mp_machdep.c revision 165929
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * Copyright (c) 2003, by Peter Wemm
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the developer may NOT be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/amd64/amd64/mp_machdep.c 165929 2007-01-11 00:17:02Z jeff $");
29
30#include "opt_cpu.h"
31#include "opt_kstack_pages.h"
32#include "opt_mp_watchdog.h"
33#include "opt_sched.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/bus.h>
38#ifdef GPROF
39#include <sys/gmon.h>
40#endif
41#include <sys/kernel.h>
42#include <sys/ktr.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/memrange.h>
46#include <sys/mutex.h>
47#include <sys/pcpu.h>
48#include <sys/proc.h>
49#include <sys/smp.h>
50#include <sys/sysctl.h>
51
52#include <vm/vm.h>
53#include <vm/vm_param.h>
54#include <vm/pmap.h>
55#include <vm/vm_kern.h>
56#include <vm/vm_extern.h>
57
58#include <machine/apicreg.h>
59#include <machine/md_var.h>
60#include <machine/mp_watchdog.h>
61#include <machine/pcb.h>
62#include <machine/psl.h>
63#include <machine/smp.h>
64#include <machine/specialreg.h>
65#include <machine/tss.h>
66
67#define WARMBOOT_TARGET		0
68#define WARMBOOT_OFF		(KERNBASE + 0x0467)
69#define WARMBOOT_SEG		(KERNBASE + 0x0469)
70
71#define CMOS_REG		(0x70)
72#define CMOS_DATA		(0x71)
73#define BIOS_RESET		(0x0f)
74#define BIOS_WARM		(0x0a)
75
76/* lock region used by kernel profiling */
77int	mcount_lock;
78
79int	mp_naps;		/* # of Applications processors */
80int	boot_cpu_id = -1;	/* designated BSP */
81extern	int nkpt;
82
83/*
84 * CPU topology map datastructures for HTT.
85 */
86static struct cpu_group mp_groups[MAXCPU];
87static struct cpu_top mp_top;
88
89/* AP uses this during bootstrap.  Do not staticize.  */
90char *bootSTK;
91static int bootAP;
92
93/* Free these after use */
94void *bootstacks[MAXCPU];
95
96/* Temporary holder for double fault stack */
97char *doublefault_stack;
98
99/* Hotwire a 0->4MB V==P mapping */
100extern pt_entry_t *KPTphys;
101
102/* SMP page table page */
103extern pt_entry_t *SMPpt;
104
105struct pcb stoppcbs[MAXCPU];
106
107/* Variables needed for SMP tlb shootdown. */
108vm_offset_t smp_tlb_addr1;
109vm_offset_t smp_tlb_addr2;
110volatile int smp_tlb_wait;
111
112extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
113
114#ifdef STOP_NMI
115volatile cpumask_t ipi_nmi_pending;
116
117static void	ipi_nmi_selected(u_int32_t cpus);
118#endif
119
120/*
121 * Local data and functions.
122 */
123
124#ifdef STOP_NMI
125/*
126 * Provide an alternate method of stopping other CPUs. If another CPU has
127 * disabled interrupts the conventional STOP IPI will be blocked. This
128 * NMI-based stop should get through in that case.
129 */
130static int stop_cpus_with_nmi = 1;
131SYSCTL_INT(_debug, OID_AUTO, stop_cpus_with_nmi, CTLTYPE_INT | CTLFLAG_RW,
132    &stop_cpus_with_nmi, 0, "");
133TUNABLE_INT("debug.stop_cpus_with_nmi", &stop_cpus_with_nmi);
134#else
135#define	stop_cpus_with_nmi	0
136#endif
137
138static u_int logical_cpus;
139
140/* used to hold the AP's until we are ready to release them */
141static struct mtx ap_boot_mtx;
142
143/* Set to 1 once we're ready to let the APs out of the pen. */
144static volatile int aps_ready = 0;
145
146/*
147 * Store data from cpu_add() until later in the boot when we actually setup
148 * the APs.
149 */
150struct cpu_info {
151	int	cpu_present:1;
152	int	cpu_bsp:1;
153	int	cpu_disabled:1;
154} static cpu_info[MAXCPU];
155static int cpu_apic_ids[MAXCPU];
156
157/* Holds pending bitmap based IPIs per CPU */
158static volatile u_int cpu_ipi_pending[MAXCPU];
159
160static u_int boot_address;
161
162static void	set_interrupt_apic_ids(void);
163static int	start_all_aps(void);
164static int	start_ap(int apic_id);
165static void	release_aps(void *dummy);
166
167static int	hlt_logical_cpus;
168static u_int	hyperthreading_cpus;
169static cpumask_t	hyperthreading_cpus_mask;
170static int	hyperthreading_allowed = 1;
171static struct	sysctl_ctx_list logical_cpu_clist;
172static u_int	bootMP_size;
173
174static void
175mem_range_AP_init(void)
176{
177	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
178		mem_range_softc.mr_op->initAP(&mem_range_softc);
179}
180
181void
182mp_topology(void)
183{
184	struct cpu_group *group;
185	u_int regs[4];
186	int logical_cpus;
187	int apic_id;
188	int groups;
189	int cpu;
190
191	/* Build the smp_topology map. */
192	/* Nothing to do if there is no HTT support. */
193	if ((cpu_feature & CPUID_HTT) == 0)
194		return;
195	logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
196	if (logical_cpus <= 1)
197		return;
198	/* Nothing to do if reported cores are physical cores. */
199	if (strcmp(cpu_vendor, "GenuineIntel") == 0 && cpu_high >= 4) {
200		cpuid_count(4, 0, regs);
201		if ((regs[0] & 0x1f) != 0 &&
202		    logical_cpus <= ((regs[0] >> 26) & 0x3f) + 1)
203			return;
204	}
205	group = &mp_groups[0];
206	groups = 1;
207	for (cpu = 0, apic_id = 0; apic_id < MAXCPU; apic_id++) {
208		if (!cpu_info[apic_id].cpu_present)
209			continue;
210		/*
211		 * If the current group has members and we're not a logical
212		 * cpu, create a new group.
213		 */
214		if (group->cg_count != 0 && (apic_id % logical_cpus) == 0) {
215			group++;
216			groups++;
217		}
218		group->cg_count++;
219		group->cg_mask |= 1 << cpu;
220		cpu++;
221	}
222
223	mp_top.ct_count = groups;
224	mp_top.ct_group = mp_groups;
225	smp_topology = &mp_top;
226}
227
228/*
229 * Calculate usable address in base memory for AP trampoline code.
230 */
231u_int
232mp_bootaddress(u_int basemem)
233{
234
235	bootMP_size = mptramp_end - mptramp_start;
236	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
237	if (((basemem * 1024) - boot_address) < bootMP_size)
238		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
239	/* 3 levels of page table pages */
240	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
241
242	return mptramp_pagetables;
243}
244
245void
246cpu_add(u_int apic_id, char boot_cpu)
247{
248
249	if (apic_id >= MAXCPU) {
250		printf("SMP: CPU %d exceeds maximum CPU %d, ignoring\n",
251		    apic_id, MAXCPU - 1);
252		return;
253	}
254	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
255	    apic_id));
256	cpu_info[apic_id].cpu_present = 1;
257	if (boot_cpu) {
258		KASSERT(boot_cpu_id == -1,
259		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
260		    boot_cpu_id));
261		boot_cpu_id = apic_id;
262		cpu_info[apic_id].cpu_bsp = 1;
263	}
264	mp_ncpus++;
265	if (apic_id > mp_maxid)
266		mp_maxid = apic_id;
267	if (bootverbose)
268		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
269		    "AP");
270
271}
272
273void
274cpu_mp_setmaxid(void)
275{
276
277	/*
278	 * mp_maxid should be already set by calls to cpu_add().
279	 * Just sanity check its value here.
280	 */
281	if (mp_ncpus == 0)
282		KASSERT(mp_maxid == 0,
283		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
284	else if (mp_ncpus == 1)
285		mp_maxid = 0;
286	else
287		KASSERT(mp_maxid >= mp_ncpus - 1,
288		    ("%s: counters out of sync: max %d, count %d", __func__,
289			mp_maxid, mp_ncpus));
290
291}
292
293int
294cpu_mp_probe(void)
295{
296
297	/*
298	 * Always record BSP in CPU map so that the mbuf init code works
299	 * correctly.
300	 */
301	all_cpus = 1;
302	if (mp_ncpus == 0) {
303		/*
304		 * No CPUs were found, so this must be a UP system.  Setup
305		 * the variables to represent a system with a single CPU
306		 * with an id of 0.
307		 */
308		mp_ncpus = 1;
309		return (0);
310	}
311
312	/* At least one CPU was found. */
313	if (mp_ncpus == 1) {
314		/*
315		 * One CPU was found, so this must be a UP system with
316		 * an I/O APIC.
317		 */
318		mp_maxid = 0;
319		return (0);
320	}
321
322	/* At least two CPUs were found. */
323	return (1);
324}
325
326/*
327 * Initialize the IPI handlers and start up the AP's.
328 */
329void
330cpu_mp_start(void)
331{
332	int i;
333	u_int threads_per_cache, p[4];
334
335	/* Initialize the logical ID to APIC ID table. */
336	for (i = 0; i < MAXCPU; i++) {
337		cpu_apic_ids[i] = -1;
338		cpu_ipi_pending[i] = 0;
339	}
340
341	/* Install an inter-CPU IPI for TLB invalidation */
342	setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
343	setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
344	setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
345
346	/* Install an inter-CPU IPI for cache invalidation. */
347	setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
348
349	/* Install an inter-CPU IPI for all-CPU rendezvous */
350	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
351
352	/* Install generic inter-CPU IPI handler */
353	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
354	       SDT_SYSIGT, SEL_KPL, 0);
355
356	/* Install an inter-CPU IPI for CPU stop/restart */
357	setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
358
359	/* Set boot_cpu_id if needed. */
360	if (boot_cpu_id == -1) {
361		boot_cpu_id = PCPU_GET(apic_id);
362		cpu_info[boot_cpu_id].cpu_bsp = 1;
363	} else
364		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
365		    ("BSP's APIC ID doesn't match boot_cpu_id"));
366	cpu_apic_ids[0] = boot_cpu_id;
367
368	/* Start each Application Processor */
369	start_all_aps();
370
371	/* Setup the initial logical CPUs info. */
372	logical_cpus = logical_cpus_mask = 0;
373	if (cpu_feature & CPUID_HTT)
374		logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
375
376	/*
377	 * Work out if hyperthreading is *really* enabled.  This
378	 * is made really ugly by the fact that processors lie: Dual
379	 * core processors claim to be hyperthreaded even when they're
380	 * not, presumably because they want to be treated the same
381	 * way as HTT with respect to per-cpu software licensing.
382	 * At the time of writing (May 12, 2005) the only hyperthreaded
383	 * cpus are from Intel, and Intel's dual-core processors can be
384	 * identified via the "deterministic cache parameters" cpuid
385	 * calls.
386	 */
387	/*
388	 * First determine if this is an Intel processor which claims
389	 * to have hyperthreading support.
390	 */
391	if ((cpu_feature & CPUID_HTT) &&
392	    (strcmp(cpu_vendor, "GenuineIntel") == 0)) {
393		/*
394		 * If the "deterministic cache parameters" cpuid calls
395		 * are available, use them.
396		 */
397		if (cpu_high >= 4) {
398			/* Ask the processor about the L1 cache. */
399			for (i = 0; i < 1; i++) {
400				cpuid_count(4, i, p);
401				threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
402				if (hyperthreading_cpus < threads_per_cache)
403					hyperthreading_cpus = threads_per_cache;
404				if ((p[0] & 0x1f) == 0)
405					break;
406			}
407		}
408
409		/*
410		 * If the deterministic cache parameters are not
411		 * available, or if no caches were reported to exist,
412		 * just accept what the HTT flag indicated.
413		 */
414		if (hyperthreading_cpus == 0)
415			hyperthreading_cpus = logical_cpus;
416	}
417
418	set_interrupt_apic_ids();
419}
420
421
422/*
423 * Print various information about the SMP system hardware and setup.
424 */
425void
426cpu_mp_announce(void)
427{
428	int i, x;
429
430	/* List CPUs */
431	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
432	for (i = 1, x = 0; x < MAXCPU; x++) {
433		if (!cpu_info[x].cpu_present || cpu_info[x].cpu_bsp)
434			continue;
435		if (cpu_info[x].cpu_disabled)
436			printf("  cpu (AP): APIC ID: %2d (disabled)\n", x);
437		else {
438			KASSERT(i < mp_ncpus,
439			    ("mp_ncpus and actual cpus are out of whack"));
440			printf(" cpu%d (AP): APIC ID: %2d\n", i++, x);
441		}
442	}
443}
444
445/*
446 * AP CPU's call this to initialize themselves.
447 */
448void
449init_secondary(void)
450{
451	struct pcpu *pc;
452	u_int64_t msr, cr0;
453	int cpu, gsel_tss;
454
455	/* Set by the startup code for us to use */
456	cpu = bootAP;
457
458	/* Init tss */
459	common_tss[cpu] = common_tss[0];
460	common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
461	common_tss[cpu].tss_iobase = sizeof(struct amd64tss);
462	common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
463
464	gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
465	ssdtosyssd(&gdt_segs[GPROC0_SEL],
466	   (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
467
468	lgdt(&r_gdt);			/* does magic intra-segment return */
469
470	/* Get per-cpu data */
471	pc = &__pcpu[cpu];
472
473	/* prime data page for it to use */
474	pcpu_init(pc, cpu, sizeof(struct pcpu));
475	pc->pc_apic_id = cpu_apic_ids[cpu];
476	pc->pc_prvspace = pc;
477	pc->pc_curthread = 0;
478	pc->pc_tssp = &common_tss[cpu];
479	pc->pc_rsp0 = 0;
480
481	wrmsr(MSR_FSBASE, 0);		/* User value */
482	wrmsr(MSR_GSBASE, (u_int64_t)pc);
483	wrmsr(MSR_KGSBASE, (u_int64_t)pc);	/* XXX User value while we're in the kernel */
484
485	lidt(&r_idt);
486
487	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
488	ltr(gsel_tss);
489
490	/*
491	 * Set to a known state:
492	 * Set by mpboot.s: CR0_PG, CR0_PE
493	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
494	 */
495	cr0 = rcr0();
496	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
497	load_cr0(cr0);
498
499	/* Set up the fast syscall stuff */
500	msr = rdmsr(MSR_EFER) | EFER_SCE;
501	wrmsr(MSR_EFER, msr);
502	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
503	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
504	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
505	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
506	wrmsr(MSR_STAR, msr);
507	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
508
509	/* Disable local APIC just to be sure. */
510	lapic_disable();
511
512	/* signal our startup to the BSP. */
513	mp_naps++;
514
515	/* Spin until the BSP releases the AP's. */
516	while (!aps_ready)
517		ia32_pause();
518
519	/* Initialize the PAT MSR. */
520	pmap_init_pat();
521
522	/* set up CPU registers and state */
523	cpu_setregs();
524
525	/* set up SSE/NX registers */
526	initializecpu();
527
528	/* set up FPU state on the AP */
529	fpuinit();
530
531	/* A quick check from sanity claus */
532	if (PCPU_GET(apic_id) != lapic_id()) {
533		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
534		printf("SMP: actual apic_id = %d\n", lapic_id());
535		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
536		panic("cpuid mismatch! boom!!");
537	}
538
539	/* Initialize curthread. */
540	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
541	PCPU_SET(curthread, PCPU_GET(idlethread));
542
543	mtx_lock_spin(&ap_boot_mtx);
544
545	/* Init local apic for irq's */
546	lapic_setup(1);
547
548	/* Set memory range attributes for this CPU to match the BSP */
549	mem_range_AP_init();
550
551	smp_cpus++;
552
553	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
554	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
555
556	/* Determine if we are a logical CPU. */
557	if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
558		logical_cpus_mask |= PCPU_GET(cpumask);
559
560	/* Determine if we are a hyperthread. */
561	if (hyperthreading_cpus > 1 &&
562	    PCPU_GET(apic_id) % hyperthreading_cpus != 0)
563		hyperthreading_cpus_mask |= PCPU_GET(cpumask);
564
565	/* Build our map of 'other' CPUs. */
566	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
567
568	if (bootverbose)
569		lapic_dump("AP");
570
571	if (smp_cpus == mp_ncpus) {
572		/* enable IPI's, tlb shootdown, freezes etc */
573		atomic_store_rel_int(&smp_started, 1);
574		smp_active = 1;	 /* historic */
575	}
576
577	/*
578	 * Enable global pages TLB extension
579	 * This also implicitly flushes the TLB
580	 */
581
582	load_cr4(rcr4() | CR4_PGE);
583
584	mtx_unlock_spin(&ap_boot_mtx);
585
586	/* wait until all the AP's are up */
587	while (smp_started == 0)
588		ia32_pause();
589
590	/* ok, now grab sched_lock and enter the scheduler */
591	mtx_lock_spin(&sched_lock);
592
593	/*
594	 * Correct spinlock nesting.  The idle thread context that we are
595	 * borrowing was created so that it would start out with a single
596	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
597	 * explicitly acquired locks in this function, the nesting count
598	 * is now 2 rather than 1.  Since we are nested, calling
599	 * spinlock_exit() will simply adjust the counts without allowing
600	 * spin lock using code to interrupt us.
601	 */
602	spinlock_exit();
603	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
604
605	PCPU_SET(switchtime, cpu_ticks());
606	PCPU_SET(switchticks, ticks);
607
608	cpu_throw(NULL, choosethread());	/* doesn't return */
609
610	panic("scheduler returned us to %s", __func__);
611	/* NOTREACHED */
612}
613
614/*******************************************************************
615 * local functions and data
616 */
617
618/*
619 * We tell the I/O APIC code about all the CPUs we want to receive
620 * interrupts.  If we don't want certain CPUs to receive IRQs we
621 * can simply not tell the I/O APIC code about them in this function.
622 * We also do not tell it about the BSP since it tells itself about
623 * the BSP internally to work with UP kernels and on UP machines.
624 */
625static void
626set_interrupt_apic_ids(void)
627{
628	u_int apic_id;
629
630	for (apic_id = 0; apic_id < MAXCPU; apic_id++) {
631		if (!cpu_info[apic_id].cpu_present)
632			continue;
633		if (cpu_info[apic_id].cpu_bsp)
634			continue;
635
636		/* Don't let hyperthreads service interrupts. */
637		if (hyperthreading_cpus > 1 &&
638		    apic_id % hyperthreading_cpus != 0)
639			continue;
640
641		intr_add_cpu(apic_id);
642	}
643}
644
645/*
646 * start each AP in our list
647 */
648static int
649start_all_aps(void)
650{
651	vm_offset_t va = boot_address + KERNBASE;
652	u_int64_t *pt4, *pt3, *pt2;
653	u_int32_t mpbioswarmvec;
654	int apic_id, cpu, i;
655	u_char mpbiosreason;
656
657	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
658
659	/* install the AP 1st level boot code */
660	pmap_kenter(va, boot_address);
661	pmap_invalidate_page(kernel_pmap, va);
662	bcopy(mptramp_start, (void *)va, bootMP_size);
663
664	/* Locate the page tables, they'll be below the trampoline */
665	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
666	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
667	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
668
669	/* Create the initial 1GB replicated page tables */
670	for (i = 0; i < 512; i++) {
671		/* Each slot of the level 4 pages points to the same level 3 page */
672		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
673		pt4[i] |= PG_V | PG_RW | PG_U;
674
675		/* Each slot of the level 3 pages points to the same level 2 page */
676		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
677		pt3[i] |= PG_V | PG_RW | PG_U;
678
679		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
680		pt2[i] = i * (2 * 1024 * 1024);
681		pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
682	}
683
684	/* save the current value of the warm-start vector */
685	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
686	outb(CMOS_REG, BIOS_RESET);
687	mpbiosreason = inb(CMOS_DATA);
688
689	/* setup a vector to our boot code */
690	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
691	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
692	outb(CMOS_REG, BIOS_RESET);
693	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
694
695	/* start each AP */
696	for (cpu = 0, apic_id = 0; apic_id < MAXCPU; apic_id++) {
697
698		/* Ignore non-existent CPUs and the BSP. */
699		if (!cpu_info[apic_id].cpu_present ||
700		    cpu_info[apic_id].cpu_bsp)
701			continue;
702
703		/* Don't use this CPU if it has been disabled by a tunable. */
704		if (resource_disabled("lapic", apic_id)) {
705			cpu_info[apic_id].cpu_disabled = 1;
706			mp_ncpus--;
707			continue;
708		}
709
710		cpu++;
711
712		/* save APIC ID for this logical ID */
713		cpu_apic_ids[cpu] = apic_id;
714
715		/* allocate and set up an idle stack data page */
716		bootstacks[cpu] = (void *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
717		doublefault_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
718
719		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
720		bootAP = cpu;
721
722		/* attempt to start the Application Processor */
723		if (!start_ap(apic_id)) {
724			/* restore the warmstart vector */
725			*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
726			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
727		}
728
729		all_cpus |= (1 << cpu);		/* record AP in CPU map */
730	}
731
732	/* build our map of 'other' CPUs */
733	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
734
735	/* restore the warmstart vector */
736	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
737
738	outb(CMOS_REG, BIOS_RESET);
739	outb(CMOS_DATA, mpbiosreason);
740
741	/* number of APs actually started */
742	return mp_naps;
743}
744
745
746/*
747 * This function starts the AP (application processor) identified
748 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
749 * to accomplish this.  This is necessary because of the nuances
750 * of the different hardware we might encounter.  It isn't pretty,
751 * but it seems to work.
752 */
753static int
754start_ap(int apic_id)
755{
756	int vector, ms;
757	int cpus;
758
759	/* calculate the vector */
760	vector = (boot_address >> 12) & 0xff;
761
762	/* used as a watchpoint to signal AP startup */
763	cpus = mp_naps;
764
765	/*
766	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
767	 * and running the target CPU. OR this INIT IPI might be latched (P5
768	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
769	 * ignored.
770	 */
771
772	/* do an INIT IPI: assert RESET */
773	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
774	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
775
776	/* wait for pending status end */
777	lapic_ipi_wait(-1);
778
779	/* do an INIT IPI: deassert RESET */
780	lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
781	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
782
783	/* wait for pending status end */
784	DELAY(10000);		/* wait ~10mS */
785	lapic_ipi_wait(-1);
786
787	/*
788	 * next we do a STARTUP IPI: the previous INIT IPI might still be
789	 * latched, (P5 bug) this 1st STARTUP would then terminate
790	 * immediately, and the previously started INIT IPI would continue. OR
791	 * the previous INIT IPI has already run. and this STARTUP IPI will
792	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
793	 * will run.
794	 */
795
796	/* do a STARTUP IPI */
797	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
798	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
799	    vector, apic_id);
800	lapic_ipi_wait(-1);
801	DELAY(200);		/* wait ~200uS */
802
803	/*
804	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
805	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
806	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
807	 * recognized after hardware RESET or INIT IPI.
808	 */
809
810	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
811	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
812	    vector, apic_id);
813	lapic_ipi_wait(-1);
814	DELAY(200);		/* wait ~200uS */
815
816	/* Wait up to 5 seconds for it to start. */
817	for (ms = 0; ms < 5000; ms++) {
818		if (mp_naps > cpus)
819			return 1;	/* return SUCCESS */
820		DELAY(1000);
821	}
822	return 0;		/* return FAILURE */
823}
824
825/*
826 * Flush the TLB on all other CPU's
827 */
828static void
829smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
830{
831	u_int ncpu;
832
833	ncpu = mp_ncpus - 1;	/* does not shootdown self */
834	if (ncpu < 1)
835		return;		/* no other cpus */
836	mtx_assert(&smp_ipi_mtx, MA_OWNED);
837	smp_tlb_addr1 = addr1;
838	smp_tlb_addr2 = addr2;
839	atomic_store_rel_int(&smp_tlb_wait, 0);
840	ipi_all_but_self(vector);
841	while (smp_tlb_wait < ncpu)
842		ia32_pause();
843}
844
845static void
846smp_targeted_tlb_shootdown(u_int mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
847{
848	int ncpu, othercpus;
849
850	othercpus = mp_ncpus - 1;
851	if (mask == (u_int)-1) {
852		ncpu = othercpus;
853		if (ncpu < 1)
854			return;
855	} else {
856		mask &= ~PCPU_GET(cpumask);
857		if (mask == 0)
858			return;
859		ncpu = bitcount32(mask);
860		if (ncpu > othercpus) {
861			/* XXX this should be a panic offence */
862			printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
863			    ncpu, othercpus);
864			ncpu = othercpus;
865		}
866		/* XXX should be a panic, implied by mask == 0 above */
867		if (ncpu < 1)
868			return;
869	}
870	mtx_assert(&smp_ipi_mtx, MA_OWNED);
871	smp_tlb_addr1 = addr1;
872	smp_tlb_addr2 = addr2;
873	atomic_store_rel_int(&smp_tlb_wait, 0);
874	if (mask == (u_int)-1)
875		ipi_all_but_self(vector);
876	else
877		ipi_selected(mask, vector);
878	while (smp_tlb_wait < ncpu)
879		ia32_pause();
880}
881
882void
883smp_cache_flush(void)
884{
885
886	if (smp_started)
887		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
888}
889
890void
891smp_invltlb(void)
892{
893
894	if (smp_started) {
895		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
896	}
897}
898
899void
900smp_invlpg(vm_offset_t addr)
901{
902
903	if (smp_started)
904		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
905}
906
907void
908smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
909{
910
911	if (smp_started) {
912		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
913	}
914}
915
916void
917smp_masked_invltlb(u_int mask)
918{
919
920	if (smp_started) {
921		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
922	}
923}
924
925void
926smp_masked_invlpg(u_int mask, vm_offset_t addr)
927{
928
929	if (smp_started) {
930		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
931	}
932}
933
934void
935smp_masked_invlpg_range(u_int mask, vm_offset_t addr1, vm_offset_t addr2)
936{
937
938	if (smp_started) {
939		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
940	}
941}
942
943void
944ipi_bitmap_handler(struct trapframe frame)
945{
946	int cpu = PCPU_GET(cpuid);
947	u_int ipi_bitmap;
948
949	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
950
951	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
952		mtx_lock_spin(&sched_lock);
953		/* Don't preempt the idle thread */
954		if (curthread != PCPU_GET(idlethread)) {
955			struct thread *running_thread = curthread;
956			if (running_thread->td_critnest > 1)
957				running_thread->td_owepreempt = 1;
958			else
959				mi_switch(SW_INVOL | SW_PREEMPT, NULL);
960		}
961		mtx_unlock_spin(&sched_lock);
962	}
963
964	/* Nothing to do for AST */
965}
966
967/*
968 * send an IPI to a set of cpus.
969 */
970void
971ipi_selected(u_int32_t cpus, u_int ipi)
972{
973	int cpu;
974	u_int bitmap = 0;
975	u_int old_pending;
976	u_int new_pending;
977
978	if (IPI_IS_BITMAPED(ipi)) {
979		bitmap = 1 << ipi;
980		ipi = IPI_BITMAP_VECTOR;
981	}
982
983#ifdef STOP_NMI
984	if (ipi == IPI_STOP && stop_cpus_with_nmi) {
985		ipi_nmi_selected(cpus);
986		return;
987	}
988#endif
989	CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
990	while ((cpu = ffs(cpus)) != 0) {
991		cpu--;
992		cpus &= ~(1 << cpu);
993
994		KASSERT(cpu_apic_ids[cpu] != -1,
995		    ("IPI to non-existent CPU %d", cpu));
996
997		if (bitmap) {
998			do {
999				old_pending = cpu_ipi_pending[cpu];
1000				new_pending = old_pending | bitmap;
1001			} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));
1002
1003			if (old_pending)
1004				continue;
1005		}
1006
1007		lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1008	}
1009
1010}
1011
1012/*
1013 * send an IPI INTerrupt containing 'vector' to all CPUs, including myself
1014 */
1015void
1016ipi_all(u_int ipi)
1017{
1018
1019	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1020		ipi_selected(all_cpus, ipi);
1021		return;
1022	}
1023	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1024	lapic_ipi_vectored(ipi, APIC_IPI_DEST_ALL);
1025}
1026
1027/*
1028 * send an IPI to all CPUs EXCEPT myself
1029 */
1030void
1031ipi_all_but_self(u_int ipi)
1032{
1033
1034	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1035		ipi_selected(PCPU_GET(other_cpus), ipi);
1036		return;
1037	}
1038	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1039	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1040}
1041
1042/*
1043 * send an IPI to myself
1044 */
1045void
1046ipi_self(u_int ipi)
1047{
1048
1049	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1050		ipi_selected(PCPU_GET(cpumask), ipi);
1051		return;
1052	}
1053	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1054	lapic_ipi_vectored(ipi, APIC_IPI_DEST_SELF);
1055}
1056
1057#ifdef STOP_NMI
1058/*
1059 * send NMI IPI to selected CPUs
1060 */
1061
1062#define	BEFORE_SPIN	1000000
1063
1064void
1065ipi_nmi_selected(u_int32_t cpus)
1066{
1067	int cpu;
1068	register_t icrlo;
1069
1070	icrlo = APIC_DELMODE_NMI | APIC_DESTMODE_PHY | APIC_LEVEL_ASSERT
1071		| APIC_TRIGMOD_EDGE;
1072
1073	CTR2(KTR_SMP, "%s: cpus: %x nmi", __func__, cpus);
1074
1075	atomic_set_int(&ipi_nmi_pending, cpus);
1076
1077	while ((cpu = ffs(cpus)) != 0) {
1078		cpu--;
1079		cpus &= ~(1 << cpu);
1080
1081		KASSERT(cpu_apic_ids[cpu] != -1,
1082		    ("IPI NMI to non-existent CPU %d", cpu));
1083
1084		/* Wait for an earlier IPI to finish. */
1085		if (!lapic_ipi_wait(BEFORE_SPIN))
1086			panic("ipi_nmi_selected: previous IPI has not cleared");
1087
1088		lapic_ipi_raw(icrlo, cpu_apic_ids[cpu]);
1089	}
1090}
1091
1092int
1093ipi_nmi_handler(void)
1094{
1095	int cpumask = PCPU_GET(cpumask);
1096
1097	if (!(ipi_nmi_pending & cpumask))
1098		return 1;
1099
1100	atomic_clear_int(&ipi_nmi_pending, cpumask);
1101	cpustop_handler();
1102	return 0;
1103}
1104
1105#endif /* STOP_NMI */
1106
1107/*
1108 * Handle an IPI_STOP by saving our current context and spinning until we
1109 * are resumed.
1110 */
1111void
1112cpustop_handler(void)
1113{
1114	int cpu = PCPU_GET(cpuid);
1115	int cpumask = PCPU_GET(cpumask);
1116
1117	savectx(&stoppcbs[cpu]);
1118
1119	/* Indicate that we are stopped */
1120	atomic_set_int(&stopped_cpus, cpumask);
1121
1122	/* Wait for restart */
1123	while (!(started_cpus & cpumask))
1124	    ia32_pause();
1125
1126	atomic_clear_int(&started_cpus, cpumask);
1127	atomic_clear_int(&stopped_cpus, cpumask);
1128
1129	if (cpu == 0 && cpustop_restartfunc != NULL) {
1130		cpustop_restartfunc();
1131		cpustop_restartfunc = NULL;
1132	}
1133}
1134
1135/*
1136 * This is called once the rest of the system is up and running and we're
1137 * ready to let the AP's out of the pen.
1138 */
1139static void
1140release_aps(void *dummy __unused)
1141{
1142
1143	if (mp_ncpus == 1)
1144		return;
1145	mtx_lock_spin(&sched_lock);
1146	atomic_store_rel_int(&aps_ready, 1);
1147	while (smp_started == 0)
1148		ia32_pause();
1149	mtx_unlock_spin(&sched_lock);
1150}
1151SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1152
1153static int
1154sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
1155{
1156	u_int mask;
1157	int error;
1158
1159	mask = hlt_cpus_mask;
1160	error = sysctl_handle_int(oidp, &mask, 0, req);
1161	if (error || !req->newptr)
1162		return (error);
1163
1164	if (logical_cpus_mask != 0 &&
1165	    (mask & logical_cpus_mask) == logical_cpus_mask)
1166		hlt_logical_cpus = 1;
1167	else
1168		hlt_logical_cpus = 0;
1169
1170	if (! hyperthreading_allowed)
1171		mask |= hyperthreading_cpus_mask;
1172
1173	if ((mask & all_cpus) == all_cpus)
1174		mask &= ~(1<<0);
1175	hlt_cpus_mask = mask;
1176	return (error);
1177}
1178SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
1179    0, 0, sysctl_hlt_cpus, "IU",
1180    "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
1181
1182static int
1183sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
1184{
1185	int disable, error;
1186
1187	disable = hlt_logical_cpus;
1188	error = sysctl_handle_int(oidp, &disable, 0, req);
1189	if (error || !req->newptr)
1190		return (error);
1191
1192	if (disable)
1193		hlt_cpus_mask |= logical_cpus_mask;
1194	else
1195		hlt_cpus_mask &= ~logical_cpus_mask;
1196
1197	if (! hyperthreading_allowed)
1198		hlt_cpus_mask |= hyperthreading_cpus_mask;
1199
1200	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1201		hlt_cpus_mask &= ~(1<<0);
1202
1203	hlt_logical_cpus = disable;
1204	return (error);
1205}
1206
1207static int
1208sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
1209{
1210	int allowed, error;
1211
1212	allowed = hyperthreading_allowed;
1213	error = sysctl_handle_int(oidp, &allowed, 0, req);
1214	if (error || !req->newptr)
1215		return (error);
1216
1217	if (allowed)
1218		hlt_cpus_mask &= ~hyperthreading_cpus_mask;
1219	else
1220		hlt_cpus_mask |= hyperthreading_cpus_mask;
1221
1222	if (logical_cpus_mask != 0 &&
1223	    (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
1224		hlt_logical_cpus = 1;
1225	else
1226		hlt_logical_cpus = 0;
1227
1228	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1229		hlt_cpus_mask &= ~(1<<0);
1230
1231	hyperthreading_allowed = allowed;
1232	return (error);
1233}
1234
1235static void
1236cpu_hlt_setup(void *dummy __unused)
1237{
1238
1239	if (logical_cpus_mask != 0) {
1240		TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
1241		    &hlt_logical_cpus);
1242		sysctl_ctx_init(&logical_cpu_clist);
1243		SYSCTL_ADD_PROC(&logical_cpu_clist,
1244		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1245		    "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
1246		    sysctl_hlt_logical_cpus, "IU", "");
1247		SYSCTL_ADD_UINT(&logical_cpu_clist,
1248		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1249		    "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
1250		    &logical_cpus_mask, 0, "");
1251
1252		if (hlt_logical_cpus)
1253			hlt_cpus_mask |= logical_cpus_mask;
1254
1255		/*
1256		 * If necessary for security purposes, force
1257		 * hyperthreading off, regardless of the value
1258		 * of hlt_logical_cpus.
1259		 */
1260		if (hyperthreading_cpus_mask) {
1261			TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
1262			    &hyperthreading_allowed);
1263			SYSCTL_ADD_PROC(&logical_cpu_clist,
1264			    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1265			    "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
1266			    0, 0, sysctl_hyperthreading_allowed, "IU", "");
1267			if (! hyperthreading_allowed)
1268				hlt_cpus_mask |= hyperthreading_cpus_mask;
1269		}
1270	}
1271}
1272SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
1273
1274int
1275mp_grab_cpu_hlt(void)
1276{
1277	u_int mask = PCPU_GET(cpumask);
1278#ifdef MP_WATCHDOG
1279	u_int cpuid = PCPU_GET(cpuid);
1280#endif
1281	int retval;
1282
1283#ifdef MP_WATCHDOG
1284	ap_watchdog(cpuid);
1285#endif
1286
1287	retval = mask & hlt_cpus_mask;
1288	while (mask & hlt_cpus_mask)
1289		__asm __volatile("sti; hlt" : : : "memory");
1290	return (retval);
1291}
1292