machdep.c revision 82031
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 82031 2001-08-21 07:20:06Z dillon $
39 */
40
41#include "opt_atalk.h"
42#include "opt_compat.h"
43#include "opt_cpu.h"
44#include "opt_ddb.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_isa.h"
48#include "opt_maxmem.h"
49#include "opt_msgbuf.h"
50#include "opt_npx.h"
51#include "opt_perfmon.h"
52/* #include "opt_userconfig.h" */
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysproto.h>
57#include <sys/signalvar.h>
58#include <sys/kernel.h>
59#include <sys/ktr.h>
60#include <sys/linker.h>
61#include <sys/lock.h>
62#include <sys/malloc.h>
63#include <sys/mutex.h>
64#include <sys/pcpu.h>
65#include <sys/proc.h>
66#include <sys/bio.h>
67#include <sys/buf.h>
68#include <sys/reboot.h>
69#include <sys/smp.h>
70#include <sys/callout.h>
71#include <sys/msgbuf.h>
72#include <sys/sysent.h>
73#include <sys/sysctl.h>
74#include <sys/vmmeter.h>
75#include <sys/bus.h>
76#include <sys/eventhandler.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <sys/lock.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_map.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88#include <sys/user.h>
89#include <sys/exec.h>
90#include <sys/cons.h>
91
92#include <ddb/ddb.h>
93
94#include <net/netisr.h>
95
96#include <machine/cpu.h>
97#include <machine/cputypes.h>
98#include <machine/reg.h>
99#include <machine/clock.h>
100#include <machine/specialreg.h>
101#include <machine/bootinfo.h>
102#include <machine/md_var.h>
103#include <machine/pc/bios.h>
104#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
105#include <machine/globals.h>
106#ifdef PERFMON
107#include <machine/perfmon.h>
108#endif
109
110#include <i386/isa/icu.h>
111#include <i386/isa/intr_machdep.h>
112#include <isa/rtc.h>
113#include <machine/vm86.h>
114#include <sys/ptrace.h>
115#include <machine/sigframe.h>
116
117extern void init386 __P((int first));
118extern void dblfault_handler __P((void));
119
120extern void printcpuinfo(void);	/* XXX header file */
121extern void earlysetcpuclass(void);	/* same header file */
122extern void finishidentcpu(void);
123extern void panicifcpuunsupported(void);
124extern void initializecpu(void);
125
126#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
127#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
128
129static void cpu_startup __P((void *));
130#ifdef CPU_ENABLE_SSE
131static void set_fpregs_xmm __P((struct save87 *, struct savexmm *));
132static void fill_fpregs_xmm __P((struct savexmm *, struct save87 *));
133#endif /* CPU_ENABLE_SSE */
134SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
135
136int	_udatasel, _ucodesel;
137u_int	atdevbase;
138
139#if defined(SWTCH_OPTIM_STATS)
140extern int swtch_optim_stats;
141SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
142	CTLFLAG_RD, &swtch_optim_stats, 0, "");
143SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
144	CTLFLAG_RD, &tlb_flush_count, 0, "");
145#endif
146
147#ifdef PC98
148static int	ispc98 = 1;
149#else
150static int	ispc98 = 0;
151#endif
152SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
153
154int physmem = 0;
155int cold = 1;
156
157#ifdef COMPAT_43
158static void osendsig __P((sig_t catcher, int sig, sigset_t *mask, u_long code));
159#endif
160
161static int
162sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
163{
164	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
165	return (error);
166}
167
168SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
169	0, 0, sysctl_hw_physmem, "IU", "");
170
171static int
172sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
173{
174	int error = sysctl_handle_int(oidp, 0,
175		ctob(physmem - cnt.v_wire_count), req);
176	return (error);
177}
178
179SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
180	0, 0, sysctl_hw_usermem, "IU", "");
181
182static int
183sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
184{
185	int error = sysctl_handle_int(oidp, 0,
186		i386_btop(avail_end - avail_start), req);
187	return (error);
188}
189
190SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
191	0, 0, sysctl_hw_availpages, "I", "");
192
193int Maxmem = 0;
194long dumplo;
195
196vm_offset_t phys_avail[10];
197
198/* must be 2 less so 0 0 can signal end of chunks */
199#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
200
201static vm_offset_t buffer_sva, buffer_eva;
202vm_offset_t clean_sva, clean_eva;
203static vm_offset_t pager_sva, pager_eva;
204static struct trapframe proc0_tf;
205#ifndef SMP
206static struct globaldata __globaldata;
207#endif
208
209struct mtx sched_lock;
210struct mtx Giant;
211
212static void
213cpu_startup(dummy)
214	void *dummy;
215{
216	register unsigned i;
217	register caddr_t v;
218	vm_offset_t maxaddr;
219	vm_size_t size = 0;
220	int firstaddr;
221	vm_offset_t minaddr;
222	int physmem_est;	/* in pages */
223
224	/*
225	 * Good {morning,afternoon,evening,night}.
226	 */
227	earlysetcpuclass();
228	startrtclock();
229	printcpuinfo();
230	panicifcpuunsupported();
231#ifdef PERFMON
232	perfmon_init();
233#endif
234	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem),
235	    ptoa(Maxmem) / 1024);
236	/*
237	 * Display any holes after the first chunk of extended memory.
238	 */
239	if (bootverbose) {
240		int indx;
241
242		printf("Physical memory chunk(s):\n");
243		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
244			unsigned int size1;
245
246			size1 = phys_avail[indx + 1] - phys_avail[indx];
247			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
248			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
249			    size1 / PAGE_SIZE);
250		}
251	}
252
253	/*
254	 * Calculate callout wheel size
255	 */
256	for (callwheelsize = 1, callwheelbits = 0;
257	     callwheelsize < ncallout;
258	     callwheelsize <<= 1, ++callwheelbits)
259		;
260	callwheelmask = callwheelsize - 1;
261
262	/*
263	 * Allocate space for system data structures.
264	 * The first available kernel virtual address is in "v".
265	 * As pages of kernel virtual memory are allocated, "v" is incremented.
266	 * As pages of memory are allocated and cleared,
267	 * "firstaddr" is incremented.
268	 * An index into the kernel page table corresponding to the
269	 * virtual memory address maintained in "v" is kept in "mapaddr".
270	 */
271
272	/*
273	 * Make two passes.  The first pass calculates how much memory is
274	 * needed and allocates it.  The second pass assigns virtual
275	 * addresses to the various data structures.
276	 */
277	firstaddr = 0;
278again:
279	v = (caddr_t)firstaddr;
280
281#define	valloc(name, type, num) \
282	    (name) = (type *)v; v = (caddr_t)((name)+(num))
283#define	valloclim(name, type, num, lim) \
284	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
285
286	valloc(callout, struct callout, ncallout);
287	valloc(callwheel, struct callout_tailq, callwheelsize);
288
289	/*
290	 * Discount the physical memory larger than the size of kernel_map
291	 * to avoid eating up all of KVA space.
292	 */
293	if (kernel_map->first_free == NULL) {
294		printf("Warning: no free entries in kernel_map.\n");
295		physmem_est = physmem;
296	} else {
297		physmem_est = min(physmem, btoc(kernel_map->max_offset -
298		    kernel_map->min_offset));
299	}
300
301	/*
302	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
303	 * For the first 64MB of ram nominally allocate sufficient buffers to
304	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
305	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
306	 * the buffer cache we limit the eventual kva reservation to
307	 * maxbcache bytes.
308	 *
309	 * factor represents the 1/4 x ram conversion.
310	 */
311	if (nbuf == 0) {
312		int factor = 4 * BKVASIZE / PAGE_SIZE;
313
314		nbuf = 50;
315		if (physmem_est > 1024)
316			nbuf += min((physmem_est - 1024) / factor,
317			    16384 / factor);
318		if (physmem_est > 16384)
319			nbuf += (physmem_est - 16384) * 2 / (factor * 5);
320
321		if (maxbcache && nbuf > maxbcache / BKVASIZE)
322			nbuf = maxbcache / BKVASIZE;
323	}
324
325	/*
326	 * Do not allow the buffer_map to be more then 1/2 the size of the
327	 * kernel_map.
328	 */
329	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
330	    (BKVASIZE * 2)) {
331		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
332		    (BKVASIZE * 2);
333		printf("Warning: nbufs capped at %d\n", nbuf);
334	}
335
336	nswbuf = max(min(nbuf/4, 256), 16);
337
338	valloc(swbuf, struct buf, nswbuf);
339	valloc(buf, struct buf, nbuf);
340	v = bufhashinit(v);
341
342	/*
343	 * End of first pass, size has been calculated so allocate memory
344	 */
345	if (firstaddr == 0) {
346		size = (vm_size_t)(v - firstaddr);
347		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
348		if (firstaddr == 0)
349			panic("startup: no room for tables");
350		goto again;
351	}
352
353	/*
354	 * End of second pass, addresses have been assigned
355	 */
356	if ((vm_size_t)(v - firstaddr) != size)
357		panic("startup: table size inconsistency");
358
359	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
360			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
361	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
362				(nbuf*BKVASIZE));
363	buffer_map->system_map = 1;
364	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
365				(nswbuf*MAXPHYS) + pager_map_size);
366	pager_map->system_map = 1;
367	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
368				(16*(ARG_MAX+(PAGE_SIZE*3))));
369
370	/*
371	 * XXX: Mbuf system machine-specific initializations should
372	 *      go here, if anywhere.
373	 */
374
375	/*
376	 * Initialize callouts
377	 */
378	SLIST_INIT(&callfree);
379	for (i = 0; i < ncallout; i++) {
380		callout_init(&callout[i], 0);
381		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
382		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
383	}
384
385	for (i = 0; i < callwheelsize; i++) {
386		TAILQ_INIT(&callwheel[i]);
387	}
388
389	mtx_init(&callout_lock, "callout", MTX_SPIN | MTX_RECURSE);
390
391#if defined(USERCONFIG)
392	userconfig();
393	cninit();		/* the preferred console may have changed */
394#endif
395
396	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
397	    ptoa(cnt.v_free_count) / 1024);
398
399	/*
400	 * Set up buffers, so they can be used to read disk labels.
401	 */
402	bufinit();
403	vm_pager_bufferinit();
404
405	globaldata_register(GLOBALDATA);
406#ifndef SMP
407	/* For SMP, we delay the cpu_setregs() until after SMP startup. */
408	cpu_setregs();
409#endif
410}
411
412/*
413 * Send an interrupt to process.
414 *
415 * Stack is set up to allow sigcode stored
416 * at top to call routine, followed by kcall
417 * to sigreturn routine below.  After sigreturn
418 * resets the signal mask, the stack, and the
419 * frame pointer, it returns to the user
420 * specified pc, psl.
421 */
422#ifdef COMPAT_43
423static void
424osendsig(catcher, sig, mask, code)
425	sig_t catcher;
426	int sig;
427	sigset_t *mask;
428	u_long code;
429{
430	struct osigframe sf;
431	struct osigframe *fp;
432	struct proc *p;
433	struct sigacts *psp;
434	struct trapframe *regs;
435	int oonstack;
436
437	p = curproc;
438	PROC_LOCK(p);
439	psp = p->p_sigacts;
440	regs = p->p_frame;
441	oonstack = sigonstack(regs->tf_esp);
442
443	/* Allocate and validate space for the signal handler context. */
444	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
445	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
446		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
447		    p->p_sigstk.ss_size - sizeof(struct osigframe));
448#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
449		p->p_sigstk.ss_flags |= SS_ONSTACK;
450#endif
451	} else
452		fp = (struct osigframe *)regs->tf_esp - 1;
453	PROC_UNLOCK(p);
454
455	/*
456	 * grow_stack() will return 0 if *fp does not fit inside the stack
457	 * and the stack can not be grown.
458	 * useracc() will return FALSE if access is denied.
459	 */
460	if (grow_stack(p, (int)fp) == 0 ||
461	    !useracc((caddr_t)fp, sizeof(*fp), VM_PROT_WRITE)) {
462		/*
463		 * Process has trashed its stack; give it an illegal
464		 * instruction to halt it in its tracks.
465		 */
466		PROC_LOCK(p);
467		SIGACTION(p, SIGILL) = SIG_DFL;
468		SIGDELSET(p->p_sigignore, SIGILL);
469		SIGDELSET(p->p_sigcatch, SIGILL);
470		SIGDELSET(p->p_sigmask, SIGILL);
471		psignal(p, SIGILL);
472		PROC_UNLOCK(p);
473		return;
474	}
475
476	/* Translate the signal if appropriate. */
477	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
478		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
479
480	/* Build the argument list for the signal handler. */
481	sf.sf_signum = sig;
482	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
483	PROC_LOCK(p);
484	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
485		/* Signal handler installed with SA_SIGINFO. */
486		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
487		sf.sf_siginfo.si_signo = sig;
488		sf.sf_siginfo.si_code = code;
489		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
490	} else {
491		/* Old FreeBSD-style arguments. */
492		sf.sf_arg2 = code;
493		sf.sf_addr = regs->tf_err;
494		sf.sf_ahu.sf_handler = catcher;
495	}
496	PROC_UNLOCK(p);
497
498	/* Save most if not all of trap frame. */
499	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
500	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
501	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
502	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
503	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
504	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
505	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
506	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
507	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
508	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
509	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
510	sf.sf_siginfo.si_sc.sc_gs = rgs();
511	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
512
513	/* Build the signal context to be used by osigreturn(). */
514	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
515	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
516	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
517	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
518	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
519	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
520	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
521	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
522
523	/*
524	 * If we're a vm86 process, we want to save the segment registers.
525	 * We also change eflags to be our emulated eflags, not the actual
526	 * eflags.
527	 */
528	if (regs->tf_eflags & PSL_VM) {
529		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
530		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
531		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
532
533		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
534		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
535		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
536		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
537
538		if (vm86->vm86_has_vme == 0)
539			sf.sf_siginfo.si_sc.sc_ps =
540			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
541			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
542
543		/* See sendsig() for comments. */
544		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
545	}
546
547	/* Copy the sigframe out to the user's stack. */
548	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
549		/*
550		 * Something is wrong with the stack pointer.
551		 * ...Kill the process.
552		 */
553		PROC_LOCK(p);
554		sigexit(p, SIGILL);
555		/* NOTREACHED */
556	}
557
558	regs->tf_esp = (int)fp;
559	regs->tf_eip = PS_STRINGS - szosigcode;
560	regs->tf_cs = _ucodesel;
561	regs->tf_ds = _udatasel;
562	regs->tf_es = _udatasel;
563	regs->tf_fs = _udatasel;
564	load_gs(_udatasel);
565	regs->tf_ss = _udatasel;
566}
567#endif
568
569void
570sendsig(catcher, sig, mask, code)
571	sig_t catcher;
572	int sig;
573	sigset_t *mask;
574	u_long code;
575{
576	struct sigframe sf;
577	struct proc *p;
578	struct sigacts *psp;
579	struct trapframe *regs;
580	struct sigframe *sfp;
581	int oonstack;
582
583	p = curproc;
584	PROC_LOCK(p);
585	psp = p->p_sigacts;
586#ifdef COMPAT_43
587	if (SIGISMEMBER(psp->ps_osigset, sig)) {
588		PROC_UNLOCK(p);
589		osendsig(catcher, sig, mask, code);
590		return;
591	}
592#endif
593	regs = p->p_frame;
594	oonstack = sigonstack(regs->tf_esp);
595
596	/* Save user context. */
597	bzero(&sf, sizeof(sf));
598	sf.sf_uc.uc_sigmask = *mask;
599	sf.sf_uc.uc_stack = p->p_sigstk;
600	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
601	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
602	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
603	sf.sf_uc.uc_mcontext.mc_gs = rgs();
604	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
605
606	/* Allocate and validate space for the signal handler context. */
607	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
608	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
609		sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
610		    p->p_sigstk.ss_size - sizeof(struct sigframe));
611#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
612		p->p_sigstk.ss_flags |= SS_ONSTACK;
613#endif
614	} else
615		sfp = (struct sigframe *)regs->tf_esp - 1;
616	PROC_UNLOCK(p);
617
618	/*
619	 * grow_stack() will return 0 if *sfp does not fit inside the stack
620	 * and the stack can not be grown.
621	 * useracc() will return FALSE if access is denied.
622	 */
623	if (grow_stack(p, (int)sfp) == 0 ||
624	    !useracc((caddr_t)sfp, sizeof(*sfp), VM_PROT_WRITE)) {
625		/*
626		 * Process has trashed its stack; give it an illegal
627		 * instruction to halt it in its tracks.
628		 */
629#ifdef DEBUG
630		printf("process %d has trashed its stack\n", p->p_pid);
631#endif
632		PROC_LOCK(p);
633		SIGACTION(p, SIGILL) = SIG_DFL;
634		SIGDELSET(p->p_sigignore, SIGILL);
635		SIGDELSET(p->p_sigcatch, SIGILL);
636		SIGDELSET(p->p_sigmask, SIGILL);
637		psignal(p, SIGILL);
638		PROC_UNLOCK(p);
639		return;
640	}
641
642	/* Translate the signal if appropriate. */
643	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
644		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
645
646	/* Build the argument list for the signal handler. */
647	sf.sf_signum = sig;
648	sf.sf_ucontext = (register_t)&sfp->sf_uc;
649	PROC_LOCK(p);
650	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
651		/* Signal handler installed with SA_SIGINFO. */
652		sf.sf_siginfo = (register_t)&sfp->sf_si;
653		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
654
655		/* Fill siginfo structure. */
656		sf.sf_si.si_signo = sig;
657		sf.sf_si.si_code = code;
658		sf.sf_si.si_addr = (void *)regs->tf_err;
659	} else {
660		/* Old FreeBSD-style arguments. */
661		sf.sf_siginfo = code;
662		sf.sf_addr = regs->tf_err;
663		sf.sf_ahu.sf_handler = catcher;
664	}
665	PROC_UNLOCK(p);
666
667	/*
668	 * If we're a vm86 process, we want to save the segment registers.
669	 * We also change eflags to be our emulated eflags, not the actual
670	 * eflags.
671	 */
672	if (regs->tf_eflags & PSL_VM) {
673		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
674		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
675
676		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
677		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
678		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
679		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
680
681		if (vm86->vm86_has_vme == 0)
682			sf.sf_uc.uc_mcontext.mc_eflags =
683			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
684			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
685
686		/*
687		 * We should never have PSL_T set when returning from vm86
688		 * mode.  It may be set here if we deliver a signal before
689		 * getting to vm86 mode, so turn it off.
690		 *
691		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
692		 * syscalls made by the signal handler.  This just avoids
693		 * wasting time for our lazy fixup of such faults.  PSL_NT
694		 * does nothing in vm86 mode, but vm86 programs can set it
695		 * almost legitimately in probes for old cpu types.
696		 */
697		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
698	}
699
700	/* Copy the sigframe out to the user's stack. */
701	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
702		/*
703		 * Something is wrong with the stack pointer.
704		 * ...Kill the process.
705		 */
706		PROC_LOCK(p);
707		sigexit(p, SIGILL);
708		/* NOTREACHED */
709	}
710
711	regs->tf_esp = (int)sfp;
712	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
713	regs->tf_cs = _ucodesel;
714	regs->tf_ds = _udatasel;
715	regs->tf_es = _udatasel;
716	regs->tf_fs = _udatasel;
717	regs->tf_ss = _udatasel;
718}
719
720/*
721 * System call to cleanup state after a signal
722 * has been taken.  Reset signal mask and
723 * stack state from context left by sendsig (above).
724 * Return to previous pc and psl as specified by
725 * context left by sendsig. Check carefully to
726 * make sure that the user has not modified the
727 * state to gain improper privileges.
728 */
729#ifdef COMPAT_43
730int
731osigreturn(p, uap)
732	struct proc *p;
733	struct osigreturn_args /* {
734		struct osigcontext *sigcntxp;
735	} */ *uap;
736{
737	struct trapframe *regs;
738	struct osigcontext *scp;
739	int eflags;
740
741	regs = p->p_frame;
742	scp = uap->sigcntxp;
743	if (!useracc((caddr_t)scp, sizeof(*scp), VM_PROT_READ))
744		return (EFAULT);
745	eflags = scp->sc_ps;
746	if (eflags & PSL_VM) {
747		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
748		struct vm86_kernel *vm86;
749
750		/*
751		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
752		 * set up the vm86 area, and we can't enter vm86 mode.
753		 */
754		if (p->p_addr->u_pcb.pcb_ext == 0)
755			return (EINVAL);
756		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
757		if (vm86->vm86_inited == 0)
758			return (EINVAL);
759
760		/* Go back to user mode if both flags are set. */
761		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
762			trapsignal(p, SIGBUS, 0);
763
764		if (vm86->vm86_has_vme) {
765			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
766			    (eflags & VME_USERCHANGE) | PSL_VM;
767		} else {
768			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
769			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
770			    (eflags & VM_USERCHANGE) | PSL_VM;
771		}
772		tf->tf_vm86_ds = scp->sc_ds;
773		tf->tf_vm86_es = scp->sc_es;
774		tf->tf_vm86_fs = scp->sc_fs;
775		tf->tf_vm86_gs = scp->sc_gs;
776		tf->tf_ds = _udatasel;
777		tf->tf_es = _udatasel;
778		tf->tf_fs = _udatasel;
779	} else {
780		/*
781		 * Don't allow users to change privileged or reserved flags.
782		 */
783		/*
784		 * XXX do allow users to change the privileged flag PSL_RF.
785		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
786		 * should sometimes set it there too.  tf_eflags is kept in
787		 * the signal context during signal handling and there is no
788		 * other place to remember it, so the PSL_RF bit may be
789		 * corrupted by the signal handler without us knowing.
790		 * Corruption of the PSL_RF bit at worst causes one more or
791		 * one less debugger trap, so allowing it is fairly harmless.
792		 */
793		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
794	    		return (EINVAL);
795		}
796
797		/*
798		 * Don't allow users to load a valid privileged %cs.  Let the
799		 * hardware check for invalid selectors, excess privilege in
800		 * other selectors, invalid %eip's and invalid %esp's.
801		 */
802		if (!CS_SECURE(scp->sc_cs)) {
803			trapsignal(p, SIGBUS, T_PROTFLT);
804			return (EINVAL);
805		}
806		regs->tf_ds = scp->sc_ds;
807		regs->tf_es = scp->sc_es;
808		regs->tf_fs = scp->sc_fs;
809	}
810
811	/* Restore remaining registers. */
812	regs->tf_eax = scp->sc_eax;
813	regs->tf_ebx = scp->sc_ebx;
814	regs->tf_ecx = scp->sc_ecx;
815	regs->tf_edx = scp->sc_edx;
816	regs->tf_esi = scp->sc_esi;
817	regs->tf_edi = scp->sc_edi;
818	regs->tf_cs = scp->sc_cs;
819	regs->tf_ss = scp->sc_ss;
820	regs->tf_isp = scp->sc_isp;
821
822	PROC_LOCK(p);
823#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
824	if (scp->sc_onstack & 1)
825		p->p_sigstk.ss_flags |= SS_ONSTACK;
826	else
827		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
828#endif
829
830	SIGSETOLD(p->p_sigmask, scp->sc_mask);
831	SIG_CANTMASK(p->p_sigmask);
832	PROC_UNLOCK(p);
833	regs->tf_ebp = scp->sc_fp;
834	regs->tf_esp = scp->sc_sp;
835	regs->tf_eip = scp->sc_pc;
836	regs->tf_eflags = eflags;
837	return (EJUSTRETURN);
838}
839#endif
840
841int
842sigreturn(p, uap)
843	struct proc *p;
844	struct sigreturn_args /* {
845		ucontext_t *sigcntxp;
846	} */ *uap;
847{
848	struct trapframe *regs;
849	ucontext_t *ucp;
850	int cs, eflags;
851
852	ucp = uap->sigcntxp;
853#ifdef COMPAT_43
854	if (!useracc((caddr_t)ucp, sizeof(struct osigcontext), VM_PROT_READ))
855		return (EFAULT);
856	if (((struct osigcontext *)ucp)->sc_trapno == 0x01d516)
857		return (osigreturn(p, (struct osigreturn_args *)uap));
858	/*
859	 * Since ucp is not an osigcontext but a ucontext_t, we have to
860	 * check again if all of it is accessible.  A ucontext_t is
861	 * much larger, so instead of just checking for the pointer
862	 * being valid for the size of an osigcontext, now check for
863	 * it being valid for a whole, new-style ucontext_t.
864	 */
865#endif
866	if (!useracc((caddr_t)ucp, sizeof(*ucp), VM_PROT_READ))
867		return (EFAULT);
868
869	regs = p->p_frame;
870	eflags = ucp->uc_mcontext.mc_eflags;
871	if (eflags & PSL_VM) {
872		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
873		struct vm86_kernel *vm86;
874
875		/*
876		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
877		 * set up the vm86 area, and we can't enter vm86 mode.
878		 */
879		if (p->p_addr->u_pcb.pcb_ext == 0)
880			return (EINVAL);
881		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
882		if (vm86->vm86_inited == 0)
883			return (EINVAL);
884
885		/* Go back to user mode if both flags are set. */
886		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
887			trapsignal(p, SIGBUS, 0);
888
889		if (vm86->vm86_has_vme) {
890			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
891			    (eflags & VME_USERCHANGE) | PSL_VM;
892		} else {
893			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
894			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
895			    (eflags & VM_USERCHANGE) | PSL_VM;
896		}
897		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
898		tf->tf_eflags = eflags;
899		tf->tf_vm86_ds = tf->tf_ds;
900		tf->tf_vm86_es = tf->tf_es;
901		tf->tf_vm86_fs = tf->tf_fs;
902		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
903		tf->tf_ds = _udatasel;
904		tf->tf_es = _udatasel;
905		tf->tf_fs = _udatasel;
906	} else {
907		/*
908		 * Don't allow users to change privileged or reserved flags.
909		 */
910		/*
911		 * XXX do allow users to change the privileged flag PSL_RF.
912		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
913		 * should sometimes set it there too.  tf_eflags is kept in
914		 * the signal context during signal handling and there is no
915		 * other place to remember it, so the PSL_RF bit may be
916		 * corrupted by the signal handler without us knowing.
917		 * Corruption of the PSL_RF bit at worst causes one more or
918		 * one less debugger trap, so allowing it is fairly harmless.
919		 */
920		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
921			printf("sigreturn: eflags = 0x%x\n", eflags);
922	    		return (EINVAL);
923		}
924
925		/*
926		 * Don't allow users to load a valid privileged %cs.  Let the
927		 * hardware check for invalid selectors, excess privilege in
928		 * other selectors, invalid %eip's and invalid %esp's.
929		 */
930		cs = ucp->uc_mcontext.mc_cs;
931		if (!CS_SECURE(cs)) {
932			printf("sigreturn: cs = 0x%x\n", cs);
933			trapsignal(p, SIGBUS, T_PROTFLT);
934			return (EINVAL);
935		}
936
937		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
938	}
939
940	PROC_LOCK(p);
941#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
942	if (ucp->uc_mcontext.mc_onstack & 1)
943		p->p_sigstk.ss_flags |= SS_ONSTACK;
944	else
945		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
946#endif
947
948	p->p_sigmask = ucp->uc_sigmask;
949	SIG_CANTMASK(p->p_sigmask);
950	PROC_UNLOCK(p);
951	return (EJUSTRETURN);
952}
953
954/*
955 * Machine dependent boot() routine
956 *
957 * I haven't seen anything to put here yet
958 * Possibly some stuff might be grafted back here from boot()
959 */
960void
961cpu_boot(int howto)
962{
963}
964
965/*
966 * Shutdown the CPU as much as possible
967 */
968void
969cpu_halt(void)
970{
971	for (;;)
972		__asm__ ("hlt");
973}
974
975/*
976 * Hook to idle the CPU when possible.  This currently only works in
977 * the !SMP case, as there is no clean way to ensure that a CPU will be
978 * woken when there is work available for it.
979 */
980static int	cpu_idle_hlt = 1;
981SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
982    &cpu_idle_hlt, 0, "Idle loop HLT enable");
983
984/*
985 * Note that we have to be careful here to avoid a race between checking
986 * procrunnable() and actually halting.  If we don't do this, we may waste
987 * the time between calling hlt and the next interrupt even though there
988 * is a runnable process.
989 */
990void
991cpu_idle(void)
992{
993#ifndef SMP
994	if (cpu_idle_hlt) {
995		disable_intr();
996  		if (procrunnable())
997			enable_intr();
998		else {
999			enable_intr();
1000			__asm __volatile("hlt");
1001		}
1002	}
1003#endif
1004}
1005
1006/*
1007 * Clear registers on exec
1008 */
1009void
1010setregs(p, entry, stack, ps_strings)
1011	struct proc *p;
1012	u_long entry;
1013	u_long stack;
1014	u_long ps_strings;
1015{
1016	struct trapframe *regs = p->p_frame;
1017	struct pcb *pcb = &p->p_addr->u_pcb;
1018
1019	if (pcb->pcb_ldt)
1020		user_ldt_free(pcb);
1021
1022	bzero((char *)regs, sizeof(struct trapframe));
1023	regs->tf_eip = entry;
1024	regs->tf_esp = stack;
1025	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1026	regs->tf_ss = _udatasel;
1027	regs->tf_ds = _udatasel;
1028	regs->tf_es = _udatasel;
1029	regs->tf_fs = _udatasel;
1030	regs->tf_cs = _ucodesel;
1031
1032	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1033	regs->tf_ebx = ps_strings;
1034
1035	/* reset %gs as well */
1036	if (pcb == PCPU_GET(curpcb))
1037		load_gs(_udatasel);
1038	else
1039		pcb->pcb_gs = _udatasel;
1040
1041        /*
1042         * Reset the hardware debug registers if they were in use.
1043         * They won't have any meaning for the newly exec'd process.
1044         */
1045        if (pcb->pcb_flags & PCB_DBREGS) {
1046                pcb->pcb_dr0 = 0;
1047                pcb->pcb_dr1 = 0;
1048                pcb->pcb_dr2 = 0;
1049                pcb->pcb_dr3 = 0;
1050                pcb->pcb_dr6 = 0;
1051                pcb->pcb_dr7 = 0;
1052                if (pcb == PCPU_GET(curpcb)) {
1053		        /*
1054			 * Clear the debug registers on the running
1055			 * CPU, otherwise they will end up affecting
1056			 * the next process we switch to.
1057			 */
1058		        reset_dbregs();
1059                }
1060                pcb->pcb_flags &= ~PCB_DBREGS;
1061        }
1062
1063	/*
1064	 * Initialize the math emulator (if any) for the current process.
1065	 * Actually, just clear the bit that says that the emulator has
1066	 * been initialized.  Initialization is delayed until the process
1067	 * traps to the emulator (if it is done at all) mainly because
1068	 * emulators don't provide an entry point for initialization.
1069	 */
1070	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
1071
1072	/*
1073	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
1074	 * for why fwait must be trapped at least if there is an npx or an
1075	 * emulator).  This is mainly to handle the case where npx0 is not
1076	 * configured, since the npx routines normally set up the trap
1077	 * otherwise.  It should be done only at boot time, but doing it
1078	 * here allows modifying `npx_exists' for testing the emulator on
1079	 * systems with an npx.
1080	 */
1081	load_cr0(rcr0() | CR0_MP | CR0_TS);
1082
1083#ifdef DEV_NPX
1084	/* Initialize the npx (if any) for the current process. */
1085	npxinit(__INITIAL_NPXCW__);
1086#endif
1087
1088	/*
1089	 * XXX - Linux emulator
1090	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1091	 * on it.
1092	 */
1093	p->p_retval[1] = 0;
1094}
1095
1096void
1097cpu_setregs(void)
1098{
1099	unsigned int cr0;
1100
1101	cr0 = rcr0();
1102	cr0 |= CR0_NE;			/* Done by npxinit() */
1103	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1104#ifndef I386_CPU
1105	cr0 |= CR0_WP | CR0_AM;
1106#endif
1107	load_cr0(cr0);
1108	load_gs(_udatasel);
1109}
1110
1111static int
1112sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1113{
1114	int error;
1115	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1116		req);
1117	if (!error && req->newptr)
1118		resettodr();
1119	return (error);
1120}
1121
1122SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1123	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1124
1125SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1126	CTLFLAG_RW, &disable_rtc_set, 0, "");
1127
1128SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1129	CTLFLAG_RD, &bootinfo, bootinfo, "");
1130
1131SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1132	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1133
1134/*
1135 * Initialize 386 and configure to run kernel
1136 */
1137
1138/*
1139 * Initialize segments & interrupt table
1140 */
1141
1142int _default_ldt;
1143union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1144static struct gate_descriptor idt0[NIDT];
1145struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1146union descriptor ldt[NLDT];		/* local descriptor table */
1147#ifdef SMP
1148/* table descriptors - used to load tables by microp */
1149struct region_descriptor r_gdt, r_idt;
1150#endif
1151
1152int private_tss;			/* flag indicating private tss */
1153
1154#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1155extern int has_f00f_bug;
1156#endif
1157
1158static struct i386tss dblfault_tss;
1159static char dblfault_stack[PAGE_SIZE];
1160
1161extern  struct user *proc0paddr;
1162
1163
1164/* software prototypes -- in more palatable form */
1165struct soft_segment_descriptor gdt_segs[] = {
1166/* GNULL_SEL	0 Null Descriptor */
1167{	0x0,			/* segment base address  */
1168	0x0,			/* length */
1169	0,			/* segment type */
1170	0,			/* segment descriptor priority level */
1171	0,			/* segment descriptor present */
1172	0, 0,
1173	0,			/* default 32 vs 16 bit size */
1174	0  			/* limit granularity (byte/page units)*/ },
1175/* GCODE_SEL	1 Code Descriptor for kernel */
1176{	0x0,			/* segment base address  */
1177	0xfffff,		/* length - all address space */
1178	SDT_MEMERA,		/* segment type */
1179	0,			/* segment descriptor priority level */
1180	1,			/* segment descriptor present */
1181	0, 0,
1182	1,			/* default 32 vs 16 bit size */
1183	1  			/* limit granularity (byte/page units)*/ },
1184/* GDATA_SEL	2 Data Descriptor for kernel */
1185{	0x0,			/* segment base address  */
1186	0xfffff,		/* length - all address space */
1187	SDT_MEMRWA,		/* segment type */
1188	0,			/* segment descriptor priority level */
1189	1,			/* segment descriptor present */
1190	0, 0,
1191	1,			/* default 32 vs 16 bit size */
1192	1  			/* limit granularity (byte/page units)*/ },
1193/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1194{	0x0,			/* segment base address  */
1195	0xfffff,		/* length - all address space */
1196	SDT_MEMRWA,		/* segment type */
1197	0,			/* segment descriptor priority level */
1198	1,			/* segment descriptor present */
1199	0, 0,
1200	1,			/* default 32 vs 16 bit size */
1201	1  			/* limit granularity (byte/page units)*/ },
1202/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1203{
1204	0x0,			/* segment base address */
1205	sizeof(struct i386tss)-1,/* length - all address space */
1206	SDT_SYS386TSS,		/* segment type */
1207	0,			/* segment descriptor priority level */
1208	1,			/* segment descriptor present */
1209	0, 0,
1210	0,			/* unused - default 32 vs 16 bit size */
1211	0  			/* limit granularity (byte/page units)*/ },
1212/* GLDT_SEL	5 LDT Descriptor */
1213{	(int) ldt,		/* segment base address  */
1214	sizeof(ldt)-1,		/* length - all address space */
1215	SDT_SYSLDT,		/* segment type */
1216	SEL_UPL,		/* segment descriptor priority level */
1217	1,			/* segment descriptor present */
1218	0, 0,
1219	0,			/* unused - default 32 vs 16 bit size */
1220	0  			/* limit granularity (byte/page units)*/ },
1221/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1222{	(int) ldt,		/* segment base address  */
1223	(512 * sizeof(union descriptor)-1),		/* length */
1224	SDT_SYSLDT,		/* segment type */
1225	0,			/* segment descriptor priority level */
1226	1,			/* segment descriptor present */
1227	0, 0,
1228	0,			/* unused - default 32 vs 16 bit size */
1229	0  			/* limit granularity (byte/page units)*/ },
1230/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1231{	0x0,			/* segment base address  */
1232	0x0,			/* length - all address space */
1233	0,			/* segment type */
1234	0,			/* segment descriptor priority level */
1235	0,			/* segment descriptor present */
1236	0, 0,
1237	0,			/* default 32 vs 16 bit size */
1238	0  			/* limit granularity (byte/page units)*/ },
1239/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1240{	0x400,			/* segment base address */
1241	0xfffff,		/* length */
1242	SDT_MEMRWA,		/* segment type */
1243	0,			/* segment descriptor priority level */
1244	1,			/* segment descriptor present */
1245	0, 0,
1246	1,			/* default 32 vs 16 bit size */
1247	1  			/* limit granularity (byte/page units)*/ },
1248/* GPANIC_SEL	9 Panic Tss Descriptor */
1249{	(int) &dblfault_tss,	/* segment base address  */
1250	sizeof(struct i386tss)-1,/* length - all address space */
1251	SDT_SYS386TSS,		/* segment type */
1252	0,			/* segment descriptor priority level */
1253	1,			/* segment descriptor present */
1254	0, 0,
1255	0,			/* unused - default 32 vs 16 bit size */
1256	0  			/* limit granularity (byte/page units)*/ },
1257/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1258{	0,			/* segment base address (overwritten)  */
1259	0xfffff,		/* length */
1260	SDT_MEMERA,		/* segment type */
1261	0,			/* segment descriptor priority level */
1262	1,			/* segment descriptor present */
1263	0, 0,
1264	0,			/* default 32 vs 16 bit size */
1265	1  			/* limit granularity (byte/page units)*/ },
1266/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1267{	0,			/* segment base address (overwritten)  */
1268	0xfffff,		/* length */
1269	SDT_MEMERA,		/* segment type */
1270	0,			/* segment descriptor priority level */
1271	1,			/* segment descriptor present */
1272	0, 0,
1273	0,			/* default 32 vs 16 bit size */
1274	1  			/* limit granularity (byte/page units)*/ },
1275/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1276{	0,			/* segment base address (overwritten) */
1277	0xfffff,		/* length */
1278	SDT_MEMRWA,		/* segment type */
1279	0,			/* segment descriptor priority level */
1280	1,			/* segment descriptor present */
1281	0, 0,
1282	1,			/* default 32 vs 16 bit size */
1283	1  			/* limit granularity (byte/page units)*/ },
1284/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1285{	0,			/* segment base address (overwritten) */
1286	0xfffff,		/* length */
1287	SDT_MEMRWA,		/* segment type */
1288	0,			/* segment descriptor priority level */
1289	1,			/* segment descriptor present */
1290	0, 0,
1291	0,			/* default 32 vs 16 bit size */
1292	1  			/* limit granularity (byte/page units)*/ },
1293/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1294{	0,			/* segment base address (overwritten) */
1295	0xfffff,		/* length */
1296	SDT_MEMRWA,		/* segment type */
1297	0,			/* segment descriptor priority level */
1298	1,			/* segment descriptor present */
1299	0, 0,
1300	0,			/* default 32 vs 16 bit size */
1301	1  			/* limit granularity (byte/page units)*/ },
1302};
1303
1304static struct soft_segment_descriptor ldt_segs[] = {
1305	/* Null Descriptor - overwritten by call gate */
1306{	0x0,			/* segment base address  */
1307	0x0,			/* length - all address space */
1308	0,			/* segment type */
1309	0,			/* segment descriptor priority level */
1310	0,			/* segment descriptor present */
1311	0, 0,
1312	0,			/* default 32 vs 16 bit size */
1313	0  			/* limit granularity (byte/page units)*/ },
1314	/* Null Descriptor - overwritten by call gate */
1315{	0x0,			/* segment base address  */
1316	0x0,			/* length - all address space */
1317	0,			/* segment type */
1318	0,			/* segment descriptor priority level */
1319	0,			/* segment descriptor present */
1320	0, 0,
1321	0,			/* default 32 vs 16 bit size */
1322	0  			/* limit granularity (byte/page units)*/ },
1323	/* Null Descriptor - overwritten by call gate */
1324{	0x0,			/* segment base address  */
1325	0x0,			/* length - all address space */
1326	0,			/* segment type */
1327	0,			/* segment descriptor priority level */
1328	0,			/* segment descriptor present */
1329	0, 0,
1330	0,			/* default 32 vs 16 bit size */
1331	0  			/* limit granularity (byte/page units)*/ },
1332	/* Code Descriptor for user */
1333{	0x0,			/* segment base address  */
1334	0xfffff,		/* length - all address space */
1335	SDT_MEMERA,		/* segment type */
1336	SEL_UPL,		/* segment descriptor priority level */
1337	1,			/* segment descriptor present */
1338	0, 0,
1339	1,			/* default 32 vs 16 bit size */
1340	1  			/* limit granularity (byte/page units)*/ },
1341	/* Null Descriptor - overwritten by call gate */
1342{	0x0,			/* segment base address  */
1343	0x0,			/* length - all address space */
1344	0,			/* segment type */
1345	0,			/* segment descriptor priority level */
1346	0,			/* segment descriptor present */
1347	0, 0,
1348	0,			/* default 32 vs 16 bit size */
1349	0  			/* limit granularity (byte/page units)*/ },
1350	/* Data Descriptor for user */
1351{	0x0,			/* segment base address  */
1352	0xfffff,		/* length - all address space */
1353	SDT_MEMRWA,		/* segment type */
1354	SEL_UPL,		/* segment descriptor priority level */
1355	1,			/* segment descriptor present */
1356	0, 0,
1357	1,			/* default 32 vs 16 bit size */
1358	1  			/* limit granularity (byte/page units)*/ },
1359};
1360
1361void
1362setidt(idx, func, typ, dpl, selec)
1363	int idx;
1364	inthand_t *func;
1365	int typ;
1366	int dpl;
1367	int selec;
1368{
1369	struct gate_descriptor *ip;
1370
1371	ip = idt + idx;
1372	ip->gd_looffset = (int)func;
1373	ip->gd_selector = selec;
1374	ip->gd_stkcpy = 0;
1375	ip->gd_xx = 0;
1376	ip->gd_type = typ;
1377	ip->gd_dpl = dpl;
1378	ip->gd_p = 1;
1379	ip->gd_hioffset = ((int)func)>>16 ;
1380}
1381
1382#define	IDTVEC(name)	__CONCAT(X,name)
1383
1384extern inthand_t
1385	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1386	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1387	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1388	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1389	IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1390
1391void
1392sdtossd(sd, ssd)
1393	struct segment_descriptor *sd;
1394	struct soft_segment_descriptor *ssd;
1395{
1396	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1397	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1398	ssd->ssd_type  = sd->sd_type;
1399	ssd->ssd_dpl   = sd->sd_dpl;
1400	ssd->ssd_p     = sd->sd_p;
1401	ssd->ssd_def32 = sd->sd_def32;
1402	ssd->ssd_gran  = sd->sd_gran;
1403}
1404
1405#define PHYSMAP_SIZE	(2 * 8)
1406
1407/*
1408 * Populate the (physmap) array with base/bound pairs describing the
1409 * available physical memory in the system, then test this memory and
1410 * build the phys_avail array describing the actually-available memory.
1411 *
1412 * If we cannot accurately determine the physical memory map, then use
1413 * value from the 0xE801 call, and failing that, the RTC.
1414 *
1415 * Total memory size may be set by the kernel environment variable
1416 * hw.physmem or the compile-time define MAXMEM.
1417 */
1418static void
1419getmemsize(int first)
1420{
1421	int i, physmap_idx, pa_indx;
1422	u_int basemem, extmem;
1423	struct vm86frame vmf;
1424	struct vm86context vmc;
1425	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1426	pt_entry_t pte;
1427	const char *cp;
1428	struct bios_smap *smap;
1429
1430	bzero(&vmf, sizeof(struct vm86frame));
1431	bzero(physmap, sizeof(physmap));
1432
1433	/*
1434	 * Perform "base memory" related probes & setup
1435	 */
1436	vm86_intcall(0x12, &vmf);
1437	basemem = vmf.vmf_ax;
1438	if (basemem > 640) {
1439		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1440			basemem);
1441		basemem = 640;
1442	}
1443
1444	/*
1445	 * XXX if biosbasemem is now < 640, there is a `hole'
1446	 * between the end of base memory and the start of
1447	 * ISA memory.  The hole may be empty or it may
1448	 * contain BIOS code or data.  Map it read/write so
1449	 * that the BIOS can write to it.  (Memory from 0 to
1450	 * the physical end of the kernel is mapped read-only
1451	 * to begin with and then parts of it are remapped.
1452	 * The parts that aren't remapped form holes that
1453	 * remain read-only and are unused by the kernel.
1454	 * The base memory area is below the physical end of
1455	 * the kernel and right now forms a read-only hole.
1456	 * The part of it from PAGE_SIZE to
1457	 * (trunc_page(biosbasemem * 1024) - 1) will be
1458	 * remapped and used by the kernel later.)
1459	 *
1460	 * This code is similar to the code used in
1461	 * pmap_mapdev, but since no memory needs to be
1462	 * allocated we simply change the mapping.
1463	 */
1464	for (pa = trunc_page(basemem * 1024);
1465	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1466		pte = (pt_entry_t)vtopte(pa + KERNBASE);
1467		*pte = pa | PG_RW | PG_V;
1468	}
1469
1470	/*
1471	 * if basemem != 640, map pages r/w into vm86 page table so
1472	 * that the bios can scribble on it.
1473	 */
1474	pte = (pt_entry_t)vm86paddr;
1475	for (i = basemem / 4; i < 160; i++)
1476		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1477
1478	/*
1479	 * map page 1 R/W into the kernel page table so we can use it
1480	 * as a buffer.  The kernel will unmap this page later.
1481	 */
1482	pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
1483	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1484
1485	/*
1486	 * get memory map with INT 15:E820
1487	 */
1488	vmc.npages = 0;
1489	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1490	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1491
1492	physmap_idx = 0;
1493	vmf.vmf_ebx = 0;
1494	do {
1495		vmf.vmf_eax = 0xE820;
1496		vmf.vmf_edx = SMAP_SIG;
1497		vmf.vmf_ecx = sizeof(struct bios_smap);
1498		i = vm86_datacall(0x15, &vmf, &vmc);
1499		if (i || vmf.vmf_eax != SMAP_SIG)
1500			break;
1501		if (boothowto & RB_VERBOSE)
1502			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1503				smap->type,
1504				*(u_int32_t *)((char *)&smap->base + 4),
1505				(u_int32_t)smap->base,
1506				*(u_int32_t *)((char *)&smap->length + 4),
1507				(u_int32_t)smap->length);
1508
1509		if (smap->type != 0x01)
1510			goto next_run;
1511
1512		if (smap->length == 0)
1513			goto next_run;
1514
1515		if (smap->base >= 0xffffffff) {
1516			printf("%uK of memory above 4GB ignored\n",
1517			    (u_int)(smap->length / 1024));
1518			goto next_run;
1519		}
1520
1521		for (i = 0; i <= physmap_idx; i += 2) {
1522			if (smap->base < physmap[i + 1]) {
1523				if (boothowto & RB_VERBOSE)
1524					printf(
1525	"Overlapping or non-montonic memory region, ignoring second region\n");
1526				goto next_run;
1527			}
1528		}
1529
1530		if (smap->base == physmap[physmap_idx + 1]) {
1531			physmap[physmap_idx + 1] += smap->length;
1532			goto next_run;
1533		}
1534
1535		physmap_idx += 2;
1536		if (physmap_idx == PHYSMAP_SIZE) {
1537			printf(
1538		"Too many segments in the physical address map, giving up\n");
1539			break;
1540		}
1541		physmap[physmap_idx] = smap->base;
1542		physmap[physmap_idx + 1] = smap->base + smap->length;
1543next_run:
1544	} while (vmf.vmf_ebx != 0);
1545
1546	if (physmap[1] != 0)
1547		goto physmap_done;
1548
1549	/*
1550	 * If we failed above, try memory map with INT 15:E801
1551	 */
1552	vmf.vmf_ax = 0xE801;
1553	if (vm86_intcall(0x15, &vmf) == 0) {
1554		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1555	} else {
1556#if 0
1557		vmf.vmf_ah = 0x88;
1558		vm86_intcall(0x15, &vmf);
1559		extmem = vmf.vmf_ax;
1560#else
1561		/*
1562		 * Prefer the RTC value for extended memory.
1563		 */
1564		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1565#endif
1566	}
1567
1568	/*
1569	 * Special hack for chipsets that still remap the 384k hole when
1570	 * there's 16MB of memory - this really confuses people that
1571	 * are trying to use bus mastering ISA controllers with the
1572	 * "16MB limit"; they only have 16MB, but the remapping puts
1573	 * them beyond the limit.
1574	 *
1575	 * If extended memory is between 15-16MB (16-17MB phys address range),
1576	 *	chop it to 15MB.
1577	 */
1578	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1579		extmem = 15 * 1024;
1580
1581	physmap[0] = 0;
1582	physmap[1] = basemem * 1024;
1583	physmap_idx = 2;
1584	physmap[physmap_idx] = 0x100000;
1585	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1586
1587physmap_done:
1588	/*
1589	 * Now, physmap contains a map of physical memory.
1590	 */
1591
1592#ifdef SMP
1593	/* make hole for AP bootstrap code */
1594	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1595
1596	/* look for the MP hardware - needed for apic addresses */
1597	i386_mp_probe();
1598#endif
1599
1600	/*
1601	 * Maxmem isn't the "maximum memory", it's one larger than the
1602	 * highest page of the physical address space.  It should be
1603	 * called something like "Maxphyspage".  We may adjust this
1604	 * based on ``hw.physmem'' and the results of the memory test.
1605	 */
1606	Maxmem = atop(physmap[physmap_idx + 1]);
1607
1608#ifdef MAXMEM
1609	Maxmem = MAXMEM / 4;
1610#endif
1611
1612	/*
1613	 * hw.maxmem is a size in bytes; we also allow k, m, and g suffixes
1614	 * for the appropriate modifiers.  This overrides MAXMEM.
1615	 */
1616	if ((cp = getenv("hw.physmem")) != NULL) {
1617		u_int64_t AllowMem, sanity;
1618		char *ep;
1619
1620		sanity = AllowMem = strtouq(cp, &ep, 0);
1621		if ((ep != cp) && (*ep != 0)) {
1622			switch(*ep) {
1623			case 'g':
1624			case 'G':
1625				AllowMem <<= 10;
1626			case 'm':
1627			case 'M':
1628				AllowMem <<= 10;
1629			case 'k':
1630			case 'K':
1631				AllowMem <<= 10;
1632				break;
1633			default:
1634				AllowMem = sanity = 0;
1635			}
1636			if (AllowMem < sanity)
1637				AllowMem = 0;
1638		}
1639		if (AllowMem == 0)
1640			printf("Ignoring invalid memory size of '%s'\n", cp);
1641		else
1642			Maxmem = atop(AllowMem);
1643	}
1644
1645	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1646	    (boothowto & RB_VERBOSE))
1647		printf("Physical memory use set to %uK\n", Maxmem * 4);
1648
1649	/*
1650	 * If Maxmem has been increased beyond what the system has detected,
1651	 * extend the last memory segment to the new limit.
1652	 */
1653	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1654		physmap[physmap_idx + 1] = ptoa(Maxmem);
1655
1656	/* call pmap initialization to make new kernel address space */
1657	pmap_bootstrap(first, 0);
1658
1659	/*
1660	 * Size up each available chunk of physical memory.
1661	 */
1662	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1663	pa_indx = 0;
1664	phys_avail[pa_indx++] = physmap[0];
1665	phys_avail[pa_indx] = physmap[0];
1666#if 0
1667	pte = (pt_entry_t)vtopte(KERNBASE);
1668#else
1669	pte = (pt_entry_t)CMAP1;
1670#endif
1671
1672	/*
1673	 * physmap is in bytes, so when converting to page boundaries,
1674	 * round up the start address and round down the end address.
1675	 */
1676	for (i = 0; i <= physmap_idx; i += 2) {
1677		vm_offset_t end;
1678
1679		end = ptoa(Maxmem);
1680		if (physmap[i + 1] < end)
1681			end = trunc_page(physmap[i + 1]);
1682		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1683			int tmp, page_bad;
1684#if 0
1685			int *ptr = 0;
1686#else
1687			int *ptr = (int *)CADDR1;
1688#endif
1689
1690			/*
1691			 * block out kernel memory as not available.
1692			 */
1693			if (pa >= 0x100000 && pa < first)
1694				continue;
1695
1696			page_bad = FALSE;
1697
1698			/*
1699			 * map page into kernel: valid, read/write,non-cacheable
1700			 */
1701			*pte = pa | PG_V | PG_RW | PG_N;
1702			invltlb();
1703
1704			tmp = *(int *)ptr;
1705			/*
1706			 * Test for alternating 1's and 0's
1707			 */
1708			*(volatile int *)ptr = 0xaaaaaaaa;
1709			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1710				page_bad = TRUE;
1711			}
1712			/*
1713			 * Test for alternating 0's and 1's
1714			 */
1715			*(volatile int *)ptr = 0x55555555;
1716			if (*(volatile int *)ptr != 0x55555555) {
1717			page_bad = TRUE;
1718			}
1719			/*
1720			 * Test for all 1's
1721			 */
1722			*(volatile int *)ptr = 0xffffffff;
1723			if (*(volatile int *)ptr != 0xffffffff) {
1724				page_bad = TRUE;
1725			}
1726			/*
1727			 * Test for all 0's
1728			 */
1729			*(volatile int *)ptr = 0x0;
1730			if (*(volatile int *)ptr != 0x0) {
1731				page_bad = TRUE;
1732			}
1733			/*
1734			 * Restore original value.
1735			 */
1736			*(int *)ptr = tmp;
1737
1738			/*
1739			 * Adjust array of valid/good pages.
1740			 */
1741			if (page_bad == TRUE) {
1742				continue;
1743			}
1744			/*
1745			 * If this good page is a continuation of the
1746			 * previous set of good pages, then just increase
1747			 * the end pointer. Otherwise start a new chunk.
1748			 * Note that "end" points one higher than end,
1749			 * making the range >= start and < end.
1750			 * If we're also doing a speculative memory
1751			 * test and we at or past the end, bump up Maxmem
1752			 * so that we keep going. The first bad page
1753			 * will terminate the loop.
1754			 */
1755			if (phys_avail[pa_indx] == pa) {
1756				phys_avail[pa_indx] += PAGE_SIZE;
1757			} else {
1758				pa_indx++;
1759				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1760					printf(
1761		"Too many holes in the physical address space, giving up\n");
1762					pa_indx--;
1763					break;
1764				}
1765				phys_avail[pa_indx++] = pa;	/* start */
1766				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1767			}
1768			physmem++;
1769		}
1770	}
1771	*pte = 0;
1772	invltlb();
1773
1774	/*
1775	 * XXX
1776	 * The last chunk must contain at least one page plus the message
1777	 * buffer to avoid complicating other code (message buffer address
1778	 * calculation, etc.).
1779	 */
1780	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1781	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1782		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1783		phys_avail[pa_indx--] = 0;
1784		phys_avail[pa_indx--] = 0;
1785	}
1786
1787	Maxmem = atop(phys_avail[pa_indx]);
1788
1789	/* Trim off space for the message buffer. */
1790	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1791
1792	avail_end = phys_avail[pa_indx];
1793}
1794
1795void
1796init386(first)
1797	int first;
1798{
1799	struct gate_descriptor *gdp;
1800	int gsel_tss, metadata_missing, off, x;
1801#ifndef SMP
1802	/* table descriptors - used to load tables by microp */
1803	struct region_descriptor r_gdt, r_idt;
1804#endif
1805
1806	proc0.p_addr = proc0paddr;
1807
1808	atdevbase = ISA_HOLE_START + KERNBASE;
1809
1810	metadata_missing = 0;
1811	if (bootinfo.bi_modulep) {
1812		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1813		preload_bootstrap_relocate(KERNBASE);
1814	} else {
1815		metadata_missing = 1;
1816	}
1817	if (bootinfo.bi_envp)
1818		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1819
1820	/* Init basic tunables, hz etc */
1821	init_param();
1822
1823	/*
1824	 * make gdt memory segments, the code segment goes up to end of the
1825	 * page with etext in it, the data segment goes to the end of
1826	 * the address space
1827	 */
1828	/*
1829	 * XXX text protection is temporarily (?) disabled.  The limit was
1830	 * i386_btop(round_page(etext)) - 1.
1831	 */
1832	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1833	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1834#ifdef SMP
1835	gdt_segs[GPRIV_SEL].ssd_limit =
1836		atop(sizeof(struct privatespace) - 1);
1837	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
1838	gdt_segs[GPROC0_SEL].ssd_base =
1839		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
1840	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0].globaldata;
1841#else
1842	gdt_segs[GPRIV_SEL].ssd_limit =
1843		atop(sizeof(struct globaldata) - 1);
1844	gdt_segs[GPRIV_SEL].ssd_base = (int) &__globaldata;
1845	gdt_segs[GPROC0_SEL].ssd_base =
1846		(int) &__globaldata.gd_common_tss;
1847	__globaldata.gd_prvspace = &__globaldata;
1848#endif
1849
1850	for (x = 0; x < NGDT; x++) {
1851#ifdef BDE_DEBUGGER
1852		/* avoid overwriting db entries with APM ones */
1853		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1854			continue;
1855#endif
1856		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1857	}
1858
1859	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1860	r_gdt.rd_base =  (int) gdt;
1861	lgdt(&r_gdt);
1862
1863	/* setup curproc so that mutexes work */
1864	PCPU_SET(curproc, &proc0);
1865	PCPU_SET(spinlocks, NULL);
1866
1867	LIST_INIT(&proc0.p_contested);
1868
1869	/*
1870	 * Initialize mutexes.
1871	 */
1872	mtx_init(&Giant, "Giant", MTX_DEF | MTX_RECURSE);
1873	mtx_init(&sched_lock, "sched lock", MTX_SPIN | MTX_RECURSE);
1874	mtx_init(&proc0.p_mtx, "process lock", MTX_DEF);
1875	mtx_init(&clock_lock, "clk", MTX_SPIN | MTX_RECURSE);
1876#ifdef SMP
1877	mtx_init(&imen_mtx, "imen", MTX_SPIN);
1878#endif
1879	mtx_lock(&Giant);
1880
1881	/* make ldt memory segments */
1882	/*
1883	 * The data segment limit must not cover the user area because we
1884	 * don't want the user area to be writable in copyout() etc. (page
1885	 * level protection is lost in kernel mode on 386's).  Also, we
1886	 * don't want the user area to be writable directly (page level
1887	 * protection of the user area is not available on 486's with
1888	 * CR0_WP set, because there is no user-read/kernel-write mode).
1889	 *
1890	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1891	 * should be spelled ...MAX_USER...
1892	 */
1893#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1894	/*
1895	 * The code segment limit has to cover the user area until we move
1896	 * the signal trampoline out of the user area.  This is safe because
1897	 * the code segment cannot be written to directly.
1898	 */
1899#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1900	ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_END_USER_R_ADDRESS - 1);
1901	ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_END_USER_RW_ADDRESS - 1);
1902	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1903		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1904
1905	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1906	lldt(_default_ldt);
1907	PCPU_SET(currentldt, _default_ldt);
1908
1909	/* exceptions */
1910	for (x = 0; x < NIDT; x++)
1911		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
1912		    GSEL(GCODE_SEL, SEL_KPL));
1913	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
1914	    GSEL(GCODE_SEL, SEL_KPL));
1915	setidt(1, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
1916	    GSEL(GCODE_SEL, SEL_KPL));
1917	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL,
1918	    GSEL(GCODE_SEL, SEL_KPL));
1919 	setidt(3, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
1920	    GSEL(GCODE_SEL, SEL_KPL));
1921	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
1922	    GSEL(GCODE_SEL, SEL_KPL));
1923	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
1924	    GSEL(GCODE_SEL, SEL_KPL));
1925	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
1926	    GSEL(GCODE_SEL, SEL_KPL));
1927	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
1928	    , GSEL(GCODE_SEL, SEL_KPL));
1929	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1930	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
1931	    GSEL(GCODE_SEL, SEL_KPL));
1932	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
1933	    GSEL(GCODE_SEL, SEL_KPL));
1934	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
1935	    GSEL(GCODE_SEL, SEL_KPL));
1936	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
1937	    GSEL(GCODE_SEL, SEL_KPL));
1938	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
1939	    GSEL(GCODE_SEL, SEL_KPL));
1940	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
1941	    GSEL(GCODE_SEL, SEL_KPL));
1942	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL,
1943	    GSEL(GCODE_SEL, SEL_KPL));
1944	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
1945	    GSEL(GCODE_SEL, SEL_KPL));
1946	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
1947	    GSEL(GCODE_SEL, SEL_KPL));
1948	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
1949	    GSEL(GCODE_SEL, SEL_KPL));
1950	setidt(19, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
1951	    GSEL(GCODE_SEL, SEL_KPL));
1952 	setidt(0x80, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
1953	    GSEL(GCODE_SEL, SEL_KPL));
1954
1955	r_idt.rd_limit = sizeof(idt0) - 1;
1956	r_idt.rd_base = (int) idt;
1957	lidt(&r_idt);
1958
1959	/*
1960	 * Initialize the console before we print anything out.
1961	 */
1962	cninit();
1963
1964	if (metadata_missing)
1965		printf("WARNING: loader(8) metadata is missing!\n");
1966
1967#ifdef DEV_ISA
1968	isa_defaultirq();
1969#endif
1970
1971#ifdef DDB
1972	kdb_init();
1973	if (boothowto & RB_KDB)
1974		Debugger("Boot flags requested debugger");
1975#endif
1976
1977	finishidentcpu();	/* Final stage of CPU initialization */
1978	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
1979	    GSEL(GCODE_SEL, SEL_KPL));
1980	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
1981	    GSEL(GCODE_SEL, SEL_KPL));
1982	initializecpu();	/* Initialize CPU registers */
1983
1984	/* make an initial tss so cpu can get interrupt stack on syscall! */
1985	PCPU_SET(common_tss.tss_esp0,
1986	    (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16);
1987	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
1988	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1989	private_tss = 0;
1990	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
1991	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
1992	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
1993	ltr(gsel_tss);
1994
1995	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1996	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
1997	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1998	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1999	dblfault_tss.tss_cr3 = (int)IdlePTD;
2000	dblfault_tss.tss_eip = (int)dblfault_handler;
2001	dblfault_tss.tss_eflags = PSL_KERNEL;
2002	dblfault_tss.tss_ds = dblfault_tss.tss_es =
2003	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2004	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2005	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2006	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2007
2008	vm86_initialize();
2009	getmemsize(first);
2010
2011	/* now running on new page tables, configured,and u/iom is accessible */
2012
2013	/* Map the message buffer. */
2014	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2015		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2016
2017	msgbufinit(msgbufp, MSGBUF_SIZE);
2018
2019	/* make a call gate to reenter kernel with */
2020	gdp = &ldt[LSYS5CALLS_SEL].gd;
2021
2022	x = (int) &IDTVEC(lcall_syscall);
2023	gdp->gd_looffset = x;
2024	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2025	gdp->gd_stkcpy = 1;
2026	gdp->gd_type = SDT_SYS386CGT;
2027	gdp->gd_dpl = SEL_UPL;
2028	gdp->gd_p = 1;
2029	gdp->gd_hioffset = x >> 16;
2030
2031	/* XXX does this work? */
2032	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2033	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2034
2035	/* transfer to user mode */
2036
2037	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
2038	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
2039
2040	/* setup proc 0's pcb */
2041	proc0.p_addr->u_pcb.pcb_flags = 0;
2042	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
2043	proc0.p_addr->u_pcb.pcb_ext = 0;
2044	proc0.p_frame = &proc0_tf;
2045}
2046
2047#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2048static void f00f_hack(void *unused);
2049SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2050
2051static void
2052f00f_hack(void *unused) {
2053	struct gate_descriptor *new_idt;
2054#ifndef SMP
2055	struct region_descriptor r_idt;
2056#endif
2057	vm_offset_t tmp;
2058
2059	if (!has_f00f_bug)
2060		return;
2061
2062	GIANT_REQUIRED;
2063
2064	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2065
2066	r_idt.rd_limit = sizeof(idt0) - 1;
2067
2068	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
2069	if (tmp == 0)
2070		panic("kmem_alloc returned 0");
2071	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2072		panic("kmem_alloc returned non-page-aligned memory");
2073	/* Put the first seven entries in the lower page */
2074	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2075	bcopy(idt, new_idt, sizeof(idt0));
2076	r_idt.rd_base = (int)new_idt;
2077	lidt(&r_idt);
2078	idt = new_idt;
2079	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2080			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2081		panic("vm_map_protect failed");
2082	return;
2083}
2084#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2085
2086int
2087ptrace_set_pc(p, addr)
2088	struct proc *p;
2089	unsigned long addr;
2090{
2091	p->p_frame->tf_eip = addr;
2092	return (0);
2093}
2094
2095int
2096ptrace_single_step(p)
2097	struct proc *p;
2098{
2099	p->p_frame->tf_eflags |= PSL_T;
2100	return (0);
2101}
2102
2103int
2104fill_regs(p, regs)
2105	struct proc *p;
2106	struct reg *regs;
2107{
2108	struct pcb *pcb;
2109	struct trapframe *tp;
2110
2111	tp = p->p_frame;
2112	regs->r_fs = tp->tf_fs;
2113	regs->r_es = tp->tf_es;
2114	regs->r_ds = tp->tf_ds;
2115	regs->r_edi = tp->tf_edi;
2116	regs->r_esi = tp->tf_esi;
2117	regs->r_ebp = tp->tf_ebp;
2118	regs->r_ebx = tp->tf_ebx;
2119	regs->r_edx = tp->tf_edx;
2120	regs->r_ecx = tp->tf_ecx;
2121	regs->r_eax = tp->tf_eax;
2122	regs->r_eip = tp->tf_eip;
2123	regs->r_cs = tp->tf_cs;
2124	regs->r_eflags = tp->tf_eflags;
2125	regs->r_esp = tp->tf_esp;
2126	regs->r_ss = tp->tf_ss;
2127	pcb = &p->p_addr->u_pcb;
2128	regs->r_gs = pcb->pcb_gs;
2129	return (0);
2130}
2131
2132int
2133set_regs(p, regs)
2134	struct proc *p;
2135	struct reg *regs;
2136{
2137	struct pcb *pcb;
2138	struct trapframe *tp;
2139
2140	tp = p->p_frame;
2141	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2142	    !CS_SECURE(regs->r_cs))
2143		return (EINVAL);
2144	tp->tf_fs = regs->r_fs;
2145	tp->tf_es = regs->r_es;
2146	tp->tf_ds = regs->r_ds;
2147	tp->tf_edi = regs->r_edi;
2148	tp->tf_esi = regs->r_esi;
2149	tp->tf_ebp = regs->r_ebp;
2150	tp->tf_ebx = regs->r_ebx;
2151	tp->tf_edx = regs->r_edx;
2152	tp->tf_ecx = regs->r_ecx;
2153	tp->tf_eax = regs->r_eax;
2154	tp->tf_eip = regs->r_eip;
2155	tp->tf_cs = regs->r_cs;
2156	tp->tf_eflags = regs->r_eflags;
2157	tp->tf_esp = regs->r_esp;
2158	tp->tf_ss = regs->r_ss;
2159	pcb = &p->p_addr->u_pcb;
2160	pcb->pcb_gs = regs->r_gs;
2161	return (0);
2162}
2163
2164#ifdef CPU_ENABLE_SSE
2165static void
2166fill_fpregs_xmm(sv_xmm, sv_87)
2167	struct savexmm *sv_xmm;
2168	struct save87 *sv_87;
2169{
2170	register struct env87 *penv_87 = &sv_87->sv_env;
2171	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2172	int i;
2173
2174	/* FPU control/status */
2175	penv_87->en_cw = penv_xmm->en_cw;
2176	penv_87->en_sw = penv_xmm->en_sw;
2177	penv_87->en_tw = penv_xmm->en_tw;
2178	penv_87->en_fip = penv_xmm->en_fip;
2179	penv_87->en_fcs = penv_xmm->en_fcs;
2180	penv_87->en_opcode = penv_xmm->en_opcode;
2181	penv_87->en_foo = penv_xmm->en_foo;
2182	penv_87->en_fos = penv_xmm->en_fos;
2183
2184	/* FPU registers */
2185	for (i = 0; i < 8; ++i)
2186		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2187
2188	sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
2189}
2190
2191static void
2192set_fpregs_xmm(sv_87, sv_xmm)
2193	struct save87 *sv_87;
2194	struct savexmm *sv_xmm;
2195{
2196	register struct env87 *penv_87 = &sv_87->sv_env;
2197	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2198	int i;
2199
2200	/* FPU control/status */
2201	penv_xmm->en_cw = penv_87->en_cw;
2202	penv_xmm->en_sw = penv_87->en_sw;
2203	penv_xmm->en_tw = penv_87->en_tw;
2204	penv_xmm->en_fip = penv_87->en_fip;
2205	penv_xmm->en_fcs = penv_87->en_fcs;
2206	penv_xmm->en_opcode = penv_87->en_opcode;
2207	penv_xmm->en_foo = penv_87->en_foo;
2208	penv_xmm->en_fos = penv_87->en_fos;
2209
2210	/* FPU registers */
2211	for (i = 0; i < 8; ++i)
2212		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2213
2214	sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2215}
2216#endif /* CPU_ENABLE_SSE */
2217
2218int
2219fill_fpregs(p, fpregs)
2220	struct proc *p;
2221	struct fpreg *fpregs;
2222{
2223#ifdef CPU_ENABLE_SSE
2224	if (cpu_fxsr) {
2225		fill_fpregs_xmm(&p->p_addr->u_pcb.pcb_save.sv_xmm,
2226						(struct save87 *)fpregs);
2227		return (0);
2228	}
2229#endif /* CPU_ENABLE_SSE */
2230	bcopy(&p->p_addr->u_pcb.pcb_save.sv_87, fpregs, sizeof *fpregs);
2231	return (0);
2232}
2233
2234int
2235set_fpregs(p, fpregs)
2236	struct proc *p;
2237	struct fpreg *fpregs;
2238{
2239#ifdef CPU_ENABLE_SSE
2240	if (cpu_fxsr) {
2241		set_fpregs_xmm((struct save87 *)fpregs,
2242					   &p->p_addr->u_pcb.pcb_save.sv_xmm);
2243		return (0);
2244	}
2245#endif /* CPU_ENABLE_SSE */
2246	bcopy(fpregs, &p->p_addr->u_pcb.pcb_save.sv_87, sizeof *fpregs);
2247	return (0);
2248}
2249
2250int
2251fill_dbregs(p, dbregs)
2252	struct proc *p;
2253	struct dbreg *dbregs;
2254{
2255	struct pcb *pcb;
2256
2257	if (p == NULL) {
2258		dbregs->dr0 = rdr0();
2259		dbregs->dr1 = rdr1();
2260		dbregs->dr2 = rdr2();
2261		dbregs->dr3 = rdr3();
2262		dbregs->dr4 = rdr4();
2263		dbregs->dr5 = rdr5();
2264		dbregs->dr6 = rdr6();
2265		dbregs->dr7 = rdr7();
2266	}
2267	else {
2268		pcb = &p->p_addr->u_pcb;
2269		dbregs->dr0 = pcb->pcb_dr0;
2270		dbregs->dr1 = pcb->pcb_dr1;
2271		dbregs->dr2 = pcb->pcb_dr2;
2272		dbregs->dr3 = pcb->pcb_dr3;
2273		dbregs->dr4 = 0;
2274		dbregs->dr5 = 0;
2275		dbregs->dr6 = pcb->pcb_dr6;
2276		dbregs->dr7 = pcb->pcb_dr7;
2277	}
2278	return (0);
2279}
2280
2281int
2282set_dbregs(p, dbregs)
2283	struct proc *p;
2284	struct dbreg *dbregs;
2285{
2286	struct pcb *pcb;
2287	int i;
2288	u_int32_t mask1, mask2;
2289
2290	if (p == NULL) {
2291		load_dr0(dbregs->dr0);
2292		load_dr1(dbregs->dr1);
2293		load_dr2(dbregs->dr2);
2294		load_dr3(dbregs->dr3);
2295		load_dr4(dbregs->dr4);
2296		load_dr5(dbregs->dr5);
2297		load_dr6(dbregs->dr6);
2298		load_dr7(dbregs->dr7);
2299	}
2300	else {
2301		/*
2302		 * Don't let an illegal value for dr7 get set.	Specifically,
2303		 * check for undefined settings.  Setting these bit patterns
2304		 * result in undefined behaviour and can lead to an unexpected
2305		 * TRCTRAP.
2306		 */
2307		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2308		     i++, mask1 <<= 2, mask2 <<= 2)
2309			if ((dbregs->dr7 & mask1) == mask2)
2310				return (EINVAL);
2311
2312		pcb = &p->p_addr->u_pcb;
2313
2314		/*
2315		 * Don't let a process set a breakpoint that is not within the
2316		 * process's address space.  If a process could do this, it
2317		 * could halt the system by setting a breakpoint in the kernel
2318		 * (if ddb was enabled).  Thus, we need to check to make sure
2319		 * that no breakpoints are being enabled for addresses outside
2320		 * process's address space, unless, perhaps, we were called by
2321		 * uid 0.
2322		 *
2323		 * XXX - what about when the watched area of the user's
2324		 * address space is written into from within the kernel
2325		 * ... wouldn't that still cause a breakpoint to be generated
2326		 * from within kernel mode?
2327		 */
2328
2329		if (suser(p) != 0) {
2330			if (dbregs->dr7 & 0x3) {
2331				/* dr0 is enabled */
2332				if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2333					return (EINVAL);
2334			}
2335
2336			if (dbregs->dr7 & (0x3<<2)) {
2337				/* dr1 is enabled */
2338				if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2339					return (EINVAL);
2340			}
2341
2342			if (dbregs->dr7 & (0x3<<4)) {
2343				/* dr2 is enabled */
2344				if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2345					return (EINVAL);
2346			}
2347
2348			if (dbregs->dr7 & (0x3<<6)) {
2349				/* dr3 is enabled */
2350				if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2351					return (EINVAL);
2352			}
2353		}
2354
2355		pcb->pcb_dr0 = dbregs->dr0;
2356		pcb->pcb_dr1 = dbregs->dr1;
2357		pcb->pcb_dr2 = dbregs->dr2;
2358		pcb->pcb_dr3 = dbregs->dr3;
2359		pcb->pcb_dr6 = dbregs->dr6;
2360		pcb->pcb_dr7 = dbregs->dr7;
2361
2362		pcb->pcb_flags |= PCB_DBREGS;
2363	}
2364
2365	return (0);
2366}
2367
2368/*
2369 * Return > 0 if a hardware breakpoint has been hit, and the
2370 * breakpoint was in user space.  Return 0, otherwise.
2371 */
2372int
2373user_dbreg_trap(void)
2374{
2375        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2376        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
2377        int nbp;            /* number of breakpoints that triggered */
2378        caddr_t addr[4];    /* breakpoint addresses */
2379        int i;
2380
2381        dr7 = rdr7();
2382        if ((dr7 & 0x000000ff) == 0) {
2383                /*
2384                 * all GE and LE bits in the dr7 register are zero,
2385                 * thus the trap couldn't have been caused by the
2386                 * hardware debug registers
2387                 */
2388                return 0;
2389        }
2390
2391        nbp = 0;
2392        dr6 = rdr6();
2393        bp = dr6 & 0x0000000f;
2394
2395        if (!bp) {
2396                /*
2397                 * None of the breakpoint bits are set meaning this
2398                 * trap was not caused by any of the debug registers
2399                 */
2400                return 0;
2401        }
2402
2403        /*
2404         * at least one of the breakpoints were hit, check to see
2405         * which ones and if any of them are user space addresses
2406         */
2407
2408        if (bp & 0x01) {
2409                addr[nbp++] = (caddr_t)rdr0();
2410        }
2411        if (bp & 0x02) {
2412                addr[nbp++] = (caddr_t)rdr1();
2413        }
2414        if (bp & 0x04) {
2415                addr[nbp++] = (caddr_t)rdr2();
2416        }
2417        if (bp & 0x08) {
2418                addr[nbp++] = (caddr_t)rdr3();
2419        }
2420
2421        for (i=0; i<nbp; i++) {
2422                if (addr[i] <
2423                    (caddr_t)VM_MAXUSER_ADDRESS) {
2424                        /*
2425                         * addr[i] is in user space
2426                         */
2427                        return nbp;
2428                }
2429        }
2430
2431        /*
2432         * None of the breakpoints are in user space.
2433         */
2434        return 0;
2435}
2436
2437
2438#ifndef DDB
2439void
2440Debugger(const char *msg)
2441{
2442	printf("Debugger(\"%s\") called.\n", msg);
2443}
2444#endif /* no DDB */
2445
2446#include <sys/disklabel.h>
2447
2448/*
2449 * Determine the size of the transfer, and make sure it is
2450 * within the boundaries of the partition. Adjust transfer
2451 * if needed, and signal errors or early completion.
2452 */
2453int
2454bounds_check_with_label(struct bio *bp, struct disklabel *lp, int wlabel)
2455{
2456        struct partition *p = lp->d_partitions + dkpart(bp->bio_dev);
2457        int labelsect = lp->d_partitions[0].p_offset;
2458        int maxsz = p->p_size,
2459                sz = (bp->bio_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2460
2461        /* overwriting disk label ? */
2462        /* XXX should also protect bootstrap in first 8K */
2463        if (bp->bio_blkno + p->p_offset <= LABELSECTOR + labelsect &&
2464#if LABELSECTOR != 0
2465            bp->bio_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2466#endif
2467            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2468                bp->bio_error = EROFS;
2469                goto bad;
2470        }
2471
2472#if     defined(DOSBBSECTOR) && defined(notyet)
2473        /* overwriting master boot record? */
2474        if (bp->bio_blkno + p->p_offset <= DOSBBSECTOR &&
2475            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2476                bp->bio_error = EROFS;
2477                goto bad;
2478        }
2479#endif
2480
2481        /* beyond partition? */
2482        if (bp->bio_blkno < 0 || bp->bio_blkno + sz > maxsz) {
2483                /* if exactly at end of disk, return an EOF */
2484                if (bp->bio_blkno == maxsz) {
2485                        bp->bio_resid = bp->bio_bcount;
2486                        return(0);
2487                }
2488                /* or truncate if part of it fits */
2489                sz = maxsz - bp->bio_blkno;
2490                if (sz <= 0) {
2491                        bp->bio_error = EINVAL;
2492                        goto bad;
2493                }
2494                bp->bio_bcount = sz << DEV_BSHIFT;
2495        }
2496
2497        bp->bio_pblkno = bp->bio_blkno + p->p_offset;
2498        return(1);
2499
2500bad:
2501        bp->bio_flags |= BIO_ERROR;
2502        return(-1);
2503}
2504
2505#ifdef DDB
2506
2507/*
2508 * Provide inb() and outb() as functions.  They are normally only
2509 * available as macros calling inlined functions, thus cannot be
2510 * called inside DDB.
2511 *
2512 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2513 */
2514
2515#undef inb
2516#undef outb
2517
2518/* silence compiler warnings */
2519u_char inb(u_int);
2520void outb(u_int, u_char);
2521
2522u_char
2523inb(u_int port)
2524{
2525	u_char	data;
2526	/*
2527	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2528	 * %edx, while gcc generates inferior code (movw instead of movl)
2529	 * if we tell it to load (u_short) port.
2530	 */
2531	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2532	return (data);
2533}
2534
2535void
2536outb(u_int port, u_char data)
2537{
2538	u_char	al;
2539	/*
2540	 * Use an unnecessary assignment to help gcc's register allocator.
2541	 * This make a large difference for gcc-1.40 and a tiny difference
2542	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2543	 * best results.  gcc-2.6.0 can't handle this.
2544	 */
2545	al = data;
2546	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2547}
2548
2549#endif /* DDB */
2550