mp_machdep.c revision 151631
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * Copyright (c) 2003, by Peter Wemm
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the developer may NOT be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/amd64/amd64/mp_machdep.c 151631 2005-10-24 20:31:04Z jhb $");
29
30#include "opt_cpu.h"
31#include "opt_kdb.h"
32#include "opt_kstack_pages.h"
33#include "opt_mp_watchdog.h"
34#include "opt_sched.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#ifdef GPROF
40#include <sys/gmon.h>
41#endif
42#include <sys/kernel.h>
43#include <sys/ktr.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/memrange.h>
47#include <sys/mutex.h>
48#include <sys/pcpu.h>
49#include <sys/proc.h>
50#include <sys/smp.h>
51#include <sys/sysctl.h>
52
53#include <vm/vm.h>
54#include <vm/vm_param.h>
55#include <vm/pmap.h>
56#include <vm/vm_kern.h>
57#include <vm/vm_extern.h>
58
59#include <machine/apicreg.h>
60#include <machine/clock.h>
61#include <machine/md_var.h>
62#include <machine/mp_watchdog.h>
63#include <machine/pcb.h>
64#include <machine/psl.h>
65#include <machine/smp.h>
66#include <machine/specialreg.h>
67#include <machine/tss.h>
68
69#define WARMBOOT_TARGET		0
70#define WARMBOOT_OFF		(KERNBASE + 0x0467)
71#define WARMBOOT_SEG		(KERNBASE + 0x0469)
72
73#define CMOS_REG		(0x70)
74#define CMOS_DATA		(0x71)
75#define BIOS_RESET		(0x0f)
76#define BIOS_WARM		(0x0a)
77
78/* lock region used by kernel profiling */
79int	mcount_lock;
80
81int	mp_naps;		/* # of Applications processors */
82int	boot_cpu_id = -1;	/* designated BSP */
83extern	int nkpt;
84
85/*
86 * CPU topology map datastructures for HTT.
87 */
88static struct cpu_group mp_groups[MAXCPU];
89static struct cpu_top mp_top;
90
91/* AP uses this during bootstrap.  Do not staticize.  */
92char *bootSTK;
93static int bootAP;
94
95/* Free these after use */
96void *bootstacks[MAXCPU];
97
98/* Temporary holder for double fault stack */
99char *doublefault_stack;
100
101/* Hotwire a 0->4MB V==P mapping */
102extern pt_entry_t *KPTphys;
103
104/* SMP page table page */
105extern pt_entry_t *SMPpt;
106
107struct pcb stoppcbs[MAXCPU];
108
109/* Variables needed for SMP tlb shootdown. */
110vm_offset_t smp_tlb_addr1;
111vm_offset_t smp_tlb_addr2;
112volatile int smp_tlb_wait;
113
114extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
115
116/*
117 * Local data and functions.
118 */
119
120static u_int logical_cpus;
121
122/* used to hold the AP's until we are ready to release them */
123static struct mtx ap_boot_mtx;
124
125/* Set to 1 once we're ready to let the APs out of the pen. */
126static volatile int aps_ready = 0;
127
128/*
129 * Store data from cpu_add() until later in the boot when we actually setup
130 * the APs.
131 */
132struct cpu_info {
133	int	cpu_present:1;
134	int	cpu_bsp:1;
135	int	cpu_disabled:1;
136} static cpu_info[MAXCPU];
137static int cpu_apic_ids[MAXCPU];
138
139/* Holds pending bitmap based IPIs per CPU */
140static volatile u_int cpu_ipi_pending[MAXCPU];
141
142static u_int boot_address;
143
144static void	set_logical_apic_ids(void);
145static int	start_all_aps(void);
146static int	start_ap(int apic_id);
147static void	release_aps(void *dummy);
148
149static int	hlt_logical_cpus;
150static u_int	hyperthreading_cpus;
151static cpumask_t	hyperthreading_cpus_mask;
152static int	hyperthreading_allowed = 1;
153static struct	sysctl_ctx_list logical_cpu_clist;
154static u_int	bootMP_size;
155
156static void
157mem_range_AP_init(void)
158{
159	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
160		mem_range_softc.mr_op->initAP(&mem_range_softc);
161}
162
163void
164mp_topology(void)
165{
166	struct cpu_group *group;
167	int logical_cpus;
168	int apic_id;
169	int groups;
170	int cpu;
171
172	/* Build the smp_topology map. */
173	/* Nothing to do if there is no HTT support. */
174	if ((cpu_feature & CPUID_HTT) == 0)
175		return;
176	logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
177	if (logical_cpus <= 1)
178		return;
179	group = &mp_groups[0];
180	groups = 1;
181	for (cpu = 0, apic_id = 0; apic_id < MAXCPU; apic_id++) {
182		if (!cpu_info[apic_id].cpu_present)
183			continue;
184		/*
185		 * If the current group has members and we're not a logical
186		 * cpu, create a new group.
187		 */
188		if (group->cg_count != 0 && (apic_id % logical_cpus) == 0) {
189			group++;
190			groups++;
191		}
192		group->cg_count++;
193		group->cg_mask |= 1 << cpu;
194		cpu++;
195	}
196
197	mp_top.ct_count = groups;
198	mp_top.ct_group = mp_groups;
199	smp_topology = &mp_top;
200}
201
202
203#ifdef KDB_STOP_NMI
204volatile cpumask_t ipi_nmi_pending;
205#endif
206
207/*
208 * Calculate usable address in base memory for AP trampoline code.
209 */
210u_int
211mp_bootaddress(u_int basemem)
212{
213
214	bootMP_size = mptramp_end - mptramp_start;
215	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
216	if (((basemem * 1024) - boot_address) < bootMP_size)
217		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
218	/* 3 levels of page table pages */
219	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
220
221	return mptramp_pagetables;
222}
223
224void
225cpu_add(u_int apic_id, char boot_cpu)
226{
227
228	if (apic_id >= MAXCPU) {
229		printf("SMP: CPU %d exceeds maximum CPU %d, ignoring\n",
230		    apic_id, MAXCPU - 1);
231		return;
232	}
233	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
234	    apic_id));
235	cpu_info[apic_id].cpu_present = 1;
236	if (boot_cpu) {
237		KASSERT(boot_cpu_id == -1,
238		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
239		    boot_cpu_id));
240		boot_cpu_id = apic_id;
241		cpu_info[apic_id].cpu_bsp = 1;
242	}
243	mp_ncpus++;
244	if (apic_id > mp_maxid)
245		mp_maxid = apic_id;
246	if (bootverbose)
247		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
248		    "AP");
249
250}
251
252void
253cpu_mp_setmaxid(void)
254{
255
256	/*
257	 * mp_maxid should be already set by calls to cpu_add().
258	 * Just sanity check its value here.
259	 */
260	if (mp_ncpus == 0)
261		KASSERT(mp_maxid == 0,
262		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
263	else if (mp_ncpus == 1)
264		mp_maxid = 0;
265	else
266		KASSERT(mp_maxid >= mp_ncpus - 1,
267		    ("%s: counters out of sync: max %d, count %d", __func__,
268			mp_maxid, mp_ncpus));
269
270}
271
272int
273cpu_mp_probe(void)
274{
275
276	/*
277	 * Always record BSP in CPU map so that the mbuf init code works
278	 * correctly.
279	 */
280	all_cpus = 1;
281	if (mp_ncpus == 0) {
282		/*
283		 * No CPUs were found, so this must be a UP system.  Setup
284		 * the variables to represent a system with a single CPU
285		 * with an id of 0.
286		 */
287		mp_ncpus = 1;
288		return (0);
289	}
290
291	/* At least one CPU was found. */
292	if (mp_ncpus == 1) {
293		/*
294		 * One CPU was found, so this must be a UP system with
295		 * an I/O APIC.
296		 */
297		mp_maxid = 0;
298		return (0);
299	}
300
301	/* At least two CPUs were found. */
302	return (1);
303}
304
305/*
306 * Initialize the IPI handlers and start up the AP's.
307 */
308void
309cpu_mp_start(void)
310{
311	int i;
312	u_int threads_per_cache, p[4];
313
314	/* Initialize the logical ID to APIC ID table. */
315	for (i = 0; i < MAXCPU; i++) {
316		cpu_apic_ids[i] = -1;
317		cpu_ipi_pending[i] = 0;
318	}
319
320	/* Install an inter-CPU IPI for TLB invalidation */
321	setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
322	setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
323	setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
324
325	/* Install an inter-CPU IPI for all-CPU rendezvous */
326	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
327
328	/* Install generic inter-CPU IPI handler */
329	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
330	       SDT_SYSIGT, SEL_KPL, 0);
331
332	/* Install an inter-CPU IPI for CPU stop/restart */
333	setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
334
335	/* Set boot_cpu_id if needed. */
336	if (boot_cpu_id == -1) {
337		boot_cpu_id = PCPU_GET(apic_id);
338		cpu_info[boot_cpu_id].cpu_bsp = 1;
339	} else
340		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
341		    ("BSP's APIC ID doesn't match boot_cpu_id"));
342	cpu_apic_ids[0] = boot_cpu_id;
343
344	/* Start each Application Processor */
345	start_all_aps();
346
347	/* Setup the initial logical CPUs info. */
348	logical_cpus = logical_cpus_mask = 0;
349	if (cpu_feature & CPUID_HTT)
350		logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
351
352	/*
353	 * Work out if hyperthreading is *really* enabled.  This
354	 * is made really ugly by the fact that processors lie: Dual
355	 * core processors claim to be hyperthreaded even when they're
356	 * not, presumably because they want to be treated the same
357	 * way as HTT with respect to per-cpu software licensing.
358	 * At the time of writing (May 12, 2005) the only hyperthreaded
359	 * cpus are from Intel, and Intel's dual-core processors can be
360	 * identified via the "deterministic cache parameters" cpuid
361	 * calls.
362	 */
363	/*
364	 * First determine if this is an Intel processor which claims
365	 * to have hyperthreading support.
366	 */
367	if ((cpu_feature & CPUID_HTT) &&
368	    (strcmp(cpu_vendor, "GenuineIntel") == 0)) {
369		/*
370		 * If the "deterministic cache parameters" cpuid calls
371		 * are available, use them.
372		 */
373		if (cpu_high >= 4) {
374			/* Ask the processor about up to 32 caches. */
375			for (i = 0; i < 32; i++) {
376				cpuid_count(4, i, p);
377				threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
378				if (hyperthreading_cpus < threads_per_cache)
379					hyperthreading_cpus = threads_per_cache;
380				if ((p[0] & 0x1f) == 0)
381					break;
382			}
383		}
384
385		/*
386		 * If the deterministic cache parameters are not
387		 * available, or if no caches were reported to exist,
388		 * just accept what the HTT flag indicated.
389		 */
390		if (hyperthreading_cpus == 0)
391			hyperthreading_cpus = logical_cpus;
392	}
393
394	set_logical_apic_ids();
395}
396
397
398/*
399 * Print various information about the SMP system hardware and setup.
400 */
401void
402cpu_mp_announce(void)
403{
404	int i, x;
405
406	/* List CPUs */
407	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
408	for (i = 1, x = 0; x < MAXCPU; x++) {
409		if (!cpu_info[x].cpu_present || cpu_info[x].cpu_bsp)
410			continue;
411		if (cpu_info[x].cpu_disabled)
412			printf("  cpu (AP): APIC ID: %2d (disabled)\n", x);
413		else {
414			KASSERT(i < mp_ncpus,
415			    ("mp_ncpus and actual cpus are out of whack"));
416			printf(" cpu%d (AP): APIC ID: %2d\n", i++, x);
417		}
418	}
419}
420
421/*
422 * AP CPU's call this to initialize themselves.
423 */
424void
425init_secondary(void)
426{
427	struct pcpu *pc;
428	u_int64_t msr, cr0;
429	int cpu, gsel_tss;
430
431	/* Set by the startup code for us to use */
432	cpu = bootAP;
433
434	/* Init tss */
435	common_tss[cpu] = common_tss[0];
436	common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
437	common_tss[cpu].tss_iobase = sizeof(struct amd64tss);
438	common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
439
440	gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
441	ssdtosyssd(&gdt_segs[GPROC0_SEL],
442	   (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
443
444	lgdt(&r_gdt);			/* does magic intra-segment return */
445
446	/* Get per-cpu data */
447	pc = &__pcpu[cpu];
448
449	/* prime data page for it to use */
450	pcpu_init(pc, cpu, sizeof(struct pcpu));
451	pc->pc_apic_id = cpu_apic_ids[cpu];
452	pc->pc_prvspace = pc;
453	pc->pc_curthread = 0;
454	pc->pc_tssp = &common_tss[cpu];
455	pc->pc_rsp0 = 0;
456
457	wrmsr(MSR_FSBASE, 0);		/* User value */
458	wrmsr(MSR_GSBASE, (u_int64_t)pc);
459	wrmsr(MSR_KGSBASE, (u_int64_t)pc);	/* XXX User value while we're in the kernel */
460
461	lidt(&r_idt);
462
463	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
464	ltr(gsel_tss);
465
466	/*
467	 * Set to a known state:
468	 * Set by mpboot.s: CR0_PG, CR0_PE
469	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
470	 */
471	cr0 = rcr0();
472	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
473	load_cr0(cr0);
474
475	/* Set up the fast syscall stuff */
476	msr = rdmsr(MSR_EFER) | EFER_SCE;
477	wrmsr(MSR_EFER, msr);
478	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
479	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
480	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
481	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
482	wrmsr(MSR_STAR, msr);
483	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
484
485	/* Disable local APIC just to be sure. */
486	lapic_disable();
487
488	/* signal our startup to the BSP. */
489	mp_naps++;
490
491	/* Spin until the BSP releases the AP's. */
492	while (!aps_ready)
493		ia32_pause();
494
495	/* set up CPU registers and state */
496	cpu_setregs();
497
498	/* set up SSE/NX registers */
499	initializecpu();
500
501	/* set up FPU state on the AP */
502	fpuinit();
503
504	/* A quick check from sanity claus */
505	if (PCPU_GET(apic_id) != lapic_id()) {
506		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
507		printf("SMP: actual apic_id = %d\n", lapic_id());
508		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
509		panic("cpuid mismatch! boom!!");
510	}
511
512	/* Initialize curthread. */
513	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
514	PCPU_SET(curthread, PCPU_GET(idlethread));
515
516	mtx_lock_spin(&ap_boot_mtx);
517
518	/* Init local apic for irq's */
519	lapic_setup();
520
521	/* Set memory range attributes for this CPU to match the BSP */
522	mem_range_AP_init();
523
524	smp_cpus++;
525
526	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
527	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
528
529	/* Determine if we are a logical CPU. */
530	if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
531		logical_cpus_mask |= PCPU_GET(cpumask);
532
533	/* Determine if we are a hyperthread. */
534	if (hyperthreading_cpus > 1 &&
535	    PCPU_GET(apic_id) % hyperthreading_cpus != 0)
536		hyperthreading_cpus_mask |= PCPU_GET(cpumask);
537
538	/* Build our map of 'other' CPUs. */
539	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
540
541	if (bootverbose)
542		lapic_dump("AP");
543
544	if (smp_cpus == mp_ncpus) {
545		/* enable IPI's, tlb shootdown, freezes etc */
546		atomic_store_rel_int(&smp_started, 1);
547		smp_active = 1;	 /* historic */
548	}
549
550	mtx_unlock_spin(&ap_boot_mtx);
551
552	/* wait until all the AP's are up */
553	while (smp_started == 0)
554		ia32_pause();
555
556	/* ok, now grab sched_lock and enter the scheduler */
557	mtx_lock_spin(&sched_lock);
558
559	/*
560	 * Correct spinlock nesting.  The idle thread context that we are
561	 * borrowing was created so that it would start out with a single
562	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
563	 * explicitly acquired locks in this function, the nesting count
564	 * is now 2 rather than 1.  Since we are nested, calling
565	 * spinlock_exit() will simply adjust the counts without allowing
566	 * spin lock using code to interrupt us.
567	 */
568	spinlock_exit();
569	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
570
571	binuptime(PCPU_PTR(switchtime));
572	PCPU_SET(switchticks, ticks);
573
574	cpu_throw(NULL, choosethread());	/* doesn't return */
575
576	panic("scheduler returned us to %s", __func__);
577	/* NOTREACHED */
578}
579
580/*******************************************************************
581 * local functions and data
582 */
583
584/*
585 * Set the APIC logical IDs.
586 *
587 * We want to cluster logical CPU's within the same APIC ID cluster.
588 * Since logical CPU's are aligned simply filling in the clusters in
589 * APIC ID order works fine.  Note that this does not try to balance
590 * the number of CPU's in each cluster. (XXX?)
591 */
592static void
593set_logical_apic_ids(void)
594{
595	u_int apic_id, cluster, cluster_id;
596
597	/* Force us to allocate cluster 0 at the start. */
598	cluster = -1;
599	cluster_id = APIC_MAX_INTRACLUSTER_ID;
600	for (apic_id = 0; apic_id < MAXCPU; apic_id++) {
601		if (!cpu_info[apic_id].cpu_present)
602			continue;
603		if (cluster_id == APIC_MAX_INTRACLUSTER_ID) {
604			cluster = ioapic_next_logical_cluster();
605			cluster_id = 0;
606		} else
607			cluster_id++;
608		if (bootverbose)
609			printf("APIC ID: physical %u, logical %u:%u\n",
610			    apic_id, cluster, cluster_id);
611		lapic_set_logical_id(apic_id, cluster, cluster_id);
612	}
613}
614
615/*
616 * start each AP in our list
617 */
618static int
619start_all_aps(void)
620{
621	vm_offset_t va = boot_address + KERNBASE;
622	u_int64_t *pt4, *pt3, *pt2;
623	u_int32_t mpbioswarmvec;
624	int apic_id, cpu, i;
625	u_char mpbiosreason;
626
627	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
628
629	/* install the AP 1st level boot code */
630	pmap_kenter(va, boot_address);
631	pmap_invalidate_page(kernel_pmap, va);
632	bcopy(mptramp_start, (void *)va, bootMP_size);
633
634	/* Locate the page tables, they'll be below the trampoline */
635	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
636	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
637	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
638
639	/* Create the initial 1GB replicated page tables */
640	for (i = 0; i < 512; i++) {
641		/* Each slot of the level 4 pages points to the same level 3 page */
642		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
643		pt4[i] |= PG_V | PG_RW | PG_U;
644
645		/* Each slot of the level 3 pages points to the same level 2 page */
646		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
647		pt3[i] |= PG_V | PG_RW | PG_U;
648
649		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
650		pt2[i] = i * (2 * 1024 * 1024);
651		pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
652	}
653
654	/* save the current value of the warm-start vector */
655	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
656	outb(CMOS_REG, BIOS_RESET);
657	mpbiosreason = inb(CMOS_DATA);
658
659	/* setup a vector to our boot code */
660	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
661	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
662	outb(CMOS_REG, BIOS_RESET);
663	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
664
665	/* start each AP */
666	for (cpu = 0, apic_id = 0; apic_id < MAXCPU; apic_id++) {
667
668		/* Ignore non-existent CPUs and the BSP. */
669		if (!cpu_info[apic_id].cpu_present ||
670		    cpu_info[apic_id].cpu_bsp)
671			continue;
672
673		/* Don't use this CPU if it has been disabled by a tunable. */
674		if (resource_disabled("lapic", apic_id)) {
675			cpu_info[apic_id].cpu_disabled = 1;
676			mp_ncpus--;
677			continue;
678		}
679
680		cpu++;
681
682		/* save APIC ID for this logical ID */
683		cpu_apic_ids[cpu] = apic_id;
684
685		/* allocate and set up an idle stack data page */
686		bootstacks[cpu] = (void *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
687		doublefault_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
688
689		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
690		bootAP = cpu;
691
692		/* attempt to start the Application Processor */
693		if (!start_ap(apic_id)) {
694			/* restore the warmstart vector */
695			*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
696			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
697		}
698
699		all_cpus |= (1 << cpu);		/* record AP in CPU map */
700	}
701
702	/* build our map of 'other' CPUs */
703	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
704
705	/* restore the warmstart vector */
706	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
707
708	outb(CMOS_REG, BIOS_RESET);
709	outb(CMOS_DATA, mpbiosreason);
710
711	/* number of APs actually started */
712	return mp_naps;
713}
714
715
716/*
717 * This function starts the AP (application processor) identified
718 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
719 * to accomplish this.  This is necessary because of the nuances
720 * of the different hardware we might encounter.  It isn't pretty,
721 * but it seems to work.
722 */
723static int
724start_ap(int apic_id)
725{
726	int vector, ms;
727	int cpus;
728
729	/* calculate the vector */
730	vector = (boot_address >> 12) & 0xff;
731
732	/* used as a watchpoint to signal AP startup */
733	cpus = mp_naps;
734
735	/*
736	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
737	 * and running the target CPU. OR this INIT IPI might be latched (P5
738	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
739	 * ignored.
740	 */
741
742	/* do an INIT IPI: assert RESET */
743	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
744	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
745
746	/* wait for pending status end */
747	lapic_ipi_wait(-1);
748
749	/* do an INIT IPI: deassert RESET */
750	lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
751	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
752
753	/* wait for pending status end */
754	DELAY(10000);		/* wait ~10mS */
755	lapic_ipi_wait(-1);
756
757	/*
758	 * next we do a STARTUP IPI: the previous INIT IPI might still be
759	 * latched, (P5 bug) this 1st STARTUP would then terminate
760	 * immediately, and the previously started INIT IPI would continue. OR
761	 * the previous INIT IPI has already run. and this STARTUP IPI will
762	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
763	 * will run.
764	 */
765
766	/* do a STARTUP IPI */
767	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
768	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
769	    vector, apic_id);
770	lapic_ipi_wait(-1);
771	DELAY(200);		/* wait ~200uS */
772
773	/*
774	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
775	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
776	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
777	 * recognized after hardware RESET or INIT IPI.
778	 */
779
780	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
781	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
782	    vector, apic_id);
783	lapic_ipi_wait(-1);
784	DELAY(200);		/* wait ~200uS */
785
786	/* Wait up to 5 seconds for it to start. */
787	for (ms = 0; ms < 5000; ms++) {
788		if (mp_naps > cpus)
789			return 1;	/* return SUCCESS */
790		DELAY(1000);
791	}
792	return 0;		/* return FAILURE */
793}
794
795/*
796 * Flush the TLB on all other CPU's
797 */
798static void
799smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
800{
801	u_int ncpu;
802
803	ncpu = mp_ncpus - 1;	/* does not shootdown self */
804	if (ncpu < 1)
805		return;		/* no other cpus */
806	mtx_assert(&smp_ipi_mtx, MA_OWNED);
807	smp_tlb_addr1 = addr1;
808	smp_tlb_addr2 = addr2;
809	atomic_store_rel_int(&smp_tlb_wait, 0);
810	ipi_all_but_self(vector);
811	while (smp_tlb_wait < ncpu)
812		ia32_pause();
813}
814
815static void
816smp_targeted_tlb_shootdown(u_int mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
817{
818	int ncpu, othercpus;
819
820	othercpus = mp_ncpus - 1;
821	if (mask == (u_int)-1) {
822		ncpu = othercpus;
823		if (ncpu < 1)
824			return;
825	} else {
826		mask &= ~PCPU_GET(cpumask);
827		if (mask == 0)
828			return;
829		ncpu = bitcount32(mask);
830		if (ncpu > othercpus) {
831			/* XXX this should be a panic offence */
832			printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
833			    ncpu, othercpus);
834			ncpu = othercpus;
835		}
836		/* XXX should be a panic, implied by mask == 0 above */
837		if (ncpu < 1)
838			return;
839	}
840	mtx_assert(&smp_ipi_mtx, MA_OWNED);
841	smp_tlb_addr1 = addr1;
842	smp_tlb_addr2 = addr2;
843	atomic_store_rel_int(&smp_tlb_wait, 0);
844	if (mask == (u_int)-1)
845		ipi_all_but_self(vector);
846	else
847		ipi_selected(mask, vector);
848	while (smp_tlb_wait < ncpu)
849		ia32_pause();
850}
851
852void
853smp_invltlb(void)
854{
855
856	if (smp_started) {
857		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
858	}
859}
860
861void
862smp_invlpg(vm_offset_t addr)
863{
864
865	if (smp_started)
866		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
867}
868
869void
870smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
871{
872
873	if (smp_started) {
874		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
875	}
876}
877
878void
879smp_masked_invltlb(u_int mask)
880{
881
882	if (smp_started) {
883		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
884	}
885}
886
887void
888smp_masked_invlpg(u_int mask, vm_offset_t addr)
889{
890
891	if (smp_started) {
892		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
893	}
894}
895
896void
897smp_masked_invlpg_range(u_int mask, vm_offset_t addr1, vm_offset_t addr2)
898{
899
900	if (smp_started) {
901		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
902	}
903}
904
905void
906ipi_bitmap_handler(struct clockframe frame)
907{
908	int cpu = PCPU_GET(cpuid);
909	u_int ipi_bitmap;
910
911	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
912
913#ifdef IPI_PREEMPTION
914	if (ipi_bitmap & IPI_PREEMPT) {
915		mtx_lock_spin(&sched_lock);
916		/* Don't preempt the idle thread */
917		if (curthread->td_priority <  PRI_MIN_IDLE) {
918			struct thread *running_thread = curthread;
919			if (running_thread->td_critnest > 1)
920				running_thread->td_owepreempt = 1;
921			else
922				mi_switch(SW_INVOL | SW_PREEMPT, NULL);
923		}
924		mtx_unlock_spin(&sched_lock);
925	}
926#endif
927
928	/* Nothing to do for AST */
929}
930
931/*
932 * send an IPI to a set of cpus.
933 */
934void
935ipi_selected(u_int32_t cpus, u_int ipi)
936{
937	int cpu;
938	u_int bitmap = 0;
939	u_int old_pending;
940	u_int new_pending;
941
942	if (IPI_IS_BITMAPED(ipi)) {
943		bitmap = 1 << ipi;
944		ipi = IPI_BITMAP_VECTOR;
945	}
946
947	CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
948	while ((cpu = ffs(cpus)) != 0) {
949		cpu--;
950		cpus &= ~(1 << cpu);
951
952		KASSERT(cpu_apic_ids[cpu] != -1,
953		    ("IPI to non-existent CPU %d", cpu));
954
955		if (bitmap) {
956			do {
957				old_pending = cpu_ipi_pending[cpu];
958				new_pending = old_pending | bitmap;
959			} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));
960
961			if (old_pending)
962				continue;
963		}
964
965		lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
966	}
967
968}
969
970/*
971 * send an IPI INTerrupt containing 'vector' to all CPUs, including myself
972 */
973void
974ipi_all(u_int ipi)
975{
976
977	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
978	lapic_ipi_vectored(ipi, APIC_IPI_DEST_ALL);
979}
980
981/*
982 * send an IPI to all CPUs EXCEPT myself
983 */
984void
985ipi_all_but_self(u_int ipi)
986{
987
988	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
989	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
990}
991
992/*
993 * send an IPI to myself
994 */
995void
996ipi_self(u_int ipi)
997{
998
999	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1000	lapic_ipi_vectored(ipi, APIC_IPI_DEST_SELF);
1001}
1002
1003#ifdef KDB_STOP_NMI
1004/*
1005 * send NMI IPI to selected CPUs
1006 */
1007
1008#define	BEFORE_SPIN	1000000
1009
1010void
1011ipi_nmi_selected(u_int32_t cpus)
1012{
1013	int cpu;
1014	register_t icrlo;
1015
1016	icrlo = APIC_DELMODE_NMI | APIC_DESTMODE_PHY | APIC_LEVEL_ASSERT
1017		| APIC_TRIGMOD_EDGE;
1018
1019	CTR2(KTR_SMP, "%s: cpus: %x nmi", __func__, cpus);
1020
1021	atomic_set_int(&ipi_nmi_pending, cpus);
1022
1023	while ((cpu = ffs(cpus)) != 0) {
1024		cpu--;
1025		cpus &= ~(1 << cpu);
1026
1027		KASSERT(cpu_apic_ids[cpu] != -1,
1028		    ("IPI NMI to non-existent CPU %d", cpu));
1029
1030		/* Wait for an earlier IPI to finish. */
1031		if (!lapic_ipi_wait(BEFORE_SPIN))
1032			panic("ipi_nmi_selected: previous IPI has not cleared");
1033
1034		lapic_ipi_raw(icrlo, cpu_apic_ids[cpu]);
1035	}
1036}
1037
1038int
1039ipi_nmi_handler()
1040{
1041	int cpu = PCPU_GET(cpuid);
1042	int cpumask = PCPU_GET(cpumask);
1043
1044	if (!(atomic_load_acq_int(&ipi_nmi_pending) & cpumask))
1045		return 1;
1046
1047	atomic_clear_int(&ipi_nmi_pending, cpumask);
1048
1049	savectx(&stoppcbs[cpu]);
1050
1051	/* Indicate that we are stopped */
1052	atomic_set_int(&stopped_cpus, cpumask);
1053
1054	/* Wait for restart */
1055	while (!(atomic_load_acq_int(&started_cpus) & cpumask))
1056	    ia32_pause();
1057
1058	atomic_clear_int(&started_cpus, cpumask);
1059	atomic_clear_int(&stopped_cpus, cpumask);
1060
1061	if (cpu == 0 && cpustop_restartfunc != NULL)
1062		cpustop_restartfunc();
1063
1064	return 0;
1065}
1066
1067#endif /* KDB_STOP_NMI */
1068
1069/*
1070 * This is called once the rest of the system is up and running and we're
1071 * ready to let the AP's out of the pen.
1072 */
1073static void
1074release_aps(void *dummy __unused)
1075{
1076
1077	if (mp_ncpus == 1)
1078		return;
1079	mtx_lock_spin(&sched_lock);
1080	atomic_store_rel_int(&aps_ready, 1);
1081	while (smp_started == 0)
1082		ia32_pause();
1083	mtx_unlock_spin(&sched_lock);
1084}
1085SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1086
1087static int
1088sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
1089{
1090	u_int mask;
1091	int error;
1092
1093	mask = hlt_cpus_mask;
1094	error = sysctl_handle_int(oidp, &mask, 0, req);
1095	if (error || !req->newptr)
1096		return (error);
1097
1098	if (logical_cpus_mask != 0 &&
1099	    (mask & logical_cpus_mask) == logical_cpus_mask)
1100		hlt_logical_cpus = 1;
1101	else
1102		hlt_logical_cpus = 0;
1103
1104	if (! hyperthreading_allowed)
1105		mask |= hyperthreading_cpus_mask;
1106
1107	if ((mask & all_cpus) == all_cpus)
1108		mask &= ~(1<<0);
1109	hlt_cpus_mask = mask;
1110	return (error);
1111}
1112SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
1113    0, 0, sysctl_hlt_cpus, "IU",
1114    "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
1115
1116static int
1117sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
1118{
1119	int disable, error;
1120
1121	disable = hlt_logical_cpus;
1122	error = sysctl_handle_int(oidp, &disable, 0, req);
1123	if (error || !req->newptr)
1124		return (error);
1125
1126	if (disable)
1127		hlt_cpus_mask |= logical_cpus_mask;
1128	else
1129		hlt_cpus_mask &= ~logical_cpus_mask;
1130
1131	if (! hyperthreading_allowed)
1132		hlt_cpus_mask |= hyperthreading_cpus_mask;
1133
1134	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1135		hlt_cpus_mask &= ~(1<<0);
1136
1137	hlt_logical_cpus = disable;
1138	return (error);
1139}
1140
1141static int
1142sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
1143{
1144	int allowed, error;
1145
1146	allowed = hyperthreading_allowed;
1147	error = sysctl_handle_int(oidp, &allowed, 0, req);
1148	if (error || !req->newptr)
1149		return (error);
1150
1151	if (allowed)
1152		hlt_cpus_mask &= ~hyperthreading_cpus_mask;
1153	else
1154		hlt_cpus_mask |= hyperthreading_cpus_mask;
1155
1156	if (logical_cpus_mask != 0 &&
1157	    (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
1158		hlt_logical_cpus = 1;
1159	else
1160		hlt_logical_cpus = 0;
1161
1162	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1163		hlt_cpus_mask &= ~(1<<0);
1164
1165	hyperthreading_allowed = allowed;
1166	return (error);
1167}
1168
1169static void
1170cpu_hlt_setup(void *dummy __unused)
1171{
1172
1173	if (logical_cpus_mask != 0) {
1174		TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
1175		    &hlt_logical_cpus);
1176		sysctl_ctx_init(&logical_cpu_clist);
1177		SYSCTL_ADD_PROC(&logical_cpu_clist,
1178		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1179		    "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
1180		    sysctl_hlt_logical_cpus, "IU", "");
1181		SYSCTL_ADD_UINT(&logical_cpu_clist,
1182		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1183		    "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
1184		    &logical_cpus_mask, 0, "");
1185
1186		if (hlt_logical_cpus)
1187			hlt_cpus_mask |= logical_cpus_mask;
1188
1189		/*
1190		 * If necessary for security purposes, force
1191		 * hyperthreading off, regardless of the value
1192		 * of hlt_logical_cpus.
1193		 */
1194		if (hyperthreading_cpus_mask) {
1195			TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
1196			    &hyperthreading_allowed);
1197			SYSCTL_ADD_PROC(&logical_cpu_clist,
1198			    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1199			    "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
1200			    0, 0, sysctl_hyperthreading_allowed, "IU", "");
1201			if (! hyperthreading_allowed)
1202				hlt_cpus_mask |= hyperthreading_cpus_mask;
1203		}
1204	}
1205}
1206SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
1207
1208int
1209mp_grab_cpu_hlt(void)
1210{
1211	u_int mask = PCPU_GET(cpumask);
1212#ifdef MP_WATCHDOG
1213	u_int cpuid = PCPU_GET(cpuid);
1214#endif
1215	int retval;
1216
1217#ifdef MP_WATCHDOG
1218	ap_watchdog(cpuid);
1219#endif
1220
1221	retval = mask & hlt_cpus_mask;
1222	while (mask & hlt_cpus_mask)
1223		__asm __volatile("sti; hlt" : : : "memory");
1224	return (retval);
1225}
1226