machdep.c revision 79573
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 79573 2001-07-11 03:15:25Z bsd $
39 */
40
41#include "opt_atalk.h"
42#include "opt_compat.h"
43#include "opt_cpu.h"
44#include "opt_ddb.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_isa.h"
48#include "opt_maxmem.h"
49#include "opt_msgbuf.h"
50#include "opt_npx.h"
51#include "opt_perfmon.h"
52/* #include "opt_userconfig.h" */
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysproto.h>
57#include <sys/signalvar.h>
58#include <sys/kernel.h>
59#include <sys/ktr.h>
60#include <sys/linker.h>
61#include <sys/lock.h>
62#include <sys/malloc.h>
63#include <sys/mutex.h>
64#include <sys/pcpu.h>
65#include <sys/proc.h>
66#include <sys/bio.h>
67#include <sys/buf.h>
68#include <sys/reboot.h>
69#include <sys/smp.h>
70#include <sys/callout.h>
71#include <sys/msgbuf.h>
72#include <sys/sysent.h>
73#include <sys/sysctl.h>
74#include <sys/vmmeter.h>
75#include <sys/bus.h>
76#include <sys/eventhandler.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <sys/lock.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_map.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88#include <sys/user.h>
89#include <sys/exec.h>
90#include <sys/cons.h>
91
92#include <ddb/ddb.h>
93
94#include <net/netisr.h>
95
96#include <machine/cpu.h>
97#include <machine/cputypes.h>
98#include <machine/reg.h>
99#include <machine/clock.h>
100#include <machine/specialreg.h>
101#include <machine/bootinfo.h>
102#include <machine/md_var.h>
103#include <machine/pc/bios.h>
104#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
105#include <machine/globals.h>
106#ifdef PERFMON
107#include <machine/perfmon.h>
108#endif
109
110#include <i386/isa/icu.h>
111#include <i386/isa/intr_machdep.h>
112#include <isa/rtc.h>
113#include <machine/vm86.h>
114#include <sys/ptrace.h>
115#include <machine/sigframe.h>
116
117extern void init386 __P((int first));
118extern void dblfault_handler __P((void));
119
120extern void printcpuinfo(void);	/* XXX header file */
121extern void earlysetcpuclass(void);	/* same header file */
122extern void finishidentcpu(void);
123extern void panicifcpuunsupported(void);
124extern void initializecpu(void);
125
126#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
127#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
128
129static void cpu_startup __P((void *));
130SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
131
132int	_udatasel, _ucodesel;
133u_int	atdevbase;
134
135#if defined(SWTCH_OPTIM_STATS)
136extern int swtch_optim_stats;
137SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
138	CTLFLAG_RD, &swtch_optim_stats, 0, "");
139SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
140	CTLFLAG_RD, &tlb_flush_count, 0, "");
141#endif
142
143#ifdef PC98
144static int	ispc98 = 1;
145#else
146static int	ispc98 = 0;
147#endif
148SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
149
150int physmem = 0;
151int cold = 1;
152
153static void osendsig __P((sig_t catcher, int sig, sigset_t *mask, u_long code));
154
155static int
156sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
157{
158	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
159	return (error);
160}
161
162SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
163	0, 0, sysctl_hw_physmem, "IU", "");
164
165static int
166sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
167{
168	int error = sysctl_handle_int(oidp, 0,
169		ctob(physmem - cnt.v_wire_count), req);
170	return (error);
171}
172
173SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
174	0, 0, sysctl_hw_usermem, "IU", "");
175
176static int
177sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
178{
179	int error = sysctl_handle_int(oidp, 0,
180		i386_btop(avail_end - avail_start), req);
181	return (error);
182}
183
184SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
185	0, 0, sysctl_hw_availpages, "I", "");
186
187int Maxmem = 0;
188long dumplo;
189
190vm_offset_t phys_avail[10];
191
192/* must be 2 less so 0 0 can signal end of chunks */
193#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
194
195static vm_offset_t buffer_sva, buffer_eva;
196vm_offset_t clean_sva, clean_eva;
197static vm_offset_t pager_sva, pager_eva;
198static struct trapframe proc0_tf;
199#ifndef SMP
200static struct globaldata __globaldata;
201#endif
202
203struct mtx sched_lock;
204struct mtx Giant;
205
206static void
207cpu_startup(dummy)
208	void *dummy;
209{
210	register unsigned i;
211	register caddr_t v;
212	vm_offset_t maxaddr;
213	vm_size_t size = 0;
214	int firstaddr;
215	vm_offset_t minaddr;
216	int physmem_est;
217
218	/*
219	 * Good {morning,afternoon,evening,night}.
220	 */
221	earlysetcpuclass();
222	startrtclock();
223	printcpuinfo();
224	panicifcpuunsupported();
225#ifdef PERFMON
226	perfmon_init();
227#endif
228	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
229	/*
230	 * Display any holes after the first chunk of extended memory.
231	 */
232	if (bootverbose) {
233		int indx;
234
235		printf("Physical memory chunk(s):\n");
236		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
237			unsigned int size1 = phys_avail[indx + 1] - phys_avail[indx];
238
239			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
240			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
241			    size1 / PAGE_SIZE);
242		}
243	}
244
245	/*
246	 * Calculate callout wheel size
247	 */
248	for (callwheelsize = 1, callwheelbits = 0;
249	     callwheelsize < ncallout;
250	     callwheelsize <<= 1, ++callwheelbits)
251		;
252	callwheelmask = callwheelsize - 1;
253
254	/*
255	 * Allocate space for system data structures.
256	 * The first available kernel virtual address is in "v".
257	 * As pages of kernel virtual memory are allocated, "v" is incremented.
258	 * As pages of memory are allocated and cleared,
259	 * "firstaddr" is incremented.
260	 * An index into the kernel page table corresponding to the
261	 * virtual memory address maintained in "v" is kept in "mapaddr".
262	 */
263
264	/*
265	 * Make two passes.  The first pass calculates how much memory is
266	 * needed and allocates it.  The second pass assigns virtual
267	 * addresses to the various data structures.
268	 */
269	firstaddr = 0;
270again:
271	v = (caddr_t)firstaddr;
272
273#define	valloc(name, type, num) \
274	    (name) = (type *)v; v = (caddr_t)((name)+(num))
275#define	valloclim(name, type, num, lim) \
276	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
277
278	valloc(callout, struct callout, ncallout);
279	valloc(callwheel, struct callout_tailq, callwheelsize);
280
281	/*
282	 * Discount the physical memory larger than the size of kernel_map
283	 * to avoid eating up all of KVA space.
284	 */
285	if (kernel_map->first_free == NULL) {
286		printf("Warning: no free entries in kernel_map.\n");
287		physmem_est = physmem;
288	} else
289		physmem_est = min(physmem, kernel_map->max_offset - kernel_map->min_offset);
290
291	/*
292	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
293	 * For the first 64MB of ram nominally allocate sufficient buffers to
294	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
295	 * buffers to cover 1/20 of our ram over 64MB.
296	 *
297	 * factor represents the 1/4 x ram conversion.
298	 */
299	if (nbuf == 0) {
300		int factor = 4 * BKVASIZE / PAGE_SIZE;
301
302		nbuf = 50;
303		if (physmem_est > 1024)
304			nbuf += min((physmem_est - 1024) / factor, 16384 / factor);
305		if (physmem_est > 16384)
306			nbuf += (physmem_est - 16384) * 2 / (factor * 5);
307	}
308
309	/*
310	 * Do not allow the buffer_map to be more then 1/2 the size of the
311	 * kernel_map.
312	 */
313	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
314	    (BKVASIZE * 2)) {
315		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
316		    (BKVASIZE * 2);
317		printf("Warning: nbufs capped at %d\n", nbuf);
318	}
319
320	nswbuf = max(min(nbuf/4, 256), 16);
321
322	valloc(swbuf, struct buf, nswbuf);
323	valloc(buf, struct buf, nbuf);
324	v = bufhashinit(v);
325
326	/*
327	 * End of first pass, size has been calculated so allocate memory
328	 */
329	if (firstaddr == 0) {
330		size = (vm_size_t)(v - firstaddr);
331		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
332		if (firstaddr == 0)
333			panic("startup: no room for tables");
334		goto again;
335	}
336
337	/*
338	 * End of second pass, addresses have been assigned
339	 */
340	if ((vm_size_t)(v - firstaddr) != size)
341		panic("startup: table size inconsistency");
342
343	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
344			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
345	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
346				(nbuf*BKVASIZE));
347	buffer_map->system_map = 1;
348	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
349				(nswbuf*MAXPHYS) + pager_map_size);
350	pager_map->system_map = 1;
351	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
352				(16*(ARG_MAX+(PAGE_SIZE*3))));
353
354	/*
355	 * XXX: Mbuf system machine-specific initializations should
356	 *      go here, if anywhere.
357	 */
358
359	/*
360	 * Initialize callouts
361	 */
362	SLIST_INIT(&callfree);
363	for (i = 0; i < ncallout; i++) {
364		callout_init(&callout[i], 0);
365		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
366		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
367	}
368
369	for (i = 0; i < callwheelsize; i++) {
370		TAILQ_INIT(&callwheel[i]);
371	}
372
373	mtx_init(&callout_lock, "callout", MTX_SPIN | MTX_RECURSE);
374
375#if defined(USERCONFIG)
376	userconfig();
377	cninit();		/* the preferred console may have changed */
378#endif
379
380	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
381	    ptoa(cnt.v_free_count) / 1024);
382
383	/*
384	 * Set up buffers, so they can be used to read disk labels.
385	 */
386	bufinit();
387	vm_pager_bufferinit();
388
389	globaldata_register(GLOBALDATA);
390#ifndef SMP
391	/* For SMP, we delay the cpu_setregs() until after SMP startup. */
392	cpu_setregs();
393#endif
394}
395
396/*
397 * Send an interrupt to process.
398 *
399 * Stack is set up to allow sigcode stored
400 * at top to call routine, followed by kcall
401 * to sigreturn routine below.  After sigreturn
402 * resets the signal mask, the stack, and the
403 * frame pointer, it returns to the user
404 * specified pc, psl.
405 */
406static void
407osendsig(catcher, sig, mask, code)
408	sig_t catcher;
409	int sig;
410	sigset_t *mask;
411	u_long code;
412{
413	struct osigframe sf;
414	struct osigframe *fp;
415	struct proc *p;
416	struct sigacts *psp;
417	struct trapframe *regs;
418	int oonstack;
419
420	p = curproc;
421	PROC_LOCK(p);
422	psp = p->p_sigacts;
423	regs = p->p_frame;
424	oonstack = sigonstack(regs->tf_esp);
425
426	/* Allocate and validate space for the signal handler context. */
427	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
428	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
429		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
430		    p->p_sigstk.ss_size - sizeof(struct osigframe));
431#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
432		p->p_sigstk.ss_flags |= SS_ONSTACK;
433#endif
434	} else
435		fp = (struct osigframe *)regs->tf_esp - 1;
436	PROC_UNLOCK(p);
437
438	/*
439	 * grow_stack() will return 0 if *fp does not fit inside the stack
440	 * and the stack can not be grown.
441	 * useracc() will return FALSE if access is denied.
442	 */
443	if (grow_stack(p, (int)fp) == 0 ||
444	    !useracc((caddr_t)fp, sizeof(*fp), VM_PROT_WRITE)) {
445		/*
446		 * Process has trashed its stack; give it an illegal
447		 * instruction to halt it in its tracks.
448		 */
449		PROC_LOCK(p);
450		SIGACTION(p, SIGILL) = SIG_DFL;
451		SIGDELSET(p->p_sigignore, SIGILL);
452		SIGDELSET(p->p_sigcatch, SIGILL);
453		SIGDELSET(p->p_sigmask, SIGILL);
454		psignal(p, SIGILL);
455		PROC_UNLOCK(p);
456		return;
457	}
458
459	/* Translate the signal if appropriate. */
460	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
461		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
462
463	/* Build the argument list for the signal handler. */
464	sf.sf_signum = sig;
465	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
466	PROC_LOCK(p);
467	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
468		/* Signal handler installed with SA_SIGINFO. */
469		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
470		sf.sf_siginfo.si_signo = sig;
471		sf.sf_siginfo.si_code = code;
472		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
473	} else {
474		/* Old FreeBSD-style arguments. */
475		sf.sf_arg2 = code;
476		sf.sf_addr = regs->tf_err;
477		sf.sf_ahu.sf_handler = catcher;
478	}
479	PROC_UNLOCK(p);
480
481	/* Save most if not all of trap frame. */
482	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
483	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
484	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
485	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
486	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
487	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
488	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
489	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
490	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
491	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
492	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
493	sf.sf_siginfo.si_sc.sc_gs = rgs();
494	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
495
496	/* Build the signal context to be used by osigreturn(). */
497	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
498	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
499	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
500	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
501	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
502	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
503	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
504	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
505
506	/*
507	 * If we're a vm86 process, we want to save the segment registers.
508	 * We also change eflags to be our emulated eflags, not the actual
509	 * eflags.
510	 */
511	if (regs->tf_eflags & PSL_VM) {
512		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
513		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
514		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
515
516		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
517		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
518		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
519		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
520
521		if (vm86->vm86_has_vme == 0)
522			sf.sf_siginfo.si_sc.sc_ps =
523			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
524			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
525
526		/* See sendsig() for comments. */
527		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
528	}
529
530	/* Copy the sigframe out to the user's stack. */
531	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
532		/*
533		 * Something is wrong with the stack pointer.
534		 * ...Kill the process.
535		 */
536		PROC_LOCK(p);
537		sigexit(p, SIGILL);
538		/* NOTREACHED */
539	}
540
541	regs->tf_esp = (int)fp;
542	regs->tf_eip = PS_STRINGS - szosigcode;
543	regs->tf_cs = _ucodesel;
544	regs->tf_ds = _udatasel;
545	regs->tf_es = _udatasel;
546	regs->tf_fs = _udatasel;
547	load_gs(_udatasel);
548	regs->tf_ss = _udatasel;
549}
550
551void
552sendsig(catcher, sig, mask, code)
553	sig_t catcher;
554	int sig;
555	sigset_t *mask;
556	u_long code;
557{
558	struct sigframe sf;
559	struct proc *p;
560	struct sigacts *psp;
561	struct trapframe *regs;
562	struct sigframe *sfp;
563	int oonstack;
564
565	p = curproc;
566	PROC_LOCK(p);
567	psp = p->p_sigacts;
568	if (SIGISMEMBER(psp->ps_osigset, sig)) {
569		PROC_UNLOCK(p);
570		osendsig(catcher, sig, mask, code);
571		return;
572	}
573	regs = p->p_frame;
574	oonstack = sigonstack(regs->tf_esp);
575
576	/* Save user context. */
577	bzero(&sf, sizeof(sf));
578	sf.sf_uc.uc_sigmask = *mask;
579	sf.sf_uc.uc_stack = p->p_sigstk;
580	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
581	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
582	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
583	sf.sf_uc.uc_mcontext.mc_gs = rgs();
584	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
585
586	/* Allocate and validate space for the signal handler context. */
587	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
588	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
589		sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
590		    p->p_sigstk.ss_size - sizeof(struct sigframe));
591#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
592		p->p_sigstk.ss_flags |= SS_ONSTACK;
593#endif
594	} else
595		sfp = (struct sigframe *)regs->tf_esp - 1;
596	PROC_UNLOCK(p);
597
598	/*
599	 * grow_stack() will return 0 if *sfp does not fit inside the stack
600	 * and the stack can not be grown.
601	 * useracc() will return FALSE if access is denied.
602	 */
603	if (grow_stack(p, (int)sfp) == 0 ||
604	    !useracc((caddr_t)sfp, sizeof(*sfp), VM_PROT_WRITE)) {
605		/*
606		 * Process has trashed its stack; give it an illegal
607		 * instruction to halt it in its tracks.
608		 */
609#ifdef DEBUG
610		printf("process %d has trashed its stack\n", p->p_pid);
611#endif
612		PROC_LOCK(p);
613		SIGACTION(p, SIGILL) = SIG_DFL;
614		SIGDELSET(p->p_sigignore, SIGILL);
615		SIGDELSET(p->p_sigcatch, SIGILL);
616		SIGDELSET(p->p_sigmask, SIGILL);
617		psignal(p, SIGILL);
618		PROC_UNLOCK(p);
619		return;
620	}
621
622	/* Translate the signal if appropriate. */
623	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
624		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
625
626	/* Build the argument list for the signal handler. */
627	sf.sf_signum = sig;
628	sf.sf_ucontext = (register_t)&sfp->sf_uc;
629	PROC_LOCK(p);
630	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
631		/* Signal handler installed with SA_SIGINFO. */
632		sf.sf_siginfo = (register_t)&sfp->sf_si;
633		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
634
635		/* Fill siginfo structure. */
636		sf.sf_si.si_signo = sig;
637		sf.sf_si.si_code = code;
638		sf.sf_si.si_addr = (void *)regs->tf_err;
639	} else {
640		/* Old FreeBSD-style arguments. */
641		sf.sf_siginfo = code;
642		sf.sf_addr = regs->tf_err;
643		sf.sf_ahu.sf_handler = catcher;
644	}
645	PROC_UNLOCK(p);
646
647	/*
648	 * If we're a vm86 process, we want to save the segment registers.
649	 * We also change eflags to be our emulated eflags, not the actual
650	 * eflags.
651	 */
652	if (regs->tf_eflags & PSL_VM) {
653		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
654		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
655
656		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
657		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
658		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
659		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
660
661		if (vm86->vm86_has_vme == 0)
662			sf.sf_uc.uc_mcontext.mc_eflags =
663			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
664			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
665
666		/*
667		 * We should never have PSL_T set when returning from vm86
668		 * mode.  It may be set here if we deliver a signal before
669		 * getting to vm86 mode, so turn it off.
670		 *
671		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
672		 * syscalls made by the signal handler.  This just avoids
673		 * wasting time for our lazy fixup of such faults.  PSL_NT
674		 * does nothing in vm86 mode, but vm86 programs can set it
675		 * almost legitimately in probes for old cpu types.
676		 */
677		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
678	}
679
680	/* Copy the sigframe out to the user's stack. */
681	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
682		/*
683		 * Something is wrong with the stack pointer.
684		 * ...Kill the process.
685		 */
686		PROC_LOCK(p);
687		sigexit(p, SIGILL);
688		/* NOTREACHED */
689	}
690
691	regs->tf_esp = (int)sfp;
692	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
693	regs->tf_cs = _ucodesel;
694	regs->tf_ds = _udatasel;
695	regs->tf_es = _udatasel;
696	regs->tf_fs = _udatasel;
697	regs->tf_ss = _udatasel;
698}
699
700/*
701 * System call to cleanup state after a signal
702 * has been taken.  Reset signal mask and
703 * stack state from context left by sendsig (above).
704 * Return to previous pc and psl as specified by
705 * context left by sendsig. Check carefully to
706 * make sure that the user has not modified the
707 * state to gain improper privileges.
708 */
709int
710osigreturn(p, uap)
711	struct proc *p;
712	struct osigreturn_args /* {
713		struct osigcontext *sigcntxp;
714	} */ *uap;
715{
716	struct trapframe *regs;
717	struct osigcontext *scp;
718	int eflags;
719
720	regs = p->p_frame;
721	scp = uap->sigcntxp;
722	if (!useracc((caddr_t)scp, sizeof(*scp), VM_PROT_READ))
723		return (EFAULT);
724	eflags = scp->sc_ps;
725	if (eflags & PSL_VM) {
726		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
727		struct vm86_kernel *vm86;
728
729		/*
730		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
731		 * set up the vm86 area, and we can't enter vm86 mode.
732		 */
733		if (p->p_addr->u_pcb.pcb_ext == 0)
734			return (EINVAL);
735		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
736		if (vm86->vm86_inited == 0)
737			return (EINVAL);
738
739		/* Go back to user mode if both flags are set. */
740		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
741			trapsignal(p, SIGBUS, 0);
742
743		if (vm86->vm86_has_vme) {
744			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
745			    (eflags & VME_USERCHANGE) | PSL_VM;
746		} else {
747			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
748			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
749		}
750		tf->tf_vm86_ds = scp->sc_ds;
751		tf->tf_vm86_es = scp->sc_es;
752		tf->tf_vm86_fs = scp->sc_fs;
753		tf->tf_vm86_gs = scp->sc_gs;
754		tf->tf_ds = _udatasel;
755		tf->tf_es = _udatasel;
756		tf->tf_fs = _udatasel;
757	} else {
758		/*
759		 * Don't allow users to change privileged or reserved flags.
760		 */
761		/*
762		 * XXX do allow users to change the privileged flag PSL_RF.
763		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
764		 * should sometimes set it there too.  tf_eflags is kept in
765		 * the signal context during signal handling and there is no
766		 * other place to remember it, so the PSL_RF bit may be
767		 * corrupted by the signal handler without us knowing.
768		 * Corruption of the PSL_RF bit at worst causes one more or
769		 * one less debugger trap, so allowing it is fairly harmless.
770		 */
771		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
772	    		return (EINVAL);
773		}
774
775		/*
776		 * Don't allow users to load a valid privileged %cs.  Let the
777		 * hardware check for invalid selectors, excess privilege in
778		 * other selectors, invalid %eip's and invalid %esp's.
779		 */
780		if (!CS_SECURE(scp->sc_cs)) {
781			trapsignal(p, SIGBUS, T_PROTFLT);
782			return (EINVAL);
783		}
784		regs->tf_ds = scp->sc_ds;
785		regs->tf_es = scp->sc_es;
786		regs->tf_fs = scp->sc_fs;
787	}
788
789	/* Restore remaining registers. */
790	regs->tf_eax = scp->sc_eax;
791	regs->tf_ebx = scp->sc_ebx;
792	regs->tf_ecx = scp->sc_ecx;
793	regs->tf_edx = scp->sc_edx;
794	regs->tf_esi = scp->sc_esi;
795	regs->tf_edi = scp->sc_edi;
796	regs->tf_cs = scp->sc_cs;
797	regs->tf_ss = scp->sc_ss;
798	regs->tf_isp = scp->sc_isp;
799
800	PROC_LOCK(p);
801#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
802	if (scp->sc_onstack & 1)
803		p->p_sigstk.ss_flags |= SS_ONSTACK;
804	else
805		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
806#endif
807
808	SIGSETOLD(p->p_sigmask, scp->sc_mask);
809	SIG_CANTMASK(p->p_sigmask);
810	PROC_UNLOCK(p);
811	regs->tf_ebp = scp->sc_fp;
812	regs->tf_esp = scp->sc_sp;
813	regs->tf_eip = scp->sc_pc;
814	regs->tf_eflags = eflags;
815	return (EJUSTRETURN);
816}
817
818int
819sigreturn(p, uap)
820	struct proc *p;
821	struct sigreturn_args /* {
822		ucontext_t *sigcntxp;
823	} */ *uap;
824{
825	struct trapframe *regs;
826	ucontext_t *ucp;
827	int cs, eflags;
828
829	ucp = uap->sigcntxp;
830	if (!useracc((caddr_t)ucp, sizeof(struct osigcontext), VM_PROT_READ))
831		return (EFAULT);
832	if (((struct osigcontext *)ucp)->sc_trapno == 0x01d516)
833		return (osigreturn(p, (struct osigreturn_args *)uap));
834
835	/*
836	 * Since ucp is not an osigcontext but a ucontext_t, we have to
837	 * check again if all of it is accessible.  A ucontext_t is
838	 * much larger, so instead of just checking for the pointer
839	 * being valid for the size of an osigcontext, now check for
840	 * it being valid for a whole, new-style ucontext_t.
841	 */
842	if (!useracc((caddr_t)ucp, sizeof(*ucp), VM_PROT_READ))
843		return (EFAULT);
844
845	regs = p->p_frame;
846	eflags = ucp->uc_mcontext.mc_eflags;
847	if (eflags & PSL_VM) {
848		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
849		struct vm86_kernel *vm86;
850
851		/*
852		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
853		 * set up the vm86 area, and we can't enter vm86 mode.
854		 */
855		if (p->p_addr->u_pcb.pcb_ext == 0)
856			return (EINVAL);
857		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
858		if (vm86->vm86_inited == 0)
859			return (EINVAL);
860
861		/* Go back to user mode if both flags are set. */
862		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
863			trapsignal(p, SIGBUS, 0);
864
865		if (vm86->vm86_has_vme) {
866			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
867			    (eflags & VME_USERCHANGE) | PSL_VM;
868		} else {
869			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
870			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
871		}
872		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
873		tf->tf_eflags = eflags;
874		tf->tf_vm86_ds = tf->tf_ds;
875		tf->tf_vm86_es = tf->tf_es;
876		tf->tf_vm86_fs = tf->tf_fs;
877		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
878		tf->tf_ds = _udatasel;
879		tf->tf_es = _udatasel;
880		tf->tf_fs = _udatasel;
881	} else {
882		/*
883		 * Don't allow users to change privileged or reserved flags.
884		 */
885		/*
886		 * XXX do allow users to change the privileged flag PSL_RF.
887		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
888		 * should sometimes set it there too.  tf_eflags is kept in
889		 * the signal context during signal handling and there is no
890		 * other place to remember it, so the PSL_RF bit may be
891		 * corrupted by the signal handler without us knowing.
892		 * Corruption of the PSL_RF bit at worst causes one more or
893		 * one less debugger trap, so allowing it is fairly harmless.
894		 */
895		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
896			printf("sigreturn: eflags = 0x%x\n", eflags);
897	    		return (EINVAL);
898		}
899
900		/*
901		 * Don't allow users to load a valid privileged %cs.  Let the
902		 * hardware check for invalid selectors, excess privilege in
903		 * other selectors, invalid %eip's and invalid %esp's.
904		 */
905		cs = ucp->uc_mcontext.mc_cs;
906		if (!CS_SECURE(cs)) {
907			printf("sigreturn: cs = 0x%x\n", cs);
908			trapsignal(p, SIGBUS, T_PROTFLT);
909			return (EINVAL);
910		}
911
912		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
913	}
914
915	PROC_LOCK(p);
916#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
917	if (ucp->uc_mcontext.mc_onstack & 1)
918		p->p_sigstk.ss_flags |= SS_ONSTACK;
919	else
920		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
921#endif
922
923	p->p_sigmask = ucp->uc_sigmask;
924	SIG_CANTMASK(p->p_sigmask);
925	PROC_UNLOCK(p);
926	return (EJUSTRETURN);
927}
928
929/*
930 * Machine dependent boot() routine
931 *
932 * I haven't seen anything to put here yet
933 * Possibly some stuff might be grafted back here from boot()
934 */
935void
936cpu_boot(int howto)
937{
938}
939
940/*
941 * Shutdown the CPU as much as possible
942 */
943void
944cpu_halt(void)
945{
946	for (;;)
947		__asm__ ("hlt");
948}
949
950/*
951 * Hook to idle the CPU when possible.  This currently only works in
952 * the !SMP case, as there is no clean way to ensure that a CPU will be
953 * woken when there is work available for it.
954 */
955static int	cpu_idle_hlt = 1;
956SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
957    &cpu_idle_hlt, 0, "Idle loop HLT enable");
958
959/*
960 * Note that we have to be careful here to avoid a race between checking
961 * procrunnable() and actually halting.  If we don't do this, we may waste
962 * the time between calling hlt and the next interrupt even though there
963 * is a runnable process.
964 */
965void
966cpu_idle(void)
967{
968#ifndef SMP
969	if (cpu_idle_hlt) {
970		disable_intr();
971  		if (procrunnable())
972			enable_intr();
973		else {
974			enable_intr();
975			__asm __volatile("hlt");
976		}
977	}
978#endif
979}
980
981/*
982 * Clear registers on exec
983 */
984void
985setregs(p, entry, stack, ps_strings)
986	struct proc *p;
987	u_long entry;
988	u_long stack;
989	u_long ps_strings;
990{
991	struct trapframe *regs = p->p_frame;
992	struct pcb *pcb = &p->p_addr->u_pcb;
993
994	if (pcb->pcb_ldt)
995		user_ldt_free(pcb);
996
997	bzero((char *)regs, sizeof(struct trapframe));
998	regs->tf_eip = entry;
999	regs->tf_esp = stack;
1000	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1001	regs->tf_ss = _udatasel;
1002	regs->tf_ds = _udatasel;
1003	regs->tf_es = _udatasel;
1004	regs->tf_fs = _udatasel;
1005	regs->tf_cs = _ucodesel;
1006
1007	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1008	regs->tf_ebx = ps_strings;
1009
1010	/* reset %gs as well */
1011	if (pcb == PCPU_GET(curpcb))
1012		load_gs(_udatasel);
1013	else
1014		pcb->pcb_gs = _udatasel;
1015
1016        /*
1017         * Reset the hardware debug registers if they were in use.
1018         * They won't have any meaning for the newly exec'd process.
1019         */
1020        if (pcb->pcb_flags & PCB_DBREGS) {
1021                pcb->pcb_dr0 = 0;
1022                pcb->pcb_dr1 = 0;
1023                pcb->pcb_dr2 = 0;
1024                pcb->pcb_dr3 = 0;
1025                pcb->pcb_dr6 = 0;
1026                pcb->pcb_dr7 = 0;
1027                if (pcb == PCPU_GET(curpcb)) {
1028		        /*
1029			 * Clear the debug registers on the running
1030			 * CPU, otherwise they will end up affecting
1031			 * the next process we switch to.
1032			 */
1033		        reset_dbregs();
1034                }
1035                pcb->pcb_flags &= ~PCB_DBREGS;
1036        }
1037
1038	/*
1039	 * Initialize the math emulator (if any) for the current process.
1040	 * Actually, just clear the bit that says that the emulator has
1041	 * been initialized.  Initialization is delayed until the process
1042	 * traps to the emulator (if it is done at all) mainly because
1043	 * emulators don't provide an entry point for initialization.
1044	 */
1045	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
1046
1047	/*
1048	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
1049	 * for why fwait must be trapped at least if there is an npx or an
1050	 * emulator).  This is mainly to handle the case where npx0 is not
1051	 * configured, since the npx routines normally set up the trap
1052	 * otherwise.  It should be done only at boot time, but doing it
1053	 * here allows modifying `npx_exists' for testing the emulator on
1054	 * systems with an npx.
1055	 */
1056	load_cr0(rcr0() | CR0_MP | CR0_TS);
1057
1058#ifdef DEV_NPX
1059	/* Initialize the npx (if any) for the current process. */
1060	npxinit(__INITIAL_NPXCW__);
1061#endif
1062
1063	/*
1064	 * XXX - Linux emulator
1065	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1066	 * on it.
1067	 */
1068	p->p_retval[1] = 0;
1069}
1070
1071void
1072cpu_setregs(void)
1073{
1074	unsigned int cr0;
1075
1076	cr0 = rcr0();
1077	cr0 |= CR0_NE;			/* Done by npxinit() */
1078	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1079#ifndef I386_CPU
1080	cr0 |= CR0_WP | CR0_AM;
1081#endif
1082	load_cr0(cr0);
1083	load_gs(_udatasel);
1084}
1085
1086static int
1087sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1088{
1089	int error;
1090	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1091		req);
1092	if (!error && req->newptr)
1093		resettodr();
1094	return (error);
1095}
1096
1097SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1098	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1099
1100SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1101	CTLFLAG_RW, &disable_rtc_set, 0, "");
1102
1103SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1104	CTLFLAG_RD, &bootinfo, bootinfo, "");
1105
1106SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1107	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1108
1109/*
1110 * Initialize 386 and configure to run kernel
1111 */
1112
1113/*
1114 * Initialize segments & interrupt table
1115 */
1116
1117int _default_ldt;
1118union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1119static struct gate_descriptor idt0[NIDT];
1120struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1121union descriptor ldt[NLDT];		/* local descriptor table */
1122#ifdef SMP
1123/* table descriptors - used to load tables by microp */
1124struct region_descriptor r_gdt, r_idt;
1125#endif
1126
1127int private_tss;			/* flag indicating private tss */
1128
1129#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1130extern int has_f00f_bug;
1131#endif
1132
1133static struct i386tss dblfault_tss;
1134static char dblfault_stack[PAGE_SIZE];
1135
1136extern  struct user *proc0paddr;
1137
1138
1139/* software prototypes -- in more palatable form */
1140struct soft_segment_descriptor gdt_segs[] = {
1141/* GNULL_SEL	0 Null Descriptor */
1142{	0x0,			/* segment base address  */
1143	0x0,			/* length */
1144	0,			/* segment type */
1145	0,			/* segment descriptor priority level */
1146	0,			/* segment descriptor present */
1147	0, 0,
1148	0,			/* default 32 vs 16 bit size */
1149	0  			/* limit granularity (byte/page units)*/ },
1150/* GCODE_SEL	1 Code Descriptor for kernel */
1151{	0x0,			/* segment base address  */
1152	0xfffff,		/* length - all address space */
1153	SDT_MEMERA,		/* segment type */
1154	0,			/* segment descriptor priority level */
1155	1,			/* segment descriptor present */
1156	0, 0,
1157	1,			/* default 32 vs 16 bit size */
1158	1  			/* limit granularity (byte/page units)*/ },
1159/* GDATA_SEL	2 Data Descriptor for kernel */
1160{	0x0,			/* segment base address  */
1161	0xfffff,		/* length - all address space */
1162	SDT_MEMRWA,		/* segment type */
1163	0,			/* segment descriptor priority level */
1164	1,			/* segment descriptor present */
1165	0, 0,
1166	1,			/* default 32 vs 16 bit size */
1167	1  			/* limit granularity (byte/page units)*/ },
1168/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1169{	0x0,			/* segment base address  */
1170	0xfffff,		/* length - all address space */
1171	SDT_MEMRWA,		/* segment type */
1172	0,			/* segment descriptor priority level */
1173	1,			/* segment descriptor present */
1174	0, 0,
1175	1,			/* default 32 vs 16 bit size */
1176	1  			/* limit granularity (byte/page units)*/ },
1177/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1178{
1179	0x0,			/* segment base address */
1180	sizeof(struct i386tss)-1,/* length - all address space */
1181	SDT_SYS386TSS,		/* segment type */
1182	0,			/* segment descriptor priority level */
1183	1,			/* segment descriptor present */
1184	0, 0,
1185	0,			/* unused - default 32 vs 16 bit size */
1186	0  			/* limit granularity (byte/page units)*/ },
1187/* GLDT_SEL	5 LDT Descriptor */
1188{	(int) ldt,		/* segment base address  */
1189	sizeof(ldt)-1,		/* length - all address space */
1190	SDT_SYSLDT,		/* segment type */
1191	SEL_UPL,		/* segment descriptor priority level */
1192	1,			/* segment descriptor present */
1193	0, 0,
1194	0,			/* unused - default 32 vs 16 bit size */
1195	0  			/* limit granularity (byte/page units)*/ },
1196/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1197{	(int) ldt,		/* segment base address  */
1198	(512 * sizeof(union descriptor)-1),		/* length */
1199	SDT_SYSLDT,		/* segment type */
1200	0,			/* segment descriptor priority level */
1201	1,			/* segment descriptor present */
1202	0, 0,
1203	0,			/* unused - default 32 vs 16 bit size */
1204	0  			/* limit granularity (byte/page units)*/ },
1205/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1206{	0x0,			/* segment base address  */
1207	0x0,			/* length - all address space */
1208	0,			/* segment type */
1209	0,			/* segment descriptor priority level */
1210	0,			/* segment descriptor present */
1211	0, 0,
1212	0,			/* default 32 vs 16 bit size */
1213	0  			/* limit granularity (byte/page units)*/ },
1214/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1215{	0x400,			/* segment base address */
1216	0xfffff,		/* length */
1217	SDT_MEMRWA,		/* segment type */
1218	0,			/* segment descriptor priority level */
1219	1,			/* segment descriptor present */
1220	0, 0,
1221	1,			/* default 32 vs 16 bit size */
1222	1  			/* limit granularity (byte/page units)*/ },
1223/* GPANIC_SEL	9 Panic Tss Descriptor */
1224{	(int) &dblfault_tss,	/* segment base address  */
1225	sizeof(struct i386tss)-1,/* length - all address space */
1226	SDT_SYS386TSS,		/* segment type */
1227	0,			/* segment descriptor priority level */
1228	1,			/* segment descriptor present */
1229	0, 0,
1230	0,			/* unused - default 32 vs 16 bit size */
1231	0  			/* limit granularity (byte/page units)*/ },
1232/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1233{	0,			/* segment base address (overwritten)  */
1234	0xfffff,		/* length */
1235	SDT_MEMERA,		/* segment type */
1236	0,			/* segment descriptor priority level */
1237	1,			/* segment descriptor present */
1238	0, 0,
1239	0,			/* default 32 vs 16 bit size */
1240	1  			/* limit granularity (byte/page units)*/ },
1241/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1242{	0,			/* segment base address (overwritten)  */
1243	0xfffff,		/* length */
1244	SDT_MEMERA,		/* segment type */
1245	0,			/* segment descriptor priority level */
1246	1,			/* segment descriptor present */
1247	0, 0,
1248	0,			/* default 32 vs 16 bit size */
1249	1  			/* limit granularity (byte/page units)*/ },
1250/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1251{	0,			/* segment base address (overwritten) */
1252	0xfffff,		/* length */
1253	SDT_MEMRWA,		/* segment type */
1254	0,			/* segment descriptor priority level */
1255	1,			/* segment descriptor present */
1256	0, 0,
1257	1,			/* default 32 vs 16 bit size */
1258	1  			/* limit granularity (byte/page units)*/ },
1259/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1260{	0,			/* segment base address (overwritten) */
1261	0xfffff,		/* length */
1262	SDT_MEMRWA,		/* segment type */
1263	0,			/* segment descriptor priority level */
1264	1,			/* segment descriptor present */
1265	0, 0,
1266	0,			/* default 32 vs 16 bit size */
1267	1  			/* limit granularity (byte/page units)*/ },
1268/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1269{	0,			/* segment base address (overwritten) */
1270	0xfffff,		/* length */
1271	SDT_MEMRWA,		/* segment type */
1272	0,			/* segment descriptor priority level */
1273	1,			/* segment descriptor present */
1274	0, 0,
1275	0,			/* default 32 vs 16 bit size */
1276	1  			/* limit granularity (byte/page units)*/ },
1277};
1278
1279static struct soft_segment_descriptor ldt_segs[] = {
1280	/* Null Descriptor - overwritten by call gate */
1281{	0x0,			/* segment base address  */
1282	0x0,			/* length - all address space */
1283	0,			/* segment type */
1284	0,			/* segment descriptor priority level */
1285	0,			/* segment descriptor present */
1286	0, 0,
1287	0,			/* default 32 vs 16 bit size */
1288	0  			/* limit granularity (byte/page units)*/ },
1289	/* Null Descriptor - overwritten by call gate */
1290{	0x0,			/* segment base address  */
1291	0x0,			/* length - all address space */
1292	0,			/* segment type */
1293	0,			/* segment descriptor priority level */
1294	0,			/* segment descriptor present */
1295	0, 0,
1296	0,			/* default 32 vs 16 bit size */
1297	0  			/* limit granularity (byte/page units)*/ },
1298	/* Null Descriptor - overwritten by call gate */
1299{	0x0,			/* segment base address  */
1300	0x0,			/* length - all address space */
1301	0,			/* segment type */
1302	0,			/* segment descriptor priority level */
1303	0,			/* segment descriptor present */
1304	0, 0,
1305	0,			/* default 32 vs 16 bit size */
1306	0  			/* limit granularity (byte/page units)*/ },
1307	/* Code Descriptor for user */
1308{	0x0,			/* segment base address  */
1309	0xfffff,		/* length - all address space */
1310	SDT_MEMERA,		/* segment type */
1311	SEL_UPL,		/* segment descriptor priority level */
1312	1,			/* segment descriptor present */
1313	0, 0,
1314	1,			/* default 32 vs 16 bit size */
1315	1  			/* limit granularity (byte/page units)*/ },
1316	/* Null Descriptor - overwritten by call gate */
1317{	0x0,			/* segment base address  */
1318	0x0,			/* length - all address space */
1319	0,			/* segment type */
1320	0,			/* segment descriptor priority level */
1321	0,			/* segment descriptor present */
1322	0, 0,
1323	0,			/* default 32 vs 16 bit size */
1324	0  			/* limit granularity (byte/page units)*/ },
1325	/* Data Descriptor for user */
1326{	0x0,			/* segment base address  */
1327	0xfffff,		/* length - all address space */
1328	SDT_MEMRWA,		/* segment type */
1329	SEL_UPL,		/* segment descriptor priority level */
1330	1,			/* segment descriptor present */
1331	0, 0,
1332	1,			/* default 32 vs 16 bit size */
1333	1  			/* limit granularity (byte/page units)*/ },
1334};
1335
1336void
1337setidt(idx, func, typ, dpl, selec)
1338	int idx;
1339	inthand_t *func;
1340	int typ;
1341	int dpl;
1342	int selec;
1343{
1344	struct gate_descriptor *ip;
1345
1346	ip = idt + idx;
1347	ip->gd_looffset = (int)func;
1348	ip->gd_selector = selec;
1349	ip->gd_stkcpy = 0;
1350	ip->gd_xx = 0;
1351	ip->gd_type = typ;
1352	ip->gd_dpl = dpl;
1353	ip->gd_p = 1;
1354	ip->gd_hioffset = ((int)func)>>16 ;
1355}
1356
1357#define	IDTVEC(name)	__CONCAT(X,name)
1358
1359extern inthand_t
1360	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1361	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1362	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1363	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1364	IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1365
1366void
1367sdtossd(sd, ssd)
1368	struct segment_descriptor *sd;
1369	struct soft_segment_descriptor *ssd;
1370{
1371	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1372	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1373	ssd->ssd_type  = sd->sd_type;
1374	ssd->ssd_dpl   = sd->sd_dpl;
1375	ssd->ssd_p     = sd->sd_p;
1376	ssd->ssd_def32 = sd->sd_def32;
1377	ssd->ssd_gran  = sd->sd_gran;
1378}
1379
1380#define PHYSMAP_SIZE	(2 * 8)
1381
1382/*
1383 * Populate the (physmap) array with base/bound pairs describing the
1384 * available physical memory in the system, then test this memory and
1385 * build the phys_avail array describing the actually-available memory.
1386 *
1387 * If we cannot accurately determine the physical memory map, then use
1388 * value from the 0xE801 call, and failing that, the RTC.
1389 *
1390 * Total memory size may be set by the kernel environment variable
1391 * hw.physmem or the compile-time define MAXMEM.
1392 */
1393static void
1394getmemsize(int first)
1395{
1396	int i, physmap_idx, pa_indx;
1397	u_int basemem, extmem;
1398	struct vm86frame vmf;
1399	struct vm86context vmc;
1400	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1401	pt_entry_t pte;
1402	const char *cp;
1403	struct bios_smap *smap;
1404
1405	bzero(&vmf, sizeof(struct vm86frame));
1406	bzero(physmap, sizeof(physmap));
1407
1408	/*
1409	 * Perform "base memory" related probes & setup
1410	 */
1411	vm86_intcall(0x12, &vmf);
1412	basemem = vmf.vmf_ax;
1413	if (basemem > 640) {
1414		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1415			basemem);
1416		basemem = 640;
1417	}
1418
1419	/*
1420	 * XXX if biosbasemem is now < 640, there is a `hole'
1421	 * between the end of base memory and the start of
1422	 * ISA memory.  The hole may be empty or it may
1423	 * contain BIOS code or data.  Map it read/write so
1424	 * that the BIOS can write to it.  (Memory from 0 to
1425	 * the physical end of the kernel is mapped read-only
1426	 * to begin with and then parts of it are remapped.
1427	 * The parts that aren't remapped form holes that
1428	 * remain read-only and are unused by the kernel.
1429	 * The base memory area is below the physical end of
1430	 * the kernel and right now forms a read-only hole.
1431	 * The part of it from PAGE_SIZE to
1432	 * (trunc_page(biosbasemem * 1024) - 1) will be
1433	 * remapped and used by the kernel later.)
1434	 *
1435	 * This code is similar to the code used in
1436	 * pmap_mapdev, but since no memory needs to be
1437	 * allocated we simply change the mapping.
1438	 */
1439	for (pa = trunc_page(basemem * 1024);
1440	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1441		pte = (pt_entry_t)vtopte(pa + KERNBASE);
1442		*pte = pa | PG_RW | PG_V;
1443	}
1444
1445	/*
1446	 * if basemem != 640, map pages r/w into vm86 page table so
1447	 * that the bios can scribble on it.
1448	 */
1449	pte = (pt_entry_t)vm86paddr;
1450	for (i = basemem / 4; i < 160; i++)
1451		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1452
1453	/*
1454	 * map page 1 R/W into the kernel page table so we can use it
1455	 * as a buffer.  The kernel will unmap this page later.
1456	 */
1457	pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
1458	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1459
1460	/*
1461	 * get memory map with INT 15:E820
1462	 */
1463	vmc.npages = 0;
1464	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1465	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1466
1467	physmap_idx = 0;
1468	vmf.vmf_ebx = 0;
1469	do {
1470		vmf.vmf_eax = 0xE820;
1471		vmf.vmf_edx = SMAP_SIG;
1472		vmf.vmf_ecx = sizeof(struct bios_smap);
1473		i = vm86_datacall(0x15, &vmf, &vmc);
1474		if (i || vmf.vmf_eax != SMAP_SIG)
1475			break;
1476		if (boothowto & RB_VERBOSE)
1477			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1478				smap->type,
1479				*(u_int32_t *)((char *)&smap->base + 4),
1480				(u_int32_t)smap->base,
1481				*(u_int32_t *)((char *)&smap->length + 4),
1482				(u_int32_t)smap->length);
1483
1484		if (smap->type != 0x01)
1485			goto next_run;
1486
1487		if (smap->length == 0)
1488			goto next_run;
1489
1490		if (smap->base >= 0xffffffff) {
1491			printf("%uK of memory above 4GB ignored\n",
1492			    (u_int)(smap->length / 1024));
1493			goto next_run;
1494		}
1495
1496		for (i = 0; i <= physmap_idx; i += 2) {
1497			if (smap->base < physmap[i + 1]) {
1498				if (boothowto & RB_VERBOSE)
1499					printf(
1500	"Overlapping or non-montonic memory region, ignoring second region\n");
1501				goto next_run;
1502			}
1503		}
1504
1505		if (smap->base == physmap[physmap_idx + 1]) {
1506			physmap[physmap_idx + 1] += smap->length;
1507			goto next_run;
1508		}
1509
1510		physmap_idx += 2;
1511		if (physmap_idx == PHYSMAP_SIZE) {
1512			printf(
1513		"Too many segments in the physical address map, giving up\n");
1514			break;
1515		}
1516		physmap[physmap_idx] = smap->base;
1517		physmap[physmap_idx + 1] = smap->base + smap->length;
1518next_run:
1519	} while (vmf.vmf_ebx != 0);
1520
1521	if (physmap[1] != 0)
1522		goto physmap_done;
1523
1524	/*
1525	 * If we failed above, try memory map with INT 15:E801
1526	 */
1527	vmf.vmf_ax = 0xE801;
1528	if (vm86_intcall(0x15, &vmf) == 0) {
1529		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1530	} else {
1531#if 0
1532		vmf.vmf_ah = 0x88;
1533		vm86_intcall(0x15, &vmf);
1534		extmem = vmf.vmf_ax;
1535#else
1536		/*
1537		 * Prefer the RTC value for extended memory.
1538		 */
1539		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1540#endif
1541	}
1542
1543	/*
1544	 * Special hack for chipsets that still remap the 384k hole when
1545	 * there's 16MB of memory - this really confuses people that
1546	 * are trying to use bus mastering ISA controllers with the
1547	 * "16MB limit"; they only have 16MB, but the remapping puts
1548	 * them beyond the limit.
1549	 *
1550	 * If extended memory is between 15-16MB (16-17MB phys address range),
1551	 *	chop it to 15MB.
1552	 */
1553	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1554		extmem = 15 * 1024;
1555
1556	physmap[0] = 0;
1557	physmap[1] = basemem * 1024;
1558	physmap_idx = 2;
1559	physmap[physmap_idx] = 0x100000;
1560	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1561
1562physmap_done:
1563	/*
1564	 * Now, physmap contains a map of physical memory.
1565	 */
1566
1567#ifdef SMP
1568	/* make hole for AP bootstrap code */
1569	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1570
1571	/* look for the MP hardware - needed for apic addresses */
1572	i386_mp_probe();
1573#endif
1574
1575	/*
1576	 * Maxmem isn't the "maximum memory", it's one larger than the
1577	 * highest page of the physical address space.  It should be
1578	 * called something like "Maxphyspage".  We may adjust this
1579	 * based on ``hw.physmem'' and the results of the memory test.
1580	 */
1581	Maxmem = atop(physmap[physmap_idx + 1]);
1582
1583#ifdef MAXMEM
1584	Maxmem = MAXMEM / 4;
1585#endif
1586
1587	/*
1588	 * hw.maxmem is a size in bytes; we also allow k, m, and g suffixes
1589	 * for the appropriate modifiers.  This overrides MAXMEM.
1590	 */
1591	if ((cp = getenv("hw.physmem")) != NULL) {
1592		u_int64_t AllowMem, sanity;
1593		char *ep;
1594
1595		sanity = AllowMem = strtouq(cp, &ep, 0);
1596		if ((ep != cp) && (*ep != 0)) {
1597			switch(*ep) {
1598			case 'g':
1599			case 'G':
1600				AllowMem <<= 10;
1601			case 'm':
1602			case 'M':
1603				AllowMem <<= 10;
1604			case 'k':
1605			case 'K':
1606				AllowMem <<= 10;
1607				break;
1608			default:
1609				AllowMem = sanity = 0;
1610			}
1611			if (AllowMem < sanity)
1612				AllowMem = 0;
1613		}
1614		if (AllowMem == 0)
1615			printf("Ignoring invalid memory size of '%s'\n", cp);
1616		else
1617			Maxmem = atop(AllowMem);
1618	}
1619
1620	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1621	    (boothowto & RB_VERBOSE))
1622		printf("Physical memory use set to %uK\n", Maxmem * 4);
1623
1624	/*
1625	 * If Maxmem has been increased beyond what the system has detected,
1626	 * extend the last memory segment to the new limit.
1627	 */
1628	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1629		physmap[physmap_idx + 1] = ptoa(Maxmem);
1630
1631	/* call pmap initialization to make new kernel address space */
1632	pmap_bootstrap(first, 0);
1633
1634	/*
1635	 * Size up each available chunk of physical memory.
1636	 */
1637	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1638	pa_indx = 0;
1639	phys_avail[pa_indx++] = physmap[0];
1640	phys_avail[pa_indx] = physmap[0];
1641#if 0
1642	pte = (pt_entry_t)vtopte(KERNBASE);
1643#else
1644	pte = (pt_entry_t)CMAP1;
1645#endif
1646
1647	/*
1648	 * physmap is in bytes, so when converting to page boundaries,
1649	 * round up the start address and round down the end address.
1650	 */
1651	for (i = 0; i <= physmap_idx; i += 2) {
1652		vm_offset_t end;
1653
1654		end = ptoa(Maxmem);
1655		if (physmap[i + 1] < end)
1656			end = trunc_page(physmap[i + 1]);
1657		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1658			int tmp, page_bad;
1659#if 0
1660			int *ptr = 0;
1661#else
1662			int *ptr = (int *)CADDR1;
1663#endif
1664
1665			/*
1666			 * block out kernel memory as not available.
1667			 */
1668			if (pa >= 0x100000 && pa < first)
1669				continue;
1670
1671			page_bad = FALSE;
1672
1673			/*
1674			 * map page into kernel: valid, read/write,non-cacheable
1675			 */
1676			*pte = pa | PG_V | PG_RW | PG_N;
1677			invltlb();
1678
1679			tmp = *(int *)ptr;
1680			/*
1681			 * Test for alternating 1's and 0's
1682			 */
1683			*(volatile int *)ptr = 0xaaaaaaaa;
1684			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1685				page_bad = TRUE;
1686			}
1687			/*
1688			 * Test for alternating 0's and 1's
1689			 */
1690			*(volatile int *)ptr = 0x55555555;
1691			if (*(volatile int *)ptr != 0x55555555) {
1692			page_bad = TRUE;
1693			}
1694			/*
1695			 * Test for all 1's
1696			 */
1697			*(volatile int *)ptr = 0xffffffff;
1698			if (*(volatile int *)ptr != 0xffffffff) {
1699				page_bad = TRUE;
1700			}
1701			/*
1702			 * Test for all 0's
1703			 */
1704			*(volatile int *)ptr = 0x0;
1705			if (*(volatile int *)ptr != 0x0) {
1706				page_bad = TRUE;
1707			}
1708			/*
1709			 * Restore original value.
1710			 */
1711			*(int *)ptr = tmp;
1712
1713			/*
1714			 * Adjust array of valid/good pages.
1715			 */
1716			if (page_bad == TRUE) {
1717				continue;
1718			}
1719			/*
1720			 * If this good page is a continuation of the
1721			 * previous set of good pages, then just increase
1722			 * the end pointer. Otherwise start a new chunk.
1723			 * Note that "end" points one higher than end,
1724			 * making the range >= start and < end.
1725			 * If we're also doing a speculative memory
1726			 * test and we at or past the end, bump up Maxmem
1727			 * so that we keep going. The first bad page
1728			 * will terminate the loop.
1729			 */
1730			if (phys_avail[pa_indx] == pa) {
1731				phys_avail[pa_indx] += PAGE_SIZE;
1732			} else {
1733				pa_indx++;
1734				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1735					printf("Too many holes in the physical address space, giving up\n");
1736					pa_indx--;
1737					break;
1738				}
1739				phys_avail[pa_indx++] = pa;	/* start */
1740				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1741			}
1742			physmem++;
1743		}
1744	}
1745	*pte = 0;
1746	invltlb();
1747
1748	/*
1749	 * XXX
1750	 * The last chunk must contain at least one page plus the message
1751	 * buffer to avoid complicating other code (message buffer address
1752	 * calculation, etc.).
1753	 */
1754	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1755	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1756		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1757		phys_avail[pa_indx--] = 0;
1758		phys_avail[pa_indx--] = 0;
1759	}
1760
1761	Maxmem = atop(phys_avail[pa_indx]);
1762
1763	/* Trim off space for the message buffer. */
1764	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1765
1766	avail_end = phys_avail[pa_indx];
1767}
1768
1769void
1770init386(first)
1771	int first;
1772{
1773	int x;
1774	struct gate_descriptor *gdp;
1775	int gsel_tss;
1776#ifndef SMP
1777	/* table descriptors - used to load tables by microp */
1778	struct region_descriptor r_gdt, r_idt;
1779#endif
1780	int off;
1781
1782	proc0.p_addr = proc0paddr;
1783
1784	atdevbase = ISA_HOLE_START + KERNBASE;
1785
1786	if (bootinfo.bi_modulep) {
1787		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1788		preload_bootstrap_relocate(KERNBASE);
1789	} else {
1790		printf("WARNING: loader(8) metadata is missing!\n");
1791	}
1792	if (bootinfo.bi_envp)
1793		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1794
1795	/*
1796	 * make gdt memory segments, the code segment goes up to end of the
1797	 * page with etext in it, the data segment goes to the end of
1798	 * the address space
1799	 */
1800	/*
1801	 * XXX text protection is temporarily (?) disabled.  The limit was
1802	 * i386_btop(round_page(etext)) - 1.
1803	 */
1804	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1805	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1806#ifdef SMP
1807	gdt_segs[GPRIV_SEL].ssd_limit =
1808		i386_btop(sizeof(struct privatespace)) - 1;
1809	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
1810	gdt_segs[GPROC0_SEL].ssd_base =
1811		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
1812	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0].globaldata;
1813#else
1814	gdt_segs[GPRIV_SEL].ssd_limit =
1815		i386_btop(sizeof(struct globaldata)) - 1;
1816	gdt_segs[GPRIV_SEL].ssd_base = (int) &__globaldata;
1817	gdt_segs[GPROC0_SEL].ssd_base =
1818		(int) &__globaldata.gd_common_tss;
1819	__globaldata.gd_prvspace = &__globaldata;
1820#endif
1821
1822	for (x = 0; x < NGDT; x++) {
1823#ifdef BDE_DEBUGGER
1824		/* avoid overwriting db entries with APM ones */
1825		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1826			continue;
1827#endif
1828		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1829	}
1830
1831	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1832	r_gdt.rd_base =  (int) gdt;
1833	lgdt(&r_gdt);
1834
1835	/* setup curproc so that mutexes work */
1836	PCPU_SET(curproc, &proc0);
1837	PCPU_SET(spinlocks, NULL);
1838
1839	LIST_INIT(&proc0.p_contested);
1840
1841	/*
1842	 * Initialize mutexes.
1843	 */
1844	mtx_init(&Giant, "Giant", MTX_DEF | MTX_RECURSE);
1845	mtx_init(&sched_lock, "sched lock", MTX_SPIN | MTX_RECURSE);
1846	mtx_init(&proc0.p_mtx, "process lock", MTX_DEF);
1847	mtx_init(&clock_lock, "clk", MTX_SPIN | MTX_RECURSE);
1848#ifdef SMP
1849	mtx_init(&imen_mtx, "imen", MTX_SPIN);
1850#endif
1851	mtx_lock(&Giant);
1852
1853	/* make ldt memory segments */
1854	/*
1855	 * The data segment limit must not cover the user area because we
1856	 * don't want the user area to be writable in copyout() etc. (page
1857	 * level protection is lost in kernel mode on 386's).  Also, we
1858	 * don't want the user area to be writable directly (page level
1859	 * protection of the user area is not available on 486's with
1860	 * CR0_WP set, because there is no user-read/kernel-write mode).
1861	 *
1862	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1863	 * should be spelled ...MAX_USER...
1864	 */
1865#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1866	/*
1867	 * The code segment limit has to cover the user area until we move
1868	 * the signal trampoline out of the user area.  This is safe because
1869	 * the code segment cannot be written to directly.
1870	 */
1871#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1872	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1873	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1874	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1875		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1876
1877	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1878	lldt(_default_ldt);
1879	PCPU_SET(currentldt, _default_ldt);
1880
1881	/* exceptions */
1882	for (x = 0; x < NIDT; x++)
1883		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1884	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1885	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1886	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1887 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1888	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1889	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1890	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1891	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1892	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1893	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1894	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1895	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1896	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1897	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1898	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1899	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1900	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1901	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1902	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1903 	setidt(0x80, &IDTVEC(int0x80_syscall),
1904			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1905
1906	r_idt.rd_limit = sizeof(idt0) - 1;
1907	r_idt.rd_base = (int) idt;
1908	lidt(&r_idt);
1909
1910	/*
1911	 * Initialize the console before we print anything out.
1912	 */
1913	cninit();
1914
1915#ifdef DEV_ISA
1916	isa_defaultirq();
1917#endif
1918
1919#ifdef DDB
1920	kdb_init();
1921	if (boothowto & RB_KDB)
1922		Debugger("Boot flags requested debugger");
1923#endif
1924
1925	finishidentcpu();	/* Final stage of CPU initialization */
1926	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1927	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1928	initializecpu();	/* Initialize CPU registers */
1929
1930	/* make an initial tss so cpu can get interrupt stack on syscall! */
1931	PCPU_SET(common_tss.tss_esp0,
1932	    (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16);
1933	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
1934	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1935	private_tss = 0;
1936	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
1937	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
1938	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
1939	ltr(gsel_tss);
1940
1941	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1942	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1943	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1944	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1945	dblfault_tss.tss_cr3 = (int)IdlePTD;
1946	dblfault_tss.tss_eip = (int) dblfault_handler;
1947	dblfault_tss.tss_eflags = PSL_KERNEL;
1948	dblfault_tss.tss_ds = dblfault_tss.tss_es =
1949	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1950	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1951	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1952	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1953
1954	vm86_initialize();
1955	getmemsize(first);
1956
1957	/* now running on new page tables, configured,and u/iom is accessible */
1958
1959	/* Map the message buffer. */
1960	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1961		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1962
1963	msgbufinit(msgbufp, MSGBUF_SIZE);
1964
1965	/* make a call gate to reenter kernel with */
1966	gdp = &ldt[LSYS5CALLS_SEL].gd;
1967
1968	x = (int) &IDTVEC(lcall_syscall);
1969	gdp->gd_looffset = x;
1970	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1971	gdp->gd_stkcpy = 1;
1972	gdp->gd_type = SDT_SYS386CGT;
1973	gdp->gd_dpl = SEL_UPL;
1974	gdp->gd_p = 1;
1975	gdp->gd_hioffset = x >> 16;
1976
1977	/* XXX does this work? */
1978	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1979	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
1980
1981	/* transfer to user mode */
1982
1983	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1984	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1985
1986	/* setup proc 0's pcb */
1987	proc0.p_addr->u_pcb.pcb_flags = 0;
1988	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1989	proc0.p_addr->u_pcb.pcb_ext = 0;
1990	proc0.p_frame = &proc0_tf;
1991}
1992
1993#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1994static void f00f_hack(void *unused);
1995SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1996
1997static void
1998f00f_hack(void *unused) {
1999	struct gate_descriptor *new_idt;
2000#ifndef SMP
2001	struct region_descriptor r_idt;
2002#endif
2003	vm_offset_t tmp;
2004
2005	if (!has_f00f_bug)
2006		return;
2007
2008	GIANT_REQUIRED;
2009
2010	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2011
2012	r_idt.rd_limit = sizeof(idt0) - 1;
2013
2014	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
2015	if (tmp == 0)
2016		panic("kmem_alloc returned 0");
2017	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2018		panic("kmem_alloc returned non-page-aligned memory");
2019	/* Put the first seven entries in the lower page */
2020	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2021	bcopy(idt, new_idt, sizeof(idt0));
2022	r_idt.rd_base = (int)new_idt;
2023	lidt(&r_idt);
2024	idt = new_idt;
2025	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2026			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2027		panic("vm_map_protect failed");
2028	return;
2029}
2030#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2031
2032int
2033ptrace_set_pc(p, addr)
2034	struct proc *p;
2035	unsigned long addr;
2036{
2037	p->p_frame->tf_eip = addr;
2038	return (0);
2039}
2040
2041int
2042ptrace_single_step(p)
2043	struct proc *p;
2044{
2045	p->p_frame->tf_eflags |= PSL_T;
2046	return (0);
2047}
2048
2049int ptrace_read_u_check(p, addr, len)
2050	struct proc *p;
2051	vm_offset_t addr;
2052	size_t len;
2053{
2054	vm_offset_t gap;
2055
2056	if ((vm_offset_t) (addr + len) < addr)
2057		return EPERM;
2058	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
2059		return 0;
2060
2061	gap = (char *) p->p_frame - (char *) p->p_addr;
2062
2063	if ((vm_offset_t) addr < gap)
2064		return EPERM;
2065	if ((vm_offset_t) (addr + len) <=
2066	    (vm_offset_t) (gap + sizeof(struct trapframe)))
2067		return 0;
2068	return EPERM;
2069}
2070
2071int ptrace_write_u(p, off, data)
2072	struct proc *p;
2073	vm_offset_t off;
2074	long data;
2075{
2076	struct trapframe frame_copy;
2077	vm_offset_t min;
2078	struct trapframe *tp;
2079
2080	/*
2081	 * Privileged kernel state is scattered all over the user area.
2082	 * Only allow write access to parts of regs and to fpregs.
2083	 */
2084	min = (char *)p->p_frame - (char *)p->p_addr;
2085	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
2086		tp = p->p_frame;
2087		frame_copy = *tp;
2088		*(int *)((char *)&frame_copy + (off - min)) = data;
2089		if (!EFL_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
2090		    !CS_SECURE(frame_copy.tf_cs))
2091			return (EINVAL);
2092		*(int*)((char *)p->p_addr + off) = data;
2093		return (0);
2094	}
2095	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
2096	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
2097		*(int*)((char *)p->p_addr + off) = data;
2098		return (0);
2099	}
2100	return (EFAULT);
2101}
2102
2103int
2104fill_regs(p, regs)
2105	struct proc *p;
2106	struct reg *regs;
2107{
2108	struct pcb *pcb;
2109	struct trapframe *tp;
2110
2111	tp = p->p_frame;
2112	regs->r_fs = tp->tf_fs;
2113	regs->r_es = tp->tf_es;
2114	regs->r_ds = tp->tf_ds;
2115	regs->r_edi = tp->tf_edi;
2116	regs->r_esi = tp->tf_esi;
2117	regs->r_ebp = tp->tf_ebp;
2118	regs->r_ebx = tp->tf_ebx;
2119	regs->r_edx = tp->tf_edx;
2120	regs->r_ecx = tp->tf_ecx;
2121	regs->r_eax = tp->tf_eax;
2122	regs->r_eip = tp->tf_eip;
2123	regs->r_cs = tp->tf_cs;
2124	regs->r_eflags = tp->tf_eflags;
2125	regs->r_esp = tp->tf_esp;
2126	regs->r_ss = tp->tf_ss;
2127	pcb = &p->p_addr->u_pcb;
2128	regs->r_gs = pcb->pcb_gs;
2129	return (0);
2130}
2131
2132int
2133set_regs(p, regs)
2134	struct proc *p;
2135	struct reg *regs;
2136{
2137	struct pcb *pcb;
2138	struct trapframe *tp;
2139
2140	tp = p->p_frame;
2141	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2142	    !CS_SECURE(regs->r_cs))
2143		return (EINVAL);
2144	tp->tf_fs = regs->r_fs;
2145	tp->tf_es = regs->r_es;
2146	tp->tf_ds = regs->r_ds;
2147	tp->tf_edi = regs->r_edi;
2148	tp->tf_esi = regs->r_esi;
2149	tp->tf_ebp = regs->r_ebp;
2150	tp->tf_ebx = regs->r_ebx;
2151	tp->tf_edx = regs->r_edx;
2152	tp->tf_ecx = regs->r_ecx;
2153	tp->tf_eax = regs->r_eax;
2154	tp->tf_eip = regs->r_eip;
2155	tp->tf_cs = regs->r_cs;
2156	tp->tf_eflags = regs->r_eflags;
2157	tp->tf_esp = regs->r_esp;
2158	tp->tf_ss = regs->r_ss;
2159	pcb = &p->p_addr->u_pcb;
2160	pcb->pcb_gs = regs->r_gs;
2161	return (0);
2162}
2163
2164int
2165fill_fpregs(p, fpregs)
2166	struct proc *p;
2167	struct fpreg *fpregs;
2168{
2169	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
2170	return (0);
2171}
2172
2173int
2174set_fpregs(p, fpregs)
2175	struct proc *p;
2176	struct fpreg *fpregs;
2177{
2178	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
2179	return (0);
2180}
2181
2182int
2183fill_dbregs(p, dbregs)
2184	struct proc *p;
2185	struct dbreg *dbregs;
2186{
2187	struct pcb *pcb;
2188
2189	if (p == NULL) {
2190		dbregs->dr0 = rdr0();
2191		dbregs->dr1 = rdr1();
2192		dbregs->dr2 = rdr2();
2193		dbregs->dr3 = rdr3();
2194		dbregs->dr4 = rdr4();
2195		dbregs->dr5 = rdr5();
2196		dbregs->dr6 = rdr6();
2197		dbregs->dr7 = rdr7();
2198	}
2199	else {
2200		pcb = &p->p_addr->u_pcb;
2201		dbregs->dr0 = pcb->pcb_dr0;
2202		dbregs->dr1 = pcb->pcb_dr1;
2203		dbregs->dr2 = pcb->pcb_dr2;
2204		dbregs->dr3 = pcb->pcb_dr3;
2205		dbregs->dr4 = 0;
2206		dbregs->dr5 = 0;
2207		dbregs->dr6 = pcb->pcb_dr6;
2208		dbregs->dr7 = pcb->pcb_dr7;
2209	}
2210	return (0);
2211}
2212
2213int
2214set_dbregs(p, dbregs)
2215	struct proc *p;
2216	struct dbreg *dbregs;
2217{
2218	struct pcb *pcb;
2219	int i;
2220	u_int32_t mask1, mask2;
2221
2222	if (p == NULL) {
2223		load_dr0(dbregs->dr0);
2224		load_dr1(dbregs->dr1);
2225		load_dr2(dbregs->dr2);
2226		load_dr3(dbregs->dr3);
2227		load_dr4(dbregs->dr4);
2228		load_dr5(dbregs->dr5);
2229		load_dr6(dbregs->dr6);
2230		load_dr7(dbregs->dr7);
2231	}
2232	else {
2233		/*
2234		 * Don't let an illegal value for dr7 get set.	Specifically,
2235		 * check for undefined settings.  Setting these bit patterns
2236		 * result in undefined behaviour and can lead to an unexpected
2237		 * TRCTRAP.
2238		 */
2239		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2240		     i++, mask1 <<= 2, mask2 <<= 2)
2241			if ((dbregs->dr7 & mask1) == mask2)
2242				return (EINVAL);
2243
2244		if (dbregs->dr7 & 0x0000fc00)
2245			return (EINVAL);
2246
2247		pcb = &p->p_addr->u_pcb;
2248
2249		/*
2250		 * Don't let a process set a breakpoint that is not within the
2251		 * process's address space.  If a process could do this, it
2252		 * could halt the system by setting a breakpoint in the kernel
2253		 * (if ddb was enabled).  Thus, we need to check to make sure
2254		 * that no breakpoints are being enabled for addresses outside
2255		 * process's address space, unless, perhaps, we were called by
2256		 * uid 0.
2257		 *
2258		 * XXX - what about when the watched area of the user's
2259		 * address space is written into from within the kernel
2260		 * ... wouldn't that still cause a breakpoint to be generated
2261		 * from within kernel mode?
2262		 */
2263
2264		if (suser(p) != 0) {
2265			if (dbregs->dr7 & 0x3) {
2266				/* dr0 is enabled */
2267				if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2268					return (EINVAL);
2269			}
2270
2271			if (dbregs->dr7 & (0x3<<2)) {
2272				/* dr1 is enabled */
2273				if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2274					return (EINVAL);
2275			}
2276
2277			if (dbregs->dr7 & (0x3<<4)) {
2278				/* dr2 is enabled */
2279				if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2280					return (EINVAL);
2281			}
2282
2283			if (dbregs->dr7 & (0x3<<6)) {
2284				/* dr3 is enabled */
2285				if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2286					return (EINVAL);
2287			}
2288		}
2289
2290		pcb->pcb_dr0 = dbregs->dr0;
2291		pcb->pcb_dr1 = dbregs->dr1;
2292		pcb->pcb_dr2 = dbregs->dr2;
2293		pcb->pcb_dr3 = dbregs->dr3;
2294		pcb->pcb_dr6 = dbregs->dr6;
2295		pcb->pcb_dr7 = dbregs->dr7;
2296
2297		pcb->pcb_flags |= PCB_DBREGS;
2298	}
2299
2300	return (0);
2301}
2302
2303/*
2304 * Return > 0 if a hardware breakpoint has been hit, and the
2305 * breakpoint was in user space.  Return 0, otherwise.
2306 */
2307int
2308user_dbreg_trap(void)
2309{
2310        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2311        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
2312        int nbp;            /* number of breakpoints that triggered */
2313        caddr_t addr[4];    /* breakpoint addresses */
2314        int i;
2315
2316        dr7 = rdr7();
2317        if ((dr7 & 0x000000ff) == 0) {
2318                /*
2319                 * all GE and LE bits in the dr7 register are zero,
2320                 * thus the trap couldn't have been caused by the
2321                 * hardware debug registers
2322                 */
2323                return 0;
2324        }
2325
2326        nbp = 0;
2327        dr6 = rdr6();
2328        bp = dr6 & 0x0000000f;
2329
2330        if (!bp) {
2331                /*
2332                 * None of the breakpoint bits are set meaning this
2333                 * trap was not caused by any of the debug registers
2334                 */
2335                return 0;
2336        }
2337
2338        /*
2339         * at least one of the breakpoints were hit, check to see
2340         * which ones and if any of them are user space addresses
2341         */
2342
2343        if (bp & 0x01) {
2344                addr[nbp++] = (caddr_t)rdr0();
2345        }
2346        if (bp & 0x02) {
2347                addr[nbp++] = (caddr_t)rdr1();
2348        }
2349        if (bp & 0x04) {
2350                addr[nbp++] = (caddr_t)rdr2();
2351        }
2352        if (bp & 0x08) {
2353                addr[nbp++] = (caddr_t)rdr3();
2354        }
2355
2356        for (i=0; i<nbp; i++) {
2357                if (addr[i] <
2358                    (caddr_t)VM_MAXUSER_ADDRESS) {
2359                        /*
2360                         * addr[i] is in user space
2361                         */
2362                        return nbp;
2363                }
2364        }
2365
2366        /*
2367         * None of the breakpoints are in user space.
2368         */
2369        return 0;
2370}
2371
2372
2373#ifndef DDB
2374void
2375Debugger(const char *msg)
2376{
2377	printf("Debugger(\"%s\") called.\n", msg);
2378}
2379#endif /* no DDB */
2380
2381#include <sys/disklabel.h>
2382
2383/*
2384 * Determine the size of the transfer, and make sure it is
2385 * within the boundaries of the partition. Adjust transfer
2386 * if needed, and signal errors or early completion.
2387 */
2388int
2389bounds_check_with_label(struct bio *bp, struct disklabel *lp, int wlabel)
2390{
2391        struct partition *p = lp->d_partitions + dkpart(bp->bio_dev);
2392        int labelsect = lp->d_partitions[0].p_offset;
2393        int maxsz = p->p_size,
2394                sz = (bp->bio_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2395
2396        /* overwriting disk label ? */
2397        /* XXX should also protect bootstrap in first 8K */
2398        if (bp->bio_blkno + p->p_offset <= LABELSECTOR + labelsect &&
2399#if LABELSECTOR != 0
2400            bp->bio_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2401#endif
2402            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2403                bp->bio_error = EROFS;
2404                goto bad;
2405        }
2406
2407#if     defined(DOSBBSECTOR) && defined(notyet)
2408        /* overwriting master boot record? */
2409        if (bp->bio_blkno + p->p_offset <= DOSBBSECTOR &&
2410            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2411                bp->bio_error = EROFS;
2412                goto bad;
2413        }
2414#endif
2415
2416        /* beyond partition? */
2417        if (bp->bio_blkno < 0 || bp->bio_blkno + sz > maxsz) {
2418                /* if exactly at end of disk, return an EOF */
2419                if (bp->bio_blkno == maxsz) {
2420                        bp->bio_resid = bp->bio_bcount;
2421                        return(0);
2422                }
2423                /* or truncate if part of it fits */
2424                sz = maxsz - bp->bio_blkno;
2425                if (sz <= 0) {
2426                        bp->bio_error = EINVAL;
2427                        goto bad;
2428                }
2429                bp->bio_bcount = sz << DEV_BSHIFT;
2430        }
2431
2432        bp->bio_pblkno = bp->bio_blkno + p->p_offset;
2433        return(1);
2434
2435bad:
2436        bp->bio_flags |= BIO_ERROR;
2437        return(-1);
2438}
2439
2440#ifdef DDB
2441
2442/*
2443 * Provide inb() and outb() as functions.  They are normally only
2444 * available as macros calling inlined functions, thus cannot be
2445 * called inside DDB.
2446 *
2447 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2448 */
2449
2450#undef inb
2451#undef outb
2452
2453/* silence compiler warnings */
2454u_char inb(u_int);
2455void outb(u_int, u_char);
2456
2457u_char
2458inb(u_int port)
2459{
2460	u_char	data;
2461	/*
2462	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2463	 * %edx, while gcc generates inferior code (movw instead of movl)
2464	 * if we tell it to load (u_short) port.
2465	 */
2466	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2467	return (data);
2468}
2469
2470void
2471outb(u_int port, u_char data)
2472{
2473	u_char	al;
2474	/*
2475	 * Use an unnecessary assignment to help gcc's register allocator.
2476	 * This make a large difference for gcc-1.40 and a tiny difference
2477	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2478	 * best results.  gcc-2.6.0 can't handle this.
2479	 */
2480	al = data;
2481	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2482}
2483
2484#endif /* DDB */
2485