mp_machdep.c revision 189509
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * Copyright (c) 2003, by Peter Wemm
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the developer may NOT be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/amd64/amd64/mp_machdep.c 189509 2009-03-08 05:01:39Z sobomax $");
29
30#include "opt_cpu.h"
31#include "opt_kstack_pages.h"
32#include "opt_mp_watchdog.h"
33#include "opt_sched.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/bus.h>
38#ifdef GPROF
39#include <sys/gmon.h>
40#endif
41#include <sys/kernel.h>
42#include <sys/ktr.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/memrange.h>
46#include <sys/mutex.h>
47#include <sys/pcpu.h>
48#include <sys/proc.h>
49#include <sys/sched.h>
50#include <sys/smp.h>
51#include <sys/sysctl.h>
52
53#include <vm/vm.h>
54#include <vm/vm_param.h>
55#include <vm/pmap.h>
56#include <vm/vm_kern.h>
57#include <vm/vm_extern.h>
58
59#include <machine/apicreg.h>
60#include <machine/cputypes.h>
61#include <machine/md_var.h>
62#include <machine/mp_watchdog.h>
63#include <machine/pcb.h>
64#include <machine/psl.h>
65#include <machine/smp.h>
66#include <machine/specialreg.h>
67#include <machine/tss.h>
68
69#define WARMBOOT_TARGET		0
70#define WARMBOOT_OFF		(KERNBASE + 0x0467)
71#define WARMBOOT_SEG		(KERNBASE + 0x0469)
72
73#define CMOS_REG		(0x70)
74#define CMOS_DATA		(0x71)
75#define BIOS_RESET		(0x0f)
76#define BIOS_WARM		(0x0a)
77
78/* lock region used by kernel profiling */
79int	mcount_lock;
80
81int	mp_naps;		/* # of Applications processors */
82int	boot_cpu_id = -1;	/* designated BSP */
83
84extern  struct pcpu __pcpu[];
85
86/* AP uses this during bootstrap.  Do not staticize.  */
87char *bootSTK;
88static int bootAP;
89
90/* Free these after use */
91void *bootstacks[MAXCPU];
92
93/* Temporary holder for double fault stack */
94char *doublefault_stack;
95char *nmi_stack;
96
97/* Hotwire a 0->4MB V==P mapping */
98extern pt_entry_t *KPTphys;
99
100/* SMP page table page */
101extern pt_entry_t *SMPpt;
102
103extern int  _udatasel;
104
105struct pcb stoppcbs[MAXCPU];
106
107/* Variables needed for SMP tlb shootdown. */
108vm_offset_t smp_tlb_addr1;
109vm_offset_t smp_tlb_addr2;
110volatile int smp_tlb_wait;
111
112extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
113
114#ifdef STOP_NMI
115volatile cpumask_t ipi_nmi_pending;
116
117static void	ipi_nmi_selected(u_int32_t cpus);
118#endif
119
120/*
121 * Local data and functions.
122 */
123
124#ifdef STOP_NMI
125/*
126 * Provide an alternate method of stopping other CPUs. If another CPU has
127 * disabled interrupts the conventional STOP IPI will be blocked. This
128 * NMI-based stop should get through in that case.
129 */
130static int stop_cpus_with_nmi = 1;
131SYSCTL_INT(_debug, OID_AUTO, stop_cpus_with_nmi, CTLTYPE_INT | CTLFLAG_RW,
132    &stop_cpus_with_nmi, 0, "");
133TUNABLE_INT("debug.stop_cpus_with_nmi", &stop_cpus_with_nmi);
134#else
135#define	stop_cpus_with_nmi	0
136#endif
137
138static u_int logical_cpus;
139
140/* used to hold the AP's until we are ready to release them */
141static struct mtx ap_boot_mtx;
142
143/* Set to 1 once we're ready to let the APs out of the pen. */
144static volatile int aps_ready = 0;
145
146/*
147 * Store data from cpu_add() until later in the boot when we actually setup
148 * the APs.
149 */
150struct cpu_info {
151	int	cpu_present:1;
152	int	cpu_bsp:1;
153	int	cpu_disabled:1;
154	int	cpu_hyperthread:1;
155} static cpu_info[MAX_APIC_ID + 1];
156int cpu_apic_ids[MAXCPU];
157int apic_cpuids[MAX_APIC_ID + 1];
158
159/* Holds pending bitmap based IPIs per CPU */
160static volatile u_int cpu_ipi_pending[MAXCPU];
161
162static u_int boot_address;
163
164static void	assign_cpu_ids(void);
165static void	set_interrupt_apic_ids(void);
166static int	start_all_aps(void);
167static int	start_ap(int apic_id);
168static void	release_aps(void *dummy);
169
170static int	hlt_logical_cpus;
171static u_int	hyperthreading_cpus;
172static cpumask_t	hyperthreading_cpus_mask;
173static int	hyperthreading_allowed = 1;
174static struct	sysctl_ctx_list logical_cpu_clist;
175static u_int	bootMP_size;
176
177static void
178mem_range_AP_init(void)
179{
180	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
181		mem_range_softc.mr_op->initAP(&mem_range_softc);
182}
183
184struct cpu_group *
185cpu_topo(void)
186{
187	if (cpu_cores == 0)
188		cpu_cores = 1;
189	if (cpu_logical == 0)
190		cpu_logical = 1;
191	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
192		printf("WARNING: Non-uniform processors.\n");
193		printf("WARNING: Using suboptimal topology.\n");
194		return (smp_topo_none());
195	}
196	/*
197	 * No multi-core or hyper-threaded.
198	 */
199	if (cpu_logical * cpu_cores == 1)
200		return (smp_topo_none());
201	/*
202	 * Only HTT no multi-core.
203	 */
204	if (cpu_logical > 1 && cpu_cores == 1)
205		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, CG_FLAG_HTT));
206	/*
207	 * Only multi-core no HTT.
208	 */
209	if (cpu_cores > 1 && cpu_logical == 1)
210		return (smp_topo_1level(CG_SHARE_NONE, cpu_cores, 0));
211	/*
212	 * Both HTT and multi-core.
213	 */
214	return (smp_topo_2level(CG_SHARE_NONE, cpu_cores,
215	    CG_SHARE_L1, cpu_logical, CG_FLAG_HTT));
216}
217
218/*
219 * Calculate usable address in base memory for AP trampoline code.
220 */
221u_int
222mp_bootaddress(u_int basemem)
223{
224
225	bootMP_size = mptramp_end - mptramp_start;
226	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
227	if (((basemem * 1024) - boot_address) < bootMP_size)
228		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
229	/* 3 levels of page table pages */
230	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
231
232	return mptramp_pagetables;
233}
234
235void
236cpu_add(u_int apic_id, char boot_cpu)
237{
238
239	if (apic_id > MAX_APIC_ID) {
240		panic("SMP: APIC ID %d too high", apic_id);
241		return;
242	}
243	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
244	    apic_id));
245	cpu_info[apic_id].cpu_present = 1;
246	if (boot_cpu) {
247		KASSERT(boot_cpu_id == -1,
248		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
249		    boot_cpu_id));
250		boot_cpu_id = apic_id;
251		cpu_info[apic_id].cpu_bsp = 1;
252	}
253	if (mp_ncpus < MAXCPU) {
254		mp_ncpus++;
255		mp_maxid = mp_ncpus -1;
256	}
257	if (bootverbose)
258		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
259		    "AP");
260}
261
262void
263cpu_mp_setmaxid(void)
264{
265
266	/*
267	 * mp_maxid should be already set by calls to cpu_add().
268	 * Just sanity check its value here.
269	 */
270	if (mp_ncpus == 0)
271		KASSERT(mp_maxid == 0,
272		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
273	else if (mp_ncpus == 1)
274		mp_maxid = 0;
275	else
276		KASSERT(mp_maxid >= mp_ncpus - 1,
277		    ("%s: counters out of sync: max %d, count %d", __func__,
278			mp_maxid, mp_ncpus));
279}
280
281int
282cpu_mp_probe(void)
283{
284
285	/*
286	 * Always record BSP in CPU map so that the mbuf init code works
287	 * correctly.
288	 */
289	all_cpus = 1;
290	if (mp_ncpus == 0) {
291		/*
292		 * No CPUs were found, so this must be a UP system.  Setup
293		 * the variables to represent a system with a single CPU
294		 * with an id of 0.
295		 */
296		mp_ncpus = 1;
297		return (0);
298	}
299
300	/* At least one CPU was found. */
301	if (mp_ncpus == 1) {
302		/*
303		 * One CPU was found, so this must be a UP system with
304		 * an I/O APIC.
305		 */
306		mp_maxid = 0;
307		return (0);
308	}
309
310	/* At least two CPUs were found. */
311	return (1);
312}
313
314/*
315 * Initialize the IPI handlers and start up the AP's.
316 */
317void
318cpu_mp_start(void)
319{
320	int i;
321	u_int threads_per_cache, p[4];
322
323	/* Initialize the logical ID to APIC ID table. */
324	for (i = 0; i < MAXCPU; i++) {
325		cpu_apic_ids[i] = -1;
326		cpu_ipi_pending[i] = 0;
327	}
328
329	/* Install an inter-CPU IPI for TLB invalidation */
330	setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
331	setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
332	setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
333
334	/* Install an inter-CPU IPI for cache invalidation. */
335	setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
336
337	/* Install an inter-CPU IPI for all-CPU rendezvous */
338	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
339
340	/* Install generic inter-CPU IPI handler */
341	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
342	       SDT_SYSIGT, SEL_KPL, 0);
343
344	/* Install an inter-CPU IPI for CPU stop/restart */
345	setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
346
347	/* Set boot_cpu_id if needed. */
348	if (boot_cpu_id == -1) {
349		boot_cpu_id = PCPU_GET(apic_id);
350		cpu_info[boot_cpu_id].cpu_bsp = 1;
351	} else
352		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
353		    ("BSP's APIC ID doesn't match boot_cpu_id"));
354	cpu_apic_ids[0] = boot_cpu_id;
355	apic_cpuids[boot_cpu_id] = 0;
356
357	/* Setup the initial logical CPUs info. */
358	logical_cpus = logical_cpus_mask = 0;
359	if (cpu_feature & CPUID_HTT)
360		logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
361
362	/*
363	 * Work out if hyperthreading is *really* enabled.  This
364	 * is made really ugly by the fact that processors lie: Dual
365	 * core processors claim to be hyperthreaded even when they're
366	 * not, presumably because they want to be treated the same
367	 * way as HTT with respect to per-cpu software licensing.
368	 * At the time of writing (May 12, 2005) the only hyperthreaded
369	 * cpus are from Intel, and Intel's dual-core processors can be
370	 * identified via the "deterministic cache parameters" cpuid
371	 * calls.
372	 */
373	/*
374	 * First determine if this is an Intel processor which claims
375	 * to have hyperthreading support.
376	 */
377	if ((cpu_feature & CPUID_HTT) && cpu_vendor_id == CPU_VENDOR_INTEL) {
378		/*
379		 * If the "deterministic cache parameters" cpuid calls
380		 * are available, use them.
381		 */
382		if (cpu_high >= 4) {
383			/* Ask the processor about the L1 cache. */
384			for (i = 0; i < 1; i++) {
385				cpuid_count(4, i, p);
386				threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
387				if (hyperthreading_cpus < threads_per_cache)
388					hyperthreading_cpus = threads_per_cache;
389				if ((p[0] & 0x1f) == 0)
390					break;
391			}
392		}
393
394		/*
395		 * If the deterministic cache parameters are not
396		 * available, or if no caches were reported to exist,
397		 * just accept what the HTT flag indicated.
398		 */
399		if (hyperthreading_cpus == 0)
400			hyperthreading_cpus = logical_cpus;
401	}
402
403	assign_cpu_ids();
404
405	/* Start each Application Processor */
406	start_all_aps();
407
408	set_interrupt_apic_ids();
409}
410
411
412/*
413 * Print various information about the SMP system hardware and setup.
414 */
415void
416cpu_mp_announce(void)
417{
418	int i, x;
419	const char *hyperthread;
420
421	/* List CPUs */
422	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
423	for (i = 1, x = 0; x <= MAX_APIC_ID; x++) {
424		if (!cpu_info[x].cpu_present || cpu_info[x].cpu_bsp)
425			continue;
426		if (cpu_info[x].cpu_hyperthread) {
427			hyperthread = "/HT";
428		} else {
429			hyperthread = "";
430		}
431		if (cpu_info[x].cpu_disabled)
432			printf("  cpu (AP%s): APIC ID: %2d (disabled)\n",
433			    hyperthread, x);
434		else {
435			KASSERT(i < mp_ncpus,
436			    ("mp_ncpus and actual cpus are out of whack"));
437			printf(" cpu%d (AP%s): APIC ID: %2d\n", i++,
438			    hyperthread, x);
439		}
440	}
441}
442
443/*
444 * AP CPU's call this to initialize themselves.
445 */
446void
447init_secondary(void)
448{
449	struct pcpu *pc;
450	struct nmi_pcpu *np;
451	u_int64_t msr, cr0;
452	int cpu, gsel_tss, x;
453	struct region_descriptor ap_gdt;
454
455	/* Set by the startup code for us to use */
456	cpu = bootAP;
457
458	/* Init tss */
459	common_tss[cpu] = common_tss[0];
460	common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
461	common_tss[cpu].tss_iobase = sizeof(struct amd64tss);
462	common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
463
464	/* The NMI stack runs on IST2. */
465	np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
466	common_tss[cpu].tss_ist2 = (long) np;
467
468	/* Prepare private GDT */
469	gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
470	ssdtosyssd(&gdt_segs[GPROC0_SEL],
471	   (struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
472	for (x = 0; x < NGDT; x++) {
473		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
474			ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
475	}
476	ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
477	ap_gdt.rd_base =  (long) &gdt[NGDT * cpu];
478	lgdt(&ap_gdt);			/* does magic intra-segment return */
479
480	/* Get per-cpu data */
481	pc = &__pcpu[cpu];
482
483	/* prime data page for it to use */
484	pcpu_init(pc, cpu, sizeof(struct pcpu));
485	pc->pc_apic_id = cpu_apic_ids[cpu];
486	pc->pc_prvspace = pc;
487	pc->pc_curthread = 0;
488	pc->pc_tssp = &common_tss[cpu];
489	pc->pc_rsp0 = 0;
490	pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
491
492	/* Save the per-cpu pointer for use by the NMI handler. */
493	np->np_pcpu = (register_t) pc;
494
495	wrmsr(MSR_FSBASE, 0);		/* User value */
496	wrmsr(MSR_GSBASE, (u_int64_t)pc);
497	wrmsr(MSR_KGSBASE, (u_int64_t)pc);	/* XXX User value while we're in the kernel */
498
499	lidt(&r_idt);
500
501	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
502	ltr(gsel_tss);
503
504	/*
505	 * Set to a known state:
506	 * Set by mpboot.s: CR0_PG, CR0_PE
507	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
508	 */
509	cr0 = rcr0();
510	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
511	load_cr0(cr0);
512
513	/* Set up the fast syscall stuff */
514	msr = rdmsr(MSR_EFER) | EFER_SCE;
515	wrmsr(MSR_EFER, msr);
516	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
517	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
518	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
519	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
520	wrmsr(MSR_STAR, msr);
521	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
522
523	/* Disable local APIC just to be sure. */
524	lapic_disable();
525
526	/* signal our startup to the BSP. */
527	mp_naps++;
528
529	/* Spin until the BSP releases the AP's. */
530	while (!aps_ready)
531		ia32_pause();
532
533	/* Initialize the PAT MSR. */
534	pmap_init_pat();
535
536	/* set up CPU registers and state */
537	cpu_setregs();
538
539	/* set up SSE/NX registers */
540	initializecpu();
541
542	/* set up FPU state on the AP */
543	fpuinit();
544
545	/* A quick check from sanity claus */
546	if (PCPU_GET(apic_id) != lapic_id()) {
547		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
548		printf("SMP: actual apic_id = %d\n", lapic_id());
549		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
550		panic("cpuid mismatch! boom!!");
551	}
552
553	/* Initialize curthread. */
554	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
555	PCPU_SET(curthread, PCPU_GET(idlethread));
556
557	mtx_lock_spin(&ap_boot_mtx);
558
559	/* Init local apic for irq's */
560	lapic_setup(1);
561
562	/* Set memory range attributes for this CPU to match the BSP */
563	mem_range_AP_init();
564
565	smp_cpus++;
566
567	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
568	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
569
570	/* Determine if we are a logical CPU. */
571	if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
572		logical_cpus_mask |= PCPU_GET(cpumask);
573
574	/* Determine if we are a hyperthread. */
575	if (hyperthreading_cpus > 1 &&
576	    PCPU_GET(apic_id) % hyperthreading_cpus != 0)
577		hyperthreading_cpus_mask |= PCPU_GET(cpumask);
578
579	/* Build our map of 'other' CPUs. */
580	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
581
582	if (bootverbose)
583		lapic_dump("AP");
584
585	if (smp_cpus == mp_ncpus) {
586		/* enable IPI's, tlb shootdown, freezes etc */
587		atomic_store_rel_int(&smp_started, 1);
588		smp_active = 1;	 /* historic */
589	}
590
591	/*
592	 * Enable global pages TLB extension
593	 * This also implicitly flushes the TLB
594	 */
595
596	load_cr4(rcr4() | CR4_PGE);
597	load_ds(_udatasel);
598	load_es(_udatasel);
599	load_fs(_udatasel);
600	mtx_unlock_spin(&ap_boot_mtx);
601
602	/* wait until all the AP's are up */
603	while (smp_started == 0)
604		ia32_pause();
605
606	sched_throw(NULL);
607
608	panic("scheduler returned us to %s", __func__);
609	/* NOTREACHED */
610}
611
612/*******************************************************************
613 * local functions and data
614 */
615
616/*
617 * We tell the I/O APIC code about all the CPUs we want to receive
618 * interrupts.  If we don't want certain CPUs to receive IRQs we
619 * can simply not tell the I/O APIC code about them in this function.
620 * We also do not tell it about the BSP since it tells itself about
621 * the BSP internally to work with UP kernels and on UP machines.
622 */
623static void
624set_interrupt_apic_ids(void)
625{
626	u_int i, apic_id;
627
628	for (i = 0; i < MAXCPU; i++) {
629		apic_id = cpu_apic_ids[i];
630		if (apic_id == -1)
631			continue;
632		if (cpu_info[apic_id].cpu_bsp)
633			continue;
634		if (cpu_info[apic_id].cpu_disabled)
635			continue;
636
637		/* Don't let hyperthreads service interrupts. */
638		if (hyperthreading_cpus > 1 &&
639		    apic_id % hyperthreading_cpus != 0)
640			continue;
641
642		intr_add_cpu(i);
643	}
644}
645
646/*
647 * Assign logical CPU IDs to local APICs.
648 */
649static void
650assign_cpu_ids(void)
651{
652	u_int i;
653
654	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
655	    &hyperthreading_allowed);
656
657	/* Check for explicitly disabled CPUs. */
658	for (i = 0; i <= MAX_APIC_ID; i++) {
659		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
660			continue;
661
662		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
663			cpu_info[i].cpu_hyperthread = 1;
664#if defined(SCHED_ULE)
665			/*
666			 * Don't use HT CPU if it has been disabled by a
667			 * tunable.
668			 */
669			if (hyperthreading_allowed == 0) {
670				cpu_info[i].cpu_disabled = 1;
671				continue;
672			}
673#endif
674		}
675
676		/* Don't use this CPU if it has been disabled by a tunable. */
677		if (resource_disabled("lapic", i)) {
678			cpu_info[i].cpu_disabled = 1;
679			continue;
680		}
681	}
682
683	/*
684	 * Assign CPU IDs to local APIC IDs and disable any CPUs
685	 * beyond MAXCPU.  CPU 0 has already been assigned to the BSP,
686	 * so we only have to assign IDs for APs.
687	 */
688	mp_ncpus = 1;
689	for (i = 0; i <= MAX_APIC_ID; i++) {
690		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
691		    cpu_info[i].cpu_disabled)
692			continue;
693
694		if (mp_ncpus < MAXCPU) {
695			cpu_apic_ids[mp_ncpus] = i;
696			apic_cpuids[i] = mp_ncpus;
697			mp_ncpus++;
698		} else
699			cpu_info[i].cpu_disabled = 1;
700	}
701	KASSERT(mp_maxid >= mp_ncpus - 1,
702	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
703	    mp_ncpus));
704}
705
706/*
707 * start each AP in our list
708 */
709static int
710start_all_aps(void)
711{
712	vm_offset_t va = boot_address + KERNBASE;
713	u_int64_t *pt4, *pt3, *pt2;
714	u_int32_t mpbioswarmvec;
715	int apic_id, cpu, i;
716	u_char mpbiosreason;
717
718	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
719
720	/* install the AP 1st level boot code */
721	pmap_kenter(va, boot_address);
722	pmap_invalidate_page(kernel_pmap, va);
723	bcopy(mptramp_start, (void *)va, bootMP_size);
724
725	/* Locate the page tables, they'll be below the trampoline */
726	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
727	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
728	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
729
730	/* Create the initial 1GB replicated page tables */
731	for (i = 0; i < 512; i++) {
732		/* Each slot of the level 4 pages points to the same level 3 page */
733		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
734		pt4[i] |= PG_V | PG_RW | PG_U;
735
736		/* Each slot of the level 3 pages points to the same level 2 page */
737		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
738		pt3[i] |= PG_V | PG_RW | PG_U;
739
740		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
741		pt2[i] = i * (2 * 1024 * 1024);
742		pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
743	}
744
745	/* save the current value of the warm-start vector */
746	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
747	outb(CMOS_REG, BIOS_RESET);
748	mpbiosreason = inb(CMOS_DATA);
749
750	/* setup a vector to our boot code */
751	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
752	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
753	outb(CMOS_REG, BIOS_RESET);
754	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
755
756	/* start each AP */
757	for (cpu = 1; cpu < mp_ncpus; cpu++) {
758		apic_id = cpu_apic_ids[cpu];
759
760		/* allocate and set up an idle stack data page */
761		bootstacks[cpu] = (void *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
762		doublefault_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
763		nmi_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
764
765		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
766		bootAP = cpu;
767
768		/* attempt to start the Application Processor */
769		if (!start_ap(apic_id)) {
770			/* restore the warmstart vector */
771			*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
772			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
773		}
774
775		all_cpus |= (1 << cpu);		/* record AP in CPU map */
776	}
777
778	/* build our map of 'other' CPUs */
779	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
780
781	/* restore the warmstart vector */
782	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
783
784	outb(CMOS_REG, BIOS_RESET);
785	outb(CMOS_DATA, mpbiosreason);
786
787	/* number of APs actually started */
788	return mp_naps;
789}
790
791
792/*
793 * This function starts the AP (application processor) identified
794 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
795 * to accomplish this.  This is necessary because of the nuances
796 * of the different hardware we might encounter.  It isn't pretty,
797 * but it seems to work.
798 */
799static int
800start_ap(int apic_id)
801{
802	int vector, ms;
803	int cpus;
804
805	/* calculate the vector */
806	vector = (boot_address >> 12) & 0xff;
807
808	/* used as a watchpoint to signal AP startup */
809	cpus = mp_naps;
810
811	/*
812	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
813	 * and running the target CPU. OR this INIT IPI might be latched (P5
814	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
815	 * ignored.
816	 */
817
818	/* do an INIT IPI: assert RESET */
819	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
820	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
821
822	/* wait for pending status end */
823	lapic_ipi_wait(-1);
824
825	/* do an INIT IPI: deassert RESET */
826	lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
827	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
828
829	/* wait for pending status end */
830	DELAY(10000);		/* wait ~10mS */
831	lapic_ipi_wait(-1);
832
833	/*
834	 * next we do a STARTUP IPI: the previous INIT IPI might still be
835	 * latched, (P5 bug) this 1st STARTUP would then terminate
836	 * immediately, and the previously started INIT IPI would continue. OR
837	 * the previous INIT IPI has already run. and this STARTUP IPI will
838	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
839	 * will run.
840	 */
841
842	/* do a STARTUP IPI */
843	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
844	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
845	    vector, apic_id);
846	lapic_ipi_wait(-1);
847	DELAY(200);		/* wait ~200uS */
848
849	/*
850	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
851	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
852	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
853	 * recognized after hardware RESET or INIT IPI.
854	 */
855
856	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
857	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
858	    vector, apic_id);
859	lapic_ipi_wait(-1);
860	DELAY(200);		/* wait ~200uS */
861
862	/* Wait up to 5 seconds for it to start. */
863	for (ms = 0; ms < 5000; ms++) {
864		if (mp_naps > cpus)
865			return 1;	/* return SUCCESS */
866		DELAY(1000);
867	}
868	return 0;		/* return FAILURE */
869}
870
871/*
872 * Flush the TLB on all other CPU's
873 */
874static void
875smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
876{
877	u_int ncpu;
878
879	ncpu = mp_ncpus - 1;	/* does not shootdown self */
880	if (ncpu < 1)
881		return;		/* no other cpus */
882	if (!(read_rflags() & PSL_I))
883		panic("%s: interrupts disabled", __func__);
884	mtx_lock_spin(&smp_ipi_mtx);
885	smp_tlb_addr1 = addr1;
886	smp_tlb_addr2 = addr2;
887	atomic_store_rel_int(&smp_tlb_wait, 0);
888	ipi_all_but_self(vector);
889	while (smp_tlb_wait < ncpu)
890		ia32_pause();
891	mtx_unlock_spin(&smp_ipi_mtx);
892}
893
894static void
895smp_targeted_tlb_shootdown(u_int mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
896{
897	int ncpu, othercpus;
898
899	othercpus = mp_ncpus - 1;
900	if (mask == (u_int)-1) {
901		ncpu = othercpus;
902		if (ncpu < 1)
903			return;
904	} else {
905		mask &= ~PCPU_GET(cpumask);
906		if (mask == 0)
907			return;
908		ncpu = bitcount32(mask);
909		if (ncpu > othercpus) {
910			/* XXX this should be a panic offence */
911			printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
912			    ncpu, othercpus);
913			ncpu = othercpus;
914		}
915		/* XXX should be a panic, implied by mask == 0 above */
916		if (ncpu < 1)
917			return;
918	}
919	if (!(read_rflags() & PSL_I))
920		panic("%s: interrupts disabled", __func__);
921	mtx_lock_spin(&smp_ipi_mtx);
922	smp_tlb_addr1 = addr1;
923	smp_tlb_addr2 = addr2;
924	atomic_store_rel_int(&smp_tlb_wait, 0);
925	if (mask == (u_int)-1)
926		ipi_all_but_self(vector);
927	else
928		ipi_selected(mask, vector);
929	while (smp_tlb_wait < ncpu)
930		ia32_pause();
931	mtx_unlock_spin(&smp_ipi_mtx);
932}
933
934void
935smp_cache_flush(void)
936{
937
938	if (smp_started)
939		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
940}
941
942void
943smp_invltlb(void)
944{
945
946	if (smp_started) {
947		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
948	}
949}
950
951void
952smp_invlpg(vm_offset_t addr)
953{
954
955	if (smp_started)
956		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
957}
958
959void
960smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
961{
962
963	if (smp_started) {
964		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
965	}
966}
967
968void
969smp_masked_invltlb(u_int mask)
970{
971
972	if (smp_started) {
973		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
974	}
975}
976
977void
978smp_masked_invlpg(u_int mask, vm_offset_t addr)
979{
980
981	if (smp_started) {
982		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
983	}
984}
985
986void
987smp_masked_invlpg_range(u_int mask, vm_offset_t addr1, vm_offset_t addr2)
988{
989
990	if (smp_started) {
991		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
992	}
993}
994
995void
996ipi_bitmap_handler(struct trapframe frame)
997{
998	int cpu = PCPU_GET(cpuid);
999	u_int ipi_bitmap;
1000
1001	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1002
1003	if (ipi_bitmap & (1 << IPI_PREEMPT))
1004		sched_preempt(curthread);
1005
1006	/* Nothing to do for AST */
1007}
1008
1009/*
1010 * send an IPI to a set of cpus.
1011 */
1012void
1013ipi_selected(u_int32_t cpus, u_int ipi)
1014{
1015	int cpu;
1016	u_int bitmap = 0;
1017	u_int old_pending;
1018	u_int new_pending;
1019
1020	if (IPI_IS_BITMAPED(ipi)) {
1021		bitmap = 1 << ipi;
1022		ipi = IPI_BITMAP_VECTOR;
1023	}
1024
1025#ifdef STOP_NMI
1026	if (ipi == IPI_STOP && stop_cpus_with_nmi) {
1027		ipi_nmi_selected(cpus);
1028		return;
1029	}
1030#endif
1031	CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
1032	while ((cpu = ffs(cpus)) != 0) {
1033		cpu--;
1034		cpus &= ~(1 << cpu);
1035
1036		KASSERT(cpu_apic_ids[cpu] != -1,
1037		    ("IPI to non-existent CPU %d", cpu));
1038
1039		if (bitmap) {
1040			do {
1041				old_pending = cpu_ipi_pending[cpu];
1042				new_pending = old_pending | bitmap;
1043			} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));
1044
1045			if (old_pending)
1046				continue;
1047		}
1048
1049		lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1050	}
1051
1052}
1053
1054/*
1055 * send an IPI to all CPUs EXCEPT myself
1056 */
1057void
1058ipi_all_but_self(u_int ipi)
1059{
1060
1061	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1062		ipi_selected(PCPU_GET(other_cpus), ipi);
1063		return;
1064	}
1065	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1066	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1067}
1068
1069#ifdef STOP_NMI
1070/*
1071 * send NMI IPI to selected CPUs
1072 */
1073
1074#define	BEFORE_SPIN	1000000
1075
1076void
1077ipi_nmi_selected(u_int32_t cpus)
1078{
1079	int cpu;
1080	register_t icrlo;
1081
1082	icrlo = APIC_DELMODE_NMI | APIC_DESTMODE_PHY | APIC_LEVEL_ASSERT
1083		| APIC_TRIGMOD_EDGE;
1084
1085	CTR2(KTR_SMP, "%s: cpus: %x nmi", __func__, cpus);
1086
1087	atomic_set_int(&ipi_nmi_pending, cpus);
1088
1089	while ((cpu = ffs(cpus)) != 0) {
1090		cpu--;
1091		cpus &= ~(1 << cpu);
1092
1093		KASSERT(cpu_apic_ids[cpu] != -1,
1094		    ("IPI NMI to non-existent CPU %d", cpu));
1095
1096		/* Wait for an earlier IPI to finish. */
1097		if (!lapic_ipi_wait(BEFORE_SPIN))
1098			panic("ipi_nmi_selected: previous IPI has not cleared");
1099
1100		lapic_ipi_raw(icrlo, cpu_apic_ids[cpu]);
1101	}
1102}
1103
1104int
1105ipi_nmi_handler(void)
1106{
1107	int cpumask = PCPU_GET(cpumask);
1108
1109	if (!(ipi_nmi_pending & cpumask))
1110		return 1;
1111
1112	atomic_clear_int(&ipi_nmi_pending, cpumask);
1113	cpustop_handler();
1114	return 0;
1115}
1116
1117#endif /* STOP_NMI */
1118
1119/*
1120 * Handle an IPI_STOP by saving our current context and spinning until we
1121 * are resumed.
1122 */
1123void
1124cpustop_handler(void)
1125{
1126	int cpu = PCPU_GET(cpuid);
1127	int cpumask = PCPU_GET(cpumask);
1128
1129	savectx(&stoppcbs[cpu]);
1130
1131	/* Indicate that we are stopped */
1132	atomic_set_int(&stopped_cpus, cpumask);
1133
1134	/* Wait for restart */
1135	while (!(started_cpus & cpumask))
1136	    ia32_pause();
1137
1138	atomic_clear_int(&started_cpus, cpumask);
1139	atomic_clear_int(&stopped_cpus, cpumask);
1140
1141	if (cpu == 0 && cpustop_restartfunc != NULL) {
1142		cpustop_restartfunc();
1143		cpustop_restartfunc = NULL;
1144	}
1145}
1146
1147/*
1148 * This is called once the rest of the system is up and running and we're
1149 * ready to let the AP's out of the pen.
1150 */
1151static void
1152release_aps(void *dummy __unused)
1153{
1154
1155	if (mp_ncpus == 1)
1156		return;
1157	atomic_store_rel_int(&aps_ready, 1);
1158	while (smp_started == 0)
1159		ia32_pause();
1160}
1161SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1162
1163static int
1164sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
1165{
1166	u_int mask;
1167	int error;
1168
1169	mask = hlt_cpus_mask;
1170	error = sysctl_handle_int(oidp, &mask, 0, req);
1171	if (error || !req->newptr)
1172		return (error);
1173
1174	if (logical_cpus_mask != 0 &&
1175	    (mask & logical_cpus_mask) == logical_cpus_mask)
1176		hlt_logical_cpus = 1;
1177	else
1178		hlt_logical_cpus = 0;
1179
1180	if (! hyperthreading_allowed)
1181		mask |= hyperthreading_cpus_mask;
1182
1183	if ((mask & all_cpus) == all_cpus)
1184		mask &= ~(1<<0);
1185	hlt_cpus_mask = mask;
1186	return (error);
1187}
1188SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
1189    0, 0, sysctl_hlt_cpus, "IU",
1190    "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
1191
1192static int
1193sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
1194{
1195	int disable, error;
1196
1197	disable = hlt_logical_cpus;
1198	error = sysctl_handle_int(oidp, &disable, 0, req);
1199	if (error || !req->newptr)
1200		return (error);
1201
1202	if (disable)
1203		hlt_cpus_mask |= logical_cpus_mask;
1204	else
1205		hlt_cpus_mask &= ~logical_cpus_mask;
1206
1207	if (! hyperthreading_allowed)
1208		hlt_cpus_mask |= hyperthreading_cpus_mask;
1209
1210	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1211		hlt_cpus_mask &= ~(1<<0);
1212
1213	hlt_logical_cpus = disable;
1214	return (error);
1215}
1216
1217static int
1218sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
1219{
1220	int allowed, error;
1221
1222	allowed = hyperthreading_allowed;
1223	error = sysctl_handle_int(oidp, &allowed, 0, req);
1224	if (error || !req->newptr)
1225		return (error);
1226
1227#ifdef SCHED_ULE
1228	/*
1229	 * SCHED_ULE doesn't allow enabling/disabling HT cores at
1230	 * run-time.
1231	 */
1232	if (allowed != hyperthreading_allowed)
1233		return (ENOTSUP);
1234	return (error);
1235#endif
1236
1237	if (allowed)
1238		hlt_cpus_mask &= ~hyperthreading_cpus_mask;
1239	else
1240		hlt_cpus_mask |= hyperthreading_cpus_mask;
1241
1242	if (logical_cpus_mask != 0 &&
1243	    (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
1244		hlt_logical_cpus = 1;
1245	else
1246		hlt_logical_cpus = 0;
1247
1248	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1249		hlt_cpus_mask &= ~(1<<0);
1250
1251	hyperthreading_allowed = allowed;
1252	return (error);
1253}
1254
1255static void
1256cpu_hlt_setup(void *dummy __unused)
1257{
1258
1259	if (logical_cpus_mask != 0) {
1260		TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
1261		    &hlt_logical_cpus);
1262		sysctl_ctx_init(&logical_cpu_clist);
1263		SYSCTL_ADD_PROC(&logical_cpu_clist,
1264		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1265		    "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
1266		    sysctl_hlt_logical_cpus, "IU", "");
1267		SYSCTL_ADD_UINT(&logical_cpu_clist,
1268		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1269		    "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
1270		    &logical_cpus_mask, 0, "");
1271
1272		if (hlt_logical_cpus)
1273			hlt_cpus_mask |= logical_cpus_mask;
1274
1275		/*
1276		 * If necessary for security purposes, force
1277		 * hyperthreading off, regardless of the value
1278		 * of hlt_logical_cpus.
1279		 */
1280		if (hyperthreading_cpus_mask) {
1281			SYSCTL_ADD_PROC(&logical_cpu_clist,
1282			    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1283			    "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
1284			    0, 0, sysctl_hyperthreading_allowed, "IU", "");
1285			if (! hyperthreading_allowed)
1286				hlt_cpus_mask |= hyperthreading_cpus_mask;
1287		}
1288	}
1289}
1290SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
1291
1292int
1293mp_grab_cpu_hlt(void)
1294{
1295	u_int mask = PCPU_GET(cpumask);
1296#ifdef MP_WATCHDOG
1297	u_int cpuid = PCPU_GET(cpuid);
1298#endif
1299	int retval;
1300
1301#ifdef MP_WATCHDOG
1302	ap_watchdog(cpuid);
1303#endif
1304
1305	retval = mask & hlt_cpus_mask;
1306	while (mask & hlt_cpus_mask)
1307		__asm __volatile("sti; hlt" : : : "memory");
1308	return (retval);
1309}
1310