags() & PSL_I))
939		panic("%s: interrupts disabled", __func__);
940	mtx_lock_spin(&smp_ipi_mtx);
941	smp_tlb_addr1 = addr1;
942	smp_tlb_addr2 = addr2;
943	atomic_store_rel_int(&smp_tlb_wait, 0);
944	if (mask == (u_int)-1)
945		ipi_all_but_self(vector);
946	else
947		ipi_selected(mask, vector);
948	while (smp_tlb_wait < ncpu)
949		ia32_pause();
950	mtx_unlock_spin(&smp_ipi_mtx);
951}
952
953void
954smp_cache_flush(void)
955{
956
957	if (smp_started)
958		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
959}
960
961void
962smp_invltlb(void)
963{
964
965	if (smp_started) {
966		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
967	}
968}
969
970void
971smp_invlpg(vm_offset_t addr)
972{
973
974	if (smp_started)
975		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
976}
977
978void
979smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
980{
981
982	if (smp_started) {
983		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
984	}
985}
986
987void
988smp_masked_invltlb(u_int mask)
989{
990
991	if (smp_started) {
992		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
993	}
994}
995
996void
997smp_masked_invlpg(u_int mask, vm_offset_t addr)
998{
999
1000	if (smp_started) {
1001		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
1002	}
1003}
1004
1005void
1006smp_masked_invlpg_range(u_int mask, vm_offset_t addr1, vm_offset_t addr2)
1007{
1008
1009	if (smp_started) {
1010		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
1011	}
1012}
1013
1014void
1015ipi_bitmap_handler(struct trapframe frame)
1016{
1017	int cpu = PCPU_GET(cpuid);
1018	u_int ipi_bitmap;
1019
1020	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1021
1022	if (ipi_bitmap & (1 << IPI_PREEMPT))
1023		sched_preempt(curthread);
1024
1025	/* Nothing to do for AST */
1026}
1027
1028/*
1029 * send an IPI to a set of cpus.
1030 */
1031void
1032ipi_selected(u_int32_t cpus, u_int ipi)
1033{
1034	int cpu;
1035	u_int bitmap = 0;
1036	u_int old_pending;
1037	u_int new_pending;
1038
1039	if (IPI_IS_BITMAPED(ipi)) {
1040		bitmap = 1 << ipi;
1041		ipi = IPI_BITMAP_VECTOR;
1042	}
1043
1044#ifdef STOP_NMI
1045	if (ipi == IPI_STOP && stop_cpus_with_nmi) {
1046		ipi_nmi_selected(cpus);
1047		return;
1048	}
1049#endif
1050	CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
1051	while ((cpu = ffs(cpus)) != 0) {
1052		cpu--;
1053		cpus &= ~(1 << cpu);
1054
1055		KASSERT(cpu_apic_ids[cpu] != -1,
1056		    ("IPI to non-existent CPU %d", cpu));
1057
1058		if (bitmap) {
1059			do {
1060				old_pending = cpu_ipi_pending[cpu];
1061				new_pending = old_pending | bitmap;
1062			} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));
1063
1064			if (old_pending)
1065				continue;
1066		}
1067
1068		lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1069	}
1070
1071}
1072
1073/*
1074 * send an IPI to all CPUs EXCEPT myself
1075 */
1076void
1077ipi_all_but_self(u_int ipi)
1078{
1079
1080	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1081		ipi_selected(PCPU_GET(other_cpus), ipi);
1082		return;
1083	}
1084	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1085	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1086}
1087
1088#ifdef STOP_NMI
1089/*
1090 * send NMI IPI to selected CPUs
1091 */
1092
1093#define	BEFORE_SPIN	1000000
1094
1095void
1096ipi_nmi_selected(u_int32_t cpus)
1097{
1098	int cpu;
1099	register_t icrlo;
1100
1101	icrlo = APIC_DELMODE_NMI | APIC_DESTMODE_PHY | APIC_LEVEL_ASSERT
1102		| APIC_TRIGMOD_EDGE;
1103
1104	CTR2(KTR_SMP, "%s: cpus: %x nmi", __func__, cpus);
1105
1106	atomic_set_int(&ipi_nmi_pending, cpus);
1107
1108	while ((cpu = ffs(cpus)) != 0) {
1109		cpu--;
1110		cpus &= ~(1 << cpu);
1111
1112		KASSERT(cpu_apic_ids[cpu] != -1,
1113		    ("IPI NMI to non-existent CPU %d", cpu));
1114
1115		/* Wait for an earlier IPI to finish. */
1116		if (!lapic_ipi_wait(BEFORE_SPIN))
1117			panic("ipi_nmi_selected: previous IPI has not cleared");
1118
1119		lapic_ipi_raw(icrlo, cpu_apic_ids[cpu]);
1120	}
1121}
1122
1123int
1124ipi_nmi_handler(void)
1125{
1126	int cpumask = PCPU_GET(cpumask);
1127
1128	if (!(ipi_nmi_pending & cpumask))
1129		return 1;
1130
1131	atomic_clear_int(&ipi_nmi_pending, cpumask);
1132	cpustop_handler();
1133	return 0;
1134}
1135
1136#endif /* STOP_NMI */
1137
1138/*
1139 * Handle an IPI_STOP by saving our current context and spinning until we
1140 * are resumed.
1141 */
1142void
1143cpustop_handler(void)
1144{
1145	int cpu = PCPU_GET(cpuid);
1146	int cpumask = PCPU_GET(cpumask);
1147
1148	savectx(&stoppcbs[cpu]);
1149
1150	/* Indicate that we are stopped */
1151	atomic_set_int(&stopped_cpus, cpumask);
1152
1153	/* Wait for restart */
1154	while (!(started_cpus & cpumask))
1155	    ia32_pause();
1156
1157	atomic_clear_int(&started_cpus, cpumask);
1158	atomic_clear_int(&stopped_cpus, cpumask);
1159
1160	if (cpu == 0 && cpustop_restartfunc != NULL) {
1161		cpustop_restartfunc();
1162		cpustop_restartfunc = NULL;
1163	}
1164}
1165
1166/*
1167 * Handle an IPI_SUSPEND by saving our current context and spinning until we
1168 * are resumed.
1169 */
1170void
1171cpususpend_handler(void)
1172{
1173	struct savefpu *stopfpu;
1174	register_t cr3, rf;
1175	int cpu = PCPU_GET(cpuid);
1176	int cpumask = PCPU_GET(cpumask);
1177
1178	rf = intr_disable();
1179	cr3 = rcr3();
1180	stopfpu = &stopxpcbs[cpu].xpcb_pcb.pcb_save;
1181	if (savectx2(&stopxpcbs[cpu])) {
1182		fpugetregs(curthread, stopfpu);
1183		wbinvd();
1184		atomic_set_int(&stopped_cpus, cpumask);
1185	} else
1186		fpusetregs(curthread, stopfpu);
1187
1188	/* Wait for resume */
1189	while (!(started_cpus & cpumask))
1190		ia32_pause();
1191
1192	atomic_clear_int(&started_cpus, cpumask);
1193	atomic_clear_int(&stopped_cpus, cpumask);
1194
1195	/* Restore CR3 and enable interrupts */
1196	load_cr3(cr3);
1197	lapic_setup(0);
1198	intr_restore(rf);
1199}
1200
1201/*
1202 * This is called once the rest of the system is up and running and we're
1203 * ready to let the AP's out of the pen.
1204 */
1205static void
1206release_aps(void *dummy __unused)
1207{
1208
1209	if (mp_ncpus == 1)
1210		return;
1211	atomic_store_rel_int(&aps_ready, 1);
1212	while (smp_started == 0)
1213		ia32_pause();
1214}
1215SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1216
1217static int
1218sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
1219{
1220	u_int mask;
1221	int error;
1222
1223	mask = hlt_cpus_mask;
1224	error = sysctl_handle_int(oidp, &mask, 0, req);
1225	if (error || !req->newptr)
1226		return (error);
1227
1228	if (logical_cpus_mask != 0 &&
1229	    (mask & logical_cpus_mask) == logical_cpus_mask)
1230		hlt_logical_cpus = 1;
1231	else
1232		hlt_logical_cpus = 0;
1233
1234	if (! hyperthreading_allowed)
1235		mask |= hyperthreading_cpus_mask;
1236
1237	if ((mask & all_cpus) == all_cpus)
1238		mask &= ~(1<<0);
1239	hlt_cpus_mask = mask;
1240	return (error);
1241}
1242SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
1243    0, 0, sysctl_hlt_cpus, "IU",
1244    "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
1245
1246static int
1247sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
1248{
1249	int disable, error;
1250
1251	disable = hlt_logical_cpus;
1252	error = sysctl_handle_int(oidp, &disable, 0, req);
1253	if (error || !req->newptr)
1254		return (error);
1255
1256	if (disable)
1257		hlt_cpus_mask |= logical_cpus_mask;
1258	else
1259		hlt_cpus_mask &= ~logical_cpus_mask;
1260
1261	if (! hyperthreading_allowed)
1262		hlt_cpus_mask |= hyperthreading_cpus_mask;
1263
1264	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1265		hlt_cpus_mask &= ~(1<<0);
1266
1267	hlt_logical_cpus = disable;
1268	return (error);
1269}
1270
1271static int
1272sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
1273{
1274	int allowed, error;
1275
1276	allowed = hyperthreading_allowed;
1277	error = sysctl_handle_int(oidp, &allowed, 0, req);
1278	if (error || !req->newptr)
1279		return (error);
1280
1281#ifdef SCHED_ULE
1282	/*
1283	 * SCHED_ULE doesn't allow enabling/disabling HT cores at
1284	 * run-time.
1285	 */
1286	if (allowed != hyperthreading_allowed)
1287		return (ENOTSUP);
1288	return (error);
1289#endif
1290
1291	if (allowed)
1292		hlt_cpus_mask &= ~hyperthreading_cpus_mask;
1293	else
1294		hlt_cpus_mask |= hyperthreading_cpus_mask;
1295
1296	if (logical_cpus_mask != 0 &&
1297	    (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
1298		hlt_logical_cpus = 1;
1299	else
1300		hlt_logical_cpus = 0;
1301
1302	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1303		hlt_cpus_mask &= ~(1<<0);
1304
1305	hyperthreading_allowed = allowed;
1306	return (error);
1307}
1308
1309static void
1310cpu_hlt_setup(void *dummy __unused)
1311{
1312
1313	if (logical_cpus_mask != 0) {
1314		TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
1315		    &hlt_logical_cpus);
1316		sysctl_ctx_init(&logical_cpu_clist);
1317		SYSCTL_ADD_PROC(&logical_cpu_clist,
1318		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1319		    "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
1320		    sysctl_hlt_logical_cpus, "IU", "");
1321		SYSCTL_ADD_UINT(&logical_cpu_clist,
1322		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1323		    "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
1324		    &logical_cpus_mask, 0, "");
1325
1326		if (hlt_logical_cpus)
1327			hlt_cpus_mask |= logical_cpus_mask;
1328
1329		/*
1330		 * If necessary for security purposes, force
1331		 * hyperthreading off, regardless of the value
1332		 * of hlt_logical_cpus.
1333		 */
1334		if (hyperthreading_cpus_mask) {
1335			SYSCTL_ADD_PROC(&logical_cpu_clist,
1336			    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1337			    "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
1338			    0, 0, sysctl_hyperthreading_allowed, "IU", "");
1339			if (! hyperthreading_allowed)
1340				hlt_cpus_mask |= hyperthreading_cpus_mask;
1341		}
1342	}
1343}
1344SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
1345
1346int
1347mp_grab_cpu_hlt(void)
1348{
1349	u_int mask = PCPU_GET(cpumask);
1350#ifdef MP_WATCHDOG
1351	u_int cpuid = PCPU_GET(cpuid);
1352#endif
1353	int retval;
1354
1355#ifdef MP_WATCHDOG
1356	ap_watchdog(cpuid);
1357#endif
1358
1359	retval = mask & hlt_cpus_mask;
1360	while (mask & hlt_cpus_mask)
1361		__asm __volatile("sti; hlt" : : : "memory");
1362	return (retval);
1363}
1364