machdep.c revision 89195
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 89195 2002-01-10 11:49:55Z bde $
39 */
40
41#include "opt_atalk.h"
42#include "opt_compat.h"
43#include "opt_cpu.h"
44#include "opt_ddb.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_isa.h"
48#include "opt_maxmem.h"
49#include "opt_msgbuf.h"
50#include "opt_npx.h"
51#include "opt_perfmon.h"
52#include "opt_kstack_pages.h"
53/* #include "opt_userconfig.h" */
54
55#include <sys/param.h>
56#include <sys/systm.h>
57#include <sys/sysproto.h>
58#include <sys/signalvar.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/linker.h>
62#include <sys/lock.h>
63#include <sys/malloc.h>
64#include <sys/mutex.h>
65#include <sys/pcpu.h>
66#include <sys/proc.h>
67#include <sys/bio.h>
68#include <sys/buf.h>
69#include <sys/reboot.h>
70#include <sys/smp.h>
71#include <sys/callout.h>
72#include <sys/msgbuf.h>
73#include <sys/sysent.h>
74#include <sys/sysctl.h>
75#include <sys/vmmeter.h>
76#include <sys/bus.h>
77#include <sys/eventhandler.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <sys/lock.h>
82#include <vm/vm_kern.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_map.h>
86#include <vm/vm_pager.h>
87#include <vm/vm_extern.h>
88
89#include <sys/user.h>
90#include <sys/exec.h>
91#include <sys/cons.h>
92
93#include <ddb/ddb.h>
94
95#include <net/netisr.h>
96
97#include <machine/cpu.h>
98#include <machine/cputypes.h>
99#include <machine/reg.h>
100#include <machine/clock.h>
101#include <machine/specialreg.h>
102#include <machine/bootinfo.h>
103#include <machine/md_var.h>
104#include <machine/pc/bios.h>
105#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
106#include <machine/proc.h>
107#ifdef PERFMON
108#include <machine/perfmon.h>
109#endif
110#ifdef SMP
111#include <machine/privatespace.h>
112#endif
113
114#include <i386/isa/icu.h>
115#include <i386/isa/intr_machdep.h>
116#include <isa/rtc.h>
117#include <machine/vm86.h>
118#include <sys/ptrace.h>
119#include <machine/sigframe.h>
120
121extern void init386 __P((int first));
122extern void dblfault_handler __P((void));
123
124extern void printcpuinfo(void);	/* XXX header file */
125extern void earlysetcpuclass(void);	/* same header file */
126extern void finishidentcpu(void);
127extern void panicifcpuunsupported(void);
128extern void initializecpu(void);
129
130#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
131#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
132
133static void cpu_startup __P((void *));
134#ifdef CPU_ENABLE_SSE
135static void set_fpregs_xmm __P((struct save87 *, struct savexmm *));
136static void fill_fpregs_xmm __P((struct savexmm *, struct save87 *));
137#endif /* CPU_ENABLE_SSE */
138SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
139
140int	_udatasel, _ucodesel;
141u_int	atdevbase;
142
143#if defined(SWTCH_OPTIM_STATS)
144extern int swtch_optim_stats;
145SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
146	CTLFLAG_RD, &swtch_optim_stats, 0, "");
147SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
148	CTLFLAG_RD, &tlb_flush_count, 0, "");
149#endif
150
151#ifdef PC98
152static int	ispc98 = 1;
153#else
154static int	ispc98 = 0;
155#endif
156SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
157
158int physmem = 0;
159int cold = 1;
160
161#ifdef COMPAT_43
162static void osendsig __P((sig_t catcher, int sig, sigset_t *mask, u_long code));
163#endif
164
165static int
166sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
167{
168	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
169	return (error);
170}
171
172SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
173	0, 0, sysctl_hw_physmem, "IU", "");
174
175static int
176sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
177{
178	int error = sysctl_handle_int(oidp, 0,
179		ctob(physmem - cnt.v_wire_count), req);
180	return (error);
181}
182
183SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
184	0, 0, sysctl_hw_usermem, "IU", "");
185
186static int
187sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
188{
189	int error = sysctl_handle_int(oidp, 0,
190		i386_btop(avail_end - avail_start), req);
191	return (error);
192}
193
194SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
195	0, 0, sysctl_hw_availpages, "I", "");
196
197int Maxmem = 0;
198long dumplo;
199
200vm_offset_t phys_avail[10];
201
202/* must be 2 less so 0 0 can signal end of chunks */
203#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
204
205struct kva_md_info kmi;
206
207static struct trapframe proc0_tf;
208#ifndef SMP
209static struct pcpu __pcpu;
210#endif
211
212struct mtx sched_lock;
213struct mtx Giant;
214struct mtx icu_lock;
215
216static void
217cpu_startup(dummy)
218	void *dummy;
219{
220	/*
221	 * Good {morning,afternoon,evening,night}.
222	 */
223	earlysetcpuclass();
224	startrtclock();
225	printcpuinfo();
226	panicifcpuunsupported();
227#ifdef PERFMON
228	perfmon_init();
229#endif
230	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem),
231	    ptoa(Maxmem) / 1024);
232	/*
233	 * Display any holes after the first chunk of extended memory.
234	 */
235	if (bootverbose) {
236		int indx;
237
238		printf("Physical memory chunk(s):\n");
239		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
240			unsigned int size1;
241
242			size1 = phys_avail[indx + 1] - phys_avail[indx];
243			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
244			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
245			    size1 / PAGE_SIZE);
246		}
247	}
248
249	vm_ksubmap_init(&kmi);
250
251#if defined(USERCONFIG)
252	userconfig();
253	cninit();		/* the preferred console may have changed */
254#endif
255
256	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
257	    ptoa(cnt.v_free_count) / 1024);
258
259	/*
260	 * Set up buffers, so they can be used to read disk labels.
261	 */
262	bufinit();
263	vm_pager_bufferinit();
264
265#ifndef SMP
266	/* For SMP, we delay the cpu_setregs() until after SMP startup. */
267	cpu_setregs();
268#endif
269}
270
271/*
272 * Send an interrupt to process.
273 *
274 * Stack is set up to allow sigcode stored
275 * at top to call routine, followed by kcall
276 * to sigreturn routine below.  After sigreturn
277 * resets the signal mask, the stack, and the
278 * frame pointer, it returns to the user
279 * specified pc, psl.
280 */
281#ifdef COMPAT_43
282static void
283osendsig(catcher, sig, mask, code)
284	sig_t catcher;
285	int sig;
286	sigset_t *mask;
287	u_long code;
288{
289	struct osigframe sf;
290	struct osigframe *fp;
291	struct proc *p;
292	struct thread *td;
293	struct sigacts *psp;
294	struct trapframe *regs;
295	int oonstack;
296
297	td = curthread;
298	p = td->td_proc;
299	PROC_LOCK_ASSERT(p, MA_OWNED);
300	psp = p->p_sigacts;
301	regs = td->td_frame;
302	oonstack = sigonstack(regs->tf_esp);
303
304	/* Allocate and validate space for the signal handler context. */
305	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
306	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
307		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
308		    p->p_sigstk.ss_size - sizeof(struct osigframe));
309#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
310		p->p_sigstk.ss_flags |= SS_ONSTACK;
311#endif
312	} else
313		fp = (struct osigframe *)regs->tf_esp - 1;
314	PROC_UNLOCK(p);
315
316	/*
317	 * grow_stack() will return 0 if *fp does not fit inside the stack
318	 * and the stack can not be grown.
319	 * useracc() will return FALSE if access is denied.
320	 */
321	if (grow_stack(p, (int)fp) == 0 ||
322	    !useracc((caddr_t)fp, sizeof(*fp), VM_PROT_WRITE)) {
323		/*
324		 * Process has trashed its stack; give it an illegal
325		 * instruction to halt it in its tracks.
326		 */
327		PROC_LOCK(p);
328		SIGACTION(p, SIGILL) = SIG_DFL;
329		SIGDELSET(p->p_sigignore, SIGILL);
330		SIGDELSET(p->p_sigcatch, SIGILL);
331		SIGDELSET(p->p_sigmask, SIGILL);
332		psignal(p, SIGILL);
333		return;
334	}
335
336	/* Translate the signal if appropriate. */
337	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
338		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
339
340	/* Build the argument list for the signal handler. */
341	sf.sf_signum = sig;
342	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
343	PROC_LOCK(p);
344	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
345		/* Signal handler installed with SA_SIGINFO. */
346		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
347		sf.sf_siginfo.si_signo = sig;
348		sf.sf_siginfo.si_code = code;
349		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
350	} else {
351		/* Old FreeBSD-style arguments. */
352		sf.sf_arg2 = code;
353		sf.sf_addr = regs->tf_err;
354		sf.sf_ahu.sf_handler = catcher;
355	}
356	PROC_UNLOCK(p);
357
358	/* Save most if not all of trap frame. */
359	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
360	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
361	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
362	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
363	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
364	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
365	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
366	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
367	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
368	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
369	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
370	sf.sf_siginfo.si_sc.sc_gs = rgs();
371	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
372
373	/* Build the signal context to be used by osigreturn(). */
374	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
375	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
376	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
377	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
378	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
379	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
380	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
381	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
382
383	/*
384	 * If we're a vm86 process, we want to save the segment registers.
385	 * We also change eflags to be our emulated eflags, not the actual
386	 * eflags.
387	 */
388	if (regs->tf_eflags & PSL_VM) {
389		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
390		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
391		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
392
393		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
394		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
395		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
396		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
397
398		if (vm86->vm86_has_vme == 0)
399			sf.sf_siginfo.si_sc.sc_ps =
400			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
401			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
402
403		/* See sendsig() for comments. */
404		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
405	}
406
407	/* Copy the sigframe out to the user's stack. */
408	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
409		/*
410		 * Something is wrong with the stack pointer.
411		 * ...Kill the process.
412		 */
413		PROC_LOCK(p);
414		sigexit(td, SIGILL);
415		/* NOTREACHED */
416	}
417
418	regs->tf_esp = (int)fp;
419	regs->tf_eip = PS_STRINGS - szosigcode;
420	regs->tf_eflags &= ~PSL_T;
421	regs->tf_cs = _ucodesel;
422	regs->tf_ds = _udatasel;
423	regs->tf_es = _udatasel;
424	regs->tf_fs = _udatasel;
425	load_gs(_udatasel);
426	regs->tf_ss = _udatasel;
427	PROC_LOCK(p);
428}
429#endif
430
431void
432sendsig(catcher, sig, mask, code)
433	sig_t catcher;
434	int sig;
435	sigset_t *mask;
436	u_long code;
437{
438	struct sigframe sf;
439	struct proc *p;
440	struct thread *td;
441	struct sigacts *psp;
442	struct trapframe *regs;
443	struct sigframe *sfp;
444	int oonstack;
445
446	td = curthread;
447	p = td->td_proc;
448	PROC_LOCK_ASSERT(p, MA_OWNED);
449	psp = p->p_sigacts;
450#ifdef COMPAT_43
451	if (SIGISMEMBER(psp->ps_osigset, sig)) {
452		osendsig(catcher, sig, mask, code);
453		return;
454	}
455#endif
456	regs = td->td_frame;
457	oonstack = sigonstack(regs->tf_esp);
458
459	/* Save user context. */
460	bzero(&sf, sizeof(sf));
461	sf.sf_uc.uc_sigmask = *mask;
462	sf.sf_uc.uc_stack = p->p_sigstk;
463	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
464	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
465	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
466	sf.sf_uc.uc_mcontext.mc_gs = rgs();
467	sf.sf_uc.uc_mcontext.mc_flags = __UC_MC_VALID;	/* no FP regs */
468	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
469
470	/* Allocate and validate space for the signal handler context. */
471	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
472	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
473		sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
474		    p->p_sigstk.ss_size - sizeof(struct sigframe));
475#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
476		p->p_sigstk.ss_flags |= SS_ONSTACK;
477#endif
478	} else
479		sfp = (struct sigframe *)regs->tf_esp - 1;
480	PROC_UNLOCK(p);
481
482	/*
483	 * grow_stack() will return 0 if *sfp does not fit inside the stack
484	 * and the stack can not be grown.
485	 * useracc() will return FALSE if access is denied.
486	 */
487	if (grow_stack(p, (int)sfp) == 0 ||
488	    !useracc((caddr_t)sfp, sizeof(*sfp), VM_PROT_WRITE)) {
489		/*
490		 * Process has trashed its stack; give it an illegal
491		 * instruction to halt it in its tracks.
492		 */
493#ifdef DEBUG
494		printf("process %d has trashed its stack\n", p->p_pid);
495#endif
496		PROC_LOCK(p);
497		SIGACTION(p, SIGILL) = SIG_DFL;
498		SIGDELSET(p->p_sigignore, SIGILL);
499		SIGDELSET(p->p_sigcatch, SIGILL);
500		SIGDELSET(p->p_sigmask, SIGILL);
501		psignal(p, SIGILL);
502		return;
503	}
504
505	/* Translate the signal if appropriate. */
506	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
507		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
508
509	/* Build the argument list for the signal handler. */
510	sf.sf_signum = sig;
511	sf.sf_ucontext = (register_t)&sfp->sf_uc;
512	PROC_LOCK(p);
513	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
514		/* Signal handler installed with SA_SIGINFO. */
515		sf.sf_siginfo = (register_t)&sfp->sf_si;
516		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
517
518		/* Fill siginfo structure. */
519		sf.sf_si.si_signo = sig;
520		sf.sf_si.si_code = code;
521		sf.sf_si.si_addr = (void *)regs->tf_err;
522	} else {
523		/* Old FreeBSD-style arguments. */
524		sf.sf_siginfo = code;
525		sf.sf_addr = regs->tf_err;
526		sf.sf_ahu.sf_handler = catcher;
527	}
528	PROC_UNLOCK(p);
529
530	/*
531	 * If we're a vm86 process, we want to save the segment registers.
532	 * We also change eflags to be our emulated eflags, not the actual
533	 * eflags.
534	 */
535	if (regs->tf_eflags & PSL_VM) {
536		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
537		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
538
539		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
540		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
541		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
542		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
543
544		if (vm86->vm86_has_vme == 0)
545			sf.sf_uc.uc_mcontext.mc_eflags =
546			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
547			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
548
549		/*
550		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
551		 * syscalls made by the signal handler.  This just avoids
552		 * wasting time for our lazy fixup of such faults.  PSL_NT
553		 * does nothing in vm86 mode, but vm86 programs can set it
554		 * almost legitimately in probes for old cpu types.
555		 */
556		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
557	}
558
559	/* Copy the sigframe out to the user's stack. */
560	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
561		/*
562		 * Something is wrong with the stack pointer.
563		 * ...Kill the process.
564		 */
565		PROC_LOCK(p);
566		sigexit(td, SIGILL);
567		/* NOTREACHED */
568	}
569
570	regs->tf_esp = (int)sfp;
571	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
572	regs->tf_eflags &= ~PSL_T;
573	regs->tf_cs = _ucodesel;
574	regs->tf_ds = _udatasel;
575	regs->tf_es = _udatasel;
576	regs->tf_fs = _udatasel;
577	regs->tf_ss = _udatasel;
578	PROC_LOCK(p);
579}
580
581/*
582 * System call to cleanup state after a signal
583 * has been taken.  Reset signal mask and
584 * stack state from context left by sendsig (above).
585 * Return to previous pc and psl as specified by
586 * context left by sendsig. Check carefully to
587 * make sure that the user has not modified the
588 * state to gain improper privileges.
589 */
590#ifdef COMPAT_43
591int
592osigreturn(td, uap)
593	struct thread *td;
594	struct osigreturn_args /* {
595		struct osigcontext *sigcntxp;
596	} */ *uap;
597{
598	struct trapframe *regs;
599	struct osigcontext *scp;
600	struct proc *p = td->td_proc;
601	int eflags;
602
603	regs = td->td_frame;
604	scp = uap->sigcntxp;
605	if (!useracc((caddr_t)scp, sizeof(*scp), VM_PROT_READ))
606		return (EFAULT);
607	eflags = scp->sc_ps;
608	if (eflags & PSL_VM) {
609		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
610		struct vm86_kernel *vm86;
611
612		/*
613		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
614		 * set up the vm86 area, and we can't enter vm86 mode.
615		 */
616		if (td->td_pcb->pcb_ext == 0)
617			return (EINVAL);
618		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
619		if (vm86->vm86_inited == 0)
620			return (EINVAL);
621
622		/* Go back to user mode if both flags are set. */
623		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
624			trapsignal(p, SIGBUS, 0);
625
626		if (vm86->vm86_has_vme) {
627			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
628			    (eflags & VME_USERCHANGE) | PSL_VM;
629		} else {
630			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
631			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
632			    (eflags & VM_USERCHANGE) | PSL_VM;
633		}
634		tf->tf_vm86_ds = scp->sc_ds;
635		tf->tf_vm86_es = scp->sc_es;
636		tf->tf_vm86_fs = scp->sc_fs;
637		tf->tf_vm86_gs = scp->sc_gs;
638		tf->tf_ds = _udatasel;
639		tf->tf_es = _udatasel;
640		tf->tf_fs = _udatasel;
641	} else {
642		/*
643		 * Don't allow users to change privileged or reserved flags.
644		 */
645		/*
646		 * XXX do allow users to change the privileged flag PSL_RF.
647		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
648		 * should sometimes set it there too.  tf_eflags is kept in
649		 * the signal context during signal handling and there is no
650		 * other place to remember it, so the PSL_RF bit may be
651		 * corrupted by the signal handler without us knowing.
652		 * Corruption of the PSL_RF bit at worst causes one more or
653		 * one less debugger trap, so allowing it is fairly harmless.
654		 */
655		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
656	    		return (EINVAL);
657		}
658
659		/*
660		 * Don't allow users to load a valid privileged %cs.  Let the
661		 * hardware check for invalid selectors, excess privilege in
662		 * other selectors, invalid %eip's and invalid %esp's.
663		 */
664		if (!CS_SECURE(scp->sc_cs)) {
665			trapsignal(p, SIGBUS, T_PROTFLT);
666			return (EINVAL);
667		}
668		regs->tf_ds = scp->sc_ds;
669		regs->tf_es = scp->sc_es;
670		regs->tf_fs = scp->sc_fs;
671	}
672
673	/* Restore remaining registers. */
674	regs->tf_eax = scp->sc_eax;
675	regs->tf_ebx = scp->sc_ebx;
676	regs->tf_ecx = scp->sc_ecx;
677	regs->tf_edx = scp->sc_edx;
678	regs->tf_esi = scp->sc_esi;
679	regs->tf_edi = scp->sc_edi;
680	regs->tf_cs = scp->sc_cs;
681	regs->tf_ss = scp->sc_ss;
682	regs->tf_isp = scp->sc_isp;
683
684	PROC_LOCK(p);
685#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
686	if (scp->sc_onstack & 1)
687		p->p_sigstk.ss_flags |= SS_ONSTACK;
688	else
689		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
690#endif
691
692	SIGSETOLD(p->p_sigmask, scp->sc_mask);
693	SIG_CANTMASK(p->p_sigmask);
694	PROC_UNLOCK(p);
695	regs->tf_ebp = scp->sc_fp;
696	regs->tf_esp = scp->sc_sp;
697	regs->tf_eip = scp->sc_pc;
698	regs->tf_eflags = eflags;
699	return (EJUSTRETURN);
700}
701#endif
702
703int
704sigreturn(td, uap)
705	struct thread *td;
706	struct sigreturn_args /* {
707		ucontext_t *sigcntxp;
708	} */ *uap;
709{
710	struct proc *p = td->td_proc;
711	struct trapframe *regs;
712	ucontext_t *ucp;
713	int cs, eflags;
714
715	ucp = uap->sigcntxp;
716#ifdef COMPAT_43
717	if (!useracc((caddr_t)ucp, sizeof(struct osigcontext), VM_PROT_READ))
718		return (EFAULT);
719	if (((struct osigcontext *)ucp)->sc_trapno == 0x01d516)
720		return (osigreturn(td, (struct osigreturn_args *)uap));
721	/*
722	 * Since ucp is not an osigcontext but a ucontext_t, we have to
723	 * check again if all of it is accessible.  A ucontext_t is
724	 * much larger, so instead of just checking for the pointer
725	 * being valid for the size of an osigcontext, now check for
726	 * it being valid for a whole, new-style ucontext_t.
727	 */
728#endif
729	if (!useracc((caddr_t)ucp, sizeof(*ucp), VM_PROT_READ))
730		return (EFAULT);
731
732	regs = td->td_frame;
733	eflags = ucp->uc_mcontext.mc_eflags;
734	if (eflags & PSL_VM) {
735		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
736		struct vm86_kernel *vm86;
737
738		/*
739		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
740		 * set up the vm86 area, and we can't enter vm86 mode.
741		 */
742		if (td->td_pcb->pcb_ext == 0)
743			return (EINVAL);
744		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
745		if (vm86->vm86_inited == 0)
746			return (EINVAL);
747
748		/* Go back to user mode if both flags are set. */
749		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
750			trapsignal(p, SIGBUS, 0);
751
752		if (vm86->vm86_has_vme) {
753			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
754			    (eflags & VME_USERCHANGE) | PSL_VM;
755		} else {
756			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
757			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
758			    (eflags & VM_USERCHANGE) | PSL_VM;
759		}
760		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
761		tf->tf_eflags = eflags;
762		tf->tf_vm86_ds = tf->tf_ds;
763		tf->tf_vm86_es = tf->tf_es;
764		tf->tf_vm86_fs = tf->tf_fs;
765		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
766		tf->tf_ds = _udatasel;
767		tf->tf_es = _udatasel;
768		tf->tf_fs = _udatasel;
769	} else {
770		/*
771		 * Don't allow users to change privileged or reserved flags.
772		 */
773		/*
774		 * XXX do allow users to change the privileged flag PSL_RF.
775		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
776		 * should sometimes set it there too.  tf_eflags is kept in
777		 * the signal context during signal handling and there is no
778		 * other place to remember it, so the PSL_RF bit may be
779		 * corrupted by the signal handler without us knowing.
780		 * Corruption of the PSL_RF bit at worst causes one more or
781		 * one less debugger trap, so allowing it is fairly harmless.
782		 */
783		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
784			printf("sigreturn: eflags = 0x%x\n", eflags);
785	    		return (EINVAL);
786		}
787
788		/*
789		 * Don't allow users to load a valid privileged %cs.  Let the
790		 * hardware check for invalid selectors, excess privilege in
791		 * other selectors, invalid %eip's and invalid %esp's.
792		 */
793		cs = ucp->uc_mcontext.mc_cs;
794		if (!CS_SECURE(cs)) {
795			printf("sigreturn: cs = 0x%x\n", cs);
796			trapsignal(p, SIGBUS, T_PROTFLT);
797			return (EINVAL);
798		}
799
800		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
801	}
802
803	PROC_LOCK(p);
804#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
805	if (ucp->uc_mcontext.mc_onstack & 1)
806		p->p_sigstk.ss_flags |= SS_ONSTACK;
807	else
808		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
809#endif
810
811	p->p_sigmask = ucp->uc_sigmask;
812	SIG_CANTMASK(p->p_sigmask);
813	PROC_UNLOCK(p);
814	return (EJUSTRETURN);
815}
816
817/*
818 * Machine dependent boot() routine
819 *
820 * I haven't seen anything to put here yet
821 * Possibly some stuff might be grafted back here from boot()
822 */
823void
824cpu_boot(int howto)
825{
826}
827
828/*
829 * Shutdown the CPU as much as possible
830 */
831void
832cpu_halt(void)
833{
834	for (;;)
835		__asm__ ("hlt");
836}
837
838/*
839 * Hook to idle the CPU when possible.  This currently only works in
840 * the !SMP case, as there is no clean way to ensure that a CPU will be
841 * woken when there is work available for it.
842 */
843static int	cpu_idle_hlt = 1;
844SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
845    &cpu_idle_hlt, 0, "Idle loop HLT enable");
846
847/*
848 * Note that we have to be careful here to avoid a race between checking
849 * procrunnable() and actually halting.  If we don't do this, we may waste
850 * the time between calling hlt and the next interrupt even though there
851 * is a runnable process.
852 */
853void
854cpu_idle(void)
855{
856#ifndef SMP
857	if (cpu_idle_hlt) {
858		disable_intr();
859  		if (procrunnable())
860			enable_intr();
861		else {
862			enable_intr();
863			__asm __volatile("hlt");
864		}
865	}
866#endif
867}
868
869/*
870 * Clear registers on exec
871 */
872void
873setregs(td, entry, stack, ps_strings)
874	struct thread *td;
875	u_long entry;
876	u_long stack;
877	u_long ps_strings;
878{
879	struct trapframe *regs = td->td_frame;
880	struct pcb *pcb = td->td_pcb;
881
882	if (td->td_proc->p_md.md_ldt)
883		user_ldt_free(td);
884
885	bzero((char *)regs, sizeof(struct trapframe));
886	regs->tf_eip = entry;
887	regs->tf_esp = stack;
888	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
889	regs->tf_ss = _udatasel;
890	regs->tf_ds = _udatasel;
891	regs->tf_es = _udatasel;
892	regs->tf_fs = _udatasel;
893	regs->tf_cs = _ucodesel;
894
895	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
896	regs->tf_ebx = ps_strings;
897
898	/* reset %gs as well */
899	if (pcb == PCPU_GET(curpcb))
900		load_gs(_udatasel);
901	else
902		pcb->pcb_gs = _udatasel;
903
904        /*
905         * Reset the hardware debug registers if they were in use.
906         * They won't have any meaning for the newly exec'd process.
907         */
908        if (pcb->pcb_flags & PCB_DBREGS) {
909                pcb->pcb_dr0 = 0;
910                pcb->pcb_dr1 = 0;
911                pcb->pcb_dr2 = 0;
912                pcb->pcb_dr3 = 0;
913                pcb->pcb_dr6 = 0;
914                pcb->pcb_dr7 = 0;
915                if (pcb == PCPU_GET(curpcb)) {
916		        /*
917			 * Clear the debug registers on the running
918			 * CPU, otherwise they will end up affecting
919			 * the next process we switch to.
920			 */
921		        reset_dbregs();
922                }
923                pcb->pcb_flags &= ~PCB_DBREGS;
924        }
925
926	/*
927	 * Initialize the math emulator (if any) for the current process.
928	 * Actually, just clear the bit that says that the emulator has
929	 * been initialized.  Initialization is delayed until the process
930	 * traps to the emulator (if it is done at all) mainly because
931	 * emulators don't provide an entry point for initialization.
932	 */
933	td->td_pcb->pcb_flags &= ~FP_SOFTFP;
934
935	/*
936	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
937	 * for why fwait must be trapped at least if there is an npx or an
938	 * emulator).  This is mainly to handle the case where npx0 is not
939	 * configured, since the npx routines normally set up the trap
940	 * otherwise.  It should be done only at boot time, but doing it
941	 * here allows modifying `npx_exists' for testing the emulator on
942	 * systems with an npx.
943	 */
944	load_cr0(rcr0() | CR0_MP | CR0_TS);
945
946#ifdef DEV_NPX
947	/* Initialize the npx (if any) for the current process. */
948	npxinit(__INITIAL_NPXCW__);
949#endif
950
951	/*
952	 * XXX - Linux emulator
953	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
954	 * on it.
955	 */
956	td->td_retval[1] = 0;
957}
958
959void
960cpu_setregs(void)
961{
962	unsigned int cr0;
963
964	cr0 = rcr0();
965#ifdef SMP
966	cr0 |= CR0_NE;			/* Done by npxinit() */
967#endif
968	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
969#ifndef I386_CPU
970	cr0 |= CR0_WP | CR0_AM;
971#endif
972	load_cr0(cr0);
973	load_gs(_udatasel);
974}
975
976static int
977sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
978{
979	int error;
980	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
981		req);
982	if (!error && req->newptr)
983		resettodr();
984	return (error);
985}
986
987SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
988	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
989
990SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
991	CTLFLAG_RW, &disable_rtc_set, 0, "");
992
993SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
994	CTLFLAG_RD, &bootinfo, bootinfo, "");
995
996SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
997	CTLFLAG_RW, &wall_cmos_clock, 0, "");
998
999/*
1000 * Initialize 386 and configure to run kernel
1001 */
1002
1003/*
1004 * Initialize segments & interrupt table
1005 */
1006
1007int _default_ldt;
1008union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1009static struct gate_descriptor idt0[NIDT];
1010struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1011union descriptor ldt[NLDT];		/* local descriptor table */
1012#ifdef SMP
1013/* table descriptors - used to load tables by microp */
1014struct region_descriptor r_gdt, r_idt;
1015#endif
1016
1017int private_tss;			/* flag indicating private tss */
1018
1019#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1020extern int has_f00f_bug;
1021#endif
1022
1023static struct i386tss dblfault_tss;
1024static char dblfault_stack[PAGE_SIZE];
1025
1026extern  struct user	*proc0uarea;
1027extern  vm_offset_t	proc0kstack;
1028
1029
1030/* software prototypes -- in more palatable form */
1031struct soft_segment_descriptor gdt_segs[] = {
1032/* GNULL_SEL	0 Null Descriptor */
1033{	0x0,			/* segment base address  */
1034	0x0,			/* length */
1035	0,			/* segment type */
1036	0,			/* segment descriptor priority level */
1037	0,			/* segment descriptor present */
1038	0, 0,
1039	0,			/* default 32 vs 16 bit size */
1040	0  			/* limit granularity (byte/page units)*/ },
1041/* GCODE_SEL	1 Code Descriptor for kernel */
1042{	0x0,			/* segment base address  */
1043	0xfffff,		/* length - all address space */
1044	SDT_MEMERA,		/* segment type */
1045	0,			/* segment descriptor priority level */
1046	1,			/* segment descriptor present */
1047	0, 0,
1048	1,			/* default 32 vs 16 bit size */
1049	1  			/* limit granularity (byte/page units)*/ },
1050/* GDATA_SEL	2 Data Descriptor for kernel */
1051{	0x0,			/* segment base address  */
1052	0xfffff,		/* length - all address space */
1053	SDT_MEMRWA,		/* segment type */
1054	0,			/* segment descriptor priority level */
1055	1,			/* segment descriptor present */
1056	0, 0,
1057	1,			/* default 32 vs 16 bit size */
1058	1  			/* limit granularity (byte/page units)*/ },
1059/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1060{	0x0,			/* segment base address  */
1061	0xfffff,		/* length - all address space */
1062	SDT_MEMRWA,		/* segment type */
1063	0,			/* segment descriptor priority level */
1064	1,			/* segment descriptor present */
1065	0, 0,
1066	1,			/* default 32 vs 16 bit size */
1067	1  			/* limit granularity (byte/page units)*/ },
1068/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1069{
1070	0x0,			/* segment base address */
1071	sizeof(struct i386tss)-1,/* length - all address space */
1072	SDT_SYS386TSS,		/* segment type */
1073	0,			/* segment descriptor priority level */
1074	1,			/* segment descriptor present */
1075	0, 0,
1076	0,			/* unused - default 32 vs 16 bit size */
1077	0  			/* limit granularity (byte/page units)*/ },
1078/* GLDT_SEL	5 LDT Descriptor */
1079{	(int) ldt,		/* segment base address  */
1080	sizeof(ldt)-1,		/* length - all address space */
1081	SDT_SYSLDT,		/* segment type */
1082	SEL_UPL,		/* segment descriptor priority level */
1083	1,			/* segment descriptor present */
1084	0, 0,
1085	0,			/* unused - default 32 vs 16 bit size */
1086	0  			/* limit granularity (byte/page units)*/ },
1087/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1088{	(int) ldt,		/* segment base address  */
1089	(512 * sizeof(union descriptor)-1),		/* length */
1090	SDT_SYSLDT,		/* segment type */
1091	0,			/* segment descriptor priority level */
1092	1,			/* segment descriptor present */
1093	0, 0,
1094	0,			/* unused - default 32 vs 16 bit size */
1095	0  			/* limit granularity (byte/page units)*/ },
1096/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1097{	0x0,			/* segment base address  */
1098	0x0,			/* length - all address space */
1099	0,			/* segment type */
1100	0,			/* segment descriptor priority level */
1101	0,			/* segment descriptor present */
1102	0, 0,
1103	0,			/* default 32 vs 16 bit size */
1104	0  			/* limit granularity (byte/page units)*/ },
1105/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1106{	0x400,			/* segment base address */
1107	0xfffff,		/* length */
1108	SDT_MEMRWA,		/* segment type */
1109	0,			/* segment descriptor priority level */
1110	1,			/* segment descriptor present */
1111	0, 0,
1112	1,			/* default 32 vs 16 bit size */
1113	1  			/* limit granularity (byte/page units)*/ },
1114/* GPANIC_SEL	9 Panic Tss Descriptor */
1115{	(int) &dblfault_tss,	/* segment base address  */
1116	sizeof(struct i386tss)-1,/* length - all address space */
1117	SDT_SYS386TSS,		/* segment type */
1118	0,			/* segment descriptor priority level */
1119	1,			/* segment descriptor present */
1120	0, 0,
1121	0,			/* unused - default 32 vs 16 bit size */
1122	0  			/* limit granularity (byte/page units)*/ },
1123/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1124{	0,			/* segment base address (overwritten)  */
1125	0xfffff,		/* length */
1126	SDT_MEMERA,		/* segment type */
1127	0,			/* segment descriptor priority level */
1128	1,			/* segment descriptor present */
1129	0, 0,
1130	0,			/* default 32 vs 16 bit size */
1131	1  			/* limit granularity (byte/page units)*/ },
1132/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1133{	0,			/* segment base address (overwritten)  */
1134	0xfffff,		/* length */
1135	SDT_MEMERA,		/* segment type */
1136	0,			/* segment descriptor priority level */
1137	1,			/* segment descriptor present */
1138	0, 0,
1139	0,			/* default 32 vs 16 bit size */
1140	1  			/* limit granularity (byte/page units)*/ },
1141/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1142{	0,			/* segment base address (overwritten) */
1143	0xfffff,		/* length */
1144	SDT_MEMRWA,		/* segment type */
1145	0,			/* segment descriptor priority level */
1146	1,			/* segment descriptor present */
1147	0, 0,
1148	1,			/* default 32 vs 16 bit size */
1149	1  			/* limit granularity (byte/page units)*/ },
1150/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1151{	0,			/* segment base address (overwritten) */
1152	0xfffff,		/* length */
1153	SDT_MEMRWA,		/* segment type */
1154	0,			/* segment descriptor priority level */
1155	1,			/* segment descriptor present */
1156	0, 0,
1157	0,			/* default 32 vs 16 bit size */
1158	1  			/* limit granularity (byte/page units)*/ },
1159/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1160{	0,			/* segment base address (overwritten) */
1161	0xfffff,		/* length */
1162	SDT_MEMRWA,		/* segment type */
1163	0,			/* segment descriptor priority level */
1164	1,			/* segment descriptor present */
1165	0, 0,
1166	0,			/* default 32 vs 16 bit size */
1167	1  			/* limit granularity (byte/page units)*/ },
1168};
1169
1170static struct soft_segment_descriptor ldt_segs[] = {
1171	/* Null Descriptor - overwritten by call gate */
1172{	0x0,			/* segment base address  */
1173	0x0,			/* length - all address space */
1174	0,			/* segment type */
1175	0,			/* segment descriptor priority level */
1176	0,			/* segment descriptor present */
1177	0, 0,
1178	0,			/* default 32 vs 16 bit size */
1179	0  			/* limit granularity (byte/page units)*/ },
1180	/* Null Descriptor - overwritten by call gate */
1181{	0x0,			/* segment base address  */
1182	0x0,			/* length - all address space */
1183	0,			/* segment type */
1184	0,			/* segment descriptor priority level */
1185	0,			/* segment descriptor present */
1186	0, 0,
1187	0,			/* default 32 vs 16 bit size */
1188	0  			/* limit granularity (byte/page units)*/ },
1189	/* Null Descriptor - overwritten by call gate */
1190{	0x0,			/* segment base address  */
1191	0x0,			/* length - all address space */
1192	0,			/* segment type */
1193	0,			/* segment descriptor priority level */
1194	0,			/* segment descriptor present */
1195	0, 0,
1196	0,			/* default 32 vs 16 bit size */
1197	0  			/* limit granularity (byte/page units)*/ },
1198	/* Code Descriptor for user */
1199{	0x0,			/* segment base address  */
1200	0xfffff,		/* length - all address space */
1201	SDT_MEMERA,		/* segment type */
1202	SEL_UPL,		/* segment descriptor priority level */
1203	1,			/* segment descriptor present */
1204	0, 0,
1205	1,			/* default 32 vs 16 bit size */
1206	1  			/* limit granularity (byte/page units)*/ },
1207	/* Null Descriptor - overwritten by call gate */
1208{	0x0,			/* segment base address  */
1209	0x0,			/* length - all address space */
1210	0,			/* segment type */
1211	0,			/* segment descriptor priority level */
1212	0,			/* segment descriptor present */
1213	0, 0,
1214	0,			/* default 32 vs 16 bit size */
1215	0  			/* limit granularity (byte/page units)*/ },
1216	/* Data Descriptor for user */
1217{	0x0,			/* segment base address  */
1218	0xfffff,		/* length - all address space */
1219	SDT_MEMRWA,		/* segment type */
1220	SEL_UPL,		/* segment descriptor priority level */
1221	1,			/* segment descriptor present */
1222	0, 0,
1223	1,			/* default 32 vs 16 bit size */
1224	1  			/* limit granularity (byte/page units)*/ },
1225};
1226
1227void
1228setidt(idx, func, typ, dpl, selec)
1229	int idx;
1230	inthand_t *func;
1231	int typ;
1232	int dpl;
1233	int selec;
1234{
1235	struct gate_descriptor *ip;
1236
1237	ip = idt + idx;
1238	ip->gd_looffset = (int)func;
1239	ip->gd_selector = selec;
1240	ip->gd_stkcpy = 0;
1241	ip->gd_xx = 0;
1242	ip->gd_type = typ;
1243	ip->gd_dpl = dpl;
1244	ip->gd_p = 1;
1245	ip->gd_hioffset = ((int)func)>>16 ;
1246}
1247
1248#define	IDTVEC(name)	__CONCAT(X,name)
1249
1250extern inthand_t
1251	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1252	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1253	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1254	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1255	IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1256
1257void
1258sdtossd(sd, ssd)
1259	struct segment_descriptor *sd;
1260	struct soft_segment_descriptor *ssd;
1261{
1262	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1263	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1264	ssd->ssd_type  = sd->sd_type;
1265	ssd->ssd_dpl   = sd->sd_dpl;
1266	ssd->ssd_p     = sd->sd_p;
1267	ssd->ssd_def32 = sd->sd_def32;
1268	ssd->ssd_gran  = sd->sd_gran;
1269}
1270
1271#define PHYSMAP_SIZE	(2 * 8)
1272
1273/*
1274 * Populate the (physmap) array with base/bound pairs describing the
1275 * available physical memory in the system, then test this memory and
1276 * build the phys_avail array describing the actually-available memory.
1277 *
1278 * If we cannot accurately determine the physical memory map, then use
1279 * value from the 0xE801 call, and failing that, the RTC.
1280 *
1281 * Total memory size may be set by the kernel environment variable
1282 * hw.physmem or the compile-time define MAXMEM.
1283 */
1284static void
1285getmemsize(int first)
1286{
1287	int i, physmap_idx, pa_indx;
1288	u_int basemem, extmem;
1289	struct vm86frame vmf;
1290	struct vm86context vmc;
1291	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1292	pt_entry_t *pte;
1293	const char *cp;
1294	struct bios_smap *smap;
1295
1296	bzero(&vmf, sizeof(struct vm86frame));
1297	bzero(physmap, sizeof(physmap));
1298
1299	/*
1300	 * Perform "base memory" related probes & setup
1301	 */
1302	vm86_intcall(0x12, &vmf);
1303	basemem = vmf.vmf_ax;
1304	if (basemem > 640) {
1305		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1306			basemem);
1307		basemem = 640;
1308	}
1309
1310	/*
1311	 * XXX if biosbasemem is now < 640, there is a `hole'
1312	 * between the end of base memory and the start of
1313	 * ISA memory.  The hole may be empty or it may
1314	 * contain BIOS code or data.  Map it read/write so
1315	 * that the BIOS can write to it.  (Memory from 0 to
1316	 * the physical end of the kernel is mapped read-only
1317	 * to begin with and then parts of it are remapped.
1318	 * The parts that aren't remapped form holes that
1319	 * remain read-only and are unused by the kernel.
1320	 * The base memory area is below the physical end of
1321	 * the kernel and right now forms a read-only hole.
1322	 * The part of it from PAGE_SIZE to
1323	 * (trunc_page(biosbasemem * 1024) - 1) will be
1324	 * remapped and used by the kernel later.)
1325	 *
1326	 * This code is similar to the code used in
1327	 * pmap_mapdev, but since no memory needs to be
1328	 * allocated we simply change the mapping.
1329	 */
1330	for (pa = trunc_page(basemem * 1024);
1331	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1332		pte = vtopte(pa + KERNBASE);
1333		*pte = pa | PG_RW | PG_V;
1334	}
1335
1336	/*
1337	 * if basemem != 640, map pages r/w into vm86 page table so
1338	 * that the bios can scribble on it.
1339	 */
1340	pte = (pt_entry_t *)vm86paddr;
1341	for (i = basemem / 4; i < 160; i++)
1342		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1343
1344	/*
1345	 * map page 1 R/W into the kernel page table so we can use it
1346	 * as a buffer.  The kernel will unmap this page later.
1347	 */
1348	pte = vtopte(KERNBASE + (1 << PAGE_SHIFT));
1349	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1350
1351	/*
1352	 * get memory map with INT 15:E820
1353	 */
1354	vmc.npages = 0;
1355	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1356	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1357
1358	physmap_idx = 0;
1359	vmf.vmf_ebx = 0;
1360	do {
1361		vmf.vmf_eax = 0xE820;
1362		vmf.vmf_edx = SMAP_SIG;
1363		vmf.vmf_ecx = sizeof(struct bios_smap);
1364		i = vm86_datacall(0x15, &vmf, &vmc);
1365		if (i || vmf.vmf_eax != SMAP_SIG)
1366			break;
1367		if (boothowto & RB_VERBOSE)
1368			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1369				smap->type,
1370				*(u_int32_t *)((char *)&smap->base + 4),
1371				(u_int32_t)smap->base,
1372				*(u_int32_t *)((char *)&smap->length + 4),
1373				(u_int32_t)smap->length);
1374
1375		if (smap->type != 0x01)
1376			goto next_run;
1377
1378		if (smap->length == 0)
1379			goto next_run;
1380
1381		if (smap->base >= 0xffffffff) {
1382			printf("%uK of memory above 4GB ignored\n",
1383			    (u_int)(smap->length / 1024));
1384			goto next_run;
1385		}
1386
1387		for (i = 0; i <= physmap_idx; i += 2) {
1388			if (smap->base < physmap[i + 1]) {
1389				if (boothowto & RB_VERBOSE)
1390					printf(
1391	"Overlapping or non-montonic memory region, ignoring second region\n");
1392				goto next_run;
1393			}
1394		}
1395
1396		if (smap->base == physmap[physmap_idx + 1]) {
1397			physmap[physmap_idx + 1] += smap->length;
1398			goto next_run;
1399		}
1400
1401		physmap_idx += 2;
1402		if (physmap_idx == PHYSMAP_SIZE) {
1403			printf(
1404		"Too many segments in the physical address map, giving up\n");
1405			break;
1406		}
1407		physmap[physmap_idx] = smap->base;
1408		physmap[physmap_idx + 1] = smap->base + smap->length;
1409next_run:
1410	} while (vmf.vmf_ebx != 0);
1411
1412	if (physmap[1] != 0)
1413		goto physmap_done;
1414
1415	/*
1416	 * If we failed above, try memory map with INT 15:E801
1417	 */
1418	vmf.vmf_ax = 0xE801;
1419	if (vm86_intcall(0x15, &vmf) == 0) {
1420		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1421	} else {
1422#if 0
1423		vmf.vmf_ah = 0x88;
1424		vm86_intcall(0x15, &vmf);
1425		extmem = vmf.vmf_ax;
1426#else
1427		/*
1428		 * Prefer the RTC value for extended memory.
1429		 */
1430		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1431#endif
1432	}
1433
1434	/*
1435	 * Special hack for chipsets that still remap the 384k hole when
1436	 * there's 16MB of memory - this really confuses people that
1437	 * are trying to use bus mastering ISA controllers with the
1438	 * "16MB limit"; they only have 16MB, but the remapping puts
1439	 * them beyond the limit.
1440	 *
1441	 * If extended memory is between 15-16MB (16-17MB phys address range),
1442	 *	chop it to 15MB.
1443	 */
1444	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1445		extmem = 15 * 1024;
1446
1447	physmap[0] = 0;
1448	physmap[1] = basemem * 1024;
1449	physmap_idx = 2;
1450	physmap[physmap_idx] = 0x100000;
1451	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1452
1453physmap_done:
1454	/*
1455	 * Now, physmap contains a map of physical memory.
1456	 */
1457
1458#ifdef SMP
1459	/* make hole for AP bootstrap code */
1460	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1461
1462	/* look for the MP hardware - needed for apic addresses */
1463	i386_mp_probe();
1464#endif
1465
1466	/*
1467	 * Maxmem isn't the "maximum memory", it's one larger than the
1468	 * highest page of the physical address space.  It should be
1469	 * called something like "Maxphyspage".  We may adjust this
1470	 * based on ``hw.physmem'' and the results of the memory test.
1471	 */
1472	Maxmem = atop(physmap[physmap_idx + 1]);
1473
1474#ifdef MAXMEM
1475	Maxmem = MAXMEM / 4;
1476#endif
1477
1478	/*
1479	 * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
1480	 * for the appropriate modifiers.  This overrides MAXMEM.
1481	 */
1482	if ((cp = getenv("hw.physmem")) != NULL) {
1483		u_int64_t AllowMem, sanity;
1484		char *ep;
1485
1486		sanity = AllowMem = strtouq(cp, &ep, 0);
1487		if ((ep != cp) && (*ep != 0)) {
1488			switch(*ep) {
1489			case 'g':
1490			case 'G':
1491				AllowMem <<= 10;
1492			case 'm':
1493			case 'M':
1494				AllowMem <<= 10;
1495			case 'k':
1496			case 'K':
1497				AllowMem <<= 10;
1498				break;
1499			default:
1500				AllowMem = sanity = 0;
1501			}
1502			if (AllowMem < sanity)
1503				AllowMem = 0;
1504		}
1505		if (AllowMem == 0)
1506			printf("Ignoring invalid memory size of '%s'\n", cp);
1507		else
1508			Maxmem = atop(AllowMem);
1509	}
1510
1511	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1512	    (boothowto & RB_VERBOSE))
1513		printf("Physical memory use set to %uK\n", Maxmem * 4);
1514
1515	/*
1516	 * If Maxmem has been increased beyond what the system has detected,
1517	 * extend the last memory segment to the new limit.
1518	 */
1519	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1520		physmap[physmap_idx + 1] = ptoa(Maxmem);
1521
1522	/* call pmap initialization to make new kernel address space */
1523	pmap_bootstrap(first, 0);
1524
1525	/*
1526	 * Size up each available chunk of physical memory.
1527	 */
1528	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1529	pa_indx = 0;
1530	phys_avail[pa_indx++] = physmap[0];
1531	phys_avail[pa_indx] = physmap[0];
1532#if 0
1533	pte = vtopte(KERNBASE);
1534#else
1535	pte = CMAP1;
1536#endif
1537
1538	/*
1539	 * physmap is in bytes, so when converting to page boundaries,
1540	 * round up the start address and round down the end address.
1541	 */
1542	for (i = 0; i <= physmap_idx; i += 2) {
1543		vm_offset_t end;
1544
1545		end = ptoa(Maxmem);
1546		if (physmap[i + 1] < end)
1547			end = trunc_page(physmap[i + 1]);
1548		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1549			int tmp, page_bad;
1550#if 0
1551			int *ptr = 0;
1552#else
1553			int *ptr = (int *)CADDR1;
1554#endif
1555
1556			/*
1557			 * block out kernel memory as not available.
1558			 */
1559			if (pa >= 0x100000 && pa < first)
1560				continue;
1561
1562			page_bad = FALSE;
1563
1564			/*
1565			 * map page into kernel: valid, read/write,non-cacheable
1566			 */
1567			*pte = pa | PG_V | PG_RW | PG_N;
1568			invltlb();
1569
1570			tmp = *(int *)ptr;
1571			/*
1572			 * Test for alternating 1's and 0's
1573			 */
1574			*(volatile int *)ptr = 0xaaaaaaaa;
1575			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1576				page_bad = TRUE;
1577			}
1578			/*
1579			 * Test for alternating 0's and 1's
1580			 */
1581			*(volatile int *)ptr = 0x55555555;
1582			if (*(volatile int *)ptr != 0x55555555) {
1583			page_bad = TRUE;
1584			}
1585			/*
1586			 * Test for all 1's
1587			 */
1588			*(volatile int *)ptr = 0xffffffff;
1589			if (*(volatile int *)ptr != 0xffffffff) {
1590				page_bad = TRUE;
1591			}
1592			/*
1593			 * Test for all 0's
1594			 */
1595			*(volatile int *)ptr = 0x0;
1596			if (*(volatile int *)ptr != 0x0) {
1597				page_bad = TRUE;
1598			}
1599			/*
1600			 * Restore original value.
1601			 */
1602			*(int *)ptr = tmp;
1603
1604			/*
1605			 * Adjust array of valid/good pages.
1606			 */
1607			if (page_bad == TRUE) {
1608				continue;
1609			}
1610			/*
1611			 * If this good page is a continuation of the
1612			 * previous set of good pages, then just increase
1613			 * the end pointer. Otherwise start a new chunk.
1614			 * Note that "end" points one higher than end,
1615			 * making the range >= start and < end.
1616			 * If we're also doing a speculative memory
1617			 * test and we at or past the end, bump up Maxmem
1618			 * so that we keep going. The first bad page
1619			 * will terminate the loop.
1620			 */
1621			if (phys_avail[pa_indx] == pa) {
1622				phys_avail[pa_indx] += PAGE_SIZE;
1623			} else {
1624				pa_indx++;
1625				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1626					printf(
1627		"Too many holes in the physical address space, giving up\n");
1628					pa_indx--;
1629					break;
1630				}
1631				phys_avail[pa_indx++] = pa;	/* start */
1632				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1633			}
1634			physmem++;
1635		}
1636	}
1637	*pte = 0;
1638	invltlb();
1639
1640	/*
1641	 * XXX
1642	 * The last chunk must contain at least one page plus the message
1643	 * buffer to avoid complicating other code (message buffer address
1644	 * calculation, etc.).
1645	 */
1646	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1647	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1648		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1649		phys_avail[pa_indx--] = 0;
1650		phys_avail[pa_indx--] = 0;
1651	}
1652
1653	Maxmem = atop(phys_avail[pa_indx]);
1654
1655	/* Trim off space for the message buffer. */
1656	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1657
1658	avail_end = phys_avail[pa_indx];
1659}
1660
1661void
1662init386(first)
1663	int first;
1664{
1665	struct gate_descriptor *gdp;
1666	int gsel_tss, metadata_missing, off, x;
1667#ifndef SMP
1668	/* table descriptors - used to load tables by microp */
1669	struct region_descriptor r_gdt, r_idt;
1670#endif
1671	struct pcpu *pc;
1672
1673	proc_linkup(&proc0);
1674	proc0.p_uarea = proc0uarea;
1675	thread0 = &proc0.p_thread;
1676	thread0->td_kstack = proc0kstack;
1677	thread0->td_pcb = (struct pcb *)
1678	   (thread0->td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1679	atdevbase = ISA_HOLE_START + KERNBASE;
1680
1681	metadata_missing = 0;
1682	if (bootinfo.bi_modulep) {
1683		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1684		preload_bootstrap_relocate(KERNBASE);
1685	} else {
1686		metadata_missing = 1;
1687	}
1688	if (envmode == 1)
1689		kern_envp = static_env;
1690	else if (bootinfo.bi_envp)
1691		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1692
1693	/* Init basic tunables, hz etc */
1694	init_param1();
1695
1696	/*
1697	 * make gdt memory segments, the code segment goes up to end of the
1698	 * page with etext in it, the data segment goes to the end of
1699	 * the address space
1700	 */
1701	/*
1702	 * XXX text protection is temporarily (?) disabled.  The limit was
1703	 * i386_btop(round_page(etext)) - 1.
1704	 */
1705	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1706	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1707#ifdef SMP
1708	pc = &SMP_prvspace[0];
1709	gdt_segs[GPRIV_SEL].ssd_limit =
1710		atop(sizeof(struct privatespace) - 1);
1711#else
1712	pc = &__pcpu;
1713	gdt_segs[GPRIV_SEL].ssd_limit =
1714		atop(sizeof(struct pcpu) - 1);
1715#endif
1716	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
1717	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
1718
1719	for (x = 0; x < NGDT; x++) {
1720#ifdef BDE_DEBUGGER
1721		/* avoid overwriting db entries with APM ones */
1722		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1723			continue;
1724#endif
1725		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1726	}
1727
1728	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1729	r_gdt.rd_base =  (int) gdt;
1730	lgdt(&r_gdt);
1731
1732	pcpu_init(pc, 0, sizeof(struct pcpu));
1733	PCPU_SET(prvspace, pc);
1734
1735	/* setup curproc so that mutexes work */
1736	PCPU_SET(curthread, thread0);
1737
1738	LIST_INIT(&thread0->td_contested);
1739
1740	/*
1741	 * Initialize mutexes.
1742	 */
1743	mtx_init(&Giant, "Giant", MTX_DEF | MTX_RECURSE);
1744	mtx_init(&sched_lock, "sched lock", MTX_SPIN | MTX_RECURSE);
1745	mtx_init(&proc0.p_mtx, "process lock", MTX_DEF);
1746	mtx_init(&clock_lock, "clk", MTX_SPIN | MTX_RECURSE);
1747	mtx_init(&icu_lock, "icu", MTX_SPIN);
1748	mtx_lock(&Giant);
1749
1750	/* make ldt memory segments */
1751	/*
1752	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1753	 * should be spelled ...MAX_USER...
1754	 */
1755	ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1756	ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1757	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1758		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1759
1760	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1761	lldt(_default_ldt);
1762	PCPU_SET(currentldt, _default_ldt);
1763
1764	/* exceptions */
1765	for (x = 0; x < NIDT; x++)
1766		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
1767		    GSEL(GCODE_SEL, SEL_KPL));
1768	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
1769	    GSEL(GCODE_SEL, SEL_KPL));
1770	setidt(1, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
1771	    GSEL(GCODE_SEL, SEL_KPL));
1772	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL,
1773	    GSEL(GCODE_SEL, SEL_KPL));
1774 	setidt(3, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
1775	    GSEL(GCODE_SEL, SEL_KPL));
1776	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
1777	    GSEL(GCODE_SEL, SEL_KPL));
1778	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
1779	    GSEL(GCODE_SEL, SEL_KPL));
1780	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
1781	    GSEL(GCODE_SEL, SEL_KPL));
1782	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
1783	    , GSEL(GCODE_SEL, SEL_KPL));
1784	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1785	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
1786	    GSEL(GCODE_SEL, SEL_KPL));
1787	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
1788	    GSEL(GCODE_SEL, SEL_KPL));
1789	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
1790	    GSEL(GCODE_SEL, SEL_KPL));
1791	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
1792	    GSEL(GCODE_SEL, SEL_KPL));
1793	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
1794	    GSEL(GCODE_SEL, SEL_KPL));
1795	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
1796	    GSEL(GCODE_SEL, SEL_KPL));
1797	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL,
1798	    GSEL(GCODE_SEL, SEL_KPL));
1799	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
1800	    GSEL(GCODE_SEL, SEL_KPL));
1801	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
1802	    GSEL(GCODE_SEL, SEL_KPL));
1803	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
1804	    GSEL(GCODE_SEL, SEL_KPL));
1805	setidt(19, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
1806	    GSEL(GCODE_SEL, SEL_KPL));
1807 	setidt(0x80, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
1808	    GSEL(GCODE_SEL, SEL_KPL));
1809
1810	r_idt.rd_limit = sizeof(idt0) - 1;
1811	r_idt.rd_base = (int) idt;
1812	lidt(&r_idt);
1813
1814	/*
1815	 * Initialize the console before we print anything out.
1816	 */
1817	cninit();
1818
1819	if (metadata_missing)
1820		printf("WARNING: loader(8) metadata is missing!\n");
1821
1822#ifdef DEV_ISA
1823	isa_defaultirq();
1824#endif
1825
1826#ifdef DDB
1827	kdb_init();
1828	if (boothowto & RB_KDB)
1829		Debugger("Boot flags requested debugger");
1830#endif
1831
1832	finishidentcpu();	/* Final stage of CPU initialization */
1833	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
1834	    GSEL(GCODE_SEL, SEL_KPL));
1835	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
1836	    GSEL(GCODE_SEL, SEL_KPL));
1837	initializecpu();	/* Initialize CPU registers */
1838
1839	/* make an initial tss so cpu can get interrupt stack on syscall! */
1840	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
1841	PCPU_SET(common_tss.tss_esp0, thread0->td_kstack +
1842	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
1843	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
1844	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1845	private_tss = 0;
1846	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
1847	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
1848	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
1849	ltr(gsel_tss);
1850
1851	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1852	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
1853	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1854	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1855	dblfault_tss.tss_cr3 = (int)IdlePTD;
1856	dblfault_tss.tss_eip = (int)dblfault_handler;
1857	dblfault_tss.tss_eflags = PSL_KERNEL;
1858	dblfault_tss.tss_ds = dblfault_tss.tss_es =
1859	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1860	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1861	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1862	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1863
1864	vm86_initialize();
1865	getmemsize(first);
1866	init_param2(physmem);
1867
1868	/* now running on new page tables, configured,and u/iom is accessible */
1869
1870	/* Map the message buffer. */
1871	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1872		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1873
1874	msgbufinit(msgbufp, MSGBUF_SIZE);
1875
1876	/* make a call gate to reenter kernel with */
1877	gdp = &ldt[LSYS5CALLS_SEL].gd;
1878
1879	x = (int) &IDTVEC(lcall_syscall);
1880	gdp->gd_looffset = x;
1881	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1882	gdp->gd_stkcpy = 1;
1883	gdp->gd_type = SDT_SYS386CGT;
1884	gdp->gd_dpl = SEL_UPL;
1885	gdp->gd_p = 1;
1886	gdp->gd_hioffset = x >> 16;
1887
1888	/* XXX does this work? */
1889	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1890	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
1891
1892	/* transfer to user mode */
1893
1894	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1895	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1896
1897	/* setup proc 0's pcb */
1898	thread0->td_pcb->pcb_flags = 0; /* XXXKSE */
1899	thread0->td_pcb->pcb_cr3 = (int)IdlePTD;
1900	thread0->td_pcb->pcb_ext = 0;
1901	thread0->td_frame = &proc0_tf;
1902}
1903
1904void
1905cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1906{
1907}
1908
1909#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1910static void f00f_hack(void *unused);
1911SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1912
1913static void
1914f00f_hack(void *unused) {
1915	struct gate_descriptor *new_idt;
1916#ifndef SMP
1917	struct region_descriptor r_idt;
1918#endif
1919	vm_offset_t tmp;
1920
1921	if (!has_f00f_bug)
1922		return;
1923
1924	GIANT_REQUIRED;
1925
1926	printf("Intel Pentium detected, installing workaround for F00F bug\n");
1927
1928	r_idt.rd_limit = sizeof(idt0) - 1;
1929
1930	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
1931	if (tmp == 0)
1932		panic("kmem_alloc returned 0");
1933	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1934		panic("kmem_alloc returned non-page-aligned memory");
1935	/* Put the first seven entries in the lower page */
1936	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1937	bcopy(idt, new_idt, sizeof(idt0));
1938	r_idt.rd_base = (int)new_idt;
1939	lidt(&r_idt);
1940	idt = new_idt;
1941	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
1942			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
1943		panic("vm_map_protect failed");
1944	return;
1945}
1946#endif /* defined(I586_CPU) && !NO_F00F_HACK */
1947
1948int
1949ptrace_set_pc(struct thread *td, unsigned long addr)
1950{
1951	td->td_frame->tf_eip = addr;
1952	return (0);
1953}
1954
1955int
1956ptrace_single_step(struct thread *td)
1957{
1958	td->td_frame->tf_eflags |= PSL_T;
1959	return (0);
1960}
1961
1962int
1963fill_regs(struct thread *td, struct reg *regs)
1964{
1965	struct pcb *pcb;
1966	struct trapframe *tp;
1967
1968	tp = td->td_frame;
1969	regs->r_fs = tp->tf_fs;
1970	regs->r_es = tp->tf_es;
1971	regs->r_ds = tp->tf_ds;
1972	regs->r_edi = tp->tf_edi;
1973	regs->r_esi = tp->tf_esi;
1974	regs->r_ebp = tp->tf_ebp;
1975	regs->r_ebx = tp->tf_ebx;
1976	regs->r_edx = tp->tf_edx;
1977	regs->r_ecx = tp->tf_ecx;
1978	regs->r_eax = tp->tf_eax;
1979	regs->r_eip = tp->tf_eip;
1980	regs->r_cs = tp->tf_cs;
1981	regs->r_eflags = tp->tf_eflags;
1982	regs->r_esp = tp->tf_esp;
1983	regs->r_ss = tp->tf_ss;
1984	pcb = td->td_pcb;
1985	regs->r_gs = pcb->pcb_gs;
1986	return (0);
1987}
1988
1989int
1990set_regs(struct thread *td, struct reg *regs)
1991{
1992	struct pcb *pcb;
1993	struct trapframe *tp;
1994
1995	tp = td->td_frame;
1996	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
1997	    !CS_SECURE(regs->r_cs))
1998		return (EINVAL);
1999	tp->tf_fs = regs->r_fs;
2000	tp->tf_es = regs->r_es;
2001	tp->tf_ds = regs->r_ds;
2002	tp->tf_edi = regs->r_edi;
2003	tp->tf_esi = regs->r_esi;
2004	tp->tf_ebp = regs->r_ebp;
2005	tp->tf_ebx = regs->r_ebx;
2006	tp->tf_edx = regs->r_edx;
2007	tp->tf_ecx = regs->r_ecx;
2008	tp->tf_eax = regs->r_eax;
2009	tp->tf_eip = regs->r_eip;
2010	tp->tf_cs = regs->r_cs;
2011	tp->tf_eflags = regs->r_eflags;
2012	tp->tf_esp = regs->r_esp;
2013	tp->tf_ss = regs->r_ss;
2014	pcb = td->td_pcb;
2015	pcb->pcb_gs = regs->r_gs;
2016	return (0);
2017}
2018
2019#ifdef CPU_ENABLE_SSE
2020static void
2021fill_fpregs_xmm(sv_xmm, sv_87)
2022	struct savexmm *sv_xmm;
2023	struct save87 *sv_87;
2024{
2025	register struct env87 *penv_87 = &sv_87->sv_env;
2026	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2027	int i;
2028
2029	/* FPU control/status */
2030	penv_87->en_cw = penv_xmm->en_cw;
2031	penv_87->en_sw = penv_xmm->en_sw;
2032	penv_87->en_tw = penv_xmm->en_tw;
2033	penv_87->en_fip = penv_xmm->en_fip;
2034	penv_87->en_fcs = penv_xmm->en_fcs;
2035	penv_87->en_opcode = penv_xmm->en_opcode;
2036	penv_87->en_foo = penv_xmm->en_foo;
2037	penv_87->en_fos = penv_xmm->en_fos;
2038
2039	/* FPU registers */
2040	for (i = 0; i < 8; ++i)
2041		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2042
2043	sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
2044}
2045
2046static void
2047set_fpregs_xmm(sv_87, sv_xmm)
2048	struct save87 *sv_87;
2049	struct savexmm *sv_xmm;
2050{
2051	register struct env87 *penv_87 = &sv_87->sv_env;
2052	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2053	int i;
2054
2055	/* FPU control/status */
2056	penv_xmm->en_cw = penv_87->en_cw;
2057	penv_xmm->en_sw = penv_87->en_sw;
2058	penv_xmm->en_tw = penv_87->en_tw;
2059	penv_xmm->en_fip = penv_87->en_fip;
2060	penv_xmm->en_fcs = penv_87->en_fcs;
2061	penv_xmm->en_opcode = penv_87->en_opcode;
2062	penv_xmm->en_foo = penv_87->en_foo;
2063	penv_xmm->en_fos = penv_87->en_fos;
2064
2065	/* FPU registers */
2066	for (i = 0; i < 8; ++i)
2067		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2068
2069	sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2070}
2071#endif /* CPU_ENABLE_SSE */
2072
2073int
2074fill_fpregs(struct thread *td, struct fpreg *fpregs)
2075{
2076#ifdef CPU_ENABLE_SSE
2077	if (cpu_fxsr) {
2078		fill_fpregs_xmm(&td->td_pcb->pcb_save.sv_xmm,
2079						(struct save87 *)fpregs);
2080		return (0);
2081	}
2082#endif /* CPU_ENABLE_SSE */
2083	bcopy(&td->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2084	return (0);
2085}
2086
2087int
2088set_fpregs(struct thread *td, struct fpreg *fpregs)
2089{
2090#ifdef CPU_ENABLE_SSE
2091	if (cpu_fxsr) {
2092		set_fpregs_xmm((struct save87 *)fpregs,
2093					   &td->td_pcb->pcb_save.sv_xmm);
2094		return (0);
2095	}
2096#endif /* CPU_ENABLE_SSE */
2097	bcopy(fpregs, &td->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2098	return (0);
2099}
2100
2101int
2102fill_dbregs(struct thread *td, struct dbreg *dbregs)
2103{
2104	struct pcb *pcb;
2105
2106	if (td == NULL) {
2107		dbregs->dr0 = rdr0();
2108		dbregs->dr1 = rdr1();
2109		dbregs->dr2 = rdr2();
2110		dbregs->dr3 = rdr3();
2111		dbregs->dr4 = rdr4();
2112		dbregs->dr5 = rdr5();
2113		dbregs->dr6 = rdr6();
2114		dbregs->dr7 = rdr7();
2115	} else {
2116		pcb = td->td_pcb;
2117		dbregs->dr0 = pcb->pcb_dr0;
2118		dbregs->dr1 = pcb->pcb_dr1;
2119		dbregs->dr2 = pcb->pcb_dr2;
2120		dbregs->dr3 = pcb->pcb_dr3;
2121		dbregs->dr4 = 0;
2122		dbregs->dr5 = 0;
2123		dbregs->dr6 = pcb->pcb_dr6;
2124		dbregs->dr7 = pcb->pcb_dr7;
2125	}
2126	return (0);
2127}
2128
2129int
2130set_dbregs(struct thread *td, struct dbreg *dbregs)
2131{
2132	struct pcb *pcb;
2133	int i;
2134	u_int32_t mask1, mask2;
2135
2136	if (td == NULL) {
2137		load_dr0(dbregs->dr0);
2138		load_dr1(dbregs->dr1);
2139		load_dr2(dbregs->dr2);
2140		load_dr3(dbregs->dr3);
2141		load_dr4(dbregs->dr4);
2142		load_dr5(dbregs->dr5);
2143		load_dr6(dbregs->dr6);
2144		load_dr7(dbregs->dr7);
2145	} else {
2146		/*
2147		 * Don't let an illegal value for dr7 get set.	Specifically,
2148		 * check for undefined settings.  Setting these bit patterns
2149		 * result in undefined behaviour and can lead to an unexpected
2150		 * TRCTRAP.
2151		 */
2152		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2153		     i++, mask1 <<= 2, mask2 <<= 2)
2154			if ((dbregs->dr7 & mask1) == mask2)
2155				return (EINVAL);
2156
2157		pcb = td->td_pcb;
2158
2159		/*
2160		 * Don't let a process set a breakpoint that is not within the
2161		 * process's address space.  If a process could do this, it
2162		 * could halt the system by setting a breakpoint in the kernel
2163		 * (if ddb was enabled).  Thus, we need to check to make sure
2164		 * that no breakpoints are being enabled for addresses outside
2165		 * process's address space, unless, perhaps, we were called by
2166		 * uid 0.
2167		 *
2168		 * XXX - what about when the watched area of the user's
2169		 * address space is written into from within the kernel
2170		 * ... wouldn't that still cause a breakpoint to be generated
2171		 * from within kernel mode?
2172		 */
2173
2174		if (suser_td(td) != 0) {
2175			if (dbregs->dr7 & 0x3) {
2176				/* dr0 is enabled */
2177				if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2178					return (EINVAL);
2179			}
2180
2181			if (dbregs->dr7 & (0x3<<2)) {
2182				/* dr1 is enabled */
2183				if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2184					return (EINVAL);
2185			}
2186
2187			if (dbregs->dr7 & (0x3<<4)) {
2188				/* dr2 is enabled */
2189				if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2190					return (EINVAL);
2191			}
2192
2193			if (dbregs->dr7 & (0x3<<6)) {
2194				/* dr3 is enabled */
2195				if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2196					return (EINVAL);
2197			}
2198		}
2199
2200		pcb->pcb_dr0 = dbregs->dr0;
2201		pcb->pcb_dr1 = dbregs->dr1;
2202		pcb->pcb_dr2 = dbregs->dr2;
2203		pcb->pcb_dr3 = dbregs->dr3;
2204		pcb->pcb_dr6 = dbregs->dr6;
2205		pcb->pcb_dr7 = dbregs->dr7;
2206
2207		pcb->pcb_flags |= PCB_DBREGS;
2208	}
2209
2210	return (0);
2211}
2212
2213/*
2214 * Return > 0 if a hardware breakpoint has been hit, and the
2215 * breakpoint was in user space.  Return 0, otherwise.
2216 */
2217int
2218user_dbreg_trap(void)
2219{
2220        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2221        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
2222        int nbp;            /* number of breakpoints that triggered */
2223        caddr_t addr[4];    /* breakpoint addresses */
2224        int i;
2225
2226        dr7 = rdr7();
2227        if ((dr7 & 0x000000ff) == 0) {
2228                /*
2229                 * all GE and LE bits in the dr7 register are zero,
2230                 * thus the trap couldn't have been caused by the
2231                 * hardware debug registers
2232                 */
2233                return 0;
2234        }
2235
2236        nbp = 0;
2237        dr6 = rdr6();
2238        bp = dr6 & 0x0000000f;
2239
2240        if (!bp) {
2241                /*
2242                 * None of the breakpoint bits are set meaning this
2243                 * trap was not caused by any of the debug registers
2244                 */
2245                return 0;
2246        }
2247
2248        /*
2249         * at least one of the breakpoints were hit, check to see
2250         * which ones and if any of them are user space addresses
2251         */
2252
2253        if (bp & 0x01) {
2254                addr[nbp++] = (caddr_t)rdr0();
2255        }
2256        if (bp & 0x02) {
2257                addr[nbp++] = (caddr_t)rdr1();
2258        }
2259        if (bp & 0x04) {
2260                addr[nbp++] = (caddr_t)rdr2();
2261        }
2262        if (bp & 0x08) {
2263                addr[nbp++] = (caddr_t)rdr3();
2264        }
2265
2266        for (i=0; i<nbp; i++) {
2267                if (addr[i] <
2268                    (caddr_t)VM_MAXUSER_ADDRESS) {
2269                        /*
2270                         * addr[i] is in user space
2271                         */
2272                        return nbp;
2273                }
2274        }
2275
2276        /*
2277         * None of the breakpoints are in user space.
2278         */
2279        return 0;
2280}
2281
2282
2283#ifndef DDB
2284void
2285Debugger(const char *msg)
2286{
2287	printf("Debugger(\"%s\") called.\n", msg);
2288}
2289#endif /* no DDB */
2290
2291#include <sys/disklabel.h>
2292
2293/*
2294 * Determine the size of the transfer, and make sure it is
2295 * within the boundaries of the partition. Adjust transfer
2296 * if needed, and signal errors or early completion.
2297 */
2298int
2299bounds_check_with_label(struct bio *bp, struct disklabel *lp, int wlabel)
2300{
2301        struct partition *p = lp->d_partitions + dkpart(bp->bio_dev);
2302        int labelsect = lp->d_partitions[0].p_offset;
2303        int maxsz = p->p_size,
2304                sz = (bp->bio_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2305
2306        /* overwriting disk label ? */
2307        /* XXX should also protect bootstrap in first 8K */
2308        if (bp->bio_blkno + p->p_offset <= LABELSECTOR + labelsect &&
2309#if LABELSECTOR != 0
2310            bp->bio_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2311#endif
2312            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2313                bp->bio_error = EROFS;
2314                goto bad;
2315        }
2316
2317#if     defined(DOSBBSECTOR) && defined(notyet)
2318        /* overwriting master boot record? */
2319        if (bp->bio_blkno + p->p_offset <= DOSBBSECTOR &&
2320            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2321                bp->bio_error = EROFS;
2322                goto bad;
2323        }
2324#endif
2325
2326        /* beyond partition? */
2327        if (bp->bio_blkno < 0 || bp->bio_blkno + sz > maxsz) {
2328                /* if exactly at end of disk, return an EOF */
2329                if (bp->bio_blkno == maxsz) {
2330                        bp->bio_resid = bp->bio_bcount;
2331                        return(0);
2332                }
2333                /* or truncate if part of it fits */
2334                sz = maxsz - bp->bio_blkno;
2335                if (sz <= 0) {
2336                        bp->bio_error = EINVAL;
2337                        goto bad;
2338                }
2339                bp->bio_bcount = sz << DEV_BSHIFT;
2340        }
2341
2342        bp->bio_pblkno = bp->bio_blkno + p->p_offset;
2343        return(1);
2344
2345bad:
2346        bp->bio_flags |= BIO_ERROR;
2347        return(-1);
2348}
2349
2350#ifdef DDB
2351
2352/*
2353 * Provide inb() and outb() as functions.  They are normally only
2354 * available as macros calling inlined functions, thus cannot be
2355 * called inside DDB.
2356 *
2357 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2358 */
2359
2360#undef inb
2361#undef outb
2362
2363/* silence compiler warnings */
2364u_char inb(u_int);
2365void outb(u_int, u_char);
2366
2367u_char
2368inb(u_int port)
2369{
2370	u_char	data;
2371	/*
2372	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2373	 * %edx, while gcc generates inferior code (movw instead of movl)
2374	 * if we tell it to load (u_short) port.
2375	 */
2376	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2377	return (data);
2378}
2379
2380void
2381outb(u_int port, u_char data)
2382{
2383	u_char	al;
2384	/*
2385	 * Use an unnecessary assignment to help gcc's register allocator.
2386	 * This make a large difference for gcc-1.40 and a tiny difference
2387	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2388	 * best results.  gcc-2.6.0 can't handle this.
2389	 */
2390	al = data;
2391	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2392}
2393
2394#endif /* DDB */
2395