mp_machdep.c revision 158238
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * Copyright (c) 2003, by Peter Wemm
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the developer may NOT be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/amd64/amd64/mp_machdep.c 158238 2006-05-01 22:07:00Z jhb $");
29
30#include "opt_cpu.h"
31#include "opt_kstack_pages.h"
32#include "opt_mp_watchdog.h"
33#include "opt_sched.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/bus.h>
38#ifdef GPROF
39#include <sys/gmon.h>
40#endif
41#include <sys/kernel.h>
42#include <sys/ktr.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/memrange.h>
46#include <sys/mutex.h>
47#include <sys/pcpu.h>
48#include <sys/proc.h>
49#include <sys/smp.h>
50#include <sys/sysctl.h>
51
52#include <vm/vm.h>
53#include <vm/vm_param.h>
54#include <vm/pmap.h>
55#include <vm/vm_kern.h>
56#include <vm/vm_extern.h>
57
58#include <machine/apicreg.h>
59#include <machine/clock.h>
60#include <machine/md_var.h>
61#include <machine/mp_watchdog.h>
62#include <machine/pcb.h>
63#include <machine/psl.h>
64#include <machine/smp.h>
65#include <machine/specialreg.h>
66#include <machine/tss.h>
67
68#define WARMBOOT_TARGET		0
69#define WARMBOOT_OFF		(KERNBASE + 0x0467)
70#define WARMBOOT_SEG		(KERNBASE + 0x0469)
71
72#define CMOS_REG		(0x70)
73#define CMOS_DATA		(0x71)
74#define BIOS_RESET		(0x0f)
75#define BIOS_WARM		(0x0a)
76
77/* lock region used by kernel profiling */
78int	mcount_lock;
79
80int	mp_naps;		/* # of Applications processors */
81int	boot_cpu_id = -1;	/* designated BSP */
82extern	int nkpt;
83
84/*
85 * CPU topology map datastructures for HTT.
86 */
87static struct cpu_group mp_groups[MAXCPU];
88static struct cpu_top mp_top;
89
90/* AP uses this during bootstrap.  Do not staticize.  */
91char *bootSTK;
92static int bootAP;
93
94/* Free these after use */
95void *bootstacks[MAXCPU];
96
97/* Temporary holder for double fault stack */
98char *doublefault_stack;
99
100/* Hotwire a 0->4MB V==P mapping */
101extern pt_entry_t *KPTphys;
102
103/* SMP page table page */
104extern pt_entry_t *SMPpt;
105
106struct pcb stoppcbs[MAXCPU];
107
108/* Variables needed for SMP tlb shootdown. */
109vm_offset_t smp_tlb_addr1;
110vm_offset_t smp_tlb_addr2;
111volatile int smp_tlb_wait;
112
113extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
114
115#ifdef STOP_NMI
116volatile cpumask_t ipi_nmi_pending;
117
118static void	ipi_nmi_selected(u_int32_t cpus);
119#endif
120
121/*
122 * Local data and functions.
123 */
124
125#ifdef STOP_NMI
126/*
127 * Provide an alternate method of stopping other CPUs. If another CPU has
128 * disabled interrupts the conventional STOP IPI will be blocked. This
129 * NMI-based stop should get through in that case.
130 */
131static int stop_cpus_with_nmi = 1;
132SYSCTL_INT(_debug, OID_AUTO, stop_cpus_with_nmi, CTLTYPE_INT | CTLFLAG_RW,
133    &stop_cpus_with_nmi, 0, "");
134TUNABLE_INT("debug.stop_cpus_with_nmi", &stop_cpus_with_nmi);
135#else
136#define	stop_cpus_with_nmi	0
137#endif
138
139static u_int logical_cpus;
140
141/* used to hold the AP's until we are ready to release them */
142static struct mtx ap_boot_mtx;
143
144/* Set to 1 once we're ready to let the APs out of the pen. */
145static volatile int aps_ready = 0;
146
147/*
148 * Store data from cpu_add() until later in the boot when we actually setup
149 * the APs.
150 */
151struct cpu_info {
152	int	cpu_present:1;
153	int	cpu_bsp:1;
154	int	cpu_disabled:1;
155} static cpu_info[MAXCPU];
156static int cpu_apic_ids[MAXCPU];
157
158/* Holds pending bitmap based IPIs per CPU */
159static volatile u_int cpu_ipi_pending[MAXCPU];
160
161static u_int boot_address;
162
163static void	set_interrupt_apic_ids(void);
164static int	start_all_aps(void);
165static int	start_ap(int apic_id);
166static void	release_aps(void *dummy);
167
168static int	hlt_logical_cpus;
169static u_int	hyperthreading_cpus;
170static cpumask_t	hyperthreading_cpus_mask;
171static int	hyperthreading_allowed = 1;
172static struct	sysctl_ctx_list logical_cpu_clist;
173static u_int	bootMP_size;
174
175static void
176mem_range_AP_init(void)
177{
178	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
179		mem_range_softc.mr_op->initAP(&mem_range_softc);
180}
181
182void
183mp_topology(void)
184{
185	struct cpu_group *group;
186	u_int regs[4];
187	int logical_cpus;
188	int apic_id;
189	int groups;
190	int cpu;
191
192	/* Build the smp_topology map. */
193	/* Nothing to do if there is no HTT support. */
194	if ((cpu_feature & CPUID_HTT) == 0)
195		return;
196	logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
197	if (logical_cpus <= 1)
198		return;
199	/* Nothing to do if reported cores are physical cores. */
200	if (strcmp(cpu_vendor, "GenuineIntel") == 0 && cpu_high >= 4) {
201		cpuid_count(4, 0, regs);
202		if ((regs[0] & 0x1f) != 0 &&
203		    logical_cpus <= ((regs[0] >> 26) & 0x3f) + 1)
204			return;
205	}
206	group = &mp_groups[0];
207	groups = 1;
208	for (cpu = 0, apic_id = 0; apic_id < MAXCPU; apic_id++) {
209		if (!cpu_info[apic_id].cpu_present)
210			continue;
211		/*
212		 * If the current group has members and we're not a logical
213		 * cpu, create a new group.
214		 */
215		if (group->cg_count != 0 && (apic_id % logical_cpus) == 0) {
216			group++;
217			groups++;
218		}
219		group->cg_count++;
220		group->cg_mask |= 1 << cpu;
221		cpu++;
222	}
223
224	mp_top.ct_count = groups;
225	mp_top.ct_group = mp_groups;
226	smp_topology = &mp_top;
227}
228
229/*
230 * Calculate usable address in base memory for AP trampoline code.
231 */
232u_int
233mp_bootaddress(u_int basemem)
234{
235
236	bootMP_size = mptramp_end - mptramp_start;
237	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
238	if (((basemem * 1024) - boot_address) < bootMP_size)
239		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
240	/* 3 levels of page table pages */
241	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
242
243	return mptramp_pagetables;
244}
245
246void
247cpu_add(u_int apic_id, char boot_cpu)
248{
249
250	if (apic_id >= MAXCPU) {
251		printf("SMP: CPU %d exceeds maximum CPU %d, ignoring\n",
252		    apic_id, MAXCPU - 1);
253		return;
254	}
255	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
256	    apic_id));
257	cpu_info[apic_id].cpu_present = 1;
258	if (boot_cpu) {
259		KASSERT(boot_cpu_id == -1,
260		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
261		    boot_cpu_id));
262		boot_cpu_id = apic_id;
263		cpu_info[apic_id].cpu_bsp = 1;
264	}
265	mp_ncpus++;
266	if (apic_id > mp_maxid)
267		mp_maxid = apic_id;
268	if (bootverbose)
269		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
270		    "AP");
271
272}
273
274void
275cpu_mp_setmaxid(void)
276{
277
278	/*
279	 * mp_maxid should be already set by calls to cpu_add().
280	 * Just sanity check its value here.
281	 */
282	if (mp_ncpus == 0)
283		KASSERT(mp_maxid == 0,
284		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
285	else if (mp_ncpus == 1)
286		mp_maxid = 0;
287	else
288		KASSERT(mp_maxid >= mp_ncpus - 1,
289		    ("%s: counters out of sync: max %d, count %d", __func__,
290			mp_maxid, mp_ncpus));
291
292}
293
294int
295cpu_mp_probe(void)
296{
297
298	/*
299	 * Always record BSP in CPU map so that the mbuf init code works
300	 * correctly.
301	 */
302	all_cpus = 1;
303	if (mp_ncpus == 0) {
304		/*
305		 * No CPUs were found, so this must be a UP system.  Setup
306		 * the variables to represent a system with a single CPU
307		 * with an id of 0.
308		 */
309		mp_ncpus = 1;
310		return (0);
311	}
312
313	/* At least one CPU was found. */
314	if (mp_ncpus == 1) {
315		/*
316		 * One CPU was found, so this must be a UP system with
317		 * an I/O APIC.
318		 */
319		mp_maxid = 0;
320		return (0);
321	}
322
323	/* At least two CPUs were found. */
324	return (1);
325}
326
327/*
328 * Initialize the IPI handlers and start up the AP's.
329 */
330void
331cpu_mp_start(void)
332{
333	int i;
334	u_int threads_per_cache, p[4];
335
336	/* Initialize the logical ID to APIC ID table. */
337	for (i = 0; i < MAXCPU; i++) {
338		cpu_apic_ids[i] = -1;
339		cpu_ipi_pending[i] = 0;
340	}
341
342	/* Install an inter-CPU IPI for TLB invalidation */
343	setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
344	setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
345	setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
346
347	/* Install an inter-CPU IPI for all-CPU rendezvous */
348	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
349
350	/* Install generic inter-CPU IPI handler */
351	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
352	       SDT_SYSIGT, SEL_KPL, 0);
353
354	/* Install an inter-CPU IPI for CPU stop/restart */
355	setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
356
357	/* Set boot_cpu_id if needed. */
358	if (boot_cpu_id == -1) {
359		boot_cpu_id = PCPU_GET(apic_id);
360		cpu_info[boot_cpu_id].cpu_bsp = 1;
361	} else
362		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
363		    ("BSP's APIC ID doesn't match boot_cpu_id"));
364	cpu_apic_ids[0] = boot_cpu_id;
365
366	/* Start each Application Processor */
367	start_all_aps();
368
369	/* Setup the initial logical CPUs info. */
370	logical_cpus = logical_cpus_mask = 0;
371	if (cpu_feature & CPUID_HTT)
372		logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
373
374	/*
375	 * Work out if hyperthreading is *really* enabled.  This
376	 * is made really ugly by the fact that processors lie: Dual
377	 * core processors claim to be hyperthreaded even when they're
378	 * not, presumably because they want to be treated the same
379	 * way as HTT with respect to per-cpu software licensing.
380	 * At the time of writing (May 12, 2005) the only hyperthreaded
381	 * cpus are from Intel, and Intel's dual-core processors can be
382	 * identified via the "deterministic cache parameters" cpuid
383	 * calls.
384	 */
385	/*
386	 * First determine if this is an Intel processor which claims
387	 * to have hyperthreading support.
388	 */
389	if ((cpu_feature & CPUID_HTT) &&
390	    (strcmp(cpu_vendor, "GenuineIntel") == 0)) {
391		/*
392		 * If the "deterministic cache parameters" cpuid calls
393		 * are available, use them.
394		 */
395		if (cpu_high >= 4) {
396			/* Ask the processor about the L1 cache. */
397			for (i = 0; i < 1; i++) {
398				cpuid_count(4, i, p);
399				threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
400				if (hyperthreading_cpus < threads_per_cache)
401					hyperthreading_cpus = threads_per_cache;
402				if ((p[0] & 0x1f) == 0)
403					break;
404			}
405		}
406
407		/*
408		 * If the deterministic cache parameters are not
409		 * available, or if no caches were reported to exist,
410		 * just accept what the HTT flag indicated.
411		 */
412		if (hyperthreading_cpus == 0)
413			hyperthreading_cpus = logical_cpus;
414	}
415
416	set_interrupt_apic_ids();
417}
418
419
420/*
421 * Print various information about the SMP system hardware and setup.
422 */
423void
424cpu_mp_announce(void)
425{
426	int i, x;
427
428	/* List CPUs */
429	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
430	for (i = 1, x = 0; x < MAXCPU; x++) {
431		if (!cpu_info[x].cpu_present || cpu_info[x].cpu_bsp)
432			continue;
433		if (cpu_info[x].cpu_disabled)
434			printf("  cpu (AP): APIC ID: %2d (disabled)\n", x);
435		else {
436			KASSERT(i < mp_ncpus,
437			    ("mp_ncpus and actual cpus are out of whack"));
438			printf(" cpu%d (AP): APIC ID: %2d\n", i++, x);
439		}
440	}
441}
442
443/*
444 * AP CPU's call this to initialize themselves.
445 */
446void
447init_secondary(void)
448{
449	struct pcpu *pc;
450	u_int64_t msr, cr0;
451	int cpu, gsel_tss;
452
453	/* Set by the startup code for us to use */
454	cpu = bootAP;
455
456	/* Init tss */
457	common_tss[cpu] = common_tss[0];
458	common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
459	common_tss[cpu].tss_iobase = sizeof(struct amd64tss);
460	common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
461
462	gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
463	ssdtosyssd(&gdt_segs[GPROC0_SEL],
464	   (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
465
466	lgdt(&r_gdt);			/* does magic intra-segment return */
467
468	/* Get per-cpu data */
469	pc = &__pcpu[cpu];
470
471	/* prime data page for it to use */
472	pcpu_init(pc, cpu, sizeof(struct pcpu));
473	pc->pc_apic_id = cpu_apic_ids[cpu];
474	pc->pc_prvspace = pc;
475	pc->pc_curthread = 0;
476	pc->pc_tssp = &common_tss[cpu];
477	pc->pc_rsp0 = 0;
478
479	wrmsr(MSR_FSBASE, 0);		/* User value */
480	wrmsr(MSR_GSBASE, (u_int64_t)pc);
481	wrmsr(MSR_KGSBASE, (u_int64_t)pc);	/* XXX User value while we're in the kernel */
482
483	lidt(&r_idt);
484
485	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
486	ltr(gsel_tss);
487
488	/*
489	 * Set to a known state:
490	 * Set by mpboot.s: CR0_PG, CR0_PE
491	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
492	 */
493	cr0 = rcr0();
494	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
495	load_cr0(cr0);
496
497	/* Set up the fast syscall stuff */
498	msr = rdmsr(MSR_EFER) | EFER_SCE;
499	wrmsr(MSR_EFER, msr);
500	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
501	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
502	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
503	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
504	wrmsr(MSR_STAR, msr);
505	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
506
507	/* Disable local APIC just to be sure. */
508	lapic_disable();
509
510	/* signal our startup to the BSP. */
511	mp_naps++;
512
513	/* Spin until the BSP releases the AP's. */
514	while (!aps_ready)
515		ia32_pause();
516
517	/* Initialize the PAT MSR. */
518	pmap_init_pat();
519
520	/* set up CPU registers and state */
521	cpu_setregs();
522
523	/* set up SSE/NX registers */
524	initializecpu();
525
526	/* set up FPU state on the AP */
527	fpuinit();
528
529	/* A quick check from sanity claus */
530	if (PCPU_GET(apic_id) != lapic_id()) {
531		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
532		printf("SMP: actual apic_id = %d\n", lapic_id());
533		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
534		panic("cpuid mismatch! boom!!");
535	}
536
537	/* Initialize curthread. */
538	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
539	PCPU_SET(curthread, PCPU_GET(idlethread));
540
541	mtx_lock_spin(&ap_boot_mtx);
542
543	/* Init local apic for irq's */
544	lapic_setup();
545
546	/* Set memory range attributes for this CPU to match the BSP */
547	mem_range_AP_init();
548
549	smp_cpus++;
550
551	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
552	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
553
554	/* Determine if we are a logical CPU. */
555	if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
556		logical_cpus_mask |= PCPU_GET(cpumask);
557
558	/* Determine if we are a hyperthread. */
559	if (hyperthreading_cpus > 1 &&
560	    PCPU_GET(apic_id) % hyperthreading_cpus != 0)
561		hyperthreading_cpus_mask |= PCPU_GET(cpumask);
562
563	/* Build our map of 'other' CPUs. */
564	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
565
566	if (bootverbose)
567		lapic_dump("AP");
568
569	if (smp_cpus == mp_ncpus) {
570		/* enable IPI's, tlb shootdown, freezes etc */
571		atomic_store_rel_int(&smp_started, 1);
572		smp_active = 1;	 /* historic */
573	}
574
575	/*
576	 * Enable global pages TLB extension
577	 * This also implicitly flushes the TLB
578	 */
579
580	load_cr4(rcr4() | CR4_PGE);
581
582	mtx_unlock_spin(&ap_boot_mtx);
583
584	/* wait until all the AP's are up */
585	while (smp_started == 0)
586		ia32_pause();
587
588	/* ok, now grab sched_lock and enter the scheduler */
589	mtx_lock_spin(&sched_lock);
590
591	/*
592	 * Correct spinlock nesting.  The idle thread context that we are
593	 * borrowing was created so that it would start out with a single
594	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
595	 * explicitly acquired locks in this function, the nesting count
596	 * is now 2 rather than 1.  Since we are nested, calling
597	 * spinlock_exit() will simply adjust the counts without allowing
598	 * spin lock using code to interrupt us.
599	 */
600	spinlock_exit();
601	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
602
603	PCPU_SET(switchtime, cpu_ticks());
604	PCPU_SET(switchticks, ticks);
605
606	cpu_throw(NULL, choosethread());	/* doesn't return */
607
608	panic("scheduler returned us to %s", __func__);
609	/* NOTREACHED */
610}
611
612/*******************************************************************
613 * local functions and data
614 */
615
616/*
617 * We tell the I/O APIC code about all the CPUs we want to receive
618 * interrupts.  If we don't want certain CPUs to receive IRQs we
619 * can simply not tell the I/O APIC code about them in this function.
620 * We also do not tell it about the BSP since it tells itself about
621 * the BSP internally to work with UP kernels and on UP machines.
622 */
623static void
624set_interrupt_apic_ids(void)
625{
626	u_int apic_id;
627
628	for (apic_id = 0; apic_id < MAXCPU; apic_id++) {
629		if (!cpu_info[apic_id].cpu_present)
630			continue;
631		if (cpu_info[apic_id].cpu_bsp)
632			continue;
633
634		/* Don't let hyperthreads service interrupts. */
635		if (hyperthreading_cpus > 1 &&
636		    apic_id % hyperthreading_cpus != 0)
637			continue;
638
639		intr_add_cpu(apic_id);
640	}
641}
642
643/*
644 * start each AP in our list
645 */
646static int
647start_all_aps(void)
648{
649	vm_offset_t va = boot_address + KERNBASE;
650	u_int64_t *pt4, *pt3, *pt2;
651	u_int32_t mpbioswarmvec;
652	int apic_id, cpu, i;
653	u_char mpbiosreason;
654
655	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
656
657	/* install the AP 1st level boot code */
658	pmap_kenter(va, boot_address);
659	pmap_invalidate_page(kernel_pmap, va);
660	bcopy(mptramp_start, (void *)va, bootMP_size);
661
662	/* Locate the page tables, they'll be below the trampoline */
663	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
664	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
665	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
666
667	/* Create the initial 1GB replicated page tables */
668	for (i = 0; i < 512; i++) {
669		/* Each slot of the level 4 pages points to the same level 3 page */
670		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
671		pt4[i] |= PG_V | PG_RW | PG_U;
672
673		/* Each slot of the level 3 pages points to the same level 2 page */
674		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
675		pt3[i] |= PG_V | PG_RW | PG_U;
676
677		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
678		pt2[i] = i * (2 * 1024 * 1024);
679		pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
680	}
681
682	/* save the current value of the warm-start vector */
683	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
684	outb(CMOS_REG, BIOS_RESET);
685	mpbiosreason = inb(CMOS_DATA);
686
687	/* setup a vector to our boot code */
688	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
689	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
690	outb(CMOS_REG, BIOS_RESET);
691	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
692
693	/* start each AP */
694	for (cpu = 0, apic_id = 0; apic_id < MAXCPU; apic_id++) {
695
696		/* Ignore non-existent CPUs and the BSP. */
697		if (!cpu_info[apic_id].cpu_present ||
698		    cpu_info[apic_id].cpu_bsp)
699			continue;
700
701		/* Don't use this CPU if it has been disabled by a tunable. */
702		if (resource_disabled("lapic", apic_id)) {
703			cpu_info[apic_id].cpu_disabled = 1;
704			mp_ncpus--;
705			continue;
706		}
707
708		cpu++;
709
710		/* save APIC ID for this logical ID */
711		cpu_apic_ids[cpu] = apic_id;
712
713		/* allocate and set up an idle stack data page */
714		bootstacks[cpu] = (void *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
715		doublefault_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
716
717		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
718		bootAP = cpu;
719
720		/* attempt to start the Application Processor */
721		if (!start_ap(apic_id)) {
722			/* restore the warmstart vector */
723			*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
724			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
725		}
726
727		all_cpus |= (1 << cpu);		/* record AP in CPU map */
728	}
729
730	/* build our map of 'other' CPUs */
731	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
732
733	/* restore the warmstart vector */
734	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
735
736	outb(CMOS_REG, BIOS_RESET);
737	outb(CMOS_DATA, mpbiosreason);
738
739	/* number of APs actually started */
740	return mp_naps;
741}
742
743
744/*
745 * This function starts the AP (application processor) identified
746 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
747 * to accomplish this.  This is necessary because of the nuances
748 * of the different hardware we might encounter.  It isn't pretty,
749 * but it seems to work.
750 */
751static int
752start_ap(int apic_id)
753{
754	int vector, ms;
755	int cpus;
756
757	/* calculate the vector */
758	vector = (boot_address >> 12) & 0xff;
759
760	/* used as a watchpoint to signal AP startup */
761	cpus = mp_naps;
762
763	/*
764	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
765	 * and running the target CPU. OR this INIT IPI might be latched (P5
766	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
767	 * ignored.
768	 */
769
770	/* do an INIT IPI: assert RESET */
771	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
772	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
773
774	/* wait for pending status end */
775	lapic_ipi_wait(-1);
776
777	/* do an INIT IPI: deassert RESET */
778	lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
779	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
780
781	/* wait for pending status end */
782	DELAY(10000);		/* wait ~10mS */
783	lapic_ipi_wait(-1);
784
785	/*
786	 * next we do a STARTUP IPI: the previous INIT IPI might still be
787	 * latched, (P5 bug) this 1st STARTUP would then terminate
788	 * immediately, and the previously started INIT IPI would continue. OR
789	 * the previous INIT IPI has already run. and this STARTUP IPI will
790	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
791	 * will run.
792	 */
793
794	/* do a STARTUP IPI */
795	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
796	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
797	    vector, apic_id);
798	lapic_ipi_wait(-1);
799	DELAY(200);		/* wait ~200uS */
800
801	/*
802	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
803	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
804	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
805	 * recognized after hardware RESET or INIT IPI.
806	 */
807
808	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
809	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
810	    vector, apic_id);
811	lapic_ipi_wait(-1);
812	DELAY(200);		/* wait ~200uS */
813
814	/* Wait up to 5 seconds for it to start. */
815	for (ms = 0; ms < 5000; ms++) {
816		if (mp_naps > cpus)
817			return 1;	/* return SUCCESS */
818		DELAY(1000);
819	}
820	return 0;		/* return FAILURE */
821}
822
823/*
824 * Flush the TLB on all other CPU's
825 */
826static void
827smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
828{
829	u_int ncpu;
830
831	ncpu = mp_ncpus - 1;	/* does not shootdown self */
832	if (ncpu < 1)
833		return;		/* no other cpus */
834	mtx_assert(&smp_ipi_mtx, MA_OWNED);
835	smp_tlb_addr1 = addr1;
836	smp_tlb_addr2 = addr2;
837	atomic_store_rel_int(&smp_tlb_wait, 0);
838	ipi_all_but_self(vector);
839	while (smp_tlb_wait < ncpu)
840		ia32_pause();
841}
842
843static void
844smp_targeted_tlb_shootdown(u_int mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
845{
846	int ncpu, othercpus;
847
848	othercpus = mp_ncpus - 1;
849	if (mask == (u_int)-1) {
850		ncpu = othercpus;
851		if (ncpu < 1)
852			return;
853	} else {
854		mask &= ~PCPU_GET(cpumask);
855		if (mask == 0)
856			return;
857		ncpu = bitcount32(mask);
858		if (ncpu > othercpus) {
859			/* XXX this should be a panic offence */
860			printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
861			    ncpu, othercpus);
862			ncpu = othercpus;
863		}
864		/* XXX should be a panic, implied by mask == 0 above */
865		if (ncpu < 1)
866			return;
867	}
868	mtx_assert(&smp_ipi_mtx, MA_OWNED);
869	smp_tlb_addr1 = addr1;
870	smp_tlb_addr2 = addr2;
871	atomic_store_rel_int(&smp_tlb_wait, 0);
872	if (mask == (u_int)-1)
873		ipi_all_but_self(vector);
874	else
875		ipi_selected(mask, vector);
876	while (smp_tlb_wait < ncpu)
877		ia32_pause();
878}
879
880void
881smp_cache_flush(void)
882{
883
884	if (smp_started)
885		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
886}
887
888void
889smp_invltlb(void)
890{
891
892	if (smp_started) {
893		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
894	}
895}
896
897void
898smp_invlpg(vm_offset_t addr)
899{
900
901	if (smp_started)
902		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
903}
904
905void
906smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
907{
908
909	if (smp_started) {
910		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
911	}
912}
913
914void
915smp_masked_invltlb(u_int mask)
916{
917
918	if (smp_started) {
919		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
920	}
921}
922
923void
924smp_masked_invlpg(u_int mask, vm_offset_t addr)
925{
926
927	if (smp_started) {
928		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
929	}
930}
931
932void
933smp_masked_invlpg_range(u_int mask, vm_offset_t addr1, vm_offset_t addr2)
934{
935
936	if (smp_started) {
937		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
938	}
939}
940
941void
942ipi_bitmap_handler(struct trapframe frame)
943{
944	int cpu = PCPU_GET(cpuid);
945	u_int ipi_bitmap;
946
947	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
948
949#ifdef IPI_PREEMPTION
950	if (ipi_bitmap & IPI_PREEMPT) {
951		mtx_lock_spin(&sched_lock);
952		/* Don't preempt the idle thread */
953		if (curthread->td_priority <  PRI_MIN_IDLE) {
954			struct thread *running_thread = curthread;
955			if (running_thread->td_critnest > 1)
956				running_thread->td_owepreempt = 1;
957			else
958				mi_switch(SW_INVOL | SW_PREEMPT, NULL);
959		}
960		mtx_unlock_spin(&sched_lock);
961	}
962#endif
963
964	/* Nothing to do for AST */
965}
966
967/*
968 * send an IPI to a set of cpus.
969 */
970void
971ipi_selected(u_int32_t cpus, u_int ipi)
972{
973	int cpu;
974	u_int bitmap = 0;
975	u_int old_pending;
976	u_int new_pending;
977
978	if (IPI_IS_BITMAPED(ipi)) {
979		bitmap = 1 << ipi;
980		ipi = IPI_BITMAP_VECTOR;
981	}
982
983#ifdef STOP_NMI
984	if (ipi == IPI_STOP && stop_cpus_with_nmi) {
985		ipi_nmi_selected(cpus);
986		return;
987	}
988#endif
989	CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
990	while ((cpu = ffs(cpus)) != 0) {
991		cpu--;
992		cpus &= ~(1 << cpu);
993
994		KASSERT(cpu_apic_ids[cpu] != -1,
995		    ("IPI to non-existent CPU %d", cpu));
996
997		if (bitmap) {
998			do {
999				old_pending = cpu_ipi_pending[cpu];
1000				new_pending = old_pending | bitmap;
1001			} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));
1002
1003			if (old_pending)
1004				continue;
1005		}
1006
1007		lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1008	}
1009
1010}
1011
1012/*
1013 * send an IPI INTerrupt containing 'vector' to all CPUs, including myself
1014 */
1015void
1016ipi_all(u_int ipi)
1017{
1018
1019	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1020		ipi_selected(all_cpus, ipi);
1021		return;
1022	}
1023	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1024	lapic_ipi_vectored(ipi, APIC_IPI_DEST_ALL);
1025}
1026
1027/*
1028 * send an IPI to all CPUs EXCEPT myself
1029 */
1030void
1031ipi_all_but_self(u_int ipi)
1032{
1033
1034	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1035		ipi_selected(PCPU_GET(other_cpus), ipi);
1036		return;
1037	}
1038	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1039	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1040}
1041
1042/*
1043 * send an IPI to myself
1044 */
1045void
1046ipi_self(u_int ipi)
1047{
1048
1049	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1050		ipi_selected(PCPU_GET(cpumask), ipi);
1051		return;
1052	}
1053	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1054	lapic_ipi_vectored(ipi, APIC_IPI_DEST_SELF);
1055}
1056
1057#ifdef STOP_NMI
1058/*
1059 * send NMI IPI to selected CPUs
1060 */
1061
1062#define	BEFORE_SPIN	1000000
1063
1064void
1065ipi_nmi_selected(u_int32_t cpus)
1066{
1067	int cpu;
1068	register_t icrlo;
1069
1070	icrlo = APIC_DELMODE_NMI | APIC_DESTMODE_PHY | APIC_LEVEL_ASSERT
1071		| APIC_TRIGMOD_EDGE;
1072
1073	CTR2(KTR_SMP, "%s: cpus: %x nmi", __func__, cpus);
1074
1075	atomic_set_int(&ipi_nmi_pending, cpus);
1076
1077	while ((cpu = ffs(cpus)) != 0) {
1078		cpu--;
1079		cpus &= ~(1 << cpu);
1080
1081		KASSERT(cpu_apic_ids[cpu] != -1,
1082		    ("IPI NMI to non-existent CPU %d", cpu));
1083
1084		/* Wait for an earlier IPI to finish. */
1085		if (!lapic_ipi_wait(BEFORE_SPIN))
1086			panic("ipi_nmi_selected: previous IPI has not cleared");
1087
1088		lapic_ipi_raw(icrlo, cpu_apic_ids[cpu]);
1089	}
1090}
1091
1092int
1093ipi_nmi_handler(void)
1094{
1095	int cpumask = PCPU_GET(cpumask);
1096
1097	if (!(ipi_nmi_pending & cpumask))
1098		return 1;
1099
1100	atomic_clear_int(&ipi_nmi_pending, cpumask);
1101	cpustop_handler();
1102	return 0;
1103}
1104
1105#endif /* STOP_NMI */
1106
1107/*
1108 * Handle an IPI_STOP by saving our current context and spinning until we
1109 * are resumed.
1110 */
1111void
1112cpustop_handler(void)
1113{
1114	int cpu = PCPU_GET(cpuid);
1115	int cpumask = PCPU_GET(cpumask);
1116
1117	savectx(&stoppcbs[cpu]);
1118
1119	/* Indicate that we are stopped */
1120	atomic_set_int(&stopped_cpus, cpumask);
1121
1122	/* Wait for restart */
1123	while (!(started_cpus & cpumask))
1124	    ia32_pause();
1125
1126	atomic_clear_int(&started_cpus, cpumask);
1127	atomic_clear_int(&stopped_cpus, cpumask);
1128
1129	if (cpu == 0 && cpustop_restartfunc != NULL) {
1130		cpustop_restartfunc();
1131		cpustop_restartfunc = NULL;
1132	}
1133}
1134
1135/*
1136 * This is called once the rest of the system is up and running and we're
1137 * ready to let the AP's out of the pen.
1138 */
1139static void
1140release_aps(void *dummy __unused)
1141{
1142
1143	if (mp_ncpus == 1)
1144		return;
1145	mtx_lock_spin(&sched_lock);
1146	atomic_store_rel_int(&aps_ready, 1);
1147	while (smp_started == 0)
1148		ia32_pause();
1149	mtx_unlock_spin(&sched_lock);
1150}
1151SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1152
1153static int
1154sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
1155{
1156	u_int mask;
1157	int error;
1158
1159	mask = hlt_cpus_mask;
1160	error = sysctl_handle_int(oidp, &mask, 0, req);
1161	if (error || !req->newptr)
1162		return (error);
1163
1164	if (logical_cpus_mask != 0 &&
1165	    (mask & logical_cpus_mask) == logical_cpus_mask)
1166		hlt_logical_cpus = 1;
1167	else
1168		hlt_logical_cpus = 0;
1169
1170	if (! hyperthreading_allowed)
1171		mask |= hyperthreading_cpus_mask;
1172
1173	if ((mask & all_cpus) == all_cpus)
1174		mask &= ~(1<<0);
1175	hlt_cpus_mask = mask;
1176	return (error);
1177}
1178SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
1179    0, 0, sysctl_hlt_cpus, "IU",
1180    "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
1181
1182static int
1183sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
1184{
1185	int disable, error;
1186
1187	disable = hlt_logical_cpus;
1188	error = sysctl_handle_int(oidp, &disable, 0, req);
1189	if (error || !req->newptr)
1190		return (error);
1191
1192	if (disable)
1193		hlt_cpus_mask |= logical_cpus_mask;
1194	else
1195		hlt_cpus_mask &= ~logical_cpus_mask;
1196
1197	if (! hyperthreading_allowed)
1198		hlt_cpus_mask |= hyperthreading_cpus_mask;
1199
1200	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1201		hlt_cpus_mask &= ~(1<<0);
1202
1203	hlt_logical_cpus = disable;
1204	return (error);
1205}
1206
1207static int
1208sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
1209{
1210	int allowed, error;
1211
1212	allowed = hyperthreading_allowed;
1213	error = sysctl_handle_int(oidp, &allowed, 0, req);
1214	if (error || !req->newptr)
1215		return (error);
1216
1217	if (allowed)
1218		hlt_cpus_mask &= ~hyperthreading_cpus_mask;
1219	else
1220		hlt_cpus_mask |= hyperthreading_cpus_mask;
1221
1222	if (logical_cpus_mask != 0 &&
1223	    (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
1224		hlt_logical_cpus = 1;
1225	else
1226		hlt_logical_cpus = 0;
1227
1228	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1229		hlt_cpus_mask &= ~(1<<0);
1230
1231	hyperthreading_allowed = allowed;
1232	return (error);
1233}
1234
1235static void
1236cpu_hlt_setup(void *dummy __unused)
1237{
1238
1239	if (logical_cpus_mask != 0) {
1240		TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
1241		    &hlt_logical_cpus);
1242		sysctl_ctx_init(&logical_cpu_clist);
1243		SYSCTL_ADD_PROC(&logical_cpu_clist,
1244		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1245		    "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
1246		    sysctl_hlt_logical_cpus, "IU", "");
1247		SYSCTL_ADD_UINT(&logical_cpu_clist,
1248		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1249		    "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
1250		    &logical_cpus_mask, 0, "");
1251
1252		if (hlt_logical_cpus)
1253			hlt_cpus_mask |= logical_cpus_mask;
1254
1255		/*
1256		 * If necessary for security purposes, force
1257		 * hyperthreading off, regardless of the value
1258		 * of hlt_logical_cpus.
1259		 */
1260		if (hyperthreading_cpus_mask) {
1261			TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
1262			    &hyperthreading_allowed);
1263			SYSCTL_ADD_PROC(&logical_cpu_clist,
1264			    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1265			    "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
1266			    0, 0, sysctl_hyperthreading_allowed, "IU", "");
1267			if (! hyperthreading_allowed)
1268				hlt_cpus_mask |= hyperthreading_cpus_mask;
1269		}
1270	}
1271}
1272SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
1273
1274int
1275mp_grab_cpu_hlt(void)
1276{
1277	u_int mask = PCPU_GET(cpumask);
1278#ifdef MP_WATCHDOG
1279	u_int cpuid = PCPU_GET(cpuid);
1280#endif
1281	int retval;
1282
1283#ifdef MP_WATCHDOG
1284	ap_watchdog(cpuid);
1285#endif
1286
1287	retval = mask & hlt_cpus_mask;
1288	while (mask & hlt_cpus_mask)
1289		__asm __volatile("sti; hlt" : : : "memory");
1290	return (retval);
1291}
1292