machdep.c revision 82939
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 82939 2001-09-04 08:42:35Z peter $
39 */
40
41#include "opt_atalk.h"
42#include "opt_compat.h"
43#include "opt_cpu.h"
44#include "opt_ddb.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_isa.h"
48#include "opt_maxmem.h"
49#include "opt_msgbuf.h"
50#include "opt_npx.h"
51#include "opt_perfmon.h"
52#include "opt_upages.h"
53/* #include "opt_userconfig.h" */
54
55#include <sys/param.h>
56#include <sys/systm.h>
57#include <sys/sysproto.h>
58#include <sys/signalvar.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/linker.h>
62#include <sys/lock.h>
63#include <sys/malloc.h>
64#include <sys/mutex.h>
65#include <sys/pcpu.h>
66#include <sys/proc.h>
67#include <sys/bio.h>
68#include <sys/buf.h>
69#include <sys/reboot.h>
70#include <sys/smp.h>
71#include <sys/callout.h>
72#include <sys/msgbuf.h>
73#include <sys/sysent.h>
74#include <sys/sysctl.h>
75#include <sys/vmmeter.h>
76#include <sys/bus.h>
77#include <sys/eventhandler.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <sys/lock.h>
82#include <vm/vm_kern.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_map.h>
86#include <vm/vm_pager.h>
87#include <vm/vm_extern.h>
88
89#include <sys/user.h>
90#include <sys/exec.h>
91#include <sys/cons.h>
92
93#include <ddb/ddb.h>
94
95#include <net/netisr.h>
96
97#include <machine/cpu.h>
98#include <machine/cputypes.h>
99#include <machine/reg.h>
100#include <machine/clock.h>
101#include <machine/specialreg.h>
102#include <machine/bootinfo.h>
103#include <machine/md_var.h>
104#include <machine/pc/bios.h>
105#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
106#include <machine/globals.h>
107#ifdef PERFMON
108#include <machine/perfmon.h>
109#endif
110#ifdef SMP
111#include <machine/privatespace.h>
112#endif
113
114#include <i386/isa/icu.h>
115#include <i386/isa/intr_machdep.h>
116#include <isa/rtc.h>
117#include <machine/vm86.h>
118#include <sys/ptrace.h>
119#include <machine/sigframe.h>
120
121extern void init386 __P((int first));
122extern void dblfault_handler __P((void));
123
124extern void printcpuinfo(void);	/* XXX header file */
125extern void earlysetcpuclass(void);	/* same header file */
126extern void finishidentcpu(void);
127extern void panicifcpuunsupported(void);
128extern void initializecpu(void);
129
130#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
131#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
132
133static void cpu_startup __P((void *));
134#ifdef CPU_ENABLE_SSE
135static void set_fpregs_xmm __P((struct save87 *, struct savexmm *));
136static void fill_fpregs_xmm __P((struct savexmm *, struct save87 *));
137#endif /* CPU_ENABLE_SSE */
138SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
139
140int	_udatasel, _ucodesel;
141u_int	atdevbase;
142
143#if defined(SWTCH_OPTIM_STATS)
144extern int swtch_optim_stats;
145SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
146	CTLFLAG_RD, &swtch_optim_stats, 0, "");
147SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
148	CTLFLAG_RD, &tlb_flush_count, 0, "");
149#endif
150
151#ifdef PC98
152static int	ispc98 = 1;
153#else
154static int	ispc98 = 0;
155#endif
156SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
157
158int physmem = 0;
159int cold = 1;
160
161#ifdef COMPAT_43
162static void osendsig __P((sig_t catcher, int sig, sigset_t *mask, u_long code));
163#endif
164
165static int
166sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
167{
168	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
169	return (error);
170}
171
172SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
173	0, 0, sysctl_hw_physmem, "IU", "");
174
175static int
176sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
177{
178	int error = sysctl_handle_int(oidp, 0,
179		ctob(physmem - cnt.v_wire_count), req);
180	return (error);
181}
182
183SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
184	0, 0, sysctl_hw_usermem, "IU", "");
185
186static int
187sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
188{
189	int error = sysctl_handle_int(oidp, 0,
190		i386_btop(avail_end - avail_start), req);
191	return (error);
192}
193
194SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
195	0, 0, sysctl_hw_availpages, "I", "");
196
197int Maxmem = 0;
198long dumplo;
199
200vm_offset_t phys_avail[10];
201
202/* must be 2 less so 0 0 can signal end of chunks */
203#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
204
205struct kva_md_info kmi;
206
207static struct trapframe proc0_tf;
208#ifndef SMP
209static struct globaldata __globaldata;
210#endif
211
212struct mtx sched_lock;
213struct mtx Giant;
214
215static void
216cpu_startup(dummy)
217	void *dummy;
218{
219	/*
220	 * Good {morning,afternoon,evening,night}.
221	 */
222	earlysetcpuclass();
223	startrtclock();
224	printcpuinfo();
225	panicifcpuunsupported();
226#ifdef PERFMON
227	perfmon_init();
228#endif
229	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem),
230	    ptoa(Maxmem) / 1024);
231	/*
232	 * Display any holes after the first chunk of extended memory.
233	 */
234	if (bootverbose) {
235		int indx;
236
237		printf("Physical memory chunk(s):\n");
238		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
239			unsigned int size1;
240
241			size1 = phys_avail[indx + 1] - phys_avail[indx];
242			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
243			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
244			    size1 / PAGE_SIZE);
245		}
246	}
247
248	vm_ksubmap_init(&kmi);
249
250#if defined(USERCONFIG)
251	userconfig();
252	cninit();		/* the preferred console may have changed */
253#endif
254
255	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
256	    ptoa(cnt.v_free_count) / 1024);
257
258	/*
259	 * Set up buffers, so they can be used to read disk labels.
260	 */
261	bufinit();
262	vm_pager_bufferinit();
263
264	globaldata_register(GLOBALDATA);
265#ifndef SMP
266	/* For SMP, we delay the cpu_setregs() until after SMP startup. */
267	cpu_setregs();
268#endif
269}
270
271/*
272 * Send an interrupt to process.
273 *
274 * Stack is set up to allow sigcode stored
275 * at top to call routine, followed by kcall
276 * to sigreturn routine below.  After sigreturn
277 * resets the signal mask, the stack, and the
278 * frame pointer, it returns to the user
279 * specified pc, psl.
280 */
281#ifdef COMPAT_43
282static void
283osendsig(catcher, sig, mask, code)
284	sig_t catcher;
285	int sig;
286	sigset_t *mask;
287	u_long code;
288{
289	struct osigframe sf;
290	struct osigframe *fp;
291	struct proc *p;
292	struct sigacts *psp;
293	struct trapframe *regs;
294	int oonstack;
295
296	p = curproc;
297	PROC_LOCK(p);
298	psp = p->p_sigacts;
299	regs = p->p_frame;
300	oonstack = sigonstack(regs->tf_esp);
301
302	/* Allocate and validate space for the signal handler context. */
303	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
304	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
305		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
306		    p->p_sigstk.ss_size - sizeof(struct osigframe));
307#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
308		p->p_sigstk.ss_flags |= SS_ONSTACK;
309#endif
310	} else
311		fp = (struct osigframe *)regs->tf_esp - 1;
312	PROC_UNLOCK(p);
313
314	/*
315	 * grow_stack() will return 0 if *fp does not fit inside the stack
316	 * and the stack can not be grown.
317	 * useracc() will return FALSE if access is denied.
318	 */
319	if (grow_stack(p, (int)fp) == 0 ||
320	    !useracc((caddr_t)fp, sizeof(*fp), VM_PROT_WRITE)) {
321		/*
322		 * Process has trashed its stack; give it an illegal
323		 * instruction to halt it in its tracks.
324		 */
325		PROC_LOCK(p);
326		SIGACTION(p, SIGILL) = SIG_DFL;
327		SIGDELSET(p->p_sigignore, SIGILL);
328		SIGDELSET(p->p_sigcatch, SIGILL);
329		SIGDELSET(p->p_sigmask, SIGILL);
330		psignal(p, SIGILL);
331		PROC_UNLOCK(p);
332		return;
333	}
334
335	/* Translate the signal if appropriate. */
336	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
337		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
338
339	/* Build the argument list for the signal handler. */
340	sf.sf_signum = sig;
341	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
342	PROC_LOCK(p);
343	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
344		/* Signal handler installed with SA_SIGINFO. */
345		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
346		sf.sf_siginfo.si_signo = sig;
347		sf.sf_siginfo.si_code = code;
348		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
349	} else {
350		/* Old FreeBSD-style arguments. */
351		sf.sf_arg2 = code;
352		sf.sf_addr = regs->tf_err;
353		sf.sf_ahu.sf_handler = catcher;
354	}
355	PROC_UNLOCK(p);
356
357	/* Save most if not all of trap frame. */
358	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
359	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
360	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
361	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
362	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
363	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
364	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
365	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
366	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
367	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
368	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
369	sf.sf_siginfo.si_sc.sc_gs = rgs();
370	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
371
372	/* Build the signal context to be used by osigreturn(). */
373	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
374	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
375	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
376	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
377	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
378	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
379	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
380	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
381
382	/*
383	 * If we're a vm86 process, we want to save the segment registers.
384	 * We also change eflags to be our emulated eflags, not the actual
385	 * eflags.
386	 */
387	if (regs->tf_eflags & PSL_VM) {
388		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
389		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
390		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
391
392		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
393		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
394		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
395		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
396
397		if (vm86->vm86_has_vme == 0)
398			sf.sf_siginfo.si_sc.sc_ps =
399			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
400			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
401
402		/* See sendsig() for comments. */
403		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
404	}
405
406	/* Copy the sigframe out to the user's stack. */
407	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
408		/*
409		 * Something is wrong with the stack pointer.
410		 * ...Kill the process.
411		 */
412		PROC_LOCK(p);
413		sigexit(p, SIGILL);
414		/* NOTREACHED */
415	}
416
417	regs->tf_esp = (int)fp;
418	regs->tf_eip = PS_STRINGS - szosigcode;
419	regs->tf_cs = _ucodesel;
420	regs->tf_ds = _udatasel;
421	regs->tf_es = _udatasel;
422	regs->tf_fs = _udatasel;
423	load_gs(_udatasel);
424	regs->tf_ss = _udatasel;
425}
426#endif
427
428void
429sendsig(catcher, sig, mask, code)
430	sig_t catcher;
431	int sig;
432	sigset_t *mask;
433	u_long code;
434{
435	struct sigframe sf;
436	struct proc *p;
437	struct sigacts *psp;
438	struct trapframe *regs;
439	struct sigframe *sfp;
440	int oonstack;
441
442	p = curproc;
443	PROC_LOCK(p);
444	psp = p->p_sigacts;
445#ifdef COMPAT_43
446	if (SIGISMEMBER(psp->ps_osigset, sig)) {
447		PROC_UNLOCK(p);
448		osendsig(catcher, sig, mask, code);
449		return;
450	}
451#endif
452	regs = p->p_frame;
453	oonstack = sigonstack(regs->tf_esp);
454
455	/* Save user context. */
456	bzero(&sf, sizeof(sf));
457	sf.sf_uc.uc_sigmask = *mask;
458	sf.sf_uc.uc_stack = p->p_sigstk;
459	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
460	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
461	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
462	sf.sf_uc.uc_mcontext.mc_gs = rgs();
463	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
464
465	/* Allocate and validate space for the signal handler context. */
466	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
467	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
468		sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
469		    p->p_sigstk.ss_size - sizeof(struct sigframe));
470#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
471		p->p_sigstk.ss_flags |= SS_ONSTACK;
472#endif
473	} else
474		sfp = (struct sigframe *)regs->tf_esp - 1;
475	PROC_UNLOCK(p);
476
477	/*
478	 * grow_stack() will return 0 if *sfp does not fit inside the stack
479	 * and the stack can not be grown.
480	 * useracc() will return FALSE if access is denied.
481	 */
482	if (grow_stack(p, (int)sfp) == 0 ||
483	    !useracc((caddr_t)sfp, sizeof(*sfp), VM_PROT_WRITE)) {
484		/*
485		 * Process has trashed its stack; give it an illegal
486		 * instruction to halt it in its tracks.
487		 */
488#ifdef DEBUG
489		printf("process %d has trashed its stack\n", p->p_pid);
490#endif
491		PROC_LOCK(p);
492		SIGACTION(p, SIGILL) = SIG_DFL;
493		SIGDELSET(p->p_sigignore, SIGILL);
494		SIGDELSET(p->p_sigcatch, SIGILL);
495		SIGDELSET(p->p_sigmask, SIGILL);
496		psignal(p, SIGILL);
497		PROC_UNLOCK(p);
498		return;
499	}
500
501	/* Translate the signal if appropriate. */
502	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
503		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
504
505	/* Build the argument list for the signal handler. */
506	sf.sf_signum = sig;
507	sf.sf_ucontext = (register_t)&sfp->sf_uc;
508	PROC_LOCK(p);
509	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
510		/* Signal handler installed with SA_SIGINFO. */
511		sf.sf_siginfo = (register_t)&sfp->sf_si;
512		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
513
514		/* Fill siginfo structure. */
515		sf.sf_si.si_signo = sig;
516		sf.sf_si.si_code = code;
517		sf.sf_si.si_addr = (void *)regs->tf_err;
518	} else {
519		/* Old FreeBSD-style arguments. */
520		sf.sf_siginfo = code;
521		sf.sf_addr = regs->tf_err;
522		sf.sf_ahu.sf_handler = catcher;
523	}
524	PROC_UNLOCK(p);
525
526	/*
527	 * If we're a vm86 process, we want to save the segment registers.
528	 * We also change eflags to be our emulated eflags, not the actual
529	 * eflags.
530	 */
531	if (regs->tf_eflags & PSL_VM) {
532		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
533		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
534
535		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
536		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
537		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
538		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
539
540		if (vm86->vm86_has_vme == 0)
541			sf.sf_uc.uc_mcontext.mc_eflags =
542			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
543			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
544
545		/*
546		 * We should never have PSL_T set when returning from vm86
547		 * mode.  It may be set here if we deliver a signal before
548		 * getting to vm86 mode, so turn it off.
549		 *
550		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
551		 * syscalls made by the signal handler.  This just avoids
552		 * wasting time for our lazy fixup of such faults.  PSL_NT
553		 * does nothing in vm86 mode, but vm86 programs can set it
554		 * almost legitimately in probes for old cpu types.
555		 */
556		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
557	}
558
559	/* Copy the sigframe out to the user's stack. */
560	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
561		/*
562		 * Something is wrong with the stack pointer.
563		 * ...Kill the process.
564		 */
565		PROC_LOCK(p);
566		sigexit(p, SIGILL);
567		/* NOTREACHED */
568	}
569
570	regs->tf_esp = (int)sfp;
571	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
572	regs->tf_cs = _ucodesel;
573	regs->tf_ds = _udatasel;
574	regs->tf_es = _udatasel;
575	regs->tf_fs = _udatasel;
576	regs->tf_ss = _udatasel;
577}
578
579/*
580 * System call to cleanup state after a signal
581 * has been taken.  Reset signal mask and
582 * stack state from context left by sendsig (above).
583 * Return to previous pc and psl as specified by
584 * context left by sendsig. Check carefully to
585 * make sure that the user has not modified the
586 * state to gain improper privileges.
587 */
588#ifdef COMPAT_43
589int
590osigreturn(p, uap)
591	struct proc *p;
592	struct osigreturn_args /* {
593		struct osigcontext *sigcntxp;
594	} */ *uap;
595{
596	struct trapframe *regs;
597	struct osigcontext *scp;
598	int eflags;
599
600	regs = p->p_frame;
601	scp = uap->sigcntxp;
602	if (!useracc((caddr_t)scp, sizeof(*scp), VM_PROT_READ))
603		return (EFAULT);
604	eflags = scp->sc_ps;
605	if (eflags & PSL_VM) {
606		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
607		struct vm86_kernel *vm86;
608
609		/*
610		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
611		 * set up the vm86 area, and we can't enter vm86 mode.
612		 */
613		if (p->p_addr->u_pcb.pcb_ext == 0)
614			return (EINVAL);
615		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
616		if (vm86->vm86_inited == 0)
617			return (EINVAL);
618
619		/* Go back to user mode if both flags are set. */
620		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
621			trapsignal(p, SIGBUS, 0);
622
623		if (vm86->vm86_has_vme) {
624			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
625			    (eflags & VME_USERCHANGE) | PSL_VM;
626		} else {
627			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
628			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
629			    (eflags & VM_USERCHANGE) | PSL_VM;
630		}
631		tf->tf_vm86_ds = scp->sc_ds;
632		tf->tf_vm86_es = scp->sc_es;
633		tf->tf_vm86_fs = scp->sc_fs;
634		tf->tf_vm86_gs = scp->sc_gs;
635		tf->tf_ds = _udatasel;
636		tf->tf_es = _udatasel;
637		tf->tf_fs = _udatasel;
638	} else {
639		/*
640		 * Don't allow users to change privileged or reserved flags.
641		 */
642		/*
643		 * XXX do allow users to change the privileged flag PSL_RF.
644		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
645		 * should sometimes set it there too.  tf_eflags is kept in
646		 * the signal context during signal handling and there is no
647		 * other place to remember it, so the PSL_RF bit may be
648		 * corrupted by the signal handler without us knowing.
649		 * Corruption of the PSL_RF bit at worst causes one more or
650		 * one less debugger trap, so allowing it is fairly harmless.
651		 */
652		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
653	    		return (EINVAL);
654		}
655
656		/*
657		 * Don't allow users to load a valid privileged %cs.  Let the
658		 * hardware check for invalid selectors, excess privilege in
659		 * other selectors, invalid %eip's and invalid %esp's.
660		 */
661		if (!CS_SECURE(scp->sc_cs)) {
662			trapsignal(p, SIGBUS, T_PROTFLT);
663			return (EINVAL);
664		}
665		regs->tf_ds = scp->sc_ds;
666		regs->tf_es = scp->sc_es;
667		regs->tf_fs = scp->sc_fs;
668	}
669
670	/* Restore remaining registers. */
671	regs->tf_eax = scp->sc_eax;
672	regs->tf_ebx = scp->sc_ebx;
673	regs->tf_ecx = scp->sc_ecx;
674	regs->tf_edx = scp->sc_edx;
675	regs->tf_esi = scp->sc_esi;
676	regs->tf_edi = scp->sc_edi;
677	regs->tf_cs = scp->sc_cs;
678	regs->tf_ss = scp->sc_ss;
679	regs->tf_isp = scp->sc_isp;
680
681	PROC_LOCK(p);
682#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
683	if (scp->sc_onstack & 1)
684		p->p_sigstk.ss_flags |= SS_ONSTACK;
685	else
686		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
687#endif
688
689	SIGSETOLD(p->p_sigmask, scp->sc_mask);
690	SIG_CANTMASK(p->p_sigmask);
691	PROC_UNLOCK(p);
692	regs->tf_ebp = scp->sc_fp;
693	regs->tf_esp = scp->sc_sp;
694	regs->tf_eip = scp->sc_pc;
695	regs->tf_eflags = eflags;
696	return (EJUSTRETURN);
697}
698#endif
699
700int
701sigreturn(p, uap)
702	struct proc *p;
703	struct sigreturn_args /* {
704		ucontext_t *sigcntxp;
705	} */ *uap;
706{
707	struct trapframe *regs;
708	ucontext_t *ucp;
709	int cs, eflags;
710
711	ucp = uap->sigcntxp;
712#ifdef COMPAT_43
713	if (!useracc((caddr_t)ucp, sizeof(struct osigcontext), VM_PROT_READ))
714		return (EFAULT);
715	if (((struct osigcontext *)ucp)->sc_trapno == 0x01d516)
716		return (osigreturn(p, (struct osigreturn_args *)uap));
717	/*
718	 * Since ucp is not an osigcontext but a ucontext_t, we have to
719	 * check again if all of it is accessible.  A ucontext_t is
720	 * much larger, so instead of just checking for the pointer
721	 * being valid for the size of an osigcontext, now check for
722	 * it being valid for a whole, new-style ucontext_t.
723	 */
724#endif
725	if (!useracc((caddr_t)ucp, sizeof(*ucp), VM_PROT_READ))
726		return (EFAULT);
727
728	regs = p->p_frame;
729	eflags = ucp->uc_mcontext.mc_eflags;
730	if (eflags & PSL_VM) {
731		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
732		struct vm86_kernel *vm86;
733
734		/*
735		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
736		 * set up the vm86 area, and we can't enter vm86 mode.
737		 */
738		if (p->p_addr->u_pcb.pcb_ext == 0)
739			return (EINVAL);
740		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
741		if (vm86->vm86_inited == 0)
742			return (EINVAL);
743
744		/* Go back to user mode if both flags are set. */
745		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
746			trapsignal(p, SIGBUS, 0);
747
748		if (vm86->vm86_has_vme) {
749			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
750			    (eflags & VME_USERCHANGE) | PSL_VM;
751		} else {
752			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
753			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
754			    (eflags & VM_USERCHANGE) | PSL_VM;
755		}
756		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
757		tf->tf_eflags = eflags;
758		tf->tf_vm86_ds = tf->tf_ds;
759		tf->tf_vm86_es = tf->tf_es;
760		tf->tf_vm86_fs = tf->tf_fs;
761		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
762		tf->tf_ds = _udatasel;
763		tf->tf_es = _udatasel;
764		tf->tf_fs = _udatasel;
765	} else {
766		/*
767		 * Don't allow users to change privileged or reserved flags.
768		 */
769		/*
770		 * XXX do allow users to change the privileged flag PSL_RF.
771		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
772		 * should sometimes set it there too.  tf_eflags is kept in
773		 * the signal context during signal handling and there is no
774		 * other place to remember it, so the PSL_RF bit may be
775		 * corrupted by the signal handler without us knowing.
776		 * Corruption of the PSL_RF bit at worst causes one more or
777		 * one less debugger trap, so allowing it is fairly harmless.
778		 */
779		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
780			printf("sigreturn: eflags = 0x%x\n", eflags);
781	    		return (EINVAL);
782		}
783
784		/*
785		 * Don't allow users to load a valid privileged %cs.  Let the
786		 * hardware check for invalid selectors, excess privilege in
787		 * other selectors, invalid %eip's and invalid %esp's.
788		 */
789		cs = ucp->uc_mcontext.mc_cs;
790		if (!CS_SECURE(cs)) {
791			printf("sigreturn: cs = 0x%x\n", cs);
792			trapsignal(p, SIGBUS, T_PROTFLT);
793			return (EINVAL);
794		}
795
796		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
797	}
798
799	PROC_LOCK(p);
800#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
801	if (ucp->uc_mcontext.mc_onstack & 1)
802		p->p_sigstk.ss_flags |= SS_ONSTACK;
803	else
804		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
805#endif
806
807	p->p_sigmask = ucp->uc_sigmask;
808	SIG_CANTMASK(p->p_sigmask);
809	PROC_UNLOCK(p);
810	return (EJUSTRETURN);
811}
812
813/*
814 * Machine dependent boot() routine
815 *
816 * I haven't seen anything to put here yet
817 * Possibly some stuff might be grafted back here from boot()
818 */
819void
820cpu_boot(int howto)
821{
822}
823
824/*
825 * Shutdown the CPU as much as possible
826 */
827void
828cpu_halt(void)
829{
830	for (;;)
831		__asm__ ("hlt");
832}
833
834/*
835 * Hook to idle the CPU when possible.  This currently only works in
836 * the !SMP case, as there is no clean way to ensure that a CPU will be
837 * woken when there is work available for it.
838 */
839static int	cpu_idle_hlt = 1;
840SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
841    &cpu_idle_hlt, 0, "Idle loop HLT enable");
842
843/*
844 * Note that we have to be careful here to avoid a race between checking
845 * procrunnable() and actually halting.  If we don't do this, we may waste
846 * the time between calling hlt and the next interrupt even though there
847 * is a runnable process.
848 */
849void
850cpu_idle(void)
851{
852#ifndef SMP
853	if (cpu_idle_hlt) {
854		disable_intr();
855  		if (procrunnable())
856			enable_intr();
857		else {
858			enable_intr();
859			__asm __volatile("hlt");
860		}
861	}
862#endif
863}
864
865/*
866 * Clear registers on exec
867 */
868void
869setregs(p, entry, stack, ps_strings)
870	struct proc *p;
871	u_long entry;
872	u_long stack;
873	u_long ps_strings;
874{
875	struct trapframe *regs = p->p_frame;
876	struct pcb *pcb = &p->p_addr->u_pcb;
877
878	if (pcb->pcb_ldt)
879		user_ldt_free(pcb);
880
881	bzero((char *)regs, sizeof(struct trapframe));
882	regs->tf_eip = entry;
883	regs->tf_esp = stack;
884	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
885	regs->tf_ss = _udatasel;
886	regs->tf_ds = _udatasel;
887	regs->tf_es = _udatasel;
888	regs->tf_fs = _udatasel;
889	regs->tf_cs = _ucodesel;
890
891	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
892	regs->tf_ebx = ps_strings;
893
894	/* reset %gs as well */
895	if (pcb == PCPU_GET(curpcb))
896		load_gs(_udatasel);
897	else
898		pcb->pcb_gs = _udatasel;
899
900        /*
901         * Reset the hardware debug registers if they were in use.
902         * They won't have any meaning for the newly exec'd process.
903         */
904        if (pcb->pcb_flags & PCB_DBREGS) {
905                pcb->pcb_dr0 = 0;
906                pcb->pcb_dr1 = 0;
907                pcb->pcb_dr2 = 0;
908                pcb->pcb_dr3 = 0;
909                pcb->pcb_dr6 = 0;
910                pcb->pcb_dr7 = 0;
911                if (pcb == PCPU_GET(curpcb)) {
912		        /*
913			 * Clear the debug registers on the running
914			 * CPU, otherwise they will end up affecting
915			 * the next process we switch to.
916			 */
917		        reset_dbregs();
918                }
919                pcb->pcb_flags &= ~PCB_DBREGS;
920        }
921
922	/*
923	 * Initialize the math emulator (if any) for the current process.
924	 * Actually, just clear the bit that says that the emulator has
925	 * been initialized.  Initialization is delayed until the process
926	 * traps to the emulator (if it is done at all) mainly because
927	 * emulators don't provide an entry point for initialization.
928	 */
929	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
930
931	/*
932	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
933	 * for why fwait must be trapped at least if there is an npx or an
934	 * emulator).  This is mainly to handle the case where npx0 is not
935	 * configured, since the npx routines normally set up the trap
936	 * otherwise.  It should be done only at boot time, but doing it
937	 * here allows modifying `npx_exists' for testing the emulator on
938	 * systems with an npx.
939	 */
940	load_cr0(rcr0() | CR0_MP | CR0_TS);
941
942#ifdef DEV_NPX
943	/* Initialize the npx (if any) for the current process. */
944	npxinit(__INITIAL_NPXCW__);
945#endif
946
947	/*
948	 * XXX - Linux emulator
949	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
950	 * on it.
951	 */
952	p->p_retval[1] = 0;
953}
954
955void
956cpu_setregs(void)
957{
958	unsigned int cr0;
959
960	cr0 = rcr0();
961	cr0 |= CR0_NE;			/* Done by npxinit() */
962	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
963#ifndef I386_CPU
964	cr0 |= CR0_WP | CR0_AM;
965#endif
966	load_cr0(cr0);
967	load_gs(_udatasel);
968}
969
970static int
971sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
972{
973	int error;
974	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
975		req);
976	if (!error && req->newptr)
977		resettodr();
978	return (error);
979}
980
981SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
982	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
983
984SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
985	CTLFLAG_RW, &disable_rtc_set, 0, "");
986
987SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
988	CTLFLAG_RD, &bootinfo, bootinfo, "");
989
990SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
991	CTLFLAG_RW, &wall_cmos_clock, 0, "");
992
993/*
994 * Initialize 386 and configure to run kernel
995 */
996
997/*
998 * Initialize segments & interrupt table
999 */
1000
1001int _default_ldt;
1002union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1003static struct gate_descriptor idt0[NIDT];
1004struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1005union descriptor ldt[NLDT];		/* local descriptor table */
1006#ifdef SMP
1007/* table descriptors - used to load tables by microp */
1008struct region_descriptor r_gdt, r_idt;
1009#endif
1010
1011int private_tss;			/* flag indicating private tss */
1012
1013#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1014extern int has_f00f_bug;
1015#endif
1016
1017static struct i386tss dblfault_tss;
1018static char dblfault_stack[PAGE_SIZE];
1019
1020extern  struct user *proc0paddr;
1021
1022
1023/* software prototypes -- in more palatable form */
1024struct soft_segment_descriptor gdt_segs[] = {
1025/* GNULL_SEL	0 Null Descriptor */
1026{	0x0,			/* segment base address  */
1027	0x0,			/* length */
1028	0,			/* segment type */
1029	0,			/* segment descriptor priority level */
1030	0,			/* segment descriptor present */
1031	0, 0,
1032	0,			/* default 32 vs 16 bit size */
1033	0  			/* limit granularity (byte/page units)*/ },
1034/* GCODE_SEL	1 Code Descriptor for kernel */
1035{	0x0,			/* segment base address  */
1036	0xfffff,		/* length - all address space */
1037	SDT_MEMERA,		/* segment type */
1038	0,			/* segment descriptor priority level */
1039	1,			/* segment descriptor present */
1040	0, 0,
1041	1,			/* default 32 vs 16 bit size */
1042	1  			/* limit granularity (byte/page units)*/ },
1043/* GDATA_SEL	2 Data Descriptor for kernel */
1044{	0x0,			/* segment base address  */
1045	0xfffff,		/* length - all address space */
1046	SDT_MEMRWA,		/* segment type */
1047	0,			/* segment descriptor priority level */
1048	1,			/* segment descriptor present */
1049	0, 0,
1050	1,			/* default 32 vs 16 bit size */
1051	1  			/* limit granularity (byte/page units)*/ },
1052/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1053{	0x0,			/* segment base address  */
1054	0xfffff,		/* length - all address space */
1055	SDT_MEMRWA,		/* segment type */
1056	0,			/* segment descriptor priority level */
1057	1,			/* segment descriptor present */
1058	0, 0,
1059	1,			/* default 32 vs 16 bit size */
1060	1  			/* limit granularity (byte/page units)*/ },
1061/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1062{
1063	0x0,			/* segment base address */
1064	sizeof(struct i386tss)-1,/* length - all address space */
1065	SDT_SYS386TSS,		/* segment type */
1066	0,			/* segment descriptor priority level */
1067	1,			/* segment descriptor present */
1068	0, 0,
1069	0,			/* unused - default 32 vs 16 bit size */
1070	0  			/* limit granularity (byte/page units)*/ },
1071/* GLDT_SEL	5 LDT Descriptor */
1072{	(int) ldt,		/* segment base address  */
1073	sizeof(ldt)-1,		/* length - all address space */
1074	SDT_SYSLDT,		/* segment type */
1075	SEL_UPL,		/* segment descriptor priority level */
1076	1,			/* segment descriptor present */
1077	0, 0,
1078	0,			/* unused - default 32 vs 16 bit size */
1079	0  			/* limit granularity (byte/page units)*/ },
1080/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1081{	(int) ldt,		/* segment base address  */
1082	(512 * sizeof(union descriptor)-1),		/* length */
1083	SDT_SYSLDT,		/* segment type */
1084	0,			/* segment descriptor priority level */
1085	1,			/* segment descriptor present */
1086	0, 0,
1087	0,			/* unused - default 32 vs 16 bit size */
1088	0  			/* limit granularity (byte/page units)*/ },
1089/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1090{	0x0,			/* segment base address  */
1091	0x0,			/* length - all address space */
1092	0,			/* segment type */
1093	0,			/* segment descriptor priority level */
1094	0,			/* segment descriptor present */
1095	0, 0,
1096	0,			/* default 32 vs 16 bit size */
1097	0  			/* limit granularity (byte/page units)*/ },
1098/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1099{	0x400,			/* segment base address */
1100	0xfffff,		/* length */
1101	SDT_MEMRWA,		/* segment type */
1102	0,			/* segment descriptor priority level */
1103	1,			/* segment descriptor present */
1104	0, 0,
1105	1,			/* default 32 vs 16 bit size */
1106	1  			/* limit granularity (byte/page units)*/ },
1107/* GPANIC_SEL	9 Panic Tss Descriptor */
1108{	(int) &dblfault_tss,	/* segment base address  */
1109	sizeof(struct i386tss)-1,/* length - all address space */
1110	SDT_SYS386TSS,		/* segment type */
1111	0,			/* segment descriptor priority level */
1112	1,			/* segment descriptor present */
1113	0, 0,
1114	0,			/* unused - default 32 vs 16 bit size */
1115	0  			/* limit granularity (byte/page units)*/ },
1116/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1117{	0,			/* segment base address (overwritten)  */
1118	0xfffff,		/* length */
1119	SDT_MEMERA,		/* segment type */
1120	0,			/* segment descriptor priority level */
1121	1,			/* segment descriptor present */
1122	0, 0,
1123	0,			/* default 32 vs 16 bit size */
1124	1  			/* limit granularity (byte/page units)*/ },
1125/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1126{	0,			/* segment base address (overwritten)  */
1127	0xfffff,		/* length */
1128	SDT_MEMERA,		/* segment type */
1129	0,			/* segment descriptor priority level */
1130	1,			/* segment descriptor present */
1131	0, 0,
1132	0,			/* default 32 vs 16 bit size */
1133	1  			/* limit granularity (byte/page units)*/ },
1134/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1135{	0,			/* segment base address (overwritten) */
1136	0xfffff,		/* length */
1137	SDT_MEMRWA,		/* segment type */
1138	0,			/* segment descriptor priority level */
1139	1,			/* segment descriptor present */
1140	0, 0,
1141	1,			/* default 32 vs 16 bit size */
1142	1  			/* limit granularity (byte/page units)*/ },
1143/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1144{	0,			/* segment base address (overwritten) */
1145	0xfffff,		/* length */
1146	SDT_MEMRWA,		/* segment type */
1147	0,			/* segment descriptor priority level */
1148	1,			/* segment descriptor present */
1149	0, 0,
1150	0,			/* default 32 vs 16 bit size */
1151	1  			/* limit granularity (byte/page units)*/ },
1152/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1153{	0,			/* segment base address (overwritten) */
1154	0xfffff,		/* length */
1155	SDT_MEMRWA,		/* segment type */
1156	0,			/* segment descriptor priority level */
1157	1,			/* segment descriptor present */
1158	0, 0,
1159	0,			/* default 32 vs 16 bit size */
1160	1  			/* limit granularity (byte/page units)*/ },
1161};
1162
1163static struct soft_segment_descriptor ldt_segs[] = {
1164	/* Null Descriptor - overwritten by call gate */
1165{	0x0,			/* segment base address  */
1166	0x0,			/* length - all address space */
1167	0,			/* segment type */
1168	0,			/* segment descriptor priority level */
1169	0,			/* segment descriptor present */
1170	0, 0,
1171	0,			/* default 32 vs 16 bit size */
1172	0  			/* limit granularity (byte/page units)*/ },
1173	/* Null Descriptor - overwritten by call gate */
1174{	0x0,			/* segment base address  */
1175	0x0,			/* length - all address space */
1176	0,			/* segment type */
1177	0,			/* segment descriptor priority level */
1178	0,			/* segment descriptor present */
1179	0, 0,
1180	0,			/* default 32 vs 16 bit size */
1181	0  			/* limit granularity (byte/page units)*/ },
1182	/* Null Descriptor - overwritten by call gate */
1183{	0x0,			/* segment base address  */
1184	0x0,			/* length - all address space */
1185	0,			/* segment type */
1186	0,			/* segment descriptor priority level */
1187	0,			/* segment descriptor present */
1188	0, 0,
1189	0,			/* default 32 vs 16 bit size */
1190	0  			/* limit granularity (byte/page units)*/ },
1191	/* Code Descriptor for user */
1192{	0x0,			/* segment base address  */
1193	0xfffff,		/* length - all address space */
1194	SDT_MEMERA,		/* segment type */
1195	SEL_UPL,		/* segment descriptor priority level */
1196	1,			/* segment descriptor present */
1197	0, 0,
1198	1,			/* default 32 vs 16 bit size */
1199	1  			/* limit granularity (byte/page units)*/ },
1200	/* Null Descriptor - overwritten by call gate */
1201{	0x0,			/* segment base address  */
1202	0x0,			/* length - all address space */
1203	0,			/* segment type */
1204	0,			/* segment descriptor priority level */
1205	0,			/* segment descriptor present */
1206	0, 0,
1207	0,			/* default 32 vs 16 bit size */
1208	0  			/* limit granularity (byte/page units)*/ },
1209	/* Data Descriptor for user */
1210{	0x0,			/* segment base address  */
1211	0xfffff,		/* length - all address space */
1212	SDT_MEMRWA,		/* segment type */
1213	SEL_UPL,		/* segment descriptor priority level */
1214	1,			/* segment descriptor present */
1215	0, 0,
1216	1,			/* default 32 vs 16 bit size */
1217	1  			/* limit granularity (byte/page units)*/ },
1218};
1219
1220void
1221setidt(idx, func, typ, dpl, selec)
1222	int idx;
1223	inthand_t *func;
1224	int typ;
1225	int dpl;
1226	int selec;
1227{
1228	struct gate_descriptor *ip;
1229
1230	ip = idt + idx;
1231	ip->gd_looffset = (int)func;
1232	ip->gd_selector = selec;
1233	ip->gd_stkcpy = 0;
1234	ip->gd_xx = 0;
1235	ip->gd_type = typ;
1236	ip->gd_dpl = dpl;
1237	ip->gd_p = 1;
1238	ip->gd_hioffset = ((int)func)>>16 ;
1239}
1240
1241#define	IDTVEC(name)	__CONCAT(X,name)
1242
1243extern inthand_t
1244	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1245	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1246	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1247	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1248	IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1249
1250void
1251sdtossd(sd, ssd)
1252	struct segment_descriptor *sd;
1253	struct soft_segment_descriptor *ssd;
1254{
1255	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1256	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1257	ssd->ssd_type  = sd->sd_type;
1258	ssd->ssd_dpl   = sd->sd_dpl;
1259	ssd->ssd_p     = sd->sd_p;
1260	ssd->ssd_def32 = sd->sd_def32;
1261	ssd->ssd_gran  = sd->sd_gran;
1262}
1263
1264#define PHYSMAP_SIZE	(2 * 8)
1265
1266/*
1267 * Populate the (physmap) array with base/bound pairs describing the
1268 * available physical memory in the system, then test this memory and
1269 * build the phys_avail array describing the actually-available memory.
1270 *
1271 * If we cannot accurately determine the physical memory map, then use
1272 * value from the 0xE801 call, and failing that, the RTC.
1273 *
1274 * Total memory size may be set by the kernel environment variable
1275 * hw.physmem or the compile-time define MAXMEM.
1276 */
1277static void
1278getmemsize(int first)
1279{
1280	int i, physmap_idx, pa_indx;
1281	u_int basemem, extmem;
1282	struct vm86frame vmf;
1283	struct vm86context vmc;
1284	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1285	pt_entry_t pte;
1286	const char *cp;
1287	struct bios_smap *smap;
1288
1289	bzero(&vmf, sizeof(struct vm86frame));
1290	bzero(physmap, sizeof(physmap));
1291
1292	/*
1293	 * Perform "base memory" related probes & setup
1294	 */
1295	vm86_intcall(0x12, &vmf);
1296	basemem = vmf.vmf_ax;
1297	if (basemem > 640) {
1298		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1299			basemem);
1300		basemem = 640;
1301	}
1302
1303	/*
1304	 * XXX if biosbasemem is now < 640, there is a `hole'
1305	 * between the end of base memory and the start of
1306	 * ISA memory.  The hole may be empty or it may
1307	 * contain BIOS code or data.  Map it read/write so
1308	 * that the BIOS can write to it.  (Memory from 0 to
1309	 * the physical end of the kernel is mapped read-only
1310	 * to begin with and then parts of it are remapped.
1311	 * The parts that aren't remapped form holes that
1312	 * remain read-only and are unused by the kernel.
1313	 * The base memory area is below the physical end of
1314	 * the kernel and right now forms a read-only hole.
1315	 * The part of it from PAGE_SIZE to
1316	 * (trunc_page(biosbasemem * 1024) - 1) will be
1317	 * remapped and used by the kernel later.)
1318	 *
1319	 * This code is similar to the code used in
1320	 * pmap_mapdev, but since no memory needs to be
1321	 * allocated we simply change the mapping.
1322	 */
1323	for (pa = trunc_page(basemem * 1024);
1324	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1325		pte = (pt_entry_t)vtopte(pa + KERNBASE);
1326		*pte = pa | PG_RW | PG_V;
1327	}
1328
1329	/*
1330	 * if basemem != 640, map pages r/w into vm86 page table so
1331	 * that the bios can scribble on it.
1332	 */
1333	pte = (pt_entry_t)vm86paddr;
1334	for (i = basemem / 4; i < 160; i++)
1335		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1336
1337	/*
1338	 * map page 1 R/W into the kernel page table so we can use it
1339	 * as a buffer.  The kernel will unmap this page later.
1340	 */
1341	pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
1342	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1343
1344	/*
1345	 * get memory map with INT 15:E820
1346	 */
1347	vmc.npages = 0;
1348	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1349	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1350
1351	physmap_idx = 0;
1352	vmf.vmf_ebx = 0;
1353	do {
1354		vmf.vmf_eax = 0xE820;
1355		vmf.vmf_edx = SMAP_SIG;
1356		vmf.vmf_ecx = sizeof(struct bios_smap);
1357		i = vm86_datacall(0x15, &vmf, &vmc);
1358		if (i || vmf.vmf_eax != SMAP_SIG)
1359			break;
1360		if (boothowto & RB_VERBOSE)
1361			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1362				smap->type,
1363				*(u_int32_t *)((char *)&smap->base + 4),
1364				(u_int32_t)smap->base,
1365				*(u_int32_t *)((char *)&smap->length + 4),
1366				(u_int32_t)smap->length);
1367
1368		if (smap->type != 0x01)
1369			goto next_run;
1370
1371		if (smap->length == 0)
1372			goto next_run;
1373
1374		if (smap->base >= 0xffffffff) {
1375			printf("%uK of memory above 4GB ignored\n",
1376			    (u_int)(smap->length / 1024));
1377			goto next_run;
1378		}
1379
1380		for (i = 0; i <= physmap_idx; i += 2) {
1381			if (smap->base < physmap[i + 1]) {
1382				if (boothowto & RB_VERBOSE)
1383					printf(
1384	"Overlapping or non-montonic memory region, ignoring second region\n");
1385				goto next_run;
1386			}
1387		}
1388
1389		if (smap->base == physmap[physmap_idx + 1]) {
1390			physmap[physmap_idx + 1] += smap->length;
1391			goto next_run;
1392		}
1393
1394		physmap_idx += 2;
1395		if (physmap_idx == PHYSMAP_SIZE) {
1396			printf(
1397		"Too many segments in the physical address map, giving up\n");
1398			break;
1399		}
1400		physmap[physmap_idx] = smap->base;
1401		physmap[physmap_idx + 1] = smap->base + smap->length;
1402next_run:
1403	} while (vmf.vmf_ebx != 0);
1404
1405	if (physmap[1] != 0)
1406		goto physmap_done;
1407
1408	/*
1409	 * If we failed above, try memory map with INT 15:E801
1410	 */
1411	vmf.vmf_ax = 0xE801;
1412	if (vm86_intcall(0x15, &vmf) == 0) {
1413		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1414	} else {
1415#if 0
1416		vmf.vmf_ah = 0x88;
1417		vm86_intcall(0x15, &vmf);
1418		extmem = vmf.vmf_ax;
1419#else
1420		/*
1421		 * Prefer the RTC value for extended memory.
1422		 */
1423		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1424#endif
1425	}
1426
1427	/*
1428	 * Special hack for chipsets that still remap the 384k hole when
1429	 * there's 16MB of memory - this really confuses people that
1430	 * are trying to use bus mastering ISA controllers with the
1431	 * "16MB limit"; they only have 16MB, but the remapping puts
1432	 * them beyond the limit.
1433	 *
1434	 * If extended memory is between 15-16MB (16-17MB phys address range),
1435	 *	chop it to 15MB.
1436	 */
1437	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1438		extmem = 15 * 1024;
1439
1440	physmap[0] = 0;
1441	physmap[1] = basemem * 1024;
1442	physmap_idx = 2;
1443	physmap[physmap_idx] = 0x100000;
1444	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1445
1446physmap_done:
1447	/*
1448	 * Now, physmap contains a map of physical memory.
1449	 */
1450
1451#ifdef SMP
1452	/* make hole for AP bootstrap code */
1453	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1454
1455	/* look for the MP hardware - needed for apic addresses */
1456	i386_mp_probe();
1457#endif
1458
1459	/*
1460	 * Maxmem isn't the "maximum memory", it's one larger than the
1461	 * highest page of the physical address space.  It should be
1462	 * called something like "Maxphyspage".  We may adjust this
1463	 * based on ``hw.physmem'' and the results of the memory test.
1464	 */
1465	Maxmem = atop(physmap[physmap_idx + 1]);
1466
1467#ifdef MAXMEM
1468	Maxmem = MAXMEM / 4;
1469#endif
1470
1471	/*
1472	 * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
1473	 * for the appropriate modifiers.  This overrides MAXMEM.
1474	 */
1475	if ((cp = getenv("hw.physmem")) != NULL) {
1476		u_int64_t AllowMem, sanity;
1477		char *ep;
1478
1479		sanity = AllowMem = strtouq(cp, &ep, 0);
1480		if ((ep != cp) && (*ep != 0)) {
1481			switch(*ep) {
1482			case 'g':
1483			case 'G':
1484				AllowMem <<= 10;
1485			case 'm':
1486			case 'M':
1487				AllowMem <<= 10;
1488			case 'k':
1489			case 'K':
1490				AllowMem <<= 10;
1491				break;
1492			default:
1493				AllowMem = sanity = 0;
1494			}
1495			if (AllowMem < sanity)
1496				AllowMem = 0;
1497		}
1498		if (AllowMem == 0)
1499			printf("Ignoring invalid memory size of '%s'\n", cp);
1500		else
1501			Maxmem = atop(AllowMem);
1502	}
1503
1504	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1505	    (boothowto & RB_VERBOSE))
1506		printf("Physical memory use set to %uK\n", Maxmem * 4);
1507
1508	/*
1509	 * If Maxmem has been increased beyond what the system has detected,
1510	 * extend the last memory segment to the new limit.
1511	 */
1512	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1513		physmap[physmap_idx + 1] = ptoa(Maxmem);
1514
1515	/* call pmap initialization to make new kernel address space */
1516	pmap_bootstrap(first, 0);
1517
1518	/*
1519	 * Size up each available chunk of physical memory.
1520	 */
1521	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1522	pa_indx = 0;
1523	phys_avail[pa_indx++] = physmap[0];
1524	phys_avail[pa_indx] = physmap[0];
1525#if 0
1526	pte = (pt_entry_t)vtopte(KERNBASE);
1527#else
1528	pte = (pt_entry_t)CMAP1;
1529#endif
1530
1531	/*
1532	 * physmap is in bytes, so when converting to page boundaries,
1533	 * round up the start address and round down the end address.
1534	 */
1535	for (i = 0; i <= physmap_idx; i += 2) {
1536		vm_offset_t end;
1537
1538		end = ptoa(Maxmem);
1539		if (physmap[i + 1] < end)
1540			end = trunc_page(physmap[i + 1]);
1541		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1542			int tmp, page_bad;
1543#if 0
1544			int *ptr = 0;
1545#else
1546			int *ptr = (int *)CADDR1;
1547#endif
1548
1549			/*
1550			 * block out kernel memory as not available.
1551			 */
1552			if (pa >= 0x100000 && pa < first)
1553				continue;
1554
1555			page_bad = FALSE;
1556
1557			/*
1558			 * map page into kernel: valid, read/write,non-cacheable
1559			 */
1560			*pte = pa | PG_V | PG_RW | PG_N;
1561			invltlb();
1562
1563			tmp = *(int *)ptr;
1564			/*
1565			 * Test for alternating 1's and 0's
1566			 */
1567			*(volatile int *)ptr = 0xaaaaaaaa;
1568			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1569				page_bad = TRUE;
1570			}
1571			/*
1572			 * Test for alternating 0's and 1's
1573			 */
1574			*(volatile int *)ptr = 0x55555555;
1575			if (*(volatile int *)ptr != 0x55555555) {
1576			page_bad = TRUE;
1577			}
1578			/*
1579			 * Test for all 1's
1580			 */
1581			*(volatile int *)ptr = 0xffffffff;
1582			if (*(volatile int *)ptr != 0xffffffff) {
1583				page_bad = TRUE;
1584			}
1585			/*
1586			 * Test for all 0's
1587			 */
1588			*(volatile int *)ptr = 0x0;
1589			if (*(volatile int *)ptr != 0x0) {
1590				page_bad = TRUE;
1591			}
1592			/*
1593			 * Restore original value.
1594			 */
1595			*(int *)ptr = tmp;
1596
1597			/*
1598			 * Adjust array of valid/good pages.
1599			 */
1600			if (page_bad == TRUE) {
1601				continue;
1602			}
1603			/*
1604			 * If this good page is a continuation of the
1605			 * previous set of good pages, then just increase
1606			 * the end pointer. Otherwise start a new chunk.
1607			 * Note that "end" points one higher than end,
1608			 * making the range >= start and < end.
1609			 * If we're also doing a speculative memory
1610			 * test and we at or past the end, bump up Maxmem
1611			 * so that we keep going. The first bad page
1612			 * will terminate the loop.
1613			 */
1614			if (phys_avail[pa_indx] == pa) {
1615				phys_avail[pa_indx] += PAGE_SIZE;
1616			} else {
1617				pa_indx++;
1618				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1619					printf(
1620		"Too many holes in the physical address space, giving up\n");
1621					pa_indx--;
1622					break;
1623				}
1624				phys_avail[pa_indx++] = pa;	/* start */
1625				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1626			}
1627			physmem++;
1628		}
1629	}
1630	*pte = 0;
1631	invltlb();
1632
1633	/*
1634	 * XXX
1635	 * The last chunk must contain at least one page plus the message
1636	 * buffer to avoid complicating other code (message buffer address
1637	 * calculation, etc.).
1638	 */
1639	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1640	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1641		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1642		phys_avail[pa_indx--] = 0;
1643		phys_avail[pa_indx--] = 0;
1644	}
1645
1646	Maxmem = atop(phys_avail[pa_indx]);
1647
1648	/* Trim off space for the message buffer. */
1649	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1650
1651	avail_end = phys_avail[pa_indx];
1652}
1653
1654void
1655init386(first)
1656	int first;
1657{
1658	struct gate_descriptor *gdp;
1659	int gsel_tss, metadata_missing, off, x;
1660#ifndef SMP
1661	/* table descriptors - used to load tables by microp */
1662	struct region_descriptor r_gdt, r_idt;
1663#endif
1664
1665	proc0.p_addr = proc0paddr;
1666
1667	atdevbase = ISA_HOLE_START + KERNBASE;
1668
1669	metadata_missing = 0;
1670	if (bootinfo.bi_modulep) {
1671		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1672		preload_bootstrap_relocate(KERNBASE);
1673	} else {
1674		metadata_missing = 1;
1675	}
1676	if (envmode == 1)
1677		kern_envp = static_env;
1678	else if (bootinfo.bi_envp)
1679		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1680
1681	/* Init basic tunables, hz etc */
1682	init_param();
1683
1684	/*
1685	 * make gdt memory segments, the code segment goes up to end of the
1686	 * page with etext in it, the data segment goes to the end of
1687	 * the address space
1688	 */
1689	/*
1690	 * XXX text protection is temporarily (?) disabled.  The limit was
1691	 * i386_btop(round_page(etext)) - 1.
1692	 */
1693	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1694	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1695#ifdef SMP
1696	gdt_segs[GPRIV_SEL].ssd_limit =
1697		atop(sizeof(struct privatespace) - 1);
1698	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
1699	gdt_segs[GPROC0_SEL].ssd_base =
1700		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
1701	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0].globaldata;
1702#else
1703	gdt_segs[GPRIV_SEL].ssd_limit =
1704		atop(sizeof(struct globaldata) - 1);
1705	gdt_segs[GPRIV_SEL].ssd_base = (int) &__globaldata;
1706	gdt_segs[GPROC0_SEL].ssd_base =
1707		(int) &__globaldata.gd_common_tss;
1708	__globaldata.gd_prvspace = &__globaldata;
1709#endif
1710
1711	for (x = 0; x < NGDT; x++) {
1712#ifdef BDE_DEBUGGER
1713		/* avoid overwriting db entries with APM ones */
1714		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1715			continue;
1716#endif
1717		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1718	}
1719
1720	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1721	r_gdt.rd_base =  (int) gdt;
1722	lgdt(&r_gdt);
1723
1724	/* setup curproc so that mutexes work */
1725	PCPU_SET(curproc, &proc0);
1726	PCPU_SET(spinlocks, NULL);
1727
1728	LIST_INIT(&proc0.p_contested);
1729
1730	/*
1731	 * Initialize mutexes.
1732	 */
1733	mtx_init(&Giant, "Giant", MTX_DEF | MTX_RECURSE);
1734	mtx_init(&sched_lock, "sched lock", MTX_SPIN | MTX_RECURSE);
1735	mtx_init(&proc0.p_mtx, "process lock", MTX_DEF);
1736	mtx_init(&clock_lock, "clk", MTX_SPIN | MTX_RECURSE);
1737#ifdef SMP
1738	mtx_init(&imen_mtx, "imen", MTX_SPIN);
1739#endif
1740	mtx_lock(&Giant);
1741
1742	/* make ldt memory segments */
1743	/*
1744	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1745	 * should be spelled ...MAX_USER...
1746	 */
1747	ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1748	ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1749	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1750		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1751
1752	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1753	lldt(_default_ldt);
1754	PCPU_SET(currentldt, _default_ldt);
1755
1756	/* exceptions */
1757	for (x = 0; x < NIDT; x++)
1758		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
1759		    GSEL(GCODE_SEL, SEL_KPL));
1760	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
1761	    GSEL(GCODE_SEL, SEL_KPL));
1762	setidt(1, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
1763	    GSEL(GCODE_SEL, SEL_KPL));
1764	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL,
1765	    GSEL(GCODE_SEL, SEL_KPL));
1766 	setidt(3, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
1767	    GSEL(GCODE_SEL, SEL_KPL));
1768	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
1769	    GSEL(GCODE_SEL, SEL_KPL));
1770	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
1771	    GSEL(GCODE_SEL, SEL_KPL));
1772	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
1773	    GSEL(GCODE_SEL, SEL_KPL));
1774	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
1775	    , GSEL(GCODE_SEL, SEL_KPL));
1776	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1777	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
1778	    GSEL(GCODE_SEL, SEL_KPL));
1779	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
1780	    GSEL(GCODE_SEL, SEL_KPL));
1781	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
1782	    GSEL(GCODE_SEL, SEL_KPL));
1783	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
1784	    GSEL(GCODE_SEL, SEL_KPL));
1785	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
1786	    GSEL(GCODE_SEL, SEL_KPL));
1787	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
1788	    GSEL(GCODE_SEL, SEL_KPL));
1789	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL,
1790	    GSEL(GCODE_SEL, SEL_KPL));
1791	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
1792	    GSEL(GCODE_SEL, SEL_KPL));
1793	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
1794	    GSEL(GCODE_SEL, SEL_KPL));
1795	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
1796	    GSEL(GCODE_SEL, SEL_KPL));
1797	setidt(19, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
1798	    GSEL(GCODE_SEL, SEL_KPL));
1799 	setidt(0x80, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
1800	    GSEL(GCODE_SEL, SEL_KPL));
1801
1802	r_idt.rd_limit = sizeof(idt0) - 1;
1803	r_idt.rd_base = (int) idt;
1804	lidt(&r_idt);
1805
1806	/*
1807	 * Initialize the console before we print anything out.
1808	 */
1809	cninit();
1810
1811	if (metadata_missing)
1812		printf("WARNING: loader(8) metadata is missing!\n");
1813
1814#ifdef DEV_ISA
1815	isa_defaultirq();
1816#endif
1817
1818#ifdef DDB
1819	kdb_init();
1820	if (boothowto & RB_KDB)
1821		Debugger("Boot flags requested debugger");
1822#endif
1823
1824	finishidentcpu();	/* Final stage of CPU initialization */
1825	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
1826	    GSEL(GCODE_SEL, SEL_KPL));
1827	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
1828	    GSEL(GCODE_SEL, SEL_KPL));
1829	initializecpu();	/* Initialize CPU registers */
1830
1831	/* make an initial tss so cpu can get interrupt stack on syscall! */
1832	PCPU_SET(common_tss.tss_esp0,
1833	    (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16);
1834	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
1835	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1836	private_tss = 0;
1837	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
1838	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
1839	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
1840	ltr(gsel_tss);
1841
1842	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1843	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
1844	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1845	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1846	dblfault_tss.tss_cr3 = (int)IdlePTD;
1847	dblfault_tss.tss_eip = (int)dblfault_handler;
1848	dblfault_tss.tss_eflags = PSL_KERNEL;
1849	dblfault_tss.tss_ds = dblfault_tss.tss_es =
1850	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1851	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1852	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1853	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1854
1855	vm86_initialize();
1856	getmemsize(first);
1857
1858	/* now running on new page tables, configured,and u/iom is accessible */
1859
1860	/* Map the message buffer. */
1861	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1862		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1863
1864	msgbufinit(msgbufp, MSGBUF_SIZE);
1865
1866	/* make a call gate to reenter kernel with */
1867	gdp = &ldt[LSYS5CALLS_SEL].gd;
1868
1869	x = (int) &IDTVEC(lcall_syscall);
1870	gdp->gd_looffset = x;
1871	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1872	gdp->gd_stkcpy = 1;
1873	gdp->gd_type = SDT_SYS386CGT;
1874	gdp->gd_dpl = SEL_UPL;
1875	gdp->gd_p = 1;
1876	gdp->gd_hioffset = x >> 16;
1877
1878	/* XXX does this work? */
1879	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1880	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
1881
1882	/* transfer to user mode */
1883
1884	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1885	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1886
1887	/* setup proc 0's pcb */
1888	proc0.p_addr->u_pcb.pcb_flags = 0;
1889	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1890	proc0.p_addr->u_pcb.pcb_ext = 0;
1891	proc0.p_frame = &proc0_tf;
1892}
1893
1894#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1895static void f00f_hack(void *unused);
1896SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1897
1898static void
1899f00f_hack(void *unused) {
1900	struct gate_descriptor *new_idt;
1901#ifndef SMP
1902	struct region_descriptor r_idt;
1903#endif
1904	vm_offset_t tmp;
1905
1906	if (!has_f00f_bug)
1907		return;
1908
1909	GIANT_REQUIRED;
1910
1911	printf("Intel Pentium detected, installing workaround for F00F bug\n");
1912
1913	r_idt.rd_limit = sizeof(idt0) - 1;
1914
1915	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
1916	if (tmp == 0)
1917		panic("kmem_alloc returned 0");
1918	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1919		panic("kmem_alloc returned non-page-aligned memory");
1920	/* Put the first seven entries in the lower page */
1921	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1922	bcopy(idt, new_idt, sizeof(idt0));
1923	r_idt.rd_base = (int)new_idt;
1924	lidt(&r_idt);
1925	idt = new_idt;
1926	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
1927			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
1928		panic("vm_map_protect failed");
1929	return;
1930}
1931#endif /* defined(I586_CPU) && !NO_F00F_HACK */
1932
1933int
1934ptrace_set_pc(p, addr)
1935	struct proc *p;
1936	unsigned long addr;
1937{
1938	p->p_frame->tf_eip = addr;
1939	return (0);
1940}
1941
1942int
1943ptrace_single_step(p)
1944	struct proc *p;
1945{
1946	p->p_frame->tf_eflags |= PSL_T;
1947	return (0);
1948}
1949
1950int
1951fill_regs(p, regs)
1952	struct proc *p;
1953	struct reg *regs;
1954{
1955	struct pcb *pcb;
1956	struct trapframe *tp;
1957
1958	tp = p->p_frame;
1959	regs->r_fs = tp->tf_fs;
1960	regs->r_es = tp->tf_es;
1961	regs->r_ds = tp->tf_ds;
1962	regs->r_edi = tp->tf_edi;
1963	regs->r_esi = tp->tf_esi;
1964	regs->r_ebp = tp->tf_ebp;
1965	regs->r_ebx = tp->tf_ebx;
1966	regs->r_edx = tp->tf_edx;
1967	regs->r_ecx = tp->tf_ecx;
1968	regs->r_eax = tp->tf_eax;
1969	regs->r_eip = tp->tf_eip;
1970	regs->r_cs = tp->tf_cs;
1971	regs->r_eflags = tp->tf_eflags;
1972	regs->r_esp = tp->tf_esp;
1973	regs->r_ss = tp->tf_ss;
1974	pcb = &p->p_addr->u_pcb;
1975	regs->r_gs = pcb->pcb_gs;
1976	return (0);
1977}
1978
1979int
1980set_regs(p, regs)
1981	struct proc *p;
1982	struct reg *regs;
1983{
1984	struct pcb *pcb;
1985	struct trapframe *tp;
1986
1987	tp = p->p_frame;
1988	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
1989	    !CS_SECURE(regs->r_cs))
1990		return (EINVAL);
1991	tp->tf_fs = regs->r_fs;
1992	tp->tf_es = regs->r_es;
1993	tp->tf_ds = regs->r_ds;
1994	tp->tf_edi = regs->r_edi;
1995	tp->tf_esi = regs->r_esi;
1996	tp->tf_ebp = regs->r_ebp;
1997	tp->tf_ebx = regs->r_ebx;
1998	tp->tf_edx = regs->r_edx;
1999	tp->tf_ecx = regs->r_ecx;
2000	tp->tf_eax = regs->r_eax;
2001	tp->tf_eip = regs->r_eip;
2002	tp->tf_cs = regs->r_cs;
2003	tp->tf_eflags = regs->r_eflags;
2004	tp->tf_esp = regs->r_esp;
2005	tp->tf_ss = regs->r_ss;
2006	pcb = &p->p_addr->u_pcb;
2007	pcb->pcb_gs = regs->r_gs;
2008	return (0);
2009}
2010
2011#ifdef CPU_ENABLE_SSE
2012static void
2013fill_fpregs_xmm(sv_xmm, sv_87)
2014	struct savexmm *sv_xmm;
2015	struct save87 *sv_87;
2016{
2017	register struct env87 *penv_87 = &sv_87->sv_env;
2018	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2019	int i;
2020
2021	/* FPU control/status */
2022	penv_87->en_cw = penv_xmm->en_cw;
2023	penv_87->en_sw = penv_xmm->en_sw;
2024	penv_87->en_tw = penv_xmm->en_tw;
2025	penv_87->en_fip = penv_xmm->en_fip;
2026	penv_87->en_fcs = penv_xmm->en_fcs;
2027	penv_87->en_opcode = penv_xmm->en_opcode;
2028	penv_87->en_foo = penv_xmm->en_foo;
2029	penv_87->en_fos = penv_xmm->en_fos;
2030
2031	/* FPU registers */
2032	for (i = 0; i < 8; ++i)
2033		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2034
2035	sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
2036}
2037
2038static void
2039set_fpregs_xmm(sv_87, sv_xmm)
2040	struct save87 *sv_87;
2041	struct savexmm *sv_xmm;
2042{
2043	register struct env87 *penv_87 = &sv_87->sv_env;
2044	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2045	int i;
2046
2047	/* FPU control/status */
2048	penv_xmm->en_cw = penv_87->en_cw;
2049	penv_xmm->en_sw = penv_87->en_sw;
2050	penv_xmm->en_tw = penv_87->en_tw;
2051	penv_xmm->en_fip = penv_87->en_fip;
2052	penv_xmm->en_fcs = penv_87->en_fcs;
2053	penv_xmm->en_opcode = penv_87->en_opcode;
2054	penv_xmm->en_foo = penv_87->en_foo;
2055	penv_xmm->en_fos = penv_87->en_fos;
2056
2057	/* FPU registers */
2058	for (i = 0; i < 8; ++i)
2059		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2060
2061	sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2062}
2063#endif /* CPU_ENABLE_SSE */
2064
2065int
2066fill_fpregs(p, fpregs)
2067	struct proc *p;
2068	struct fpreg *fpregs;
2069{
2070#ifdef CPU_ENABLE_SSE
2071	if (cpu_fxsr) {
2072		fill_fpregs_xmm(&p->p_addr->u_pcb.pcb_save.sv_xmm,
2073						(struct save87 *)fpregs);
2074		return (0);
2075	}
2076#endif /* CPU_ENABLE_SSE */
2077	bcopy(&p->p_addr->u_pcb.pcb_save.sv_87, fpregs, sizeof *fpregs);
2078	return (0);
2079}
2080
2081int
2082set_fpregs(p, fpregs)
2083	struct proc *p;
2084	struct fpreg *fpregs;
2085{
2086#ifdef CPU_ENABLE_SSE
2087	if (cpu_fxsr) {
2088		set_fpregs_xmm((struct save87 *)fpregs,
2089					   &p->p_addr->u_pcb.pcb_save.sv_xmm);
2090		return (0);
2091	}
2092#endif /* CPU_ENABLE_SSE */
2093	bcopy(fpregs, &p->p_addr->u_pcb.pcb_save.sv_87, sizeof *fpregs);
2094	return (0);
2095}
2096
2097int
2098fill_dbregs(p, dbregs)
2099	struct proc *p;
2100	struct dbreg *dbregs;
2101{
2102	struct pcb *pcb;
2103
2104	if (p == NULL) {
2105		dbregs->dr0 = rdr0();
2106		dbregs->dr1 = rdr1();
2107		dbregs->dr2 = rdr2();
2108		dbregs->dr3 = rdr3();
2109		dbregs->dr4 = rdr4();
2110		dbregs->dr5 = rdr5();
2111		dbregs->dr6 = rdr6();
2112		dbregs->dr7 = rdr7();
2113	}
2114	else {
2115		pcb = &p->p_addr->u_pcb;
2116		dbregs->dr0 = pcb->pcb_dr0;
2117		dbregs->dr1 = pcb->pcb_dr1;
2118		dbregs->dr2 = pcb->pcb_dr2;
2119		dbregs->dr3 = pcb->pcb_dr3;
2120		dbregs->dr4 = 0;
2121		dbregs->dr5 = 0;
2122		dbregs->dr6 = pcb->pcb_dr6;
2123		dbregs->dr7 = pcb->pcb_dr7;
2124	}
2125	return (0);
2126}
2127
2128int
2129set_dbregs(p, dbregs)
2130	struct proc *p;
2131	struct dbreg *dbregs;
2132{
2133	struct pcb *pcb;
2134	int i;
2135	u_int32_t mask1, mask2;
2136
2137	if (p == NULL) {
2138		load_dr0(dbregs->dr0);
2139		load_dr1(dbregs->dr1);
2140		load_dr2(dbregs->dr2);
2141		load_dr3(dbregs->dr3);
2142		load_dr4(dbregs->dr4);
2143		load_dr5(dbregs->dr5);
2144		load_dr6(dbregs->dr6);
2145		load_dr7(dbregs->dr7);
2146	}
2147	else {
2148		/*
2149		 * Don't let an illegal value for dr7 get set.	Specifically,
2150		 * check for undefined settings.  Setting these bit patterns
2151		 * result in undefined behaviour and can lead to an unexpected
2152		 * TRCTRAP.
2153		 */
2154		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2155		     i++, mask1 <<= 2, mask2 <<= 2)
2156			if ((dbregs->dr7 & mask1) == mask2)
2157				return (EINVAL);
2158
2159		pcb = &p->p_addr->u_pcb;
2160
2161		/*
2162		 * Don't let a process set a breakpoint that is not within the
2163		 * process's address space.  If a process could do this, it
2164		 * could halt the system by setting a breakpoint in the kernel
2165		 * (if ddb was enabled).  Thus, we need to check to make sure
2166		 * that no breakpoints are being enabled for addresses outside
2167		 * process's address space, unless, perhaps, we were called by
2168		 * uid 0.
2169		 *
2170		 * XXX - what about when the watched area of the user's
2171		 * address space is written into from within the kernel
2172		 * ... wouldn't that still cause a breakpoint to be generated
2173		 * from within kernel mode?
2174		 */
2175
2176		if (suser(p) != 0) {
2177			if (dbregs->dr7 & 0x3) {
2178				/* dr0 is enabled */
2179				if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2180					return (EINVAL);
2181			}
2182
2183			if (dbregs->dr7 & (0x3<<2)) {
2184				/* dr1 is enabled */
2185				if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2186					return (EINVAL);
2187			}
2188
2189			if (dbregs->dr7 & (0x3<<4)) {
2190				/* dr2 is enabled */
2191				if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2192					return (EINVAL);
2193			}
2194
2195			if (dbregs->dr7 & (0x3<<6)) {
2196				/* dr3 is enabled */
2197				if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2198					return (EINVAL);
2199			}
2200		}
2201
2202		pcb->pcb_dr0 = dbregs->dr0;
2203		pcb->pcb_dr1 = dbregs->dr1;
2204		pcb->pcb_dr2 = dbregs->dr2;
2205		pcb->pcb_dr3 = dbregs->dr3;
2206		pcb->pcb_dr6 = dbregs->dr6;
2207		pcb->pcb_dr7 = dbregs->dr7;
2208
2209		pcb->pcb_flags |= PCB_DBREGS;
2210	}
2211
2212	return (0);
2213}
2214
2215/*
2216 * Return > 0 if a hardware breakpoint has been hit, and the
2217 * breakpoint was in user space.  Return 0, otherwise.
2218 */
2219int
2220user_dbreg_trap(void)
2221{
2222        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2223        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
2224        int nbp;            /* number of breakpoints that triggered */
2225        caddr_t addr[4];    /* breakpoint addresses */
2226        int i;
2227
2228        dr7 = rdr7();
2229        if ((dr7 & 0x000000ff) == 0) {
2230                /*
2231                 * all GE and LE bits in the dr7 register are zero,
2232                 * thus the trap couldn't have been caused by the
2233                 * hardware debug registers
2234                 */
2235                return 0;
2236        }
2237
2238        nbp = 0;
2239        dr6 = rdr6();
2240        bp = dr6 & 0x0000000f;
2241
2242        if (!bp) {
2243                /*
2244                 * None of the breakpoint bits are set meaning this
2245                 * trap was not caused by any of the debug registers
2246                 */
2247                return 0;
2248        }
2249
2250        /*
2251         * at least one of the breakpoints were hit, check to see
2252         * which ones and if any of them are user space addresses
2253         */
2254
2255        if (bp & 0x01) {
2256                addr[nbp++] = (caddr_t)rdr0();
2257        }
2258        if (bp & 0x02) {
2259                addr[nbp++] = (caddr_t)rdr1();
2260        }
2261        if (bp & 0x04) {
2262                addr[nbp++] = (caddr_t)rdr2();
2263        }
2264        if (bp & 0x08) {
2265                addr[nbp++] = (caddr_t)rdr3();
2266        }
2267
2268        for (i=0; i<nbp; i++) {
2269                if (addr[i] <
2270                    (caddr_t)VM_MAXUSER_ADDRESS) {
2271                        /*
2272                         * addr[i] is in user space
2273                         */
2274                        return nbp;
2275                }
2276        }
2277
2278        /*
2279         * None of the breakpoints are in user space.
2280         */
2281        return 0;
2282}
2283
2284
2285#ifndef DDB
2286void
2287Debugger(const char *msg)
2288{
2289	printf("Debugger(\"%s\") called.\n", msg);
2290}
2291#endif /* no DDB */
2292
2293#include <sys/disklabel.h>
2294
2295/*
2296 * Determine the size of the transfer, and make sure it is
2297 * within the boundaries of the partition. Adjust transfer
2298 * if needed, and signal errors or early completion.
2299 */
2300int
2301bounds_check_with_label(struct bio *bp, struct disklabel *lp, int wlabel)
2302{
2303        struct partition *p = lp->d_partitions + dkpart(bp->bio_dev);
2304        int labelsect = lp->d_partitions[0].p_offset;
2305        int maxsz = p->p_size,
2306                sz = (bp->bio_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2307
2308        /* overwriting disk label ? */
2309        /* XXX should also protect bootstrap in first 8K */
2310        if (bp->bio_blkno + p->p_offset <= LABELSECTOR + labelsect &&
2311#if LABELSECTOR != 0
2312            bp->bio_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2313#endif
2314            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2315                bp->bio_error = EROFS;
2316                goto bad;
2317        }
2318
2319#if     defined(DOSBBSECTOR) && defined(notyet)
2320        /* overwriting master boot record? */
2321        if (bp->bio_blkno + p->p_offset <= DOSBBSECTOR &&
2322            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2323                bp->bio_error = EROFS;
2324                goto bad;
2325        }
2326#endif
2327
2328        /* beyond partition? */
2329        if (bp->bio_blkno < 0 || bp->bio_blkno + sz > maxsz) {
2330                /* if exactly at end of disk, return an EOF */
2331                if (bp->bio_blkno == maxsz) {
2332                        bp->bio_resid = bp->bio_bcount;
2333                        return(0);
2334                }
2335                /* or truncate if part of it fits */
2336                sz = maxsz - bp->bio_blkno;
2337                if (sz <= 0) {
2338                        bp->bio_error = EINVAL;
2339                        goto bad;
2340                }
2341                bp->bio_bcount = sz << DEV_BSHIFT;
2342        }
2343
2344        bp->bio_pblkno = bp->bio_blkno + p->p_offset;
2345        return(1);
2346
2347bad:
2348        bp->bio_flags |= BIO_ERROR;
2349        return(-1);
2350}
2351
2352#ifdef DDB
2353
2354/*
2355 * Provide inb() and outb() as functions.  They are normally only
2356 * available as macros calling inlined functions, thus cannot be
2357 * called inside DDB.
2358 *
2359 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2360 */
2361
2362#undef inb
2363#undef outb
2364
2365/* silence compiler warnings */
2366u_char inb(u_int);
2367void outb(u_int, u_char);
2368
2369u_char
2370inb(u_int port)
2371{
2372	u_char	data;
2373	/*
2374	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2375	 * %edx, while gcc generates inferior code (movw instead of movl)
2376	 * if we tell it to load (u_short) port.
2377	 */
2378	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2379	return (data);
2380}
2381
2382void
2383outb(u_int port, u_char data)
2384{
2385	u_char	al;
2386	/*
2387	 * Use an unnecessary assignment to help gcc's register allocator.
2388	 * This make a large difference for gcc-1.40 and a tiny difference
2389	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2390	 * best results.  gcc-2.6.0 can't handle this.
2391	 */
2392	al = data;
2393	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2394}
2395
2396#endif /* DDB */
2397