machdep.c revision 79609
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 79609 2001-07-12 06:32:51Z peter $
39 */
40
41#include "opt_atalk.h"
42#include "opt_compat.h"
43#include "opt_cpu.h"
44#include "opt_ddb.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_isa.h"
48#include "opt_maxmem.h"
49#include "opt_msgbuf.h"
50#include "opt_npx.h"
51#include "opt_perfmon.h"
52/* #include "opt_userconfig.h" */
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysproto.h>
57#include <sys/signalvar.h>
58#include <sys/kernel.h>
59#include <sys/ktr.h>
60#include <sys/linker.h>
61#include <sys/lock.h>
62#include <sys/malloc.h>
63#include <sys/mutex.h>
64#include <sys/pcpu.h>
65#include <sys/proc.h>
66#include <sys/bio.h>
67#include <sys/buf.h>
68#include <sys/reboot.h>
69#include <sys/smp.h>
70#include <sys/callout.h>
71#include <sys/msgbuf.h>
72#include <sys/sysent.h>
73#include <sys/sysctl.h>
74#include <sys/vmmeter.h>
75#include <sys/bus.h>
76#include <sys/eventhandler.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <sys/lock.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_map.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88#include <sys/user.h>
89#include <sys/exec.h>
90#include <sys/cons.h>
91
92#include <ddb/ddb.h>
93
94#include <net/netisr.h>
95
96#include <machine/cpu.h>
97#include <machine/cputypes.h>
98#include <machine/reg.h>
99#include <machine/clock.h>
100#include <machine/specialreg.h>
101#include <machine/bootinfo.h>
102#include <machine/md_var.h>
103#include <machine/pc/bios.h>
104#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
105#include <machine/globals.h>
106#ifdef PERFMON
107#include <machine/perfmon.h>
108#endif
109
110#include <i386/isa/icu.h>
111#include <i386/isa/intr_machdep.h>
112#include <isa/rtc.h>
113#include <machine/vm86.h>
114#include <sys/ptrace.h>
115#include <machine/sigframe.h>
116
117extern void init386 __P((int first));
118extern void dblfault_handler __P((void));
119
120extern void printcpuinfo(void);	/* XXX header file */
121extern void earlysetcpuclass(void);	/* same header file */
122extern void finishidentcpu(void);
123extern void panicifcpuunsupported(void);
124extern void initializecpu(void);
125
126#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
127#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
128
129static void cpu_startup __P((void *));
130#ifdef CPU_ENABLE_SSE
131static void set_fpregs_xmm __P((struct save87 *, struct savexmm *));
132static void fill_fpregs_xmm __P((struct savexmm *, struct save87 *));
133#endif /* CPU_ENABLE_SSE */
134SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
135
136int	_udatasel, _ucodesel;
137u_int	atdevbase;
138
139#if defined(SWTCH_OPTIM_STATS)
140extern int swtch_optim_stats;
141SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
142	CTLFLAG_RD, &swtch_optim_stats, 0, "");
143SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
144	CTLFLAG_RD, &tlb_flush_count, 0, "");
145#endif
146
147#ifdef PC98
148static int	ispc98 = 1;
149#else
150static int	ispc98 = 0;
151#endif
152SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
153
154int physmem = 0;
155int cold = 1;
156
157static void osendsig __P((sig_t catcher, int sig, sigset_t *mask, u_long code));
158
159static int
160sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
161{
162	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
163	return (error);
164}
165
166SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
167	0, 0, sysctl_hw_physmem, "IU", "");
168
169static int
170sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
171{
172	int error = sysctl_handle_int(oidp, 0,
173		ctob(physmem - cnt.v_wire_count), req);
174	return (error);
175}
176
177SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
178	0, 0, sysctl_hw_usermem, "IU", "");
179
180static int
181sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
182{
183	int error = sysctl_handle_int(oidp, 0,
184		i386_btop(avail_end - avail_start), req);
185	return (error);
186}
187
188SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
189	0, 0, sysctl_hw_availpages, "I", "");
190
191int Maxmem = 0;
192long dumplo;
193
194vm_offset_t phys_avail[10];
195
196/* must be 2 less so 0 0 can signal end of chunks */
197#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
198
199static vm_offset_t buffer_sva, buffer_eva;
200vm_offset_t clean_sva, clean_eva;
201static vm_offset_t pager_sva, pager_eva;
202static struct trapframe proc0_tf;
203#ifndef SMP
204static struct globaldata __globaldata;
205#endif
206
207struct mtx sched_lock;
208struct mtx Giant;
209
210static void
211cpu_startup(dummy)
212	void *dummy;
213{
214	register unsigned i;
215	register caddr_t v;
216	vm_offset_t maxaddr;
217	vm_size_t size = 0;
218	int firstaddr;
219	vm_offset_t minaddr;
220	int physmem_est;
221
222	/*
223	 * Good {morning,afternoon,evening,night}.
224	 */
225	earlysetcpuclass();
226	startrtclock();
227	printcpuinfo();
228	panicifcpuunsupported();
229#ifdef PERFMON
230	perfmon_init();
231#endif
232	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
233	/*
234	 * Display any holes after the first chunk of extended memory.
235	 */
236	if (bootverbose) {
237		int indx;
238
239		printf("Physical memory chunk(s):\n");
240		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
241			unsigned int size1 = phys_avail[indx + 1] - phys_avail[indx];
242
243			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
244			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
245			    size1 / PAGE_SIZE);
246		}
247	}
248
249	/*
250	 * Calculate callout wheel size
251	 */
252	for (callwheelsize = 1, callwheelbits = 0;
253	     callwheelsize < ncallout;
254	     callwheelsize <<= 1, ++callwheelbits)
255		;
256	callwheelmask = callwheelsize - 1;
257
258	/*
259	 * Allocate space for system data structures.
260	 * The first available kernel virtual address is in "v".
261	 * As pages of kernel virtual memory are allocated, "v" is incremented.
262	 * As pages of memory are allocated and cleared,
263	 * "firstaddr" is incremented.
264	 * An index into the kernel page table corresponding to the
265	 * virtual memory address maintained in "v" is kept in "mapaddr".
266	 */
267
268	/*
269	 * Make two passes.  The first pass calculates how much memory is
270	 * needed and allocates it.  The second pass assigns virtual
271	 * addresses to the various data structures.
272	 */
273	firstaddr = 0;
274again:
275	v = (caddr_t)firstaddr;
276
277#define	valloc(name, type, num) \
278	    (name) = (type *)v; v = (caddr_t)((name)+(num))
279#define	valloclim(name, type, num, lim) \
280	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
281
282	valloc(callout, struct callout, ncallout);
283	valloc(callwheel, struct callout_tailq, callwheelsize);
284
285	/*
286	 * Discount the physical memory larger than the size of kernel_map
287	 * to avoid eating up all of KVA space.
288	 */
289	if (kernel_map->first_free == NULL) {
290		printf("Warning: no free entries in kernel_map.\n");
291		physmem_est = physmem;
292	} else
293		physmem_est = min(physmem, kernel_map->max_offset - kernel_map->min_offset);
294
295	/*
296	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
297	 * For the first 64MB of ram nominally allocate sufficient buffers to
298	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
299	 * buffers to cover 1/20 of our ram over 64MB.
300	 *
301	 * factor represents the 1/4 x ram conversion.
302	 */
303	if (nbuf == 0) {
304		int factor = 4 * BKVASIZE / PAGE_SIZE;
305
306		nbuf = 50;
307		if (physmem_est > 1024)
308			nbuf += min((physmem_est - 1024) / factor, 16384 / factor);
309		if (physmem_est > 16384)
310			nbuf += (physmem_est - 16384) * 2 / (factor * 5);
311	}
312
313	/*
314	 * Do not allow the buffer_map to be more then 1/2 the size of the
315	 * kernel_map.
316	 */
317	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
318	    (BKVASIZE * 2)) {
319		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
320		    (BKVASIZE * 2);
321		printf("Warning: nbufs capped at %d\n", nbuf);
322	}
323
324	nswbuf = max(min(nbuf/4, 256), 16);
325
326	valloc(swbuf, struct buf, nswbuf);
327	valloc(buf, struct buf, nbuf);
328	v = bufhashinit(v);
329
330	/*
331	 * End of first pass, size has been calculated so allocate memory
332	 */
333	if (firstaddr == 0) {
334		size = (vm_size_t)(v - firstaddr);
335		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
336		if (firstaddr == 0)
337			panic("startup: no room for tables");
338		goto again;
339	}
340
341	/*
342	 * End of second pass, addresses have been assigned
343	 */
344	if ((vm_size_t)(v - firstaddr) != size)
345		panic("startup: table size inconsistency");
346
347	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
348			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
349	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
350				(nbuf*BKVASIZE));
351	buffer_map->system_map = 1;
352	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
353				(nswbuf*MAXPHYS) + pager_map_size);
354	pager_map->system_map = 1;
355	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
356				(16*(ARG_MAX+(PAGE_SIZE*3))));
357
358	/*
359	 * XXX: Mbuf system machine-specific initializations should
360	 *      go here, if anywhere.
361	 */
362
363	/*
364	 * Initialize callouts
365	 */
366	SLIST_INIT(&callfree);
367	for (i = 0; i < ncallout; i++) {
368		callout_init(&callout[i], 0);
369		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
370		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
371	}
372
373	for (i = 0; i < callwheelsize; i++) {
374		TAILQ_INIT(&callwheel[i]);
375	}
376
377	mtx_init(&callout_lock, "callout", MTX_SPIN | MTX_RECURSE);
378
379#if defined(USERCONFIG)
380	userconfig();
381	cninit();		/* the preferred console may have changed */
382#endif
383
384	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
385	    ptoa(cnt.v_free_count) / 1024);
386
387	/*
388	 * Set up buffers, so they can be used to read disk labels.
389	 */
390	bufinit();
391	vm_pager_bufferinit();
392
393	globaldata_register(GLOBALDATA);
394#ifndef SMP
395	/* For SMP, we delay the cpu_setregs() until after SMP startup. */
396	cpu_setregs();
397#endif
398}
399
400/*
401 * Send an interrupt to process.
402 *
403 * Stack is set up to allow sigcode stored
404 * at top to call routine, followed by kcall
405 * to sigreturn routine below.  After sigreturn
406 * resets the signal mask, the stack, and the
407 * frame pointer, it returns to the user
408 * specified pc, psl.
409 */
410static void
411osendsig(catcher, sig, mask, code)
412	sig_t catcher;
413	int sig;
414	sigset_t *mask;
415	u_long code;
416{
417	struct osigframe sf;
418	struct osigframe *fp;
419	struct proc *p;
420	struct sigacts *psp;
421	struct trapframe *regs;
422	int oonstack;
423
424	p = curproc;
425	PROC_LOCK(p);
426	psp = p->p_sigacts;
427	regs = p->p_frame;
428	oonstack = sigonstack(regs->tf_esp);
429
430	/* Allocate and validate space for the signal handler context. */
431	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
432	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
433		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
434		    p->p_sigstk.ss_size - sizeof(struct osigframe));
435#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
436		p->p_sigstk.ss_flags |= SS_ONSTACK;
437#endif
438	} else
439		fp = (struct osigframe *)regs->tf_esp - 1;
440	PROC_UNLOCK(p);
441
442	/*
443	 * grow_stack() will return 0 if *fp does not fit inside the stack
444	 * and the stack can not be grown.
445	 * useracc() will return FALSE if access is denied.
446	 */
447	if (grow_stack(p, (int)fp) == 0 ||
448	    !useracc((caddr_t)fp, sizeof(*fp), VM_PROT_WRITE)) {
449		/*
450		 * Process has trashed its stack; give it an illegal
451		 * instruction to halt it in its tracks.
452		 */
453		PROC_LOCK(p);
454		SIGACTION(p, SIGILL) = SIG_DFL;
455		SIGDELSET(p->p_sigignore, SIGILL);
456		SIGDELSET(p->p_sigcatch, SIGILL);
457		SIGDELSET(p->p_sigmask, SIGILL);
458		psignal(p, SIGILL);
459		PROC_UNLOCK(p);
460		return;
461	}
462
463	/* Translate the signal if appropriate. */
464	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
465		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
466
467	/* Build the argument list for the signal handler. */
468	sf.sf_signum = sig;
469	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
470	PROC_LOCK(p);
471	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
472		/* Signal handler installed with SA_SIGINFO. */
473		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
474		sf.sf_siginfo.si_signo = sig;
475		sf.sf_siginfo.si_code = code;
476		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
477	} else {
478		/* Old FreeBSD-style arguments. */
479		sf.sf_arg2 = code;
480		sf.sf_addr = regs->tf_err;
481		sf.sf_ahu.sf_handler = catcher;
482	}
483	PROC_UNLOCK(p);
484
485	/* Save most if not all of trap frame. */
486	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
487	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
488	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
489	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
490	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
491	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
492	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
493	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
494	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
495	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
496	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
497	sf.sf_siginfo.si_sc.sc_gs = rgs();
498	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
499
500	/* Build the signal context to be used by osigreturn(). */
501	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
502	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
503	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
504	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
505	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
506	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
507	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
508	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
509
510	/*
511	 * If we're a vm86 process, we want to save the segment registers.
512	 * We also change eflags to be our emulated eflags, not the actual
513	 * eflags.
514	 */
515	if (regs->tf_eflags & PSL_VM) {
516		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
517		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
518		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
519
520		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
521		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
522		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
523		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
524
525		if (vm86->vm86_has_vme == 0)
526			sf.sf_siginfo.si_sc.sc_ps =
527			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
528			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
529
530		/* See sendsig() for comments. */
531		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
532	}
533
534	/* Copy the sigframe out to the user's stack. */
535	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
536		/*
537		 * Something is wrong with the stack pointer.
538		 * ...Kill the process.
539		 */
540		PROC_LOCK(p);
541		sigexit(p, SIGILL);
542		/* NOTREACHED */
543	}
544
545	regs->tf_esp = (int)fp;
546	regs->tf_eip = PS_STRINGS - szosigcode;
547	regs->tf_cs = _ucodesel;
548	regs->tf_ds = _udatasel;
549	regs->tf_es = _udatasel;
550	regs->tf_fs = _udatasel;
551	load_gs(_udatasel);
552	regs->tf_ss = _udatasel;
553}
554
555void
556sendsig(catcher, sig, mask, code)
557	sig_t catcher;
558	int sig;
559	sigset_t *mask;
560	u_long code;
561{
562	struct sigframe sf;
563	struct proc *p;
564	struct sigacts *psp;
565	struct trapframe *regs;
566	struct sigframe *sfp;
567	int oonstack;
568
569	p = curproc;
570	PROC_LOCK(p);
571	psp = p->p_sigacts;
572	if (SIGISMEMBER(psp->ps_osigset, sig)) {
573		PROC_UNLOCK(p);
574		osendsig(catcher, sig, mask, code);
575		return;
576	}
577	regs = p->p_frame;
578	oonstack = sigonstack(regs->tf_esp);
579
580	/* Save user context. */
581	bzero(&sf, sizeof(sf));
582	sf.sf_uc.uc_sigmask = *mask;
583	sf.sf_uc.uc_stack = p->p_sigstk;
584	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
585	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
586	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
587	sf.sf_uc.uc_mcontext.mc_gs = rgs();
588	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
589
590	/* Allocate and validate space for the signal handler context. */
591	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
592	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
593		sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
594		    p->p_sigstk.ss_size - sizeof(struct sigframe));
595#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
596		p->p_sigstk.ss_flags |= SS_ONSTACK;
597#endif
598	} else
599		sfp = (struct sigframe *)regs->tf_esp - 1;
600	PROC_UNLOCK(p);
601
602	/*
603	 * grow_stack() will return 0 if *sfp does not fit inside the stack
604	 * and the stack can not be grown.
605	 * useracc() will return FALSE if access is denied.
606	 */
607	if (grow_stack(p, (int)sfp) == 0 ||
608	    !useracc((caddr_t)sfp, sizeof(*sfp), VM_PROT_WRITE)) {
609		/*
610		 * Process has trashed its stack; give it an illegal
611		 * instruction to halt it in its tracks.
612		 */
613#ifdef DEBUG
614		printf("process %d has trashed its stack\n", p->p_pid);
615#endif
616		PROC_LOCK(p);
617		SIGACTION(p, SIGILL) = SIG_DFL;
618		SIGDELSET(p->p_sigignore, SIGILL);
619		SIGDELSET(p->p_sigcatch, SIGILL);
620		SIGDELSET(p->p_sigmask, SIGILL);
621		psignal(p, SIGILL);
622		PROC_UNLOCK(p);
623		return;
624	}
625
626	/* Translate the signal if appropriate. */
627	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
628		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
629
630	/* Build the argument list for the signal handler. */
631	sf.sf_signum = sig;
632	sf.sf_ucontext = (register_t)&sfp->sf_uc;
633	PROC_LOCK(p);
634	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
635		/* Signal handler installed with SA_SIGINFO. */
636		sf.sf_siginfo = (register_t)&sfp->sf_si;
637		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
638
639		/* Fill siginfo structure. */
640		sf.sf_si.si_signo = sig;
641		sf.sf_si.si_code = code;
642		sf.sf_si.si_addr = (void *)regs->tf_err;
643	} else {
644		/* Old FreeBSD-style arguments. */
645		sf.sf_siginfo = code;
646		sf.sf_addr = regs->tf_err;
647		sf.sf_ahu.sf_handler = catcher;
648	}
649	PROC_UNLOCK(p);
650
651	/*
652	 * If we're a vm86 process, we want to save the segment registers.
653	 * We also change eflags to be our emulated eflags, not the actual
654	 * eflags.
655	 */
656	if (regs->tf_eflags & PSL_VM) {
657		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
658		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
659
660		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
661		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
662		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
663		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
664
665		if (vm86->vm86_has_vme == 0)
666			sf.sf_uc.uc_mcontext.mc_eflags =
667			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
668			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
669
670		/*
671		 * We should never have PSL_T set when returning from vm86
672		 * mode.  It may be set here if we deliver a signal before
673		 * getting to vm86 mode, so turn it off.
674		 *
675		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
676		 * syscalls made by the signal handler.  This just avoids
677		 * wasting time for our lazy fixup of such faults.  PSL_NT
678		 * does nothing in vm86 mode, but vm86 programs can set it
679		 * almost legitimately in probes for old cpu types.
680		 */
681		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
682	}
683
684	/* Copy the sigframe out to the user's stack. */
685	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
686		/*
687		 * Something is wrong with the stack pointer.
688		 * ...Kill the process.
689		 */
690		PROC_LOCK(p);
691		sigexit(p, SIGILL);
692		/* NOTREACHED */
693	}
694
695	regs->tf_esp = (int)sfp;
696	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
697	regs->tf_cs = _ucodesel;
698	regs->tf_ds = _udatasel;
699	regs->tf_es = _udatasel;
700	regs->tf_fs = _udatasel;
701	regs->tf_ss = _udatasel;
702}
703
704/*
705 * System call to cleanup state after a signal
706 * has been taken.  Reset signal mask and
707 * stack state from context left by sendsig (above).
708 * Return to previous pc and psl as specified by
709 * context left by sendsig. Check carefully to
710 * make sure that the user has not modified the
711 * state to gain improper privileges.
712 */
713int
714osigreturn(p, uap)
715	struct proc *p;
716	struct osigreturn_args /* {
717		struct osigcontext *sigcntxp;
718	} */ *uap;
719{
720	struct trapframe *regs;
721	struct osigcontext *scp;
722	int eflags;
723
724	regs = p->p_frame;
725	scp = uap->sigcntxp;
726	if (!useracc((caddr_t)scp, sizeof(*scp), VM_PROT_READ))
727		return (EFAULT);
728	eflags = scp->sc_ps;
729	if (eflags & PSL_VM) {
730		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
731		struct vm86_kernel *vm86;
732
733		/*
734		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
735		 * set up the vm86 area, and we can't enter vm86 mode.
736		 */
737		if (p->p_addr->u_pcb.pcb_ext == 0)
738			return (EINVAL);
739		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
740		if (vm86->vm86_inited == 0)
741			return (EINVAL);
742
743		/* Go back to user mode if both flags are set. */
744		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
745			trapsignal(p, SIGBUS, 0);
746
747		if (vm86->vm86_has_vme) {
748			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
749			    (eflags & VME_USERCHANGE) | PSL_VM;
750		} else {
751			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
752			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
753		}
754		tf->tf_vm86_ds = scp->sc_ds;
755		tf->tf_vm86_es = scp->sc_es;
756		tf->tf_vm86_fs = scp->sc_fs;
757		tf->tf_vm86_gs = scp->sc_gs;
758		tf->tf_ds = _udatasel;
759		tf->tf_es = _udatasel;
760		tf->tf_fs = _udatasel;
761	} else {
762		/*
763		 * Don't allow users to change privileged or reserved flags.
764		 */
765		/*
766		 * XXX do allow users to change the privileged flag PSL_RF.
767		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
768		 * should sometimes set it there too.  tf_eflags is kept in
769		 * the signal context during signal handling and there is no
770		 * other place to remember it, so the PSL_RF bit may be
771		 * corrupted by the signal handler without us knowing.
772		 * Corruption of the PSL_RF bit at worst causes one more or
773		 * one less debugger trap, so allowing it is fairly harmless.
774		 */
775		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
776	    		return (EINVAL);
777		}
778
779		/*
780		 * Don't allow users to load a valid privileged %cs.  Let the
781		 * hardware check for invalid selectors, excess privilege in
782		 * other selectors, invalid %eip's and invalid %esp's.
783		 */
784		if (!CS_SECURE(scp->sc_cs)) {
785			trapsignal(p, SIGBUS, T_PROTFLT);
786			return (EINVAL);
787		}
788		regs->tf_ds = scp->sc_ds;
789		regs->tf_es = scp->sc_es;
790		regs->tf_fs = scp->sc_fs;
791	}
792
793	/* Restore remaining registers. */
794	regs->tf_eax = scp->sc_eax;
795	regs->tf_ebx = scp->sc_ebx;
796	regs->tf_ecx = scp->sc_ecx;
797	regs->tf_edx = scp->sc_edx;
798	regs->tf_esi = scp->sc_esi;
799	regs->tf_edi = scp->sc_edi;
800	regs->tf_cs = scp->sc_cs;
801	regs->tf_ss = scp->sc_ss;
802	regs->tf_isp = scp->sc_isp;
803
804	PROC_LOCK(p);
805#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
806	if (scp->sc_onstack & 1)
807		p->p_sigstk.ss_flags |= SS_ONSTACK;
808	else
809		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
810#endif
811
812	SIGSETOLD(p->p_sigmask, scp->sc_mask);
813	SIG_CANTMASK(p->p_sigmask);
814	PROC_UNLOCK(p);
815	regs->tf_ebp = scp->sc_fp;
816	regs->tf_esp = scp->sc_sp;
817	regs->tf_eip = scp->sc_pc;
818	regs->tf_eflags = eflags;
819	return (EJUSTRETURN);
820}
821
822int
823sigreturn(p, uap)
824	struct proc *p;
825	struct sigreturn_args /* {
826		ucontext_t *sigcntxp;
827	} */ *uap;
828{
829	struct trapframe *regs;
830	ucontext_t *ucp;
831	int cs, eflags;
832
833	ucp = uap->sigcntxp;
834	if (!useracc((caddr_t)ucp, sizeof(struct osigcontext), VM_PROT_READ))
835		return (EFAULT);
836	if (((struct osigcontext *)ucp)->sc_trapno == 0x01d516)
837		return (osigreturn(p, (struct osigreturn_args *)uap));
838
839	/*
840	 * Since ucp is not an osigcontext but a ucontext_t, we have to
841	 * check again if all of it is accessible.  A ucontext_t is
842	 * much larger, so instead of just checking for the pointer
843	 * being valid for the size of an osigcontext, now check for
844	 * it being valid for a whole, new-style ucontext_t.
845	 */
846	if (!useracc((caddr_t)ucp, sizeof(*ucp), VM_PROT_READ))
847		return (EFAULT);
848
849	regs = p->p_frame;
850	eflags = ucp->uc_mcontext.mc_eflags;
851	if (eflags & PSL_VM) {
852		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
853		struct vm86_kernel *vm86;
854
855		/*
856		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
857		 * set up the vm86 area, and we can't enter vm86 mode.
858		 */
859		if (p->p_addr->u_pcb.pcb_ext == 0)
860			return (EINVAL);
861		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
862		if (vm86->vm86_inited == 0)
863			return (EINVAL);
864
865		/* Go back to user mode if both flags are set. */
866		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
867			trapsignal(p, SIGBUS, 0);
868
869		if (vm86->vm86_has_vme) {
870			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
871			    (eflags & VME_USERCHANGE) | PSL_VM;
872		} else {
873			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
874			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
875		}
876		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
877		tf->tf_eflags = eflags;
878		tf->tf_vm86_ds = tf->tf_ds;
879		tf->tf_vm86_es = tf->tf_es;
880		tf->tf_vm86_fs = tf->tf_fs;
881		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
882		tf->tf_ds = _udatasel;
883		tf->tf_es = _udatasel;
884		tf->tf_fs = _udatasel;
885	} else {
886		/*
887		 * Don't allow users to change privileged or reserved flags.
888		 */
889		/*
890		 * XXX do allow users to change the privileged flag PSL_RF.
891		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
892		 * should sometimes set it there too.  tf_eflags is kept in
893		 * the signal context during signal handling and there is no
894		 * other place to remember it, so the PSL_RF bit may be
895		 * corrupted by the signal handler without us knowing.
896		 * Corruption of the PSL_RF bit at worst causes one more or
897		 * one less debugger trap, so allowing it is fairly harmless.
898		 */
899		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
900			printf("sigreturn: eflags = 0x%x\n", eflags);
901	    		return (EINVAL);
902		}
903
904		/*
905		 * Don't allow users to load a valid privileged %cs.  Let the
906		 * hardware check for invalid selectors, excess privilege in
907		 * other selectors, invalid %eip's and invalid %esp's.
908		 */
909		cs = ucp->uc_mcontext.mc_cs;
910		if (!CS_SECURE(cs)) {
911			printf("sigreturn: cs = 0x%x\n", cs);
912			trapsignal(p, SIGBUS, T_PROTFLT);
913			return (EINVAL);
914		}
915
916		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
917	}
918
919	PROC_LOCK(p);
920#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
921	if (ucp->uc_mcontext.mc_onstack & 1)
922		p->p_sigstk.ss_flags |= SS_ONSTACK;
923	else
924		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
925#endif
926
927	p->p_sigmask = ucp->uc_sigmask;
928	SIG_CANTMASK(p->p_sigmask);
929	PROC_UNLOCK(p);
930	return (EJUSTRETURN);
931}
932
933/*
934 * Machine dependent boot() routine
935 *
936 * I haven't seen anything to put here yet
937 * Possibly some stuff might be grafted back here from boot()
938 */
939void
940cpu_boot(int howto)
941{
942}
943
944/*
945 * Shutdown the CPU as much as possible
946 */
947void
948cpu_halt(void)
949{
950	for (;;)
951		__asm__ ("hlt");
952}
953
954/*
955 * Hook to idle the CPU when possible.  This currently only works in
956 * the !SMP case, as there is no clean way to ensure that a CPU will be
957 * woken when there is work available for it.
958 */
959static int	cpu_idle_hlt = 1;
960SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
961    &cpu_idle_hlt, 0, "Idle loop HLT enable");
962
963/*
964 * Note that we have to be careful here to avoid a race between checking
965 * procrunnable() and actually halting.  If we don't do this, we may waste
966 * the time between calling hlt and the next interrupt even though there
967 * is a runnable process.
968 */
969void
970cpu_idle(void)
971{
972#ifndef SMP
973	if (cpu_idle_hlt) {
974		disable_intr();
975  		if (procrunnable())
976			enable_intr();
977		else {
978			enable_intr();
979			__asm __volatile("hlt");
980		}
981	}
982#endif
983}
984
985/*
986 * Clear registers on exec
987 */
988void
989setregs(p, entry, stack, ps_strings)
990	struct proc *p;
991	u_long entry;
992	u_long stack;
993	u_long ps_strings;
994{
995	struct trapframe *regs = p->p_frame;
996	struct pcb *pcb = &p->p_addr->u_pcb;
997
998	if (pcb->pcb_ldt)
999		user_ldt_free(pcb);
1000
1001	bzero((char *)regs, sizeof(struct trapframe));
1002	regs->tf_eip = entry;
1003	regs->tf_esp = stack;
1004	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1005	regs->tf_ss = _udatasel;
1006	regs->tf_ds = _udatasel;
1007	regs->tf_es = _udatasel;
1008	regs->tf_fs = _udatasel;
1009	regs->tf_cs = _ucodesel;
1010
1011	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1012	regs->tf_ebx = ps_strings;
1013
1014	/* reset %gs as well */
1015	if (pcb == PCPU_GET(curpcb))
1016		load_gs(_udatasel);
1017	else
1018		pcb->pcb_gs = _udatasel;
1019
1020        /*
1021         * Reset the hardware debug registers if they were in use.
1022         * They won't have any meaning for the newly exec'd process.
1023         */
1024        if (pcb->pcb_flags & PCB_DBREGS) {
1025                pcb->pcb_dr0 = 0;
1026                pcb->pcb_dr1 = 0;
1027                pcb->pcb_dr2 = 0;
1028                pcb->pcb_dr3 = 0;
1029                pcb->pcb_dr6 = 0;
1030                pcb->pcb_dr7 = 0;
1031                if (pcb == PCPU_GET(curpcb)) {
1032		        /*
1033			 * Clear the debug registers on the running
1034			 * CPU, otherwise they will end up affecting
1035			 * the next process we switch to.
1036			 */
1037		        reset_dbregs();
1038                }
1039                pcb->pcb_flags &= ~PCB_DBREGS;
1040        }
1041
1042	/*
1043	 * Initialize the math emulator (if any) for the current process.
1044	 * Actually, just clear the bit that says that the emulator has
1045	 * been initialized.  Initialization is delayed until the process
1046	 * traps to the emulator (if it is done at all) mainly because
1047	 * emulators don't provide an entry point for initialization.
1048	 */
1049	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
1050
1051	/*
1052	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
1053	 * for why fwait must be trapped at least if there is an npx or an
1054	 * emulator).  This is mainly to handle the case where npx0 is not
1055	 * configured, since the npx routines normally set up the trap
1056	 * otherwise.  It should be done only at boot time, but doing it
1057	 * here allows modifying `npx_exists' for testing the emulator on
1058	 * systems with an npx.
1059	 */
1060	load_cr0(rcr0() | CR0_MP | CR0_TS);
1061
1062#ifdef DEV_NPX
1063	/* Initialize the npx (if any) for the current process. */
1064	npxinit(__INITIAL_NPXCW__);
1065#endif
1066
1067	/*
1068	 * XXX - Linux emulator
1069	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1070	 * on it.
1071	 */
1072	p->p_retval[1] = 0;
1073}
1074
1075void
1076cpu_setregs(void)
1077{
1078	unsigned int cr0;
1079
1080	cr0 = rcr0();
1081	cr0 |= CR0_NE;			/* Done by npxinit() */
1082	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1083#ifndef I386_CPU
1084	cr0 |= CR0_WP | CR0_AM;
1085#endif
1086	load_cr0(cr0);
1087	load_gs(_udatasel);
1088}
1089
1090static int
1091sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1092{
1093	int error;
1094	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1095		req);
1096	if (!error && req->newptr)
1097		resettodr();
1098	return (error);
1099}
1100
1101SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1102	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1103
1104SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1105	CTLFLAG_RW, &disable_rtc_set, 0, "");
1106
1107SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1108	CTLFLAG_RD, &bootinfo, bootinfo, "");
1109
1110SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1111	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1112
1113/*
1114 * Initialize 386 and configure to run kernel
1115 */
1116
1117/*
1118 * Initialize segments & interrupt table
1119 */
1120
1121int _default_ldt;
1122union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1123static struct gate_descriptor idt0[NIDT];
1124struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1125union descriptor ldt[NLDT];		/* local descriptor table */
1126#ifdef SMP
1127/* table descriptors - used to load tables by microp */
1128struct region_descriptor r_gdt, r_idt;
1129#endif
1130
1131int private_tss;			/* flag indicating private tss */
1132
1133#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1134extern int has_f00f_bug;
1135#endif
1136
1137static struct i386tss dblfault_tss;
1138static char dblfault_stack[PAGE_SIZE];
1139
1140extern  struct user *proc0paddr;
1141
1142
1143/* software prototypes -- in more palatable form */
1144struct soft_segment_descriptor gdt_segs[] = {
1145/* GNULL_SEL	0 Null Descriptor */
1146{	0x0,			/* segment base address  */
1147	0x0,			/* length */
1148	0,			/* segment type */
1149	0,			/* segment descriptor priority level */
1150	0,			/* segment descriptor present */
1151	0, 0,
1152	0,			/* default 32 vs 16 bit size */
1153	0  			/* limit granularity (byte/page units)*/ },
1154/* GCODE_SEL	1 Code Descriptor for kernel */
1155{	0x0,			/* segment base address  */
1156	0xfffff,		/* length - all address space */
1157	SDT_MEMERA,		/* segment type */
1158	0,			/* segment descriptor priority level */
1159	1,			/* segment descriptor present */
1160	0, 0,
1161	1,			/* default 32 vs 16 bit size */
1162	1  			/* limit granularity (byte/page units)*/ },
1163/* GDATA_SEL	2 Data Descriptor for kernel */
1164{	0x0,			/* segment base address  */
1165	0xfffff,		/* length - all address space */
1166	SDT_MEMRWA,		/* segment type */
1167	0,			/* segment descriptor priority level */
1168	1,			/* segment descriptor present */
1169	0, 0,
1170	1,			/* default 32 vs 16 bit size */
1171	1  			/* limit granularity (byte/page units)*/ },
1172/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1173{	0x0,			/* segment base address  */
1174	0xfffff,		/* length - all address space */
1175	SDT_MEMRWA,		/* segment type */
1176	0,			/* segment descriptor priority level */
1177	1,			/* segment descriptor present */
1178	0, 0,
1179	1,			/* default 32 vs 16 bit size */
1180	1  			/* limit granularity (byte/page units)*/ },
1181/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1182{
1183	0x0,			/* segment base address */
1184	sizeof(struct i386tss)-1,/* length - all address space */
1185	SDT_SYS386TSS,		/* segment type */
1186	0,			/* segment descriptor priority level */
1187	1,			/* segment descriptor present */
1188	0, 0,
1189	0,			/* unused - default 32 vs 16 bit size */
1190	0  			/* limit granularity (byte/page units)*/ },
1191/* GLDT_SEL	5 LDT Descriptor */
1192{	(int) ldt,		/* segment base address  */
1193	sizeof(ldt)-1,		/* length - all address space */
1194	SDT_SYSLDT,		/* segment type */
1195	SEL_UPL,		/* segment descriptor priority level */
1196	1,			/* segment descriptor present */
1197	0, 0,
1198	0,			/* unused - default 32 vs 16 bit size */
1199	0  			/* limit granularity (byte/page units)*/ },
1200/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1201{	(int) ldt,		/* segment base address  */
1202	(512 * sizeof(union descriptor)-1),		/* length */
1203	SDT_SYSLDT,		/* segment type */
1204	0,			/* segment descriptor priority level */
1205	1,			/* segment descriptor present */
1206	0, 0,
1207	0,			/* unused - default 32 vs 16 bit size */
1208	0  			/* limit granularity (byte/page units)*/ },
1209/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1210{	0x0,			/* segment base address  */
1211	0x0,			/* length - all address space */
1212	0,			/* segment type */
1213	0,			/* segment descriptor priority level */
1214	0,			/* segment descriptor present */
1215	0, 0,
1216	0,			/* default 32 vs 16 bit size */
1217	0  			/* limit granularity (byte/page units)*/ },
1218/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1219{	0x400,			/* segment base address */
1220	0xfffff,		/* length */
1221	SDT_MEMRWA,		/* segment type */
1222	0,			/* segment descriptor priority level */
1223	1,			/* segment descriptor present */
1224	0, 0,
1225	1,			/* default 32 vs 16 bit size */
1226	1  			/* limit granularity (byte/page units)*/ },
1227/* GPANIC_SEL	9 Panic Tss Descriptor */
1228{	(int) &dblfault_tss,	/* segment base address  */
1229	sizeof(struct i386tss)-1,/* length - all address space */
1230	SDT_SYS386TSS,		/* segment type */
1231	0,			/* segment descriptor priority level */
1232	1,			/* segment descriptor present */
1233	0, 0,
1234	0,			/* unused - default 32 vs 16 bit size */
1235	0  			/* limit granularity (byte/page units)*/ },
1236/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1237{	0,			/* segment base address (overwritten)  */
1238	0xfffff,		/* length */
1239	SDT_MEMERA,		/* segment type */
1240	0,			/* segment descriptor priority level */
1241	1,			/* segment descriptor present */
1242	0, 0,
1243	0,			/* default 32 vs 16 bit size */
1244	1  			/* limit granularity (byte/page units)*/ },
1245/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1246{	0,			/* segment base address (overwritten)  */
1247	0xfffff,		/* length */
1248	SDT_MEMERA,		/* segment type */
1249	0,			/* segment descriptor priority level */
1250	1,			/* segment descriptor present */
1251	0, 0,
1252	0,			/* default 32 vs 16 bit size */
1253	1  			/* limit granularity (byte/page units)*/ },
1254/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1255{	0,			/* segment base address (overwritten) */
1256	0xfffff,		/* length */
1257	SDT_MEMRWA,		/* segment type */
1258	0,			/* segment descriptor priority level */
1259	1,			/* segment descriptor present */
1260	0, 0,
1261	1,			/* default 32 vs 16 bit size */
1262	1  			/* limit granularity (byte/page units)*/ },
1263/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1264{	0,			/* segment base address (overwritten) */
1265	0xfffff,		/* length */
1266	SDT_MEMRWA,		/* segment type */
1267	0,			/* segment descriptor priority level */
1268	1,			/* segment descriptor present */
1269	0, 0,
1270	0,			/* default 32 vs 16 bit size */
1271	1  			/* limit granularity (byte/page units)*/ },
1272/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1273{	0,			/* segment base address (overwritten) */
1274	0xfffff,		/* length */
1275	SDT_MEMRWA,		/* segment type */
1276	0,			/* segment descriptor priority level */
1277	1,			/* segment descriptor present */
1278	0, 0,
1279	0,			/* default 32 vs 16 bit size */
1280	1  			/* limit granularity (byte/page units)*/ },
1281};
1282
1283static struct soft_segment_descriptor ldt_segs[] = {
1284	/* Null Descriptor - overwritten by call gate */
1285{	0x0,			/* segment base address  */
1286	0x0,			/* length - all address space */
1287	0,			/* segment type */
1288	0,			/* segment descriptor priority level */
1289	0,			/* segment descriptor present */
1290	0, 0,
1291	0,			/* default 32 vs 16 bit size */
1292	0  			/* limit granularity (byte/page units)*/ },
1293	/* Null Descriptor - overwritten by call gate */
1294{	0x0,			/* segment base address  */
1295	0x0,			/* length - all address space */
1296	0,			/* segment type */
1297	0,			/* segment descriptor priority level */
1298	0,			/* segment descriptor present */
1299	0, 0,
1300	0,			/* default 32 vs 16 bit size */
1301	0  			/* limit granularity (byte/page units)*/ },
1302	/* Null Descriptor - overwritten by call gate */
1303{	0x0,			/* segment base address  */
1304	0x0,			/* length - all address space */
1305	0,			/* segment type */
1306	0,			/* segment descriptor priority level */
1307	0,			/* segment descriptor present */
1308	0, 0,
1309	0,			/* default 32 vs 16 bit size */
1310	0  			/* limit granularity (byte/page units)*/ },
1311	/* Code Descriptor for user */
1312{	0x0,			/* segment base address  */
1313	0xfffff,		/* length - all address space */
1314	SDT_MEMERA,		/* segment type */
1315	SEL_UPL,		/* segment descriptor priority level */
1316	1,			/* segment descriptor present */
1317	0, 0,
1318	1,			/* default 32 vs 16 bit size */
1319	1  			/* limit granularity (byte/page units)*/ },
1320	/* Null Descriptor - overwritten by call gate */
1321{	0x0,			/* segment base address  */
1322	0x0,			/* length - all address space */
1323	0,			/* segment type */
1324	0,			/* segment descriptor priority level */
1325	0,			/* segment descriptor present */
1326	0, 0,
1327	0,			/* default 32 vs 16 bit size */
1328	0  			/* limit granularity (byte/page units)*/ },
1329	/* Data Descriptor for user */
1330{	0x0,			/* segment base address  */
1331	0xfffff,		/* length - all address space */
1332	SDT_MEMRWA,		/* segment type */
1333	SEL_UPL,		/* segment descriptor priority level */
1334	1,			/* segment descriptor present */
1335	0, 0,
1336	1,			/* default 32 vs 16 bit size */
1337	1  			/* limit granularity (byte/page units)*/ },
1338};
1339
1340void
1341setidt(idx, func, typ, dpl, selec)
1342	int idx;
1343	inthand_t *func;
1344	int typ;
1345	int dpl;
1346	int selec;
1347{
1348	struct gate_descriptor *ip;
1349
1350	ip = idt + idx;
1351	ip->gd_looffset = (int)func;
1352	ip->gd_selector = selec;
1353	ip->gd_stkcpy = 0;
1354	ip->gd_xx = 0;
1355	ip->gd_type = typ;
1356	ip->gd_dpl = dpl;
1357	ip->gd_p = 1;
1358	ip->gd_hioffset = ((int)func)>>16 ;
1359}
1360
1361#define	IDTVEC(name)	__CONCAT(X,name)
1362
1363extern inthand_t
1364	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1365	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1366	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1367	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1368	IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1369
1370void
1371sdtossd(sd, ssd)
1372	struct segment_descriptor *sd;
1373	struct soft_segment_descriptor *ssd;
1374{
1375	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1376	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1377	ssd->ssd_type  = sd->sd_type;
1378	ssd->ssd_dpl   = sd->sd_dpl;
1379	ssd->ssd_p     = sd->sd_p;
1380	ssd->ssd_def32 = sd->sd_def32;
1381	ssd->ssd_gran  = sd->sd_gran;
1382}
1383
1384#define PHYSMAP_SIZE	(2 * 8)
1385
1386/*
1387 * Populate the (physmap) array with base/bound pairs describing the
1388 * available physical memory in the system, then test this memory and
1389 * build the phys_avail array describing the actually-available memory.
1390 *
1391 * If we cannot accurately determine the physical memory map, then use
1392 * value from the 0xE801 call, and failing that, the RTC.
1393 *
1394 * Total memory size may be set by the kernel environment variable
1395 * hw.physmem or the compile-time define MAXMEM.
1396 */
1397static void
1398getmemsize(int first)
1399{
1400	int i, physmap_idx, pa_indx;
1401	u_int basemem, extmem;
1402	struct vm86frame vmf;
1403	struct vm86context vmc;
1404	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1405	pt_entry_t pte;
1406	const char *cp;
1407	struct bios_smap *smap;
1408
1409	bzero(&vmf, sizeof(struct vm86frame));
1410	bzero(physmap, sizeof(physmap));
1411
1412	/*
1413	 * Perform "base memory" related probes & setup
1414	 */
1415	vm86_intcall(0x12, &vmf);
1416	basemem = vmf.vmf_ax;
1417	if (basemem > 640) {
1418		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1419			basemem);
1420		basemem = 640;
1421	}
1422
1423	/*
1424	 * XXX if biosbasemem is now < 640, there is a `hole'
1425	 * between the end of base memory and the start of
1426	 * ISA memory.  The hole may be empty or it may
1427	 * contain BIOS code or data.  Map it read/write so
1428	 * that the BIOS can write to it.  (Memory from 0 to
1429	 * the physical end of the kernel is mapped read-only
1430	 * to begin with and then parts of it are remapped.
1431	 * The parts that aren't remapped form holes that
1432	 * remain read-only and are unused by the kernel.
1433	 * The base memory area is below the physical end of
1434	 * the kernel and right now forms a read-only hole.
1435	 * The part of it from PAGE_SIZE to
1436	 * (trunc_page(biosbasemem * 1024) - 1) will be
1437	 * remapped and used by the kernel later.)
1438	 *
1439	 * This code is similar to the code used in
1440	 * pmap_mapdev, but since no memory needs to be
1441	 * allocated we simply change the mapping.
1442	 */
1443	for (pa = trunc_page(basemem * 1024);
1444	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1445		pte = (pt_entry_t)vtopte(pa + KERNBASE);
1446		*pte = pa | PG_RW | PG_V;
1447	}
1448
1449	/*
1450	 * if basemem != 640, map pages r/w into vm86 page table so
1451	 * that the bios can scribble on it.
1452	 */
1453	pte = (pt_entry_t)vm86paddr;
1454	for (i = basemem / 4; i < 160; i++)
1455		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1456
1457	/*
1458	 * map page 1 R/W into the kernel page table so we can use it
1459	 * as a buffer.  The kernel will unmap this page later.
1460	 */
1461	pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
1462	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1463
1464	/*
1465	 * get memory map with INT 15:E820
1466	 */
1467	vmc.npages = 0;
1468	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1469	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1470
1471	physmap_idx = 0;
1472	vmf.vmf_ebx = 0;
1473	do {
1474		vmf.vmf_eax = 0xE820;
1475		vmf.vmf_edx = SMAP_SIG;
1476		vmf.vmf_ecx = sizeof(struct bios_smap);
1477		i = vm86_datacall(0x15, &vmf, &vmc);
1478		if (i || vmf.vmf_eax != SMAP_SIG)
1479			break;
1480		if (boothowto & RB_VERBOSE)
1481			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1482				smap->type,
1483				*(u_int32_t *)((char *)&smap->base + 4),
1484				(u_int32_t)smap->base,
1485				*(u_int32_t *)((char *)&smap->length + 4),
1486				(u_int32_t)smap->length);
1487
1488		if (smap->type != 0x01)
1489			goto next_run;
1490
1491		if (smap->length == 0)
1492			goto next_run;
1493
1494		if (smap->base >= 0xffffffff) {
1495			printf("%uK of memory above 4GB ignored\n",
1496			    (u_int)(smap->length / 1024));
1497			goto next_run;
1498		}
1499
1500		for (i = 0; i <= physmap_idx; i += 2) {
1501			if (smap->base < physmap[i + 1]) {
1502				if (boothowto & RB_VERBOSE)
1503					printf(
1504	"Overlapping or non-montonic memory region, ignoring second region\n");
1505				goto next_run;
1506			}
1507		}
1508
1509		if (smap->base == physmap[physmap_idx + 1]) {
1510			physmap[physmap_idx + 1] += smap->length;
1511			goto next_run;
1512		}
1513
1514		physmap_idx += 2;
1515		if (physmap_idx == PHYSMAP_SIZE) {
1516			printf(
1517		"Too many segments in the physical address map, giving up\n");
1518			break;
1519		}
1520		physmap[physmap_idx] = smap->base;
1521		physmap[physmap_idx + 1] = smap->base + smap->length;
1522next_run:
1523	} while (vmf.vmf_ebx != 0);
1524
1525	if (physmap[1] != 0)
1526		goto physmap_done;
1527
1528	/*
1529	 * If we failed above, try memory map with INT 15:E801
1530	 */
1531	vmf.vmf_ax = 0xE801;
1532	if (vm86_intcall(0x15, &vmf) == 0) {
1533		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1534	} else {
1535#if 0
1536		vmf.vmf_ah = 0x88;
1537		vm86_intcall(0x15, &vmf);
1538		extmem = vmf.vmf_ax;
1539#else
1540		/*
1541		 * Prefer the RTC value for extended memory.
1542		 */
1543		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1544#endif
1545	}
1546
1547	/*
1548	 * Special hack for chipsets that still remap the 384k hole when
1549	 * there's 16MB of memory - this really confuses people that
1550	 * are trying to use bus mastering ISA controllers with the
1551	 * "16MB limit"; they only have 16MB, but the remapping puts
1552	 * them beyond the limit.
1553	 *
1554	 * If extended memory is between 15-16MB (16-17MB phys address range),
1555	 *	chop it to 15MB.
1556	 */
1557	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1558		extmem = 15 * 1024;
1559
1560	physmap[0] = 0;
1561	physmap[1] = basemem * 1024;
1562	physmap_idx = 2;
1563	physmap[physmap_idx] = 0x100000;
1564	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1565
1566physmap_done:
1567	/*
1568	 * Now, physmap contains a map of physical memory.
1569	 */
1570
1571#ifdef SMP
1572	/* make hole for AP bootstrap code */
1573	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1574
1575	/* look for the MP hardware - needed for apic addresses */
1576	i386_mp_probe();
1577#endif
1578
1579	/*
1580	 * Maxmem isn't the "maximum memory", it's one larger than the
1581	 * highest page of the physical address space.  It should be
1582	 * called something like "Maxphyspage".  We may adjust this
1583	 * based on ``hw.physmem'' and the results of the memory test.
1584	 */
1585	Maxmem = atop(physmap[physmap_idx + 1]);
1586
1587#ifdef MAXMEM
1588	Maxmem = MAXMEM / 4;
1589#endif
1590
1591	/*
1592	 * hw.maxmem is a size in bytes; we also allow k, m, and g suffixes
1593	 * for the appropriate modifiers.  This overrides MAXMEM.
1594	 */
1595	if ((cp = getenv("hw.physmem")) != NULL) {
1596		u_int64_t AllowMem, sanity;
1597		char *ep;
1598
1599		sanity = AllowMem = strtouq(cp, &ep, 0);
1600		if ((ep != cp) && (*ep != 0)) {
1601			switch(*ep) {
1602			case 'g':
1603			case 'G':
1604				AllowMem <<= 10;
1605			case 'm':
1606			case 'M':
1607				AllowMem <<= 10;
1608			case 'k':
1609			case 'K':
1610				AllowMem <<= 10;
1611				break;
1612			default:
1613				AllowMem = sanity = 0;
1614			}
1615			if (AllowMem < sanity)
1616				AllowMem = 0;
1617		}
1618		if (AllowMem == 0)
1619			printf("Ignoring invalid memory size of '%s'\n", cp);
1620		else
1621			Maxmem = atop(AllowMem);
1622	}
1623
1624	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1625	    (boothowto & RB_VERBOSE))
1626		printf("Physical memory use set to %uK\n", Maxmem * 4);
1627
1628	/*
1629	 * If Maxmem has been increased beyond what the system has detected,
1630	 * extend the last memory segment to the new limit.
1631	 */
1632	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1633		physmap[physmap_idx + 1] = ptoa(Maxmem);
1634
1635	/* call pmap initialization to make new kernel address space */
1636	pmap_bootstrap(first, 0);
1637
1638	/*
1639	 * Size up each available chunk of physical memory.
1640	 */
1641	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1642	pa_indx = 0;
1643	phys_avail[pa_indx++] = physmap[0];
1644	phys_avail[pa_indx] = physmap[0];
1645#if 0
1646	pte = (pt_entry_t)vtopte(KERNBASE);
1647#else
1648	pte = (pt_entry_t)CMAP1;
1649#endif
1650
1651	/*
1652	 * physmap is in bytes, so when converting to page boundaries,
1653	 * round up the start address and round down the end address.
1654	 */
1655	for (i = 0; i <= physmap_idx; i += 2) {
1656		vm_offset_t end;
1657
1658		end = ptoa(Maxmem);
1659		if (physmap[i + 1] < end)
1660			end = trunc_page(physmap[i + 1]);
1661		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1662			int tmp, page_bad;
1663#if 0
1664			int *ptr = 0;
1665#else
1666			int *ptr = (int *)CADDR1;
1667#endif
1668
1669			/*
1670			 * block out kernel memory as not available.
1671			 */
1672			if (pa >= 0x100000 && pa < first)
1673				continue;
1674
1675			page_bad = FALSE;
1676
1677			/*
1678			 * map page into kernel: valid, read/write,non-cacheable
1679			 */
1680			*pte = pa | PG_V | PG_RW | PG_N;
1681			invltlb();
1682
1683			tmp = *(int *)ptr;
1684			/*
1685			 * Test for alternating 1's and 0's
1686			 */
1687			*(volatile int *)ptr = 0xaaaaaaaa;
1688			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1689				page_bad = TRUE;
1690			}
1691			/*
1692			 * Test for alternating 0's and 1's
1693			 */
1694			*(volatile int *)ptr = 0x55555555;
1695			if (*(volatile int *)ptr != 0x55555555) {
1696			page_bad = TRUE;
1697			}
1698			/*
1699			 * Test for all 1's
1700			 */
1701			*(volatile int *)ptr = 0xffffffff;
1702			if (*(volatile int *)ptr != 0xffffffff) {
1703				page_bad = TRUE;
1704			}
1705			/*
1706			 * Test for all 0's
1707			 */
1708			*(volatile int *)ptr = 0x0;
1709			if (*(volatile int *)ptr != 0x0) {
1710				page_bad = TRUE;
1711			}
1712			/*
1713			 * Restore original value.
1714			 */
1715			*(int *)ptr = tmp;
1716
1717			/*
1718			 * Adjust array of valid/good pages.
1719			 */
1720			if (page_bad == TRUE) {
1721				continue;
1722			}
1723			/*
1724			 * If this good page is a continuation of the
1725			 * previous set of good pages, then just increase
1726			 * the end pointer. Otherwise start a new chunk.
1727			 * Note that "end" points one higher than end,
1728			 * making the range >= start and < end.
1729			 * If we're also doing a speculative memory
1730			 * test and we at or past the end, bump up Maxmem
1731			 * so that we keep going. The first bad page
1732			 * will terminate the loop.
1733			 */
1734			if (phys_avail[pa_indx] == pa) {
1735				phys_avail[pa_indx] += PAGE_SIZE;
1736			} else {
1737				pa_indx++;
1738				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1739					printf("Too many holes in the physical address space, giving up\n");
1740					pa_indx--;
1741					break;
1742				}
1743				phys_avail[pa_indx++] = pa;	/* start */
1744				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1745			}
1746			physmem++;
1747		}
1748	}
1749	*pte = 0;
1750	invltlb();
1751
1752	/*
1753	 * XXX
1754	 * The last chunk must contain at least one page plus the message
1755	 * buffer to avoid complicating other code (message buffer address
1756	 * calculation, etc.).
1757	 */
1758	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1759	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1760		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1761		phys_avail[pa_indx--] = 0;
1762		phys_avail[pa_indx--] = 0;
1763	}
1764
1765	Maxmem = atop(phys_avail[pa_indx]);
1766
1767	/* Trim off space for the message buffer. */
1768	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1769
1770	avail_end = phys_avail[pa_indx];
1771}
1772
1773void
1774init386(first)
1775	int first;
1776{
1777	int x;
1778	struct gate_descriptor *gdp;
1779	int gsel_tss;
1780#ifndef SMP
1781	/* table descriptors - used to load tables by microp */
1782	struct region_descriptor r_gdt, r_idt;
1783#endif
1784	int off;
1785
1786	proc0.p_addr = proc0paddr;
1787
1788	atdevbase = ISA_HOLE_START + KERNBASE;
1789
1790	if (bootinfo.bi_modulep) {
1791		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1792		preload_bootstrap_relocate(KERNBASE);
1793	} else {
1794		printf("WARNING: loader(8) metadata is missing!\n");
1795	}
1796	if (bootinfo.bi_envp)
1797		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1798
1799	/*
1800	 * make gdt memory segments, the code segment goes up to end of the
1801	 * page with etext in it, the data segment goes to the end of
1802	 * the address space
1803	 */
1804	/*
1805	 * XXX text protection is temporarily (?) disabled.  The limit was
1806	 * i386_btop(round_page(etext)) - 1.
1807	 */
1808	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1809	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1810#ifdef SMP
1811	gdt_segs[GPRIV_SEL].ssd_limit =
1812		i386_btop(sizeof(struct privatespace)) - 1;
1813	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
1814	gdt_segs[GPROC0_SEL].ssd_base =
1815		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
1816	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0].globaldata;
1817#else
1818	gdt_segs[GPRIV_SEL].ssd_limit =
1819		i386_btop(sizeof(struct globaldata)) - 1;
1820	gdt_segs[GPRIV_SEL].ssd_base = (int) &__globaldata;
1821	gdt_segs[GPROC0_SEL].ssd_base =
1822		(int) &__globaldata.gd_common_tss;
1823	__globaldata.gd_prvspace = &__globaldata;
1824#endif
1825
1826	for (x = 0; x < NGDT; x++) {
1827#ifdef BDE_DEBUGGER
1828		/* avoid overwriting db entries with APM ones */
1829		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1830			continue;
1831#endif
1832		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1833	}
1834
1835	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1836	r_gdt.rd_base =  (int) gdt;
1837	lgdt(&r_gdt);
1838
1839	/* setup curproc so that mutexes work */
1840	PCPU_SET(curproc, &proc0);
1841	PCPU_SET(spinlocks, NULL);
1842
1843	LIST_INIT(&proc0.p_contested);
1844
1845	/*
1846	 * Initialize mutexes.
1847	 */
1848	mtx_init(&Giant, "Giant", MTX_DEF | MTX_RECURSE);
1849	mtx_init(&sched_lock, "sched lock", MTX_SPIN | MTX_RECURSE);
1850	mtx_init(&proc0.p_mtx, "process lock", MTX_DEF);
1851	mtx_init(&clock_lock, "clk", MTX_SPIN | MTX_RECURSE);
1852#ifdef SMP
1853	mtx_init(&imen_mtx, "imen", MTX_SPIN);
1854#endif
1855	mtx_lock(&Giant);
1856
1857	/* make ldt memory segments */
1858	/*
1859	 * The data segment limit must not cover the user area because we
1860	 * don't want the user area to be writable in copyout() etc. (page
1861	 * level protection is lost in kernel mode on 386's).  Also, we
1862	 * don't want the user area to be writable directly (page level
1863	 * protection of the user area is not available on 486's with
1864	 * CR0_WP set, because there is no user-read/kernel-write mode).
1865	 *
1866	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1867	 * should be spelled ...MAX_USER...
1868	 */
1869#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1870	/*
1871	 * The code segment limit has to cover the user area until we move
1872	 * the signal trampoline out of the user area.  This is safe because
1873	 * the code segment cannot be written to directly.
1874	 */
1875#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1876	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1877	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1878	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1879		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1880
1881	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1882	lldt(_default_ldt);
1883	PCPU_SET(currentldt, _default_ldt);
1884
1885	/* exceptions */
1886	for (x = 0; x < NIDT; x++)
1887		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1888	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1889	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1890	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1891 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1892	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1893	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1894	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1895	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1896	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1897	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1898	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1899	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1900	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1901	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1902	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1903	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1904	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1905	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1906	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1907	setidt(19, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1908 	setidt(0x80, &IDTVEC(int0x80_syscall),
1909			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1910
1911	r_idt.rd_limit = sizeof(idt0) - 1;
1912	r_idt.rd_base = (int) idt;
1913	lidt(&r_idt);
1914
1915	/*
1916	 * Initialize the console before we print anything out.
1917	 */
1918	cninit();
1919
1920#ifdef DEV_ISA
1921	isa_defaultirq();
1922#endif
1923
1924#ifdef DDB
1925	kdb_init();
1926	if (boothowto & RB_KDB)
1927		Debugger("Boot flags requested debugger");
1928#endif
1929
1930	finishidentcpu();	/* Final stage of CPU initialization */
1931	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1932	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1933	initializecpu();	/* Initialize CPU registers */
1934
1935	/* make an initial tss so cpu can get interrupt stack on syscall! */
1936	PCPU_SET(common_tss.tss_esp0,
1937	    (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16);
1938	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
1939	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1940	private_tss = 0;
1941	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
1942	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
1943	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
1944	ltr(gsel_tss);
1945
1946	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1947	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1948	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1949	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1950	dblfault_tss.tss_cr3 = (int)IdlePTD;
1951	dblfault_tss.tss_eip = (int) dblfault_handler;
1952	dblfault_tss.tss_eflags = PSL_KERNEL;
1953	dblfault_tss.tss_ds = dblfault_tss.tss_es =
1954	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1955	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1956	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1957	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1958
1959	vm86_initialize();
1960	getmemsize(first);
1961
1962	/* now running on new page tables, configured,and u/iom is accessible */
1963
1964	/* Map the message buffer. */
1965	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1966		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1967
1968	msgbufinit(msgbufp, MSGBUF_SIZE);
1969
1970	/* make a call gate to reenter kernel with */
1971	gdp = &ldt[LSYS5CALLS_SEL].gd;
1972
1973	x = (int) &IDTVEC(lcall_syscall);
1974	gdp->gd_looffset = x;
1975	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1976	gdp->gd_stkcpy = 1;
1977	gdp->gd_type = SDT_SYS386CGT;
1978	gdp->gd_dpl = SEL_UPL;
1979	gdp->gd_p = 1;
1980	gdp->gd_hioffset = x >> 16;
1981
1982	/* XXX does this work? */
1983	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1984	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
1985
1986	/* transfer to user mode */
1987
1988	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1989	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1990
1991	/* setup proc 0's pcb */
1992	proc0.p_addr->u_pcb.pcb_flags = 0;
1993	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1994	proc0.p_addr->u_pcb.pcb_ext = 0;
1995	proc0.p_frame = &proc0_tf;
1996}
1997
1998#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1999static void f00f_hack(void *unused);
2000SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2001
2002static void
2003f00f_hack(void *unused) {
2004	struct gate_descriptor *new_idt;
2005#ifndef SMP
2006	struct region_descriptor r_idt;
2007#endif
2008	vm_offset_t tmp;
2009
2010	if (!has_f00f_bug)
2011		return;
2012
2013	GIANT_REQUIRED;
2014
2015	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2016
2017	r_idt.rd_limit = sizeof(idt0) - 1;
2018
2019	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
2020	if (tmp == 0)
2021		panic("kmem_alloc returned 0");
2022	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2023		panic("kmem_alloc returned non-page-aligned memory");
2024	/* Put the first seven entries in the lower page */
2025	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2026	bcopy(idt, new_idt, sizeof(idt0));
2027	r_idt.rd_base = (int)new_idt;
2028	lidt(&r_idt);
2029	idt = new_idt;
2030	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2031			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2032		panic("vm_map_protect failed");
2033	return;
2034}
2035#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2036
2037int
2038ptrace_set_pc(p, addr)
2039	struct proc *p;
2040	unsigned long addr;
2041{
2042	p->p_frame->tf_eip = addr;
2043	return (0);
2044}
2045
2046int
2047ptrace_single_step(p)
2048	struct proc *p;
2049{
2050	p->p_frame->tf_eflags |= PSL_T;
2051	return (0);
2052}
2053
2054int ptrace_read_u_check(p, addr, len)
2055	struct proc *p;
2056	vm_offset_t addr;
2057	size_t len;
2058{
2059	vm_offset_t gap;
2060
2061	if ((vm_offset_t) (addr + len) < addr)
2062		return EPERM;
2063	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
2064		return 0;
2065
2066	gap = (char *) p->p_frame - (char *) p->p_addr;
2067
2068	if ((vm_offset_t) addr < gap)
2069		return EPERM;
2070	if ((vm_offset_t) (addr + len) <=
2071	    (vm_offset_t) (gap + sizeof(struct trapframe)))
2072		return 0;
2073	return EPERM;
2074}
2075
2076int ptrace_write_u(p, off, data)
2077	struct proc *p;
2078	vm_offset_t off;
2079	long data;
2080{
2081	struct trapframe frame_copy;
2082	vm_offset_t min;
2083	struct trapframe *tp;
2084
2085	/*
2086	 * Privileged kernel state is scattered all over the user area.
2087	 * Only allow write access to parts of regs and to fpregs.
2088	 */
2089	min = (char *)p->p_frame - (char *)p->p_addr;
2090	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
2091		tp = p->p_frame;
2092		frame_copy = *tp;
2093		*(int *)((char *)&frame_copy + (off - min)) = data;
2094		if (!EFL_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
2095		    !CS_SECURE(frame_copy.tf_cs))
2096			return (EINVAL);
2097		*(int*)((char *)p->p_addr + off) = data;
2098		return (0);
2099	}
2100	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_save);
2101	if (off >= min && off <= min + sizeof(union savefpu) - sizeof(int)) {
2102		*(int*)((char *)p->p_addr + off) = data;
2103		return (0);
2104	}
2105	return (EFAULT);
2106}
2107
2108int
2109fill_regs(p, regs)
2110	struct proc *p;
2111	struct reg *regs;
2112{
2113	struct pcb *pcb;
2114	struct trapframe *tp;
2115
2116	tp = p->p_frame;
2117	regs->r_fs = tp->tf_fs;
2118	regs->r_es = tp->tf_es;
2119	regs->r_ds = tp->tf_ds;
2120	regs->r_edi = tp->tf_edi;
2121	regs->r_esi = tp->tf_esi;
2122	regs->r_ebp = tp->tf_ebp;
2123	regs->r_ebx = tp->tf_ebx;
2124	regs->r_edx = tp->tf_edx;
2125	regs->r_ecx = tp->tf_ecx;
2126	regs->r_eax = tp->tf_eax;
2127	regs->r_eip = tp->tf_eip;
2128	regs->r_cs = tp->tf_cs;
2129	regs->r_eflags = tp->tf_eflags;
2130	regs->r_esp = tp->tf_esp;
2131	regs->r_ss = tp->tf_ss;
2132	pcb = &p->p_addr->u_pcb;
2133	regs->r_gs = pcb->pcb_gs;
2134	return (0);
2135}
2136
2137int
2138set_regs(p, regs)
2139	struct proc *p;
2140	struct reg *regs;
2141{
2142	struct pcb *pcb;
2143	struct trapframe *tp;
2144
2145	tp = p->p_frame;
2146	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2147	    !CS_SECURE(regs->r_cs))
2148		return (EINVAL);
2149	tp->tf_fs = regs->r_fs;
2150	tp->tf_es = regs->r_es;
2151	tp->tf_ds = regs->r_ds;
2152	tp->tf_edi = regs->r_edi;
2153	tp->tf_esi = regs->r_esi;
2154	tp->tf_ebp = regs->r_ebp;
2155	tp->tf_ebx = regs->r_ebx;
2156	tp->tf_edx = regs->r_edx;
2157	tp->tf_ecx = regs->r_ecx;
2158	tp->tf_eax = regs->r_eax;
2159	tp->tf_eip = regs->r_eip;
2160	tp->tf_cs = regs->r_cs;
2161	tp->tf_eflags = regs->r_eflags;
2162	tp->tf_esp = regs->r_esp;
2163	tp->tf_ss = regs->r_ss;
2164	pcb = &p->p_addr->u_pcb;
2165	pcb->pcb_gs = regs->r_gs;
2166	return (0);
2167}
2168
2169#ifdef CPU_ENABLE_SSE
2170static void
2171fill_fpregs_xmm(sv_xmm, sv_87)
2172	struct savexmm *sv_xmm;
2173	struct save87 *sv_87;
2174{
2175	register struct env87 *penv_87 = &sv_87->sv_env;
2176	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2177	int i;
2178
2179	/* FPU control/status */
2180	penv_87->en_cw = penv_xmm->en_cw;
2181	penv_87->en_sw = penv_xmm->en_sw;
2182	penv_87->en_tw = penv_xmm->en_tw;
2183	penv_87->en_fip = penv_xmm->en_fip;
2184	penv_87->en_fcs = penv_xmm->en_fcs;
2185	penv_87->en_opcode = penv_xmm->en_opcode;
2186	penv_87->en_foo = penv_xmm->en_foo;
2187	penv_87->en_fos = penv_xmm->en_fos;
2188
2189	/* FPU registers */
2190	for (i = 0; i < 8; ++i)
2191		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2192
2193	sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
2194}
2195
2196static void
2197set_fpregs_xmm(sv_87, sv_xmm)
2198	struct save87 *sv_87;
2199	struct savexmm *sv_xmm;
2200{
2201	register struct env87 *penv_87 = &sv_87->sv_env;
2202	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2203	int i;
2204
2205	/* FPU control/status */
2206	penv_xmm->en_cw = penv_87->en_cw;
2207	penv_xmm->en_sw = penv_87->en_sw;
2208	penv_xmm->en_tw = penv_87->en_tw;
2209	penv_xmm->en_fip = penv_87->en_fip;
2210	penv_xmm->en_fcs = penv_87->en_fcs;
2211	penv_xmm->en_opcode = penv_87->en_opcode;
2212	penv_xmm->en_foo = penv_87->en_foo;
2213	penv_xmm->en_fos = penv_87->en_fos;
2214
2215	/* FPU registers */
2216	for (i = 0; i < 8; ++i)
2217		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2218
2219	sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2220}
2221#endif /* CPU_ENABLE_SSE */
2222
2223int
2224fill_fpregs(p, fpregs)
2225	struct proc *p;
2226	struct fpreg *fpregs;
2227{
2228#ifdef CPU_ENABLE_SSE
2229	if (cpu_fxsr) {
2230		fill_fpregs_xmm(&p->p_addr->u_pcb.pcb_save.sv_xmm,
2231						(struct save87 *)fpregs);
2232		return (0);
2233	}
2234#endif /* CPU_ENABLE_SSE */
2235	bcopy(&p->p_addr->u_pcb.pcb_save.sv_87, fpregs, sizeof *fpregs);
2236	return (0);
2237}
2238
2239int
2240set_fpregs(p, fpregs)
2241	struct proc *p;
2242	struct fpreg *fpregs;
2243{
2244#ifdef CPU_ENABLE_SSE
2245	if (cpu_fxsr) {
2246		set_fpregs_xmm((struct save87 *)fpregs,
2247					   &p->p_addr->u_pcb.pcb_save.sv_xmm);
2248		return (0);
2249	}
2250#endif /* CPU_ENABLE_SSE */
2251	bcopy(fpregs, &p->p_addr->u_pcb.pcb_save.sv_87, sizeof *fpregs);
2252	return (0);
2253}
2254
2255int
2256fill_dbregs(p, dbregs)
2257	struct proc *p;
2258	struct dbreg *dbregs;
2259{
2260	struct pcb *pcb;
2261
2262	if (p == NULL) {
2263		dbregs->dr0 = rdr0();
2264		dbregs->dr1 = rdr1();
2265		dbregs->dr2 = rdr2();
2266		dbregs->dr3 = rdr3();
2267		dbregs->dr4 = rdr4();
2268		dbregs->dr5 = rdr5();
2269		dbregs->dr6 = rdr6();
2270		dbregs->dr7 = rdr7();
2271	}
2272	else {
2273		pcb = &p->p_addr->u_pcb;
2274		dbregs->dr0 = pcb->pcb_dr0;
2275		dbregs->dr1 = pcb->pcb_dr1;
2276		dbregs->dr2 = pcb->pcb_dr2;
2277		dbregs->dr3 = pcb->pcb_dr3;
2278		dbregs->dr4 = 0;
2279		dbregs->dr5 = 0;
2280		dbregs->dr6 = pcb->pcb_dr6;
2281		dbregs->dr7 = pcb->pcb_dr7;
2282	}
2283	return (0);
2284}
2285
2286int
2287set_dbregs(p, dbregs)
2288	struct proc *p;
2289	struct dbreg *dbregs;
2290{
2291	struct pcb *pcb;
2292	int i;
2293	u_int32_t mask1, mask2;
2294
2295	if (p == NULL) {
2296		load_dr0(dbregs->dr0);
2297		load_dr1(dbregs->dr1);
2298		load_dr2(dbregs->dr2);
2299		load_dr3(dbregs->dr3);
2300		load_dr4(dbregs->dr4);
2301		load_dr5(dbregs->dr5);
2302		load_dr6(dbregs->dr6);
2303		load_dr7(dbregs->dr7);
2304	}
2305	else {
2306		/*
2307		 * Don't let an illegal value for dr7 get set.	Specifically,
2308		 * check for undefined settings.  Setting these bit patterns
2309		 * result in undefined behaviour and can lead to an unexpected
2310		 * TRCTRAP.
2311		 */
2312		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2313		     i++, mask1 <<= 2, mask2 <<= 2)
2314			if ((dbregs->dr7 & mask1) == mask2)
2315				return (EINVAL);
2316
2317		if (dbregs->dr7 & 0x0000fc00)
2318			return (EINVAL);
2319
2320		pcb = &p->p_addr->u_pcb;
2321
2322		/*
2323		 * Don't let a process set a breakpoint that is not within the
2324		 * process's address space.  If a process could do this, it
2325		 * could halt the system by setting a breakpoint in the kernel
2326		 * (if ddb was enabled).  Thus, we need to check to make sure
2327		 * that no breakpoints are being enabled for addresses outside
2328		 * process's address space, unless, perhaps, we were called by
2329		 * uid 0.
2330		 *
2331		 * XXX - what about when the watched area of the user's
2332		 * address space is written into from within the kernel
2333		 * ... wouldn't that still cause a breakpoint to be generated
2334		 * from within kernel mode?
2335		 */
2336
2337		if (suser(p) != 0) {
2338			if (dbregs->dr7 & 0x3) {
2339				/* dr0 is enabled */
2340				if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2341					return (EINVAL);
2342			}
2343
2344			if (dbregs->dr7 & (0x3<<2)) {
2345				/* dr1 is enabled */
2346				if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2347					return (EINVAL);
2348			}
2349
2350			if (dbregs->dr7 & (0x3<<4)) {
2351				/* dr2 is enabled */
2352				if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2353					return (EINVAL);
2354			}
2355
2356			if (dbregs->dr7 & (0x3<<6)) {
2357				/* dr3 is enabled */
2358				if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2359					return (EINVAL);
2360			}
2361		}
2362
2363		pcb->pcb_dr0 = dbregs->dr0;
2364		pcb->pcb_dr1 = dbregs->dr1;
2365		pcb->pcb_dr2 = dbregs->dr2;
2366		pcb->pcb_dr3 = dbregs->dr3;
2367		pcb->pcb_dr6 = dbregs->dr6;
2368		pcb->pcb_dr7 = dbregs->dr7;
2369
2370		pcb->pcb_flags |= PCB_DBREGS;
2371	}
2372
2373	return (0);
2374}
2375
2376/*
2377 * Return > 0 if a hardware breakpoint has been hit, and the
2378 * breakpoint was in user space.  Return 0, otherwise.
2379 */
2380int
2381user_dbreg_trap(void)
2382{
2383        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2384        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
2385        int nbp;            /* number of breakpoints that triggered */
2386        caddr_t addr[4];    /* breakpoint addresses */
2387        int i;
2388
2389        dr7 = rdr7();
2390        if ((dr7 & 0x000000ff) == 0) {
2391                /*
2392                 * all GE and LE bits in the dr7 register are zero,
2393                 * thus the trap couldn't have been caused by the
2394                 * hardware debug registers
2395                 */
2396                return 0;
2397        }
2398
2399        nbp = 0;
2400        dr6 = rdr6();
2401        bp = dr6 & 0x0000000f;
2402
2403        if (!bp) {
2404                /*
2405                 * None of the breakpoint bits are set meaning this
2406                 * trap was not caused by any of the debug registers
2407                 */
2408                return 0;
2409        }
2410
2411        /*
2412         * at least one of the breakpoints were hit, check to see
2413         * which ones and if any of them are user space addresses
2414         */
2415
2416        if (bp & 0x01) {
2417                addr[nbp++] = (caddr_t)rdr0();
2418        }
2419        if (bp & 0x02) {
2420                addr[nbp++] = (caddr_t)rdr1();
2421        }
2422        if (bp & 0x04) {
2423                addr[nbp++] = (caddr_t)rdr2();
2424        }
2425        if (bp & 0x08) {
2426                addr[nbp++] = (caddr_t)rdr3();
2427        }
2428
2429        for (i=0; i<nbp; i++) {
2430                if (addr[i] <
2431                    (caddr_t)VM_MAXUSER_ADDRESS) {
2432                        /*
2433                         * addr[i] is in user space
2434                         */
2435                        return nbp;
2436                }
2437        }
2438
2439        /*
2440         * None of the breakpoints are in user space.
2441         */
2442        return 0;
2443}
2444
2445
2446#ifndef DDB
2447void
2448Debugger(const char *msg)
2449{
2450	printf("Debugger(\"%s\") called.\n", msg);
2451}
2452#endif /* no DDB */
2453
2454#include <sys/disklabel.h>
2455
2456/*
2457 * Determine the size of the transfer, and make sure it is
2458 * within the boundaries of the partition. Adjust transfer
2459 * if needed, and signal errors or early completion.
2460 */
2461int
2462bounds_check_with_label(struct bio *bp, struct disklabel *lp, int wlabel)
2463{
2464        struct partition *p = lp->d_partitions + dkpart(bp->bio_dev);
2465        int labelsect = lp->d_partitions[0].p_offset;
2466        int maxsz = p->p_size,
2467                sz = (bp->bio_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2468
2469        /* overwriting disk label ? */
2470        /* XXX should also protect bootstrap in first 8K */
2471        if (bp->bio_blkno + p->p_offset <= LABELSECTOR + labelsect &&
2472#if LABELSECTOR != 0
2473            bp->bio_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2474#endif
2475            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2476                bp->bio_error = EROFS;
2477                goto bad;
2478        }
2479
2480#if     defined(DOSBBSECTOR) && defined(notyet)
2481        /* overwriting master boot record? */
2482        if (bp->bio_blkno + p->p_offset <= DOSBBSECTOR &&
2483            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2484                bp->bio_error = EROFS;
2485                goto bad;
2486        }
2487#endif
2488
2489        /* beyond partition? */
2490        if (bp->bio_blkno < 0 || bp->bio_blkno + sz > maxsz) {
2491                /* if exactly at end of disk, return an EOF */
2492                if (bp->bio_blkno == maxsz) {
2493                        bp->bio_resid = bp->bio_bcount;
2494                        return(0);
2495                }
2496                /* or truncate if part of it fits */
2497                sz = maxsz - bp->bio_blkno;
2498                if (sz <= 0) {
2499                        bp->bio_error = EINVAL;
2500                        goto bad;
2501                }
2502                bp->bio_bcount = sz << DEV_BSHIFT;
2503        }
2504
2505        bp->bio_pblkno = bp->bio_blkno + p->p_offset;
2506        return(1);
2507
2508bad:
2509        bp->bio_flags |= BIO_ERROR;
2510        return(-1);
2511}
2512
2513#ifdef DDB
2514
2515/*
2516 * Provide inb() and outb() as functions.  They are normally only
2517 * available as macros calling inlined functions, thus cannot be
2518 * called inside DDB.
2519 *
2520 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2521 */
2522
2523#undef inb
2524#undef outb
2525
2526/* silence compiler warnings */
2527u_char inb(u_int);
2528void outb(u_int, u_char);
2529
2530u_char
2531inb(u_int port)
2532{
2533	u_char	data;
2534	/*
2535	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2536	 * %edx, while gcc generates inferior code (movw instead of movl)
2537	 * if we tell it to load (u_short) port.
2538	 */
2539	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2540	return (data);
2541}
2542
2543void
2544outb(u_int port, u_char data)
2545{
2546	u_char	al;
2547	/*
2548	 * Use an unnecessary assignment to help gcc's register allocator.
2549	 * This make a large difference for gcc-1.40 and a tiny difference
2550	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2551	 * best results.  gcc-2.6.0 can't handle this.
2552	 */
2553	al = data;
2554	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2555}
2556
2557#endif /* DDB */
2558