machdep.c revision 82157
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 82157 2001-08-23 01:25:21Z peter $
39 */
40
41#include "opt_atalk.h"
42#include "opt_compat.h"
43#include "opt_cpu.h"
44#include "opt_ddb.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_isa.h"
48#include "opt_maxmem.h"
49#include "opt_msgbuf.h"
50#include "opt_npx.h"
51#include "opt_perfmon.h"
52/* #include "opt_userconfig.h" */
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysproto.h>
57#include <sys/signalvar.h>
58#include <sys/kernel.h>
59#include <sys/ktr.h>
60#include <sys/linker.h>
61#include <sys/lock.h>
62#include <sys/malloc.h>
63#include <sys/mutex.h>
64#include <sys/pcpu.h>
65#include <sys/proc.h>
66#include <sys/bio.h>
67#include <sys/buf.h>
68#include <sys/reboot.h>
69#include <sys/smp.h>
70#include <sys/callout.h>
71#include <sys/msgbuf.h>
72#include <sys/sysent.h>
73#include <sys/sysctl.h>
74#include <sys/vmmeter.h>
75#include <sys/bus.h>
76#include <sys/eventhandler.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <sys/lock.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_map.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88#include <sys/user.h>
89#include <sys/exec.h>
90#include <sys/cons.h>
91
92#include <ddb/ddb.h>
93
94#include <net/netisr.h>
95
96#include <machine/cpu.h>
97#include <machine/cputypes.h>
98#include <machine/reg.h>
99#include <machine/clock.h>
100#include <machine/specialreg.h>
101#include <machine/bootinfo.h>
102#include <machine/md_var.h>
103#include <machine/pc/bios.h>
104#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
105#include <machine/globals.h>
106#ifdef PERFMON
107#include <machine/perfmon.h>
108#endif
109
110#include <i386/isa/icu.h>
111#include <i386/isa/intr_machdep.h>
112#include <isa/rtc.h>
113#include <machine/vm86.h>
114#include <sys/ptrace.h>
115#include <machine/sigframe.h>
116
117extern void init386 __P((int first));
118extern void dblfault_handler __P((void));
119
120extern void printcpuinfo(void);	/* XXX header file */
121extern void earlysetcpuclass(void);	/* same header file */
122extern void finishidentcpu(void);
123extern void panicifcpuunsupported(void);
124extern void initializecpu(void);
125
126#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
127#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
128
129static void cpu_startup __P((void *));
130#ifdef CPU_ENABLE_SSE
131static void set_fpregs_xmm __P((struct save87 *, struct savexmm *));
132static void fill_fpregs_xmm __P((struct savexmm *, struct save87 *));
133#endif /* CPU_ENABLE_SSE */
134SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
135
136int	_udatasel, _ucodesel;
137u_int	atdevbase;
138
139#if defined(SWTCH_OPTIM_STATS)
140extern int swtch_optim_stats;
141SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
142	CTLFLAG_RD, &swtch_optim_stats, 0, "");
143SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
144	CTLFLAG_RD, &tlb_flush_count, 0, "");
145#endif
146
147#ifdef PC98
148static int	ispc98 = 1;
149#else
150static int	ispc98 = 0;
151#endif
152SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
153
154int physmem = 0;
155int cold = 1;
156
157#ifdef COMPAT_43
158static void osendsig __P((sig_t catcher, int sig, sigset_t *mask, u_long code));
159#endif
160
161static int
162sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
163{
164	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
165	return (error);
166}
167
168SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
169	0, 0, sysctl_hw_physmem, "IU", "");
170
171static int
172sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
173{
174	int error = sysctl_handle_int(oidp, 0,
175		ctob(physmem - cnt.v_wire_count), req);
176	return (error);
177}
178
179SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
180	0, 0, sysctl_hw_usermem, "IU", "");
181
182static int
183sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
184{
185	int error = sysctl_handle_int(oidp, 0,
186		i386_btop(avail_end - avail_start), req);
187	return (error);
188}
189
190SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
191	0, 0, sysctl_hw_availpages, "I", "");
192
193int Maxmem = 0;
194long dumplo;
195
196vm_offset_t phys_avail[10];
197
198/* must be 2 less so 0 0 can signal end of chunks */
199#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
200
201struct kva_md_info kmi;
202
203static struct trapframe proc0_tf;
204#ifndef SMP
205static struct globaldata __globaldata;
206#endif
207
208struct mtx sched_lock;
209struct mtx Giant;
210
211static void
212cpu_startup(dummy)
213	void *dummy;
214{
215	/*
216	 * Good {morning,afternoon,evening,night}.
217	 */
218	earlysetcpuclass();
219	startrtclock();
220	printcpuinfo();
221	panicifcpuunsupported();
222#ifdef PERFMON
223	perfmon_init();
224#endif
225	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem),
226	    ptoa(Maxmem) / 1024);
227	/*
228	 * Display any holes after the first chunk of extended memory.
229	 */
230	if (bootverbose) {
231		int indx;
232
233		printf("Physical memory chunk(s):\n");
234		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
235			unsigned int size1;
236
237			size1 = phys_avail[indx + 1] - phys_avail[indx];
238			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
239			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
240			    size1 / PAGE_SIZE);
241		}
242	}
243
244	vm_ksubmap_init(&kmi);
245
246#if 0
247	/*
248	 * Calculate callout wheel size
249	 */
250	for (callwheelsize = 1, callwheelbits = 0;
251	     callwheelsize < ncallout;
252	     callwheelsize <<= 1, ++callwheelbits)
253		;
254	callwheelmask = callwheelsize - 1;
255
256	/*
257	 * Allocate space for system data structures.
258	 * The first available kernel virtual address is in "v".
259	 * As pages of kernel virtual memory are allocated, "v" is incremented.
260	 * As pages of memory are allocated and cleared,
261	 * "firstaddr" is incremented.
262	 * An index into the kernel page table corresponding to the
263	 * virtual memory address maintained in "v" is kept in "mapaddr".
264	 */
265
266	/*
267	 * Make two passes.  The first pass calculates how much memory is
268	 * needed and allocates it.  The second pass assigns virtual
269	 * addresses to the various data structures.
270	 */
271	firstaddr = 0;
272again:
273	v = (caddr_t)firstaddr;
274
275#define	valloc(name, type, num) \
276	    (name) = (type *)v; v = (caddr_t)((name)+(num))
277#define	valloclim(name, type, num, lim) \
278	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
279
280	valloc(callout, struct callout, ncallout);
281	valloc(callwheel, struct callout_tailq, callwheelsize);
282
283	/*
284	 * Discount the physical memory larger than the size of kernel_map
285	 * to avoid eating up all of KVA space.
286	 */
287	if (kernel_map->first_free == NULL) {
288		printf("Warning: no free entries in kernel_map.\n");
289		physmem_est = physmem;
290	} else {
291		physmem_est = min(physmem, btoc(kernel_map->max_offset -
292		    kernel_map->min_offset));
293	}
294
295	/*
296	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
297	 * For the first 64MB of ram nominally allocate sufficient buffers to
298	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
299	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
300	 * the buffer cache we limit the eventual kva reservation to
301	 * maxbcache bytes.
302	 *
303	 * factor represents the 1/4 x ram conversion.
304	 */
305	if (nbuf == 0) {
306		int factor = 4 * BKVASIZE / PAGE_SIZE;
307
308		nbuf = 50;
309		if (physmem_est > 1024)
310			nbuf += min((physmem_est - 1024) / factor,
311			    16384 / factor);
312		if (physmem_est > 16384)
313			nbuf += (physmem_est - 16384) * 2 / (factor * 5);
314
315		if (maxbcache && nbuf > maxbcache / BKVASIZE)
316			nbuf = maxbcache / BKVASIZE;
317	}
318
319	/*
320	 * Do not allow the buffer_map to be more then 1/2 the size of the
321	 * kernel_map.
322	 */
323	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
324	    (BKVASIZE * 2)) {
325		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
326		    (BKVASIZE * 2);
327		printf("Warning: nbufs capped at %d\n", nbuf);
328	}
329
330	nswbuf = max(min(nbuf/4, 256), 16);
331
332	valloc(swbuf, struct buf, nswbuf);
333	valloc(buf, struct buf, nbuf);
334	v = bufhashinit(v);
335
336	/*
337	 * End of first pass, size has been calculated so allocate memory
338	 */
339	if (firstaddr == 0) {
340		size = (vm_size_t)(v - firstaddr);
341		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
342		if (firstaddr == 0)
343			panic("startup: no room for tables");
344		goto again;
345	}
346
347	/*
348	 * End of second pass, addresses have been assigned
349	 */
350	if ((vm_size_t)(v - firstaddr) != size)
351		panic("startup: table size inconsistency");
352
353	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
354			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
355	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
356				(nbuf*BKVASIZE));
357	buffer_map->system_map = 1;
358	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
359				(nswbuf*MAXPHYS) + pager_map_size);
360	pager_map->system_map = 1;
361	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
362				(16*(ARG_MAX+(PAGE_SIZE*3))));
363
364	/*
365	 * XXX: Mbuf system machine-specific initializations should
366	 *      go here, if anywhere.
367	 */
368
369	/*
370	 * Initialize callouts
371	 */
372	SLIST_INIT(&callfree);
373	for (i = 0; i < ncallout; i++) {
374		callout_init(&callout[i], 0);
375		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
376		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
377	}
378
379	for (i = 0; i < callwheelsize; i++) {
380		TAILQ_INIT(&callwheel[i]);
381	}
382
383	mtx_init(&callout_lock, "callout", MTX_SPIN | MTX_RECURSE);
384#endif
385
386#if defined(USERCONFIG)
387	userconfig();
388	cninit();		/* the preferred console may have changed */
389#endif
390
391	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
392	    ptoa(cnt.v_free_count) / 1024);
393
394	/*
395	 * Set up buffers, so they can be used to read disk labels.
396	 */
397	bufinit();
398	vm_pager_bufferinit();
399
400	globaldata_register(GLOBALDATA);
401#ifndef SMP
402	/* For SMP, we delay the cpu_setregs() until after SMP startup. */
403	cpu_setregs();
404#endif
405}
406
407/*
408 * Send an interrupt to process.
409 *
410 * Stack is set up to allow sigcode stored
411 * at top to call routine, followed by kcall
412 * to sigreturn routine below.  After sigreturn
413 * resets the signal mask, the stack, and the
414 * frame pointer, it returns to the user
415 * specified pc, psl.
416 */
417#ifdef COMPAT_43
418static void
419osendsig(catcher, sig, mask, code)
420	sig_t catcher;
421	int sig;
422	sigset_t *mask;
423	u_long code;
424{
425	struct osigframe sf;
426	struct osigframe *fp;
427	struct proc *p;
428	struct sigacts *psp;
429	struct trapframe *regs;
430	int oonstack;
431
432	p = curproc;
433	PROC_LOCK(p);
434	psp = p->p_sigacts;
435	regs = p->p_frame;
436	oonstack = sigonstack(regs->tf_esp);
437
438	/* Allocate and validate space for the signal handler context. */
439	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
440	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
441		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
442		    p->p_sigstk.ss_size - sizeof(struct osigframe));
443#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
444		p->p_sigstk.ss_flags |= SS_ONSTACK;
445#endif
446	} else
447		fp = (struct osigframe *)regs->tf_esp - 1;
448	PROC_UNLOCK(p);
449
450	/*
451	 * grow_stack() will return 0 if *fp does not fit inside the stack
452	 * and the stack can not be grown.
453	 * useracc() will return FALSE if access is denied.
454	 */
455	if (grow_stack(p, (int)fp) == 0 ||
456	    !useracc((caddr_t)fp, sizeof(*fp), VM_PROT_WRITE)) {
457		/*
458		 * Process has trashed its stack; give it an illegal
459		 * instruction to halt it in its tracks.
460		 */
461		PROC_LOCK(p);
462		SIGACTION(p, SIGILL) = SIG_DFL;
463		SIGDELSET(p->p_sigignore, SIGILL);
464		SIGDELSET(p->p_sigcatch, SIGILL);
465		SIGDELSET(p->p_sigmask, SIGILL);
466		psignal(p, SIGILL);
467		PROC_UNLOCK(p);
468		return;
469	}
470
471	/* Translate the signal if appropriate. */
472	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
473		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
474
475	/* Build the argument list for the signal handler. */
476	sf.sf_signum = sig;
477	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
478	PROC_LOCK(p);
479	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
480		/* Signal handler installed with SA_SIGINFO. */
481		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
482		sf.sf_siginfo.si_signo = sig;
483		sf.sf_siginfo.si_code = code;
484		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
485	} else {
486		/* Old FreeBSD-style arguments. */
487		sf.sf_arg2 = code;
488		sf.sf_addr = regs->tf_err;
489		sf.sf_ahu.sf_handler = catcher;
490	}
491	PROC_UNLOCK(p);
492
493	/* Save most if not all of trap frame. */
494	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
495	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
496	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
497	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
498	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
499	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
500	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
501	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
502	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
503	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
504	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
505	sf.sf_siginfo.si_sc.sc_gs = rgs();
506	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
507
508	/* Build the signal context to be used by osigreturn(). */
509	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
510	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
511	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
512	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
513	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
514	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
515	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
516	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
517
518	/*
519	 * If we're a vm86 process, we want to save the segment registers.
520	 * We also change eflags to be our emulated eflags, not the actual
521	 * eflags.
522	 */
523	if (regs->tf_eflags & PSL_VM) {
524		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
525		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
526		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
527
528		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
529		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
530		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
531		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
532
533		if (vm86->vm86_has_vme == 0)
534			sf.sf_siginfo.si_sc.sc_ps =
535			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
536			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
537
538		/* See sendsig() for comments. */
539		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
540	}
541
542	/* Copy the sigframe out to the user's stack. */
543	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
544		/*
545		 * Something is wrong with the stack pointer.
546		 * ...Kill the process.
547		 */
548		PROC_LOCK(p);
549		sigexit(p, SIGILL);
550		/* NOTREACHED */
551	}
552
553	regs->tf_esp = (int)fp;
554	regs->tf_eip = PS_STRINGS - szosigcode;
555	regs->tf_cs = _ucodesel;
556	regs->tf_ds = _udatasel;
557	regs->tf_es = _udatasel;
558	regs->tf_fs = _udatasel;
559	load_gs(_udatasel);
560	regs->tf_ss = _udatasel;
561}
562#endif
563
564void
565sendsig(catcher, sig, mask, code)
566	sig_t catcher;
567	int sig;
568	sigset_t *mask;
569	u_long code;
570{
571	struct sigframe sf;
572	struct proc *p;
573	struct sigacts *psp;
574	struct trapframe *regs;
575	struct sigframe *sfp;
576	int oonstack;
577
578	p = curproc;
579	PROC_LOCK(p);
580	psp = p->p_sigacts;
581#ifdef COMPAT_43
582	if (SIGISMEMBER(psp->ps_osigset, sig)) {
583		PROC_UNLOCK(p);
584		osendsig(catcher, sig, mask, code);
585		return;
586	}
587#endif
588	regs = p->p_frame;
589	oonstack = sigonstack(regs->tf_esp);
590
591	/* Save user context. */
592	bzero(&sf, sizeof(sf));
593	sf.sf_uc.uc_sigmask = *mask;
594	sf.sf_uc.uc_stack = p->p_sigstk;
595	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
596	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
597	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
598	sf.sf_uc.uc_mcontext.mc_gs = rgs();
599	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
600
601	/* Allocate and validate space for the signal handler context. */
602	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
603	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
604		sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
605		    p->p_sigstk.ss_size - sizeof(struct sigframe));
606#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
607		p->p_sigstk.ss_flags |= SS_ONSTACK;
608#endif
609	} else
610		sfp = (struct sigframe *)regs->tf_esp - 1;
611	PROC_UNLOCK(p);
612
613	/*
614	 * grow_stack() will return 0 if *sfp does not fit inside the stack
615	 * and the stack can not be grown.
616	 * useracc() will return FALSE if access is denied.
617	 */
618	if (grow_stack(p, (int)sfp) == 0 ||
619	    !useracc((caddr_t)sfp, sizeof(*sfp), VM_PROT_WRITE)) {
620		/*
621		 * Process has trashed its stack; give it an illegal
622		 * instruction to halt it in its tracks.
623		 */
624#ifdef DEBUG
625		printf("process %d has trashed its stack\n", p->p_pid);
626#endif
627		PROC_LOCK(p);
628		SIGACTION(p, SIGILL) = SIG_DFL;
629		SIGDELSET(p->p_sigignore, SIGILL);
630		SIGDELSET(p->p_sigcatch, SIGILL);
631		SIGDELSET(p->p_sigmask, SIGILL);
632		psignal(p, SIGILL);
633		PROC_UNLOCK(p);
634		return;
635	}
636
637	/* Translate the signal if appropriate. */
638	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
639		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
640
641	/* Build the argument list for the signal handler. */
642	sf.sf_signum = sig;
643	sf.sf_ucontext = (register_t)&sfp->sf_uc;
644	PROC_LOCK(p);
645	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
646		/* Signal handler installed with SA_SIGINFO. */
647		sf.sf_siginfo = (register_t)&sfp->sf_si;
648		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
649
650		/* Fill siginfo structure. */
651		sf.sf_si.si_signo = sig;
652		sf.sf_si.si_code = code;
653		sf.sf_si.si_addr = (void *)regs->tf_err;
654	} else {
655		/* Old FreeBSD-style arguments. */
656		sf.sf_siginfo = code;
657		sf.sf_addr = regs->tf_err;
658		sf.sf_ahu.sf_handler = catcher;
659	}
660	PROC_UNLOCK(p);
661
662	/*
663	 * If we're a vm86 process, we want to save the segment registers.
664	 * We also change eflags to be our emulated eflags, not the actual
665	 * eflags.
666	 */
667	if (regs->tf_eflags & PSL_VM) {
668		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
669		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
670
671		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
672		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
673		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
674		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
675
676		if (vm86->vm86_has_vme == 0)
677			sf.sf_uc.uc_mcontext.mc_eflags =
678			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
679			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
680
681		/*
682		 * We should never have PSL_T set when returning from vm86
683		 * mode.  It may be set here if we deliver a signal before
684		 * getting to vm86 mode, so turn it off.
685		 *
686		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
687		 * syscalls made by the signal handler.  This just avoids
688		 * wasting time for our lazy fixup of such faults.  PSL_NT
689		 * does nothing in vm86 mode, but vm86 programs can set it
690		 * almost legitimately in probes for old cpu types.
691		 */
692		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
693	}
694
695	/* Copy the sigframe out to the user's stack. */
696	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
697		/*
698		 * Something is wrong with the stack pointer.
699		 * ...Kill the process.
700		 */
701		PROC_LOCK(p);
702		sigexit(p, SIGILL);
703		/* NOTREACHED */
704	}
705
706	regs->tf_esp = (int)sfp;
707	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
708	regs->tf_cs = _ucodesel;
709	regs->tf_ds = _udatasel;
710	regs->tf_es = _udatasel;
711	regs->tf_fs = _udatasel;
712	regs->tf_ss = _udatasel;
713}
714
715/*
716 * System call to cleanup state after a signal
717 * has been taken.  Reset signal mask and
718 * stack state from context left by sendsig (above).
719 * Return to previous pc and psl as specified by
720 * context left by sendsig. Check carefully to
721 * make sure that the user has not modified the
722 * state to gain improper privileges.
723 */
724#ifdef COMPAT_43
725int
726osigreturn(p, uap)
727	struct proc *p;
728	struct osigreturn_args /* {
729		struct osigcontext *sigcntxp;
730	} */ *uap;
731{
732	struct trapframe *regs;
733	struct osigcontext *scp;
734	int eflags;
735
736	regs = p->p_frame;
737	scp = uap->sigcntxp;
738	if (!useracc((caddr_t)scp, sizeof(*scp), VM_PROT_READ))
739		return (EFAULT);
740	eflags = scp->sc_ps;
741	if (eflags & PSL_VM) {
742		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
743		struct vm86_kernel *vm86;
744
745		/*
746		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
747		 * set up the vm86 area, and we can't enter vm86 mode.
748		 */
749		if (p->p_addr->u_pcb.pcb_ext == 0)
750			return (EINVAL);
751		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
752		if (vm86->vm86_inited == 0)
753			return (EINVAL);
754
755		/* Go back to user mode if both flags are set. */
756		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
757			trapsignal(p, SIGBUS, 0);
758
759		if (vm86->vm86_has_vme) {
760			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
761			    (eflags & VME_USERCHANGE) | PSL_VM;
762		} else {
763			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
764			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
765			    (eflags & VM_USERCHANGE) | PSL_VM;
766		}
767		tf->tf_vm86_ds = scp->sc_ds;
768		tf->tf_vm86_es = scp->sc_es;
769		tf->tf_vm86_fs = scp->sc_fs;
770		tf->tf_vm86_gs = scp->sc_gs;
771		tf->tf_ds = _udatasel;
772		tf->tf_es = _udatasel;
773		tf->tf_fs = _udatasel;
774	} else {
775		/*
776		 * Don't allow users to change privileged or reserved flags.
777		 */
778		/*
779		 * XXX do allow users to change the privileged flag PSL_RF.
780		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
781		 * should sometimes set it there too.  tf_eflags is kept in
782		 * the signal context during signal handling and there is no
783		 * other place to remember it, so the PSL_RF bit may be
784		 * corrupted by the signal handler without us knowing.
785		 * Corruption of the PSL_RF bit at worst causes one more or
786		 * one less debugger trap, so allowing it is fairly harmless.
787		 */
788		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
789	    		return (EINVAL);
790		}
791
792		/*
793		 * Don't allow users to load a valid privileged %cs.  Let the
794		 * hardware check for invalid selectors, excess privilege in
795		 * other selectors, invalid %eip's and invalid %esp's.
796		 */
797		if (!CS_SECURE(scp->sc_cs)) {
798			trapsignal(p, SIGBUS, T_PROTFLT);
799			return (EINVAL);
800		}
801		regs->tf_ds = scp->sc_ds;
802		regs->tf_es = scp->sc_es;
803		regs->tf_fs = scp->sc_fs;
804	}
805
806	/* Restore remaining registers. */
807	regs->tf_eax = scp->sc_eax;
808	regs->tf_ebx = scp->sc_ebx;
809	regs->tf_ecx = scp->sc_ecx;
810	regs->tf_edx = scp->sc_edx;
811	regs->tf_esi = scp->sc_esi;
812	regs->tf_edi = scp->sc_edi;
813	regs->tf_cs = scp->sc_cs;
814	regs->tf_ss = scp->sc_ss;
815	regs->tf_isp = scp->sc_isp;
816
817	PROC_LOCK(p);
818#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
819	if (scp->sc_onstack & 1)
820		p->p_sigstk.ss_flags |= SS_ONSTACK;
821	else
822		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
823#endif
824
825	SIGSETOLD(p->p_sigmask, scp->sc_mask);
826	SIG_CANTMASK(p->p_sigmask);
827	PROC_UNLOCK(p);
828	regs->tf_ebp = scp->sc_fp;
829	regs->tf_esp = scp->sc_sp;
830	regs->tf_eip = scp->sc_pc;
831	regs->tf_eflags = eflags;
832	return (EJUSTRETURN);
833}
834#endif
835
836int
837sigreturn(p, uap)
838	struct proc *p;
839	struct sigreturn_args /* {
840		ucontext_t *sigcntxp;
841	} */ *uap;
842{
843	struct trapframe *regs;
844	ucontext_t *ucp;
845	int cs, eflags;
846
847	ucp = uap->sigcntxp;
848#ifdef COMPAT_43
849	if (!useracc((caddr_t)ucp, sizeof(struct osigcontext), VM_PROT_READ))
850		return (EFAULT);
851	if (((struct osigcontext *)ucp)->sc_trapno == 0x01d516)
852		return (osigreturn(p, (struct osigreturn_args *)uap));
853	/*
854	 * Since ucp is not an osigcontext but a ucontext_t, we have to
855	 * check again if all of it is accessible.  A ucontext_t is
856	 * much larger, so instead of just checking for the pointer
857	 * being valid for the size of an osigcontext, now check for
858	 * it being valid for a whole, new-style ucontext_t.
859	 */
860#endif
861	if (!useracc((caddr_t)ucp, sizeof(*ucp), VM_PROT_READ))
862		return (EFAULT);
863
864	regs = p->p_frame;
865	eflags = ucp->uc_mcontext.mc_eflags;
866	if (eflags & PSL_VM) {
867		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
868		struct vm86_kernel *vm86;
869
870		/*
871		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
872		 * set up the vm86 area, and we can't enter vm86 mode.
873		 */
874		if (p->p_addr->u_pcb.pcb_ext == 0)
875			return (EINVAL);
876		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
877		if (vm86->vm86_inited == 0)
878			return (EINVAL);
879
880		/* Go back to user mode if both flags are set. */
881		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
882			trapsignal(p, SIGBUS, 0);
883
884		if (vm86->vm86_has_vme) {
885			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
886			    (eflags & VME_USERCHANGE) | PSL_VM;
887		} else {
888			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
889			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
890			    (eflags & VM_USERCHANGE) | PSL_VM;
891		}
892		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
893		tf->tf_eflags = eflags;
894		tf->tf_vm86_ds = tf->tf_ds;
895		tf->tf_vm86_es = tf->tf_es;
896		tf->tf_vm86_fs = tf->tf_fs;
897		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
898		tf->tf_ds = _udatasel;
899		tf->tf_es = _udatasel;
900		tf->tf_fs = _udatasel;
901	} else {
902		/*
903		 * Don't allow users to change privileged or reserved flags.
904		 */
905		/*
906		 * XXX do allow users to change the privileged flag PSL_RF.
907		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
908		 * should sometimes set it there too.  tf_eflags is kept in
909		 * the signal context during signal handling and there is no
910		 * other place to remember it, so the PSL_RF bit may be
911		 * corrupted by the signal handler without us knowing.
912		 * Corruption of the PSL_RF bit at worst causes one more or
913		 * one less debugger trap, so allowing it is fairly harmless.
914		 */
915		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
916			printf("sigreturn: eflags = 0x%x\n", eflags);
917	    		return (EINVAL);
918		}
919
920		/*
921		 * Don't allow users to load a valid privileged %cs.  Let the
922		 * hardware check for invalid selectors, excess privilege in
923		 * other selectors, invalid %eip's and invalid %esp's.
924		 */
925		cs = ucp->uc_mcontext.mc_cs;
926		if (!CS_SECURE(cs)) {
927			printf("sigreturn: cs = 0x%x\n", cs);
928			trapsignal(p, SIGBUS, T_PROTFLT);
929			return (EINVAL);
930		}
931
932		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
933	}
934
935	PROC_LOCK(p);
936#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
937	if (ucp->uc_mcontext.mc_onstack & 1)
938		p->p_sigstk.ss_flags |= SS_ONSTACK;
939	else
940		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
941#endif
942
943	p->p_sigmask = ucp->uc_sigmask;
944	SIG_CANTMASK(p->p_sigmask);
945	PROC_UNLOCK(p);
946	return (EJUSTRETURN);
947}
948
949/*
950 * Machine dependent boot() routine
951 *
952 * I haven't seen anything to put here yet
953 * Possibly some stuff might be grafted back here from boot()
954 */
955void
956cpu_boot(int howto)
957{
958}
959
960/*
961 * Shutdown the CPU as much as possible
962 */
963void
964cpu_halt(void)
965{
966	for (;;)
967		__asm__ ("hlt");
968}
969
970/*
971 * Hook to idle the CPU when possible.  This currently only works in
972 * the !SMP case, as there is no clean way to ensure that a CPU will be
973 * woken when there is work available for it.
974 */
975static int	cpu_idle_hlt = 1;
976SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
977    &cpu_idle_hlt, 0, "Idle loop HLT enable");
978
979/*
980 * Note that we have to be careful here to avoid a race between checking
981 * procrunnable() and actually halting.  If we don't do this, we may waste
982 * the time between calling hlt and the next interrupt even though there
983 * is a runnable process.
984 */
985void
986cpu_idle(void)
987{
988#ifndef SMP
989	if (cpu_idle_hlt) {
990		disable_intr();
991  		if (procrunnable())
992			enable_intr();
993		else {
994			enable_intr();
995			__asm __volatile("hlt");
996		}
997	}
998#endif
999}
1000
1001/*
1002 * Clear registers on exec
1003 */
1004void
1005setregs(p, entry, stack, ps_strings)
1006	struct proc *p;
1007	u_long entry;
1008	u_long stack;
1009	u_long ps_strings;
1010{
1011	struct trapframe *regs = p->p_frame;
1012	struct pcb *pcb = &p->p_addr->u_pcb;
1013
1014	if (pcb->pcb_ldt)
1015		user_ldt_free(pcb);
1016
1017	bzero((char *)regs, sizeof(struct trapframe));
1018	regs->tf_eip = entry;
1019	regs->tf_esp = stack;
1020	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1021	regs->tf_ss = _udatasel;
1022	regs->tf_ds = _udatasel;
1023	regs->tf_es = _udatasel;
1024	regs->tf_fs = _udatasel;
1025	regs->tf_cs = _ucodesel;
1026
1027	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1028	regs->tf_ebx = ps_strings;
1029
1030	/* reset %gs as well */
1031	if (pcb == PCPU_GET(curpcb))
1032		load_gs(_udatasel);
1033	else
1034		pcb->pcb_gs = _udatasel;
1035
1036        /*
1037         * Reset the hardware debug registers if they were in use.
1038         * They won't have any meaning for the newly exec'd process.
1039         */
1040        if (pcb->pcb_flags & PCB_DBREGS) {
1041                pcb->pcb_dr0 = 0;
1042                pcb->pcb_dr1 = 0;
1043                pcb->pcb_dr2 = 0;
1044                pcb->pcb_dr3 = 0;
1045                pcb->pcb_dr6 = 0;
1046                pcb->pcb_dr7 = 0;
1047                if (pcb == PCPU_GET(curpcb)) {
1048		        /*
1049			 * Clear the debug registers on the running
1050			 * CPU, otherwise they will end up affecting
1051			 * the next process we switch to.
1052			 */
1053		        reset_dbregs();
1054                }
1055                pcb->pcb_flags &= ~PCB_DBREGS;
1056        }
1057
1058	/*
1059	 * Initialize the math emulator (if any) for the current process.
1060	 * Actually, just clear the bit that says that the emulator has
1061	 * been initialized.  Initialization is delayed until the process
1062	 * traps to the emulator (if it is done at all) mainly because
1063	 * emulators don't provide an entry point for initialization.
1064	 */
1065	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
1066
1067	/*
1068	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
1069	 * for why fwait must be trapped at least if there is an npx or an
1070	 * emulator).  This is mainly to handle the case where npx0 is not
1071	 * configured, since the npx routines normally set up the trap
1072	 * otherwise.  It should be done only at boot time, but doing it
1073	 * here allows modifying `npx_exists' for testing the emulator on
1074	 * systems with an npx.
1075	 */
1076	load_cr0(rcr0() | CR0_MP | CR0_TS);
1077
1078#ifdef DEV_NPX
1079	/* Initialize the npx (if any) for the current process. */
1080	npxinit(__INITIAL_NPXCW__);
1081#endif
1082
1083	/*
1084	 * XXX - Linux emulator
1085	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1086	 * on it.
1087	 */
1088	p->p_retval[1] = 0;
1089}
1090
1091void
1092cpu_setregs(void)
1093{
1094	unsigned int cr0;
1095
1096	cr0 = rcr0();
1097	cr0 |= CR0_NE;			/* Done by npxinit() */
1098	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1099#ifndef I386_CPU
1100	cr0 |= CR0_WP | CR0_AM;
1101#endif
1102	load_cr0(cr0);
1103	load_gs(_udatasel);
1104}
1105
1106static int
1107sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1108{
1109	int error;
1110	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1111		req);
1112	if (!error && req->newptr)
1113		resettodr();
1114	return (error);
1115}
1116
1117SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1118	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1119
1120SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1121	CTLFLAG_RW, &disable_rtc_set, 0, "");
1122
1123SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1124	CTLFLAG_RD, &bootinfo, bootinfo, "");
1125
1126SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1127	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1128
1129/*
1130 * Initialize 386 and configure to run kernel
1131 */
1132
1133/*
1134 * Initialize segments & interrupt table
1135 */
1136
1137int _default_ldt;
1138union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1139static struct gate_descriptor idt0[NIDT];
1140struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1141union descriptor ldt[NLDT];		/* local descriptor table */
1142#ifdef SMP
1143/* table descriptors - used to load tables by microp */
1144struct region_descriptor r_gdt, r_idt;
1145#endif
1146
1147int private_tss;			/* flag indicating private tss */
1148
1149#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1150extern int has_f00f_bug;
1151#endif
1152
1153static struct i386tss dblfault_tss;
1154static char dblfault_stack[PAGE_SIZE];
1155
1156extern  struct user *proc0paddr;
1157
1158
1159/* software prototypes -- in more palatable form */
1160struct soft_segment_descriptor gdt_segs[] = {
1161/* GNULL_SEL	0 Null Descriptor */
1162{	0x0,			/* segment base address  */
1163	0x0,			/* length */
1164	0,			/* segment type */
1165	0,			/* segment descriptor priority level */
1166	0,			/* segment descriptor present */
1167	0, 0,
1168	0,			/* default 32 vs 16 bit size */
1169	0  			/* limit granularity (byte/page units)*/ },
1170/* GCODE_SEL	1 Code Descriptor for kernel */
1171{	0x0,			/* segment base address  */
1172	0xfffff,		/* length - all address space */
1173	SDT_MEMERA,		/* segment type */
1174	0,			/* segment descriptor priority level */
1175	1,			/* segment descriptor present */
1176	0, 0,
1177	1,			/* default 32 vs 16 bit size */
1178	1  			/* limit granularity (byte/page units)*/ },
1179/* GDATA_SEL	2 Data Descriptor for kernel */
1180{	0x0,			/* segment base address  */
1181	0xfffff,		/* length - all address space */
1182	SDT_MEMRWA,		/* segment type */
1183	0,			/* segment descriptor priority level */
1184	1,			/* segment descriptor present */
1185	0, 0,
1186	1,			/* default 32 vs 16 bit size */
1187	1  			/* limit granularity (byte/page units)*/ },
1188/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1189{	0x0,			/* segment base address  */
1190	0xfffff,		/* length - all address space */
1191	SDT_MEMRWA,		/* segment type */
1192	0,			/* segment descriptor priority level */
1193	1,			/* segment descriptor present */
1194	0, 0,
1195	1,			/* default 32 vs 16 bit size */
1196	1  			/* limit granularity (byte/page units)*/ },
1197/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1198{
1199	0x0,			/* segment base address */
1200	sizeof(struct i386tss)-1,/* length - all address space */
1201	SDT_SYS386TSS,		/* segment type */
1202	0,			/* segment descriptor priority level */
1203	1,			/* segment descriptor present */
1204	0, 0,
1205	0,			/* unused - default 32 vs 16 bit size */
1206	0  			/* limit granularity (byte/page units)*/ },
1207/* GLDT_SEL	5 LDT Descriptor */
1208{	(int) ldt,		/* segment base address  */
1209	sizeof(ldt)-1,		/* length - all address space */
1210	SDT_SYSLDT,		/* segment type */
1211	SEL_UPL,		/* segment descriptor priority level */
1212	1,			/* segment descriptor present */
1213	0, 0,
1214	0,			/* unused - default 32 vs 16 bit size */
1215	0  			/* limit granularity (byte/page units)*/ },
1216/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1217{	(int) ldt,		/* segment base address  */
1218	(512 * sizeof(union descriptor)-1),		/* length */
1219	SDT_SYSLDT,		/* segment type */
1220	0,			/* segment descriptor priority level */
1221	1,			/* segment descriptor present */
1222	0, 0,
1223	0,			/* unused - default 32 vs 16 bit size */
1224	0  			/* limit granularity (byte/page units)*/ },
1225/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1226{	0x0,			/* segment base address  */
1227	0x0,			/* length - all address space */
1228	0,			/* segment type */
1229	0,			/* segment descriptor priority level */
1230	0,			/* segment descriptor present */
1231	0, 0,
1232	0,			/* default 32 vs 16 bit size */
1233	0  			/* limit granularity (byte/page units)*/ },
1234/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1235{	0x400,			/* segment base address */
1236	0xfffff,		/* length */
1237	SDT_MEMRWA,		/* segment type */
1238	0,			/* segment descriptor priority level */
1239	1,			/* segment descriptor present */
1240	0, 0,
1241	1,			/* default 32 vs 16 bit size */
1242	1  			/* limit granularity (byte/page units)*/ },
1243/* GPANIC_SEL	9 Panic Tss Descriptor */
1244{	(int) &dblfault_tss,	/* segment base address  */
1245	sizeof(struct i386tss)-1,/* length - all address space */
1246	SDT_SYS386TSS,		/* segment type */
1247	0,			/* segment descriptor priority level */
1248	1,			/* segment descriptor present */
1249	0, 0,
1250	0,			/* unused - default 32 vs 16 bit size */
1251	0  			/* limit granularity (byte/page units)*/ },
1252/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1253{	0,			/* segment base address (overwritten)  */
1254	0xfffff,		/* length */
1255	SDT_MEMERA,		/* segment type */
1256	0,			/* segment descriptor priority level */
1257	1,			/* segment descriptor present */
1258	0, 0,
1259	0,			/* default 32 vs 16 bit size */
1260	1  			/* limit granularity (byte/page units)*/ },
1261/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1262{	0,			/* segment base address (overwritten)  */
1263	0xfffff,		/* length */
1264	SDT_MEMERA,		/* segment type */
1265	0,			/* segment descriptor priority level */
1266	1,			/* segment descriptor present */
1267	0, 0,
1268	0,			/* default 32 vs 16 bit size */
1269	1  			/* limit granularity (byte/page units)*/ },
1270/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1271{	0,			/* segment base address (overwritten) */
1272	0xfffff,		/* length */
1273	SDT_MEMRWA,		/* segment type */
1274	0,			/* segment descriptor priority level */
1275	1,			/* segment descriptor present */
1276	0, 0,
1277	1,			/* default 32 vs 16 bit size */
1278	1  			/* limit granularity (byte/page units)*/ },
1279/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1280{	0,			/* segment base address (overwritten) */
1281	0xfffff,		/* length */
1282	SDT_MEMRWA,		/* segment type */
1283	0,			/* segment descriptor priority level */
1284	1,			/* segment descriptor present */
1285	0, 0,
1286	0,			/* default 32 vs 16 bit size */
1287	1  			/* limit granularity (byte/page units)*/ },
1288/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1289{	0,			/* segment base address (overwritten) */
1290	0xfffff,		/* length */
1291	SDT_MEMRWA,		/* segment type */
1292	0,			/* segment descriptor priority level */
1293	1,			/* segment descriptor present */
1294	0, 0,
1295	0,			/* default 32 vs 16 bit size */
1296	1  			/* limit granularity (byte/page units)*/ },
1297};
1298
1299static struct soft_segment_descriptor ldt_segs[] = {
1300	/* Null Descriptor - overwritten by call gate */
1301{	0x0,			/* segment base address  */
1302	0x0,			/* length - all address space */
1303	0,			/* segment type */
1304	0,			/* segment descriptor priority level */
1305	0,			/* segment descriptor present */
1306	0, 0,
1307	0,			/* default 32 vs 16 bit size */
1308	0  			/* limit granularity (byte/page units)*/ },
1309	/* Null Descriptor - overwritten by call gate */
1310{	0x0,			/* segment base address  */
1311	0x0,			/* length - all address space */
1312	0,			/* segment type */
1313	0,			/* segment descriptor priority level */
1314	0,			/* segment descriptor present */
1315	0, 0,
1316	0,			/* default 32 vs 16 bit size */
1317	0  			/* limit granularity (byte/page units)*/ },
1318	/* Null Descriptor - overwritten by call gate */
1319{	0x0,			/* segment base address  */
1320	0x0,			/* length - all address space */
1321	0,			/* segment type */
1322	0,			/* segment descriptor priority level */
1323	0,			/* segment descriptor present */
1324	0, 0,
1325	0,			/* default 32 vs 16 bit size */
1326	0  			/* limit granularity (byte/page units)*/ },
1327	/* Code Descriptor for user */
1328{	0x0,			/* segment base address  */
1329	0xfffff,		/* length - all address space */
1330	SDT_MEMERA,		/* segment type */
1331	SEL_UPL,		/* segment descriptor priority level */
1332	1,			/* segment descriptor present */
1333	0, 0,
1334	1,			/* default 32 vs 16 bit size */
1335	1  			/* limit granularity (byte/page units)*/ },
1336	/* Null Descriptor - overwritten by call gate */
1337{	0x0,			/* segment base address  */
1338	0x0,			/* length - all address space */
1339	0,			/* segment type */
1340	0,			/* segment descriptor priority level */
1341	0,			/* segment descriptor present */
1342	0, 0,
1343	0,			/* default 32 vs 16 bit size */
1344	0  			/* limit granularity (byte/page units)*/ },
1345	/* Data Descriptor for user */
1346{	0x0,			/* segment base address  */
1347	0xfffff,		/* length - all address space */
1348	SDT_MEMRWA,		/* segment type */
1349	SEL_UPL,		/* segment descriptor priority level */
1350	1,			/* segment descriptor present */
1351	0, 0,
1352	1,			/* default 32 vs 16 bit size */
1353	1  			/* limit granularity (byte/page units)*/ },
1354};
1355
1356void
1357setidt(idx, func, typ, dpl, selec)
1358	int idx;
1359	inthand_t *func;
1360	int typ;
1361	int dpl;
1362	int selec;
1363{
1364	struct gate_descriptor *ip;
1365
1366	ip = idt + idx;
1367	ip->gd_looffset = (int)func;
1368	ip->gd_selector = selec;
1369	ip->gd_stkcpy = 0;
1370	ip->gd_xx = 0;
1371	ip->gd_type = typ;
1372	ip->gd_dpl = dpl;
1373	ip->gd_p = 1;
1374	ip->gd_hioffset = ((int)func)>>16 ;
1375}
1376
1377#define	IDTVEC(name)	__CONCAT(X,name)
1378
1379extern inthand_t
1380	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1381	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1382	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1383	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1384	IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1385
1386void
1387sdtossd(sd, ssd)
1388	struct segment_descriptor *sd;
1389	struct soft_segment_descriptor *ssd;
1390{
1391	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1392	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1393	ssd->ssd_type  = sd->sd_type;
1394	ssd->ssd_dpl   = sd->sd_dpl;
1395	ssd->ssd_p     = sd->sd_p;
1396	ssd->ssd_def32 = sd->sd_def32;
1397	ssd->ssd_gran  = sd->sd_gran;
1398}
1399
1400#define PHYSMAP_SIZE	(2 * 8)
1401
1402/*
1403 * Populate the (physmap) array with base/bound pairs describing the
1404 * available physical memory in the system, then test this memory and
1405 * build the phys_avail array describing the actually-available memory.
1406 *
1407 * If we cannot accurately determine the physical memory map, then use
1408 * value from the 0xE801 call, and failing that, the RTC.
1409 *
1410 * Total memory size may be set by the kernel environment variable
1411 * hw.physmem or the compile-time define MAXMEM.
1412 */
1413static void
1414getmemsize(int first)
1415{
1416	int i, physmap_idx, pa_indx;
1417	u_int basemem, extmem;
1418	struct vm86frame vmf;
1419	struct vm86context vmc;
1420	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1421	pt_entry_t pte;
1422	const char *cp;
1423	struct bios_smap *smap;
1424
1425	bzero(&vmf, sizeof(struct vm86frame));
1426	bzero(physmap, sizeof(physmap));
1427
1428	/*
1429	 * Perform "base memory" related probes & setup
1430	 */
1431	vm86_intcall(0x12, &vmf);
1432	basemem = vmf.vmf_ax;
1433	if (basemem > 640) {
1434		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1435			basemem);
1436		basemem = 640;
1437	}
1438
1439	/*
1440	 * XXX if biosbasemem is now < 640, there is a `hole'
1441	 * between the end of base memory and the start of
1442	 * ISA memory.  The hole may be empty or it may
1443	 * contain BIOS code or data.  Map it read/write so
1444	 * that the BIOS can write to it.  (Memory from 0 to
1445	 * the physical end of the kernel is mapped read-only
1446	 * to begin with and then parts of it are remapped.
1447	 * The parts that aren't remapped form holes that
1448	 * remain read-only and are unused by the kernel.
1449	 * The base memory area is below the physical end of
1450	 * the kernel and right now forms a read-only hole.
1451	 * The part of it from PAGE_SIZE to
1452	 * (trunc_page(biosbasemem * 1024) - 1) will be
1453	 * remapped and used by the kernel later.)
1454	 *
1455	 * This code is similar to the code used in
1456	 * pmap_mapdev, but since no memory needs to be
1457	 * allocated we simply change the mapping.
1458	 */
1459	for (pa = trunc_page(basemem * 1024);
1460	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1461		pte = (pt_entry_t)vtopte(pa + KERNBASE);
1462		*pte = pa | PG_RW | PG_V;
1463	}
1464
1465	/*
1466	 * if basemem != 640, map pages r/w into vm86 page table so
1467	 * that the bios can scribble on it.
1468	 */
1469	pte = (pt_entry_t)vm86paddr;
1470	for (i = basemem / 4; i < 160; i++)
1471		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1472
1473	/*
1474	 * map page 1 R/W into the kernel page table so we can use it
1475	 * as a buffer.  The kernel will unmap this page later.
1476	 */
1477	pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
1478	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1479
1480	/*
1481	 * get memory map with INT 15:E820
1482	 */
1483	vmc.npages = 0;
1484	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1485	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1486
1487	physmap_idx = 0;
1488	vmf.vmf_ebx = 0;
1489	do {
1490		vmf.vmf_eax = 0xE820;
1491		vmf.vmf_edx = SMAP_SIG;
1492		vmf.vmf_ecx = sizeof(struct bios_smap);
1493		i = vm86_datacall(0x15, &vmf, &vmc);
1494		if (i || vmf.vmf_eax != SMAP_SIG)
1495			break;
1496		if (boothowto & RB_VERBOSE)
1497			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1498				smap->type,
1499				*(u_int32_t *)((char *)&smap->base + 4),
1500				(u_int32_t)smap->base,
1501				*(u_int32_t *)((char *)&smap->length + 4),
1502				(u_int32_t)smap->length);
1503
1504		if (smap->type != 0x01)
1505			goto next_run;
1506
1507		if (smap->length == 0)
1508			goto next_run;
1509
1510		if (smap->base >= 0xffffffff) {
1511			printf("%uK of memory above 4GB ignored\n",
1512			    (u_int)(smap->length / 1024));
1513			goto next_run;
1514		}
1515
1516		for (i = 0; i <= physmap_idx; i += 2) {
1517			if (smap->base < physmap[i + 1]) {
1518				if (boothowto & RB_VERBOSE)
1519					printf(
1520	"Overlapping or non-montonic memory region, ignoring second region\n");
1521				goto next_run;
1522			}
1523		}
1524
1525		if (smap->base == physmap[physmap_idx + 1]) {
1526			physmap[physmap_idx + 1] += smap->length;
1527			goto next_run;
1528		}
1529
1530		physmap_idx += 2;
1531		if (physmap_idx == PHYSMAP_SIZE) {
1532			printf(
1533		"Too many segments in the physical address map, giving up\n");
1534			break;
1535		}
1536		physmap[physmap_idx] = smap->base;
1537		physmap[physmap_idx + 1] = smap->base + smap->length;
1538next_run:
1539	} while (vmf.vmf_ebx != 0);
1540
1541	if (physmap[1] != 0)
1542		goto physmap_done;
1543
1544	/*
1545	 * If we failed above, try memory map with INT 15:E801
1546	 */
1547	vmf.vmf_ax = 0xE801;
1548	if (vm86_intcall(0x15, &vmf) == 0) {
1549		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1550	} else {
1551#if 0
1552		vmf.vmf_ah = 0x88;
1553		vm86_intcall(0x15, &vmf);
1554		extmem = vmf.vmf_ax;
1555#else
1556		/*
1557		 * Prefer the RTC value for extended memory.
1558		 */
1559		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1560#endif
1561	}
1562
1563	/*
1564	 * Special hack for chipsets that still remap the 384k hole when
1565	 * there's 16MB of memory - this really confuses people that
1566	 * are trying to use bus mastering ISA controllers with the
1567	 * "16MB limit"; they only have 16MB, but the remapping puts
1568	 * them beyond the limit.
1569	 *
1570	 * If extended memory is between 15-16MB (16-17MB phys address range),
1571	 *	chop it to 15MB.
1572	 */
1573	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1574		extmem = 15 * 1024;
1575
1576	physmap[0] = 0;
1577	physmap[1] = basemem * 1024;
1578	physmap_idx = 2;
1579	physmap[physmap_idx] = 0x100000;
1580	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1581
1582physmap_done:
1583	/*
1584	 * Now, physmap contains a map of physical memory.
1585	 */
1586
1587#ifdef SMP
1588	/* make hole for AP bootstrap code */
1589	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1590
1591	/* look for the MP hardware - needed for apic addresses */
1592	i386_mp_probe();
1593#endif
1594
1595	/*
1596	 * Maxmem isn't the "maximum memory", it's one larger than the
1597	 * highest page of the physical address space.  It should be
1598	 * called something like "Maxphyspage".  We may adjust this
1599	 * based on ``hw.physmem'' and the results of the memory test.
1600	 */
1601	Maxmem = atop(physmap[physmap_idx + 1]);
1602
1603#ifdef MAXMEM
1604	Maxmem = MAXMEM / 4;
1605#endif
1606
1607	/*
1608	 * hw.maxmem is a size in bytes; we also allow k, m, and g suffixes
1609	 * for the appropriate modifiers.  This overrides MAXMEM.
1610	 */
1611	if ((cp = getenv("hw.physmem")) != NULL) {
1612		u_int64_t AllowMem, sanity;
1613		char *ep;
1614
1615		sanity = AllowMem = strtouq(cp, &ep, 0);
1616		if ((ep != cp) && (*ep != 0)) {
1617			switch(*ep) {
1618			case 'g':
1619			case 'G':
1620				AllowMem <<= 10;
1621			case 'm':
1622			case 'M':
1623				AllowMem <<= 10;
1624			case 'k':
1625			case 'K':
1626				AllowMem <<= 10;
1627				break;
1628			default:
1629				AllowMem = sanity = 0;
1630			}
1631			if (AllowMem < sanity)
1632				AllowMem = 0;
1633		}
1634		if (AllowMem == 0)
1635			printf("Ignoring invalid memory size of '%s'\n", cp);
1636		else
1637			Maxmem = atop(AllowMem);
1638	}
1639
1640	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1641	    (boothowto & RB_VERBOSE))
1642		printf("Physical memory use set to %uK\n", Maxmem * 4);
1643
1644	/*
1645	 * If Maxmem has been increased beyond what the system has detected,
1646	 * extend the last memory segment to the new limit.
1647	 */
1648	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1649		physmap[physmap_idx + 1] = ptoa(Maxmem);
1650
1651	/* call pmap initialization to make new kernel address space */
1652	pmap_bootstrap(first, 0);
1653
1654	/*
1655	 * Size up each available chunk of physical memory.
1656	 */
1657	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1658	pa_indx = 0;
1659	phys_avail[pa_indx++] = physmap[0];
1660	phys_avail[pa_indx] = physmap[0];
1661#if 0
1662	pte = (pt_entry_t)vtopte(KERNBASE);
1663#else
1664	pte = (pt_entry_t)CMAP1;
1665#endif
1666
1667	/*
1668	 * physmap is in bytes, so when converting to page boundaries,
1669	 * round up the start address and round down the end address.
1670	 */
1671	for (i = 0; i <= physmap_idx; i += 2) {
1672		vm_offset_t end;
1673
1674		end = ptoa(Maxmem);
1675		if (physmap[i + 1] < end)
1676			end = trunc_page(physmap[i + 1]);
1677		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1678			int tmp, page_bad;
1679#if 0
1680			int *ptr = 0;
1681#else
1682			int *ptr = (int *)CADDR1;
1683#endif
1684
1685			/*
1686			 * block out kernel memory as not available.
1687			 */
1688			if (pa >= 0x100000 && pa < first)
1689				continue;
1690
1691			page_bad = FALSE;
1692
1693			/*
1694			 * map page into kernel: valid, read/write,non-cacheable
1695			 */
1696			*pte = pa | PG_V | PG_RW | PG_N;
1697			invltlb();
1698
1699			tmp = *(int *)ptr;
1700			/*
1701			 * Test for alternating 1's and 0's
1702			 */
1703			*(volatile int *)ptr = 0xaaaaaaaa;
1704			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1705				page_bad = TRUE;
1706			}
1707			/*
1708			 * Test for alternating 0's and 1's
1709			 */
1710			*(volatile int *)ptr = 0x55555555;
1711			if (*(volatile int *)ptr != 0x55555555) {
1712			page_bad = TRUE;
1713			}
1714			/*
1715			 * Test for all 1's
1716			 */
1717			*(volatile int *)ptr = 0xffffffff;
1718			if (*(volatile int *)ptr != 0xffffffff) {
1719				page_bad = TRUE;
1720			}
1721			/*
1722			 * Test for all 0's
1723			 */
1724			*(volatile int *)ptr = 0x0;
1725			if (*(volatile int *)ptr != 0x0) {
1726				page_bad = TRUE;
1727			}
1728			/*
1729			 * Restore original value.
1730			 */
1731			*(int *)ptr = tmp;
1732
1733			/*
1734			 * Adjust array of valid/good pages.
1735			 */
1736			if (page_bad == TRUE) {
1737				continue;
1738			}
1739			/*
1740			 * If this good page is a continuation of the
1741			 * previous set of good pages, then just increase
1742			 * the end pointer. Otherwise start a new chunk.
1743			 * Note that "end" points one higher than end,
1744			 * making the range >= start and < end.
1745			 * If we're also doing a speculative memory
1746			 * test and we at or past the end, bump up Maxmem
1747			 * so that we keep going. The first bad page
1748			 * will terminate the loop.
1749			 */
1750			if (phys_avail[pa_indx] == pa) {
1751				phys_avail[pa_indx] += PAGE_SIZE;
1752			} else {
1753				pa_indx++;
1754				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1755					printf(
1756		"Too many holes in the physical address space, giving up\n");
1757					pa_indx--;
1758					break;
1759				}
1760				phys_avail[pa_indx++] = pa;	/* start */
1761				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1762			}
1763			physmem++;
1764		}
1765	}
1766	*pte = 0;
1767	invltlb();
1768
1769	/*
1770	 * XXX
1771	 * The last chunk must contain at least one page plus the message
1772	 * buffer to avoid complicating other code (message buffer address
1773	 * calculation, etc.).
1774	 */
1775	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1776	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1777		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1778		phys_avail[pa_indx--] = 0;
1779		phys_avail[pa_indx--] = 0;
1780	}
1781
1782	Maxmem = atop(phys_avail[pa_indx]);
1783
1784	/* Trim off space for the message buffer. */
1785	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1786
1787	avail_end = phys_avail[pa_indx];
1788}
1789
1790void
1791init386(first)
1792	int first;
1793{
1794	struct gate_descriptor *gdp;
1795	int gsel_tss, metadata_missing, off, x;
1796#ifndef SMP
1797	/* table descriptors - used to load tables by microp */
1798	struct region_descriptor r_gdt, r_idt;
1799#endif
1800
1801	proc0.p_addr = proc0paddr;
1802
1803	atdevbase = ISA_HOLE_START + KERNBASE;
1804
1805	metadata_missing = 0;
1806	if (bootinfo.bi_modulep) {
1807		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1808		preload_bootstrap_relocate(KERNBASE);
1809	} else {
1810		metadata_missing = 1;
1811	}
1812	if (bootinfo.bi_envp)
1813		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1814
1815	/* Init basic tunables, hz etc */
1816	init_param();
1817
1818	/*
1819	 * make gdt memory segments, the code segment goes up to end of the
1820	 * page with etext in it, the data segment goes to the end of
1821	 * the address space
1822	 */
1823	/*
1824	 * XXX text protection is temporarily (?) disabled.  The limit was
1825	 * i386_btop(round_page(etext)) - 1.
1826	 */
1827	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1828	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1829#ifdef SMP
1830	gdt_segs[GPRIV_SEL].ssd_limit =
1831		atop(sizeof(struct privatespace) - 1);
1832	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
1833	gdt_segs[GPROC0_SEL].ssd_base =
1834		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
1835	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0].globaldata;
1836#else
1837	gdt_segs[GPRIV_SEL].ssd_limit =
1838		atop(sizeof(struct globaldata) - 1);
1839	gdt_segs[GPRIV_SEL].ssd_base = (int) &__globaldata;
1840	gdt_segs[GPROC0_SEL].ssd_base =
1841		(int) &__globaldata.gd_common_tss;
1842	__globaldata.gd_prvspace = &__globaldata;
1843#endif
1844
1845	for (x = 0; x < NGDT; x++) {
1846#ifdef BDE_DEBUGGER
1847		/* avoid overwriting db entries with APM ones */
1848		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1849			continue;
1850#endif
1851		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1852	}
1853
1854	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1855	r_gdt.rd_base =  (int) gdt;
1856	lgdt(&r_gdt);
1857
1858	/* setup curproc so that mutexes work */
1859	PCPU_SET(curproc, &proc0);
1860	PCPU_SET(spinlocks, NULL);
1861
1862	LIST_INIT(&proc0.p_contested);
1863
1864	/*
1865	 * Initialize mutexes.
1866	 */
1867	mtx_init(&Giant, "Giant", MTX_DEF | MTX_RECURSE);
1868	mtx_init(&sched_lock, "sched lock", MTX_SPIN | MTX_RECURSE);
1869	mtx_init(&proc0.p_mtx, "process lock", MTX_DEF);
1870	mtx_init(&clock_lock, "clk", MTX_SPIN | MTX_RECURSE);
1871#ifdef SMP
1872	mtx_init(&imen_mtx, "imen", MTX_SPIN);
1873#endif
1874	mtx_lock(&Giant);
1875
1876	/* make ldt memory segments */
1877	/*
1878	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1879	 * should be spelled ...MAX_USER...
1880	 */
1881	ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1882	ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1883	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1884		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1885
1886	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1887	lldt(_default_ldt);
1888	PCPU_SET(currentldt, _default_ldt);
1889
1890	/* exceptions */
1891	for (x = 0; x < NIDT; x++)
1892		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
1893		    GSEL(GCODE_SEL, SEL_KPL));
1894	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
1895	    GSEL(GCODE_SEL, SEL_KPL));
1896	setidt(1, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
1897	    GSEL(GCODE_SEL, SEL_KPL));
1898	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL,
1899	    GSEL(GCODE_SEL, SEL_KPL));
1900 	setidt(3, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
1901	    GSEL(GCODE_SEL, SEL_KPL));
1902	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
1903	    GSEL(GCODE_SEL, SEL_KPL));
1904	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
1905	    GSEL(GCODE_SEL, SEL_KPL));
1906	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
1907	    GSEL(GCODE_SEL, SEL_KPL));
1908	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
1909	    , GSEL(GCODE_SEL, SEL_KPL));
1910	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1911	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
1912	    GSEL(GCODE_SEL, SEL_KPL));
1913	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
1914	    GSEL(GCODE_SEL, SEL_KPL));
1915	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
1916	    GSEL(GCODE_SEL, SEL_KPL));
1917	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
1918	    GSEL(GCODE_SEL, SEL_KPL));
1919	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
1920	    GSEL(GCODE_SEL, SEL_KPL));
1921	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
1922	    GSEL(GCODE_SEL, SEL_KPL));
1923	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL,
1924	    GSEL(GCODE_SEL, SEL_KPL));
1925	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
1926	    GSEL(GCODE_SEL, SEL_KPL));
1927	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
1928	    GSEL(GCODE_SEL, SEL_KPL));
1929	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
1930	    GSEL(GCODE_SEL, SEL_KPL));
1931	setidt(19, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
1932	    GSEL(GCODE_SEL, SEL_KPL));
1933 	setidt(0x80, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
1934	    GSEL(GCODE_SEL, SEL_KPL));
1935
1936	r_idt.rd_limit = sizeof(idt0) - 1;
1937	r_idt.rd_base = (int) idt;
1938	lidt(&r_idt);
1939
1940	/*
1941	 * Initialize the console before we print anything out.
1942	 */
1943	cninit();
1944
1945	if (metadata_missing)
1946		printf("WARNING: loader(8) metadata is missing!\n");
1947
1948#ifdef DEV_ISA
1949	isa_defaultirq();
1950#endif
1951
1952#ifdef DDB
1953	kdb_init();
1954	if (boothowto & RB_KDB)
1955		Debugger("Boot flags requested debugger");
1956#endif
1957
1958	finishidentcpu();	/* Final stage of CPU initialization */
1959	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
1960	    GSEL(GCODE_SEL, SEL_KPL));
1961	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
1962	    GSEL(GCODE_SEL, SEL_KPL));
1963	initializecpu();	/* Initialize CPU registers */
1964
1965	/* make an initial tss so cpu can get interrupt stack on syscall! */
1966	PCPU_SET(common_tss.tss_esp0,
1967	    (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16);
1968	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
1969	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1970	private_tss = 0;
1971	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
1972	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
1973	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
1974	ltr(gsel_tss);
1975
1976	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1977	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
1978	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1979	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1980	dblfault_tss.tss_cr3 = (int)IdlePTD;
1981	dblfault_tss.tss_eip = (int)dblfault_handler;
1982	dblfault_tss.tss_eflags = PSL_KERNEL;
1983	dblfault_tss.tss_ds = dblfault_tss.tss_es =
1984	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1985	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1986	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1987	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1988
1989	vm86_initialize();
1990	getmemsize(first);
1991
1992	/* now running on new page tables, configured,and u/iom is accessible */
1993
1994	/* Map the message buffer. */
1995	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1996		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1997
1998	msgbufinit(msgbufp, MSGBUF_SIZE);
1999
2000	/* make a call gate to reenter kernel with */
2001	gdp = &ldt[LSYS5CALLS_SEL].gd;
2002
2003	x = (int) &IDTVEC(lcall_syscall);
2004	gdp->gd_looffset = x;
2005	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2006	gdp->gd_stkcpy = 1;
2007	gdp->gd_type = SDT_SYS386CGT;
2008	gdp->gd_dpl = SEL_UPL;
2009	gdp->gd_p = 1;
2010	gdp->gd_hioffset = x >> 16;
2011
2012	/* XXX does this work? */
2013	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2014	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2015
2016	/* transfer to user mode */
2017
2018	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
2019	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
2020
2021	/* setup proc 0's pcb */
2022	proc0.p_addr->u_pcb.pcb_flags = 0;
2023	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
2024	proc0.p_addr->u_pcb.pcb_ext = 0;
2025	proc0.p_frame = &proc0_tf;
2026}
2027
2028#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2029static void f00f_hack(void *unused);
2030SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2031
2032static void
2033f00f_hack(void *unused) {
2034	struct gate_descriptor *new_idt;
2035#ifndef SMP
2036	struct region_descriptor r_idt;
2037#endif
2038	vm_offset_t tmp;
2039
2040	if (!has_f00f_bug)
2041		return;
2042
2043	GIANT_REQUIRED;
2044
2045	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2046
2047	r_idt.rd_limit = sizeof(idt0) - 1;
2048
2049	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
2050	if (tmp == 0)
2051		panic("kmem_alloc returned 0");
2052	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2053		panic("kmem_alloc returned non-page-aligned memory");
2054	/* Put the first seven entries in the lower page */
2055	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2056	bcopy(idt, new_idt, sizeof(idt0));
2057	r_idt.rd_base = (int)new_idt;
2058	lidt(&r_idt);
2059	idt = new_idt;
2060	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2061			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2062		panic("vm_map_protect failed");
2063	return;
2064}
2065#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2066
2067int
2068ptrace_set_pc(p, addr)
2069	struct proc *p;
2070	unsigned long addr;
2071{
2072	p->p_frame->tf_eip = addr;
2073	return (0);
2074}
2075
2076int
2077ptrace_single_step(p)
2078	struct proc *p;
2079{
2080	p->p_frame->tf_eflags |= PSL_T;
2081	return (0);
2082}
2083
2084int
2085fill_regs(p, regs)
2086	struct proc *p;
2087	struct reg *regs;
2088{
2089	struct pcb *pcb;
2090	struct trapframe *tp;
2091
2092	tp = p->p_frame;
2093	regs->r_fs = tp->tf_fs;
2094	regs->r_es = tp->tf_es;
2095	regs->r_ds = tp->tf_ds;
2096	regs->r_edi = tp->tf_edi;
2097	regs->r_esi = tp->tf_esi;
2098	regs->r_ebp = tp->tf_ebp;
2099	regs->r_ebx = tp->tf_ebx;
2100	regs->r_edx = tp->tf_edx;
2101	regs->r_ecx = tp->tf_ecx;
2102	regs->r_eax = tp->tf_eax;
2103	regs->r_eip = tp->tf_eip;
2104	regs->r_cs = tp->tf_cs;
2105	regs->r_eflags = tp->tf_eflags;
2106	regs->r_esp = tp->tf_esp;
2107	regs->r_ss = tp->tf_ss;
2108	pcb = &p->p_addr->u_pcb;
2109	regs->r_gs = pcb->pcb_gs;
2110	return (0);
2111}
2112
2113int
2114set_regs(p, regs)
2115	struct proc *p;
2116	struct reg *regs;
2117{
2118	struct pcb *pcb;
2119	struct trapframe *tp;
2120
2121	tp = p->p_frame;
2122	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2123	    !CS_SECURE(regs->r_cs))
2124		return (EINVAL);
2125	tp->tf_fs = regs->r_fs;
2126	tp->tf_es = regs->r_es;
2127	tp->tf_ds = regs->r_ds;
2128	tp->tf_edi = regs->r_edi;
2129	tp->tf_esi = regs->r_esi;
2130	tp->tf_ebp = regs->r_ebp;
2131	tp->tf_ebx = regs->r_ebx;
2132	tp->tf_edx = regs->r_edx;
2133	tp->tf_ecx = regs->r_ecx;
2134	tp->tf_eax = regs->r_eax;
2135	tp->tf_eip = regs->r_eip;
2136	tp->tf_cs = regs->r_cs;
2137	tp->tf_eflags = regs->r_eflags;
2138	tp->tf_esp = regs->r_esp;
2139	tp->tf_ss = regs->r_ss;
2140	pcb = &p->p_addr->u_pcb;
2141	pcb->pcb_gs = regs->r_gs;
2142	return (0);
2143}
2144
2145#ifdef CPU_ENABLE_SSE
2146static void
2147fill_fpregs_xmm(sv_xmm, sv_87)
2148	struct savexmm *sv_xmm;
2149	struct save87 *sv_87;
2150{
2151	register struct env87 *penv_87 = &sv_87->sv_env;
2152	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2153	int i;
2154
2155	/* FPU control/status */
2156	penv_87->en_cw = penv_xmm->en_cw;
2157	penv_87->en_sw = penv_xmm->en_sw;
2158	penv_87->en_tw = penv_xmm->en_tw;
2159	penv_87->en_fip = penv_xmm->en_fip;
2160	penv_87->en_fcs = penv_xmm->en_fcs;
2161	penv_87->en_opcode = penv_xmm->en_opcode;
2162	penv_87->en_foo = penv_xmm->en_foo;
2163	penv_87->en_fos = penv_xmm->en_fos;
2164
2165	/* FPU registers */
2166	for (i = 0; i < 8; ++i)
2167		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2168
2169	sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
2170}
2171
2172static void
2173set_fpregs_xmm(sv_87, sv_xmm)
2174	struct save87 *sv_87;
2175	struct savexmm *sv_xmm;
2176{
2177	register struct env87 *penv_87 = &sv_87->sv_env;
2178	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2179	int i;
2180
2181	/* FPU control/status */
2182	penv_xmm->en_cw = penv_87->en_cw;
2183	penv_xmm->en_sw = penv_87->en_sw;
2184	penv_xmm->en_tw = penv_87->en_tw;
2185	penv_xmm->en_fip = penv_87->en_fip;
2186	penv_xmm->en_fcs = penv_87->en_fcs;
2187	penv_xmm->en_opcode = penv_87->en_opcode;
2188	penv_xmm->en_foo = penv_87->en_foo;
2189	penv_xmm->en_fos = penv_87->en_fos;
2190
2191	/* FPU registers */
2192	for (i = 0; i < 8; ++i)
2193		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2194
2195	sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2196}
2197#endif /* CPU_ENABLE_SSE */
2198
2199int
2200fill_fpregs(p, fpregs)
2201	struct proc *p;
2202	struct fpreg *fpregs;
2203{
2204#ifdef CPU_ENABLE_SSE
2205	if (cpu_fxsr) {
2206		fill_fpregs_xmm(&p->p_addr->u_pcb.pcb_save.sv_xmm,
2207						(struct save87 *)fpregs);
2208		return (0);
2209	}
2210#endif /* CPU_ENABLE_SSE */
2211	bcopy(&p->p_addr->u_pcb.pcb_save.sv_87, fpregs, sizeof *fpregs);
2212	return (0);
2213}
2214
2215int
2216set_fpregs(p, fpregs)
2217	struct proc *p;
2218	struct fpreg *fpregs;
2219{
2220#ifdef CPU_ENABLE_SSE
2221	if (cpu_fxsr) {
2222		set_fpregs_xmm((struct save87 *)fpregs,
2223					   &p->p_addr->u_pcb.pcb_save.sv_xmm);
2224		return (0);
2225	}
2226#endif /* CPU_ENABLE_SSE */
2227	bcopy(fpregs, &p->p_addr->u_pcb.pcb_save.sv_87, sizeof *fpregs);
2228	return (0);
2229}
2230
2231int
2232fill_dbregs(p, dbregs)
2233	struct proc *p;
2234	struct dbreg *dbregs;
2235{
2236	struct pcb *pcb;
2237
2238	if (p == NULL) {
2239		dbregs->dr0 = rdr0();
2240		dbregs->dr1 = rdr1();
2241		dbregs->dr2 = rdr2();
2242		dbregs->dr3 = rdr3();
2243		dbregs->dr4 = rdr4();
2244		dbregs->dr5 = rdr5();
2245		dbregs->dr6 = rdr6();
2246		dbregs->dr7 = rdr7();
2247	}
2248	else {
2249		pcb = &p->p_addr->u_pcb;
2250		dbregs->dr0 = pcb->pcb_dr0;
2251		dbregs->dr1 = pcb->pcb_dr1;
2252		dbregs->dr2 = pcb->pcb_dr2;
2253		dbregs->dr3 = pcb->pcb_dr3;
2254		dbregs->dr4 = 0;
2255		dbregs->dr5 = 0;
2256		dbregs->dr6 = pcb->pcb_dr6;
2257		dbregs->dr7 = pcb->pcb_dr7;
2258	}
2259	return (0);
2260}
2261
2262int
2263set_dbregs(p, dbregs)
2264	struct proc *p;
2265	struct dbreg *dbregs;
2266{
2267	struct pcb *pcb;
2268	int i;
2269	u_int32_t mask1, mask2;
2270
2271	if (p == NULL) {
2272		load_dr0(dbregs->dr0);
2273		load_dr1(dbregs->dr1);
2274		load_dr2(dbregs->dr2);
2275		load_dr3(dbregs->dr3);
2276		load_dr4(dbregs->dr4);
2277		load_dr5(dbregs->dr5);
2278		load_dr6(dbregs->dr6);
2279		load_dr7(dbregs->dr7);
2280	}
2281	else {
2282		/*
2283		 * Don't let an illegal value for dr7 get set.	Specifically,
2284		 * check for undefined settings.  Setting these bit patterns
2285		 * result in undefined behaviour and can lead to an unexpected
2286		 * TRCTRAP.
2287		 */
2288		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2289		     i++, mask1 <<= 2, mask2 <<= 2)
2290			if ((dbregs->dr7 & mask1) == mask2)
2291				return (EINVAL);
2292
2293		pcb = &p->p_addr->u_pcb;
2294
2295		/*
2296		 * Don't let a process set a breakpoint that is not within the
2297		 * process's address space.  If a process could do this, it
2298		 * could halt the system by setting a breakpoint in the kernel
2299		 * (if ddb was enabled).  Thus, we need to check to make sure
2300		 * that no breakpoints are being enabled for addresses outside
2301		 * process's address space, unless, perhaps, we were called by
2302		 * uid 0.
2303		 *
2304		 * XXX - what about when the watched area of the user's
2305		 * address space is written into from within the kernel
2306		 * ... wouldn't that still cause a breakpoint to be generated
2307		 * from within kernel mode?
2308		 */
2309
2310		if (suser(p) != 0) {
2311			if (dbregs->dr7 & 0x3) {
2312				/* dr0 is enabled */
2313				if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2314					return (EINVAL);
2315			}
2316
2317			if (dbregs->dr7 & (0x3<<2)) {
2318				/* dr1 is enabled */
2319				if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2320					return (EINVAL);
2321			}
2322
2323			if (dbregs->dr7 & (0x3<<4)) {
2324				/* dr2 is enabled */
2325				if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2326					return (EINVAL);
2327			}
2328
2329			if (dbregs->dr7 & (0x3<<6)) {
2330				/* dr3 is enabled */
2331				if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2332					return (EINVAL);
2333			}
2334		}
2335
2336		pcb->pcb_dr0 = dbregs->dr0;
2337		pcb->pcb_dr1 = dbregs->dr1;
2338		pcb->pcb_dr2 = dbregs->dr2;
2339		pcb->pcb_dr3 = dbregs->dr3;
2340		pcb->pcb_dr6 = dbregs->dr6;
2341		pcb->pcb_dr7 = dbregs->dr7;
2342
2343		pcb->pcb_flags |= PCB_DBREGS;
2344	}
2345
2346	return (0);
2347}
2348
2349/*
2350 * Return > 0 if a hardware breakpoint has been hit, and the
2351 * breakpoint was in user space.  Return 0, otherwise.
2352 */
2353int
2354user_dbreg_trap(void)
2355{
2356        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2357        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
2358        int nbp;            /* number of breakpoints that triggered */
2359        caddr_t addr[4];    /* breakpoint addresses */
2360        int i;
2361
2362        dr7 = rdr7();
2363        if ((dr7 & 0x000000ff) == 0) {
2364                /*
2365                 * all GE and LE bits in the dr7 register are zero,
2366                 * thus the trap couldn't have been caused by the
2367                 * hardware debug registers
2368                 */
2369                return 0;
2370        }
2371
2372        nbp = 0;
2373        dr6 = rdr6();
2374        bp = dr6 & 0x0000000f;
2375
2376        if (!bp) {
2377                /*
2378                 * None of the breakpoint bits are set meaning this
2379                 * trap was not caused by any of the debug registers
2380                 */
2381                return 0;
2382        }
2383
2384        /*
2385         * at least one of the breakpoints were hit, check to see
2386         * which ones and if any of them are user space addresses
2387         */
2388
2389        if (bp & 0x01) {
2390                addr[nbp++] = (caddr_t)rdr0();
2391        }
2392        if (bp & 0x02) {
2393                addr[nbp++] = (caddr_t)rdr1();
2394        }
2395        if (bp & 0x04) {
2396                addr[nbp++] = (caddr_t)rdr2();
2397        }
2398        if (bp & 0x08) {
2399                addr[nbp++] = (caddr_t)rdr3();
2400        }
2401
2402        for (i=0; i<nbp; i++) {
2403                if (addr[i] <
2404                    (caddr_t)VM_MAXUSER_ADDRESS) {
2405                        /*
2406                         * addr[i] is in user space
2407                         */
2408                        return nbp;
2409                }
2410        }
2411
2412        /*
2413         * None of the breakpoints are in user space.
2414         */
2415        return 0;
2416}
2417
2418
2419#ifndef DDB
2420void
2421Debugger(const char *msg)
2422{
2423	printf("Debugger(\"%s\") called.\n", msg);
2424}
2425#endif /* no DDB */
2426
2427#include <sys/disklabel.h>
2428
2429/*
2430 * Determine the size of the transfer, and make sure it is
2431 * within the boundaries of the partition. Adjust transfer
2432 * if needed, and signal errors or early completion.
2433 */
2434int
2435bounds_check_with_label(struct bio *bp, struct disklabel *lp, int wlabel)
2436{
2437        struct partition *p = lp->d_partitions + dkpart(bp->bio_dev);
2438        int labelsect = lp->d_partitions[0].p_offset;
2439        int maxsz = p->p_size,
2440                sz = (bp->bio_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2441
2442        /* overwriting disk label ? */
2443        /* XXX should also protect bootstrap in first 8K */
2444        if (bp->bio_blkno + p->p_offset <= LABELSECTOR + labelsect &&
2445#if LABELSECTOR != 0
2446            bp->bio_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2447#endif
2448            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2449                bp->bio_error = EROFS;
2450                goto bad;
2451        }
2452
2453#if     defined(DOSBBSECTOR) && defined(notyet)
2454        /* overwriting master boot record? */
2455        if (bp->bio_blkno + p->p_offset <= DOSBBSECTOR &&
2456            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2457                bp->bio_error = EROFS;
2458                goto bad;
2459        }
2460#endif
2461
2462        /* beyond partition? */
2463        if (bp->bio_blkno < 0 || bp->bio_blkno + sz > maxsz) {
2464                /* if exactly at end of disk, return an EOF */
2465                if (bp->bio_blkno == maxsz) {
2466                        bp->bio_resid = bp->bio_bcount;
2467                        return(0);
2468                }
2469                /* or truncate if part of it fits */
2470                sz = maxsz - bp->bio_blkno;
2471                if (sz <= 0) {
2472                        bp->bio_error = EINVAL;
2473                        goto bad;
2474                }
2475                bp->bio_bcount = sz << DEV_BSHIFT;
2476        }
2477
2478        bp->bio_pblkno = bp->bio_blkno + p->p_offset;
2479        return(1);
2480
2481bad:
2482        bp->bio_flags |= BIO_ERROR;
2483        return(-1);
2484}
2485
2486#ifdef DDB
2487
2488/*
2489 * Provide inb() and outb() as functions.  They are normally only
2490 * available as macros calling inlined functions, thus cannot be
2491 * called inside DDB.
2492 *
2493 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2494 */
2495
2496#undef inb
2497#undef outb
2498
2499/* silence compiler warnings */
2500u_char inb(u_int);
2501void outb(u_int, u_char);
2502
2503u_char
2504inb(u_int port)
2505{
2506	u_char	data;
2507	/*
2508	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2509	 * %edx, while gcc generates inferior code (movw instead of movl)
2510	 * if we tell it to load (u_short) port.
2511	 */
2512	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2513	return (data);
2514}
2515
2516void
2517outb(u_int port, u_char data)
2518{
2519	u_char	al;
2520	/*
2521	 * Use an unnecessary assignment to help gcc's register allocator.
2522	 * This make a large difference for gcc-1.40 and a tiny difference
2523	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2524	 * best results.  gcc-2.6.0 can't handle this.
2525	 */
2526	al = data;
2527	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2528}
2529
2530#endif /* DDB */
2531