machdep.c revision 78427
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 78427 2001-06-18 19:19:38Z jhb $
39 */
40
41#include "opt_atalk.h"
42#include "opt_compat.h"
43#include "opt_cpu.h"
44#include "opt_ddb.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_isa.h"
48#include "opt_maxmem.h"
49#include "opt_msgbuf.h"
50#include "opt_npx.h"
51#include "opt_perfmon.h"
52/* #include "opt_userconfig.h" */
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysproto.h>
57#include <sys/signalvar.h>
58#include <sys/kernel.h>
59#include <sys/ktr.h>
60#include <sys/linker.h>
61#include <sys/lock.h>
62#include <sys/malloc.h>
63#include <sys/mutex.h>
64#include <sys/pcpu.h>
65#include <sys/proc.h>
66#include <sys/bio.h>
67#include <sys/buf.h>
68#include <sys/reboot.h>
69#include <sys/smp.h>
70#include <sys/callout.h>
71#include <sys/msgbuf.h>
72#include <sys/sysent.h>
73#include <sys/sysctl.h>
74#include <sys/vmmeter.h>
75#include <sys/bus.h>
76#include <sys/eventhandler.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <sys/lock.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_map.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88#include <sys/user.h>
89#include <sys/exec.h>
90#include <sys/cons.h>
91
92#include <ddb/ddb.h>
93
94#include <net/netisr.h>
95
96#include <machine/cpu.h>
97#include <machine/cputypes.h>
98#include <machine/reg.h>
99#include <machine/clock.h>
100#include <machine/specialreg.h>
101#include <machine/bootinfo.h>
102#include <machine/md_var.h>
103#include <machine/pc/bios.h>
104#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
105#include <machine/globals.h>
106#ifdef PERFMON
107#include <machine/perfmon.h>
108#endif
109
110#ifdef OLD_BUS_ARCH
111#include <i386/isa/isa_device.h>
112#endif
113#include <i386/isa/icu.h>
114#include <i386/isa/intr_machdep.h>
115#include <isa/rtc.h>
116#include <machine/vm86.h>
117#include <sys/ptrace.h>
118#include <machine/sigframe.h>
119
120extern void init386 __P((int first));
121extern void dblfault_handler __P((void));
122
123extern void printcpuinfo(void);	/* XXX header file */
124extern void earlysetcpuclass(void);	/* same header file */
125extern void finishidentcpu(void);
126extern void panicifcpuunsupported(void);
127extern void initializecpu(void);
128
129#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
130#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
131
132static void cpu_startup __P((void *));
133SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
134
135int	_udatasel, _ucodesel;
136u_int	atdevbase;
137
138#if defined(SWTCH_OPTIM_STATS)
139extern int swtch_optim_stats;
140SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
141	CTLFLAG_RD, &swtch_optim_stats, 0, "");
142SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
143	CTLFLAG_RD, &tlb_flush_count, 0, "");
144#endif
145
146#ifdef PC98
147static int	ispc98 = 1;
148#else
149static int	ispc98 = 0;
150#endif
151SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
152
153int physmem = 0;
154int cold = 1;
155
156static void osendsig __P((sig_t catcher, int sig, sigset_t *mask, u_long code));
157
158static int
159sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
160{
161	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
162	return (error);
163}
164
165SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
166	0, 0, sysctl_hw_physmem, "I", "");
167
168static int
169sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
170{
171	int error = sysctl_handle_int(oidp, 0,
172		ctob(physmem - cnt.v_wire_count), req);
173	return (error);
174}
175
176SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
177	0, 0, sysctl_hw_usermem, "I", "");
178
179static int
180sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
181{
182	int error = sysctl_handle_int(oidp, 0,
183		i386_btop(avail_end - avail_start), req);
184	return (error);
185}
186
187SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
188	0, 0, sysctl_hw_availpages, "I", "");
189
190static int
191sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
192{
193	int error;
194
195	/* Unwind the buffer, so that it's linear (possibly starting with
196	 * some initial nulls).
197	 */
198	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
199		msgbufp->msg_size-msgbufp->msg_bufr,req);
200	if(error) return(error);
201	if(msgbufp->msg_bufr>0) {
202		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
203			msgbufp->msg_bufr,req);
204	}
205	return(error);
206}
207
208SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
209	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
210
211static int msgbuf_clear;
212
213static int
214sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
215{
216	int error;
217	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
218		req);
219	if (!error && req->newptr) {
220		/* Clear the buffer and reset write pointer */
221		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
222		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
223		msgbuf_clear=0;
224	}
225	return (error);
226}
227
228SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
229	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
230	"Clear kernel message buffer");
231
232int Maxmem = 0;
233long dumplo;
234
235vm_offset_t phys_avail[10];
236
237/* must be 2 less so 0 0 can signal end of chunks */
238#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
239
240static vm_offset_t buffer_sva, buffer_eva;
241vm_offset_t clean_sva, clean_eva;
242static vm_offset_t pager_sva, pager_eva;
243static struct trapframe proc0_tf;
244#ifndef SMP
245static struct globaldata __globaldata;
246#endif
247
248struct mtx sched_lock;
249struct mtx Giant;
250
251static void
252cpu_startup(dummy)
253	void *dummy;
254{
255	register unsigned i;
256	register caddr_t v;
257	vm_offset_t maxaddr;
258	vm_size_t size = 0;
259	int firstaddr;
260	vm_offset_t minaddr;
261	int physmem_est;
262
263	/*
264	 * Good {morning,afternoon,evening,night}.
265	 */
266	mtx_lock(&vm_mtx);
267	earlysetcpuclass();
268	startrtclock();
269	printcpuinfo();
270	panicifcpuunsupported();
271#ifdef PERFMON
272	perfmon_init();
273#endif
274	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
275	/*
276	 * Display any holes after the first chunk of extended memory.
277	 */
278	if (bootverbose) {
279		int indx;
280
281		printf("Physical memory chunk(s):\n");
282		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
283			unsigned int size1 = phys_avail[indx + 1] - phys_avail[indx];
284
285			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
286			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
287			    size1 / PAGE_SIZE);
288		}
289	}
290
291	/*
292	 * Calculate callout wheel size
293	 */
294	for (callwheelsize = 1, callwheelbits = 0;
295	     callwheelsize < ncallout;
296	     callwheelsize <<= 1, ++callwheelbits)
297		;
298	callwheelmask = callwheelsize - 1;
299
300	/*
301	 * Allocate space for system data structures.
302	 * The first available kernel virtual address is in "v".
303	 * As pages of kernel virtual memory are allocated, "v" is incremented.
304	 * As pages of memory are allocated and cleared,
305	 * "firstaddr" is incremented.
306	 * An index into the kernel page table corresponding to the
307	 * virtual memory address maintained in "v" is kept in "mapaddr".
308	 */
309
310	/*
311	 * Make two passes.  The first pass calculates how much memory is
312	 * needed and allocates it.  The second pass assigns virtual
313	 * addresses to the various data structures.
314	 */
315	firstaddr = 0;
316again:
317	v = (caddr_t)firstaddr;
318
319#define	valloc(name, type, num) \
320	    (name) = (type *)v; v = (caddr_t)((name)+(num))
321#define	valloclim(name, type, num, lim) \
322	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
323
324	valloc(callout, struct callout, ncallout);
325	valloc(callwheel, struct callout_tailq, callwheelsize);
326
327	/*
328	 * Discount the physical memory larger than the size of kernel_map
329	 * to avoid eating up all of KVA space.
330	 */
331	if (kernel_map->first_free == NULL) {
332		printf("Warning: no free entries in kernel_map.\n");
333		physmem_est = physmem;
334	} else
335		physmem_est = min(physmem, kernel_map->max_offset - kernel_map->min_offset);
336
337	/*
338	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
339	 * For the first 64MB of ram nominally allocate sufficient buffers to
340	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
341	 * buffers to cover 1/20 of our ram over 64MB.
342	 *
343	 * factor represents the 1/4 x ram conversion.
344	 */
345	if (nbuf == 0) {
346		int factor = 4 * BKVASIZE / PAGE_SIZE;
347
348		nbuf = 50;
349		if (physmem_est > 1024)
350			nbuf += min((physmem_est - 1024) / factor, 16384 / factor);
351		if (physmem_est > 16384)
352			nbuf += (physmem_est - 16384) * 2 / (factor * 5);
353	}
354
355	/*
356	 * Do not allow the buffer_map to be more then 1/2 the size of the
357	 * kernel_map.
358	 */
359	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
360	    (BKVASIZE * 2)) {
361		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
362		    (BKVASIZE * 2);
363		printf("Warning: nbufs capped at %d\n", nbuf);
364	}
365
366	nswbuf = max(min(nbuf/4, 256), 16);
367
368	valloc(swbuf, struct buf, nswbuf);
369	valloc(buf, struct buf, nbuf);
370	v = bufhashinit(v);
371
372	/*
373	 * End of first pass, size has been calculated so allocate memory
374	 */
375	if (firstaddr == 0) {
376		size = (vm_size_t)(v - firstaddr);
377		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
378		if (firstaddr == 0)
379			panic("startup: no room for tables");
380		goto again;
381	}
382
383	/*
384	 * End of second pass, addresses have been assigned
385	 */
386	if ((vm_size_t)(v - firstaddr) != size)
387		panic("startup: table size inconsistency");
388
389	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
390			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
391	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
392				(nbuf*BKVASIZE));
393	buffer_map->system_map = 1;
394	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
395				(nswbuf*MAXPHYS) + pager_map_size);
396	pager_map->system_map = 1;
397	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
398				(16*(ARG_MAX+(PAGE_SIZE*3))));
399
400	mtx_unlock(&vm_mtx);
401	/*
402	 * XXX: Mbuf system machine-specific initializations should
403	 *      go here, if anywhere.
404	 */
405
406	/*
407	 * Initialize callouts
408	 */
409	SLIST_INIT(&callfree);
410	for (i = 0; i < ncallout; i++) {
411		callout_init(&callout[i], 0);
412		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
413		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
414	}
415
416	for (i = 0; i < callwheelsize; i++) {
417		TAILQ_INIT(&callwheel[i]);
418	}
419
420	mtx_init(&callout_lock, "callout", MTX_SPIN | MTX_RECURSE);
421
422#if defined(USERCONFIG)
423	userconfig();
424	cninit();		/* the preferred console may have changed */
425#endif
426
427	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
428	    ptoa(cnt.v_free_count) / 1024);
429
430	/*
431	 * Set up buffers, so they can be used to read disk labels.
432	 */
433	bufinit();
434	vm_pager_bufferinit();
435
436	globaldata_register(GLOBALDATA);
437#ifndef SMP
438	/* For SMP, we delay the cpu_setregs() until after SMP startup. */
439	cpu_setregs();
440#endif
441}
442
443/*
444 * Send an interrupt to process.
445 *
446 * Stack is set up to allow sigcode stored
447 * at top to call routine, followed by kcall
448 * to sigreturn routine below.  After sigreturn
449 * resets the signal mask, the stack, and the
450 * frame pointer, it returns to the user
451 * specified pc, psl.
452 */
453static void
454osendsig(catcher, sig, mask, code)
455	sig_t catcher;
456	int sig;
457	sigset_t *mask;
458	u_long code;
459{
460	struct osigframe sf;
461	struct osigframe *fp;
462	struct proc *p;
463	struct sigacts *psp;
464	struct trapframe *regs;
465	int oonstack;
466
467	p = curproc;
468	PROC_LOCK(p);
469	psp = p->p_sigacts;
470	regs = p->p_md.md_regs;
471	oonstack = sigonstack(regs->tf_esp);
472
473	/* Allocate and validate space for the signal handler context. */
474	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
475	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
476		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
477		    p->p_sigstk.ss_size - sizeof(struct osigframe));
478#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
479		p->p_sigstk.ss_flags |= SS_ONSTACK;
480#endif
481	} else
482		fp = (struct osigframe *)regs->tf_esp - 1;
483	PROC_UNLOCK(p);
484
485	/*
486	 * grow_stack() will return 0 if *fp does not fit inside the stack
487	 * and the stack can not be grown.
488	 * useracc() will return FALSE if access is denied.
489	 */
490	if (grow_stack(p, (int)fp) == 0 ||
491	    !useracc((caddr_t)fp, sizeof(*fp), VM_PROT_WRITE)) {
492		/*
493		 * Process has trashed its stack; give it an illegal
494		 * instruction to halt it in its tracks.
495		 */
496		PROC_LOCK(p);
497		SIGACTION(p, SIGILL) = SIG_DFL;
498		SIGDELSET(p->p_sigignore, SIGILL);
499		SIGDELSET(p->p_sigcatch, SIGILL);
500		SIGDELSET(p->p_sigmask, SIGILL);
501		psignal(p, SIGILL);
502		PROC_UNLOCK(p);
503		return;
504	}
505
506	/* Translate the signal if appropriate. */
507	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
508		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
509
510	/* Build the argument list for the signal handler. */
511	sf.sf_signum = sig;
512	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
513	PROC_LOCK(p);
514	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
515		/* Signal handler installed with SA_SIGINFO. */
516		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
517		sf.sf_siginfo.si_signo = sig;
518		sf.sf_siginfo.si_code = code;
519		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
520	} else {
521		/* Old FreeBSD-style arguments. */
522		sf.sf_arg2 = code;
523		sf.sf_addr = regs->tf_err;
524		sf.sf_ahu.sf_handler = catcher;
525	}
526	PROC_UNLOCK(p);
527
528	/* Save most if not all of trap frame. */
529	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
530	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
531	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
532	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
533	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
534	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
535	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
536	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
537	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
538	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
539	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
540	sf.sf_siginfo.si_sc.sc_gs = rgs();
541	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
542
543	/* Build the signal context to be used by osigreturn(). */
544	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
545	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
546	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
547	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
548	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
549	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
550	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
551	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
552
553	/*
554	 * If we're a vm86 process, we want to save the segment registers.
555	 * We also change eflags to be our emulated eflags, not the actual
556	 * eflags.
557	 */
558	if (regs->tf_eflags & PSL_VM) {
559		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
560		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
561		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
562
563		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
564		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
565		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
566		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
567
568		if (vm86->vm86_has_vme == 0)
569			sf.sf_siginfo.si_sc.sc_ps =
570			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
571			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
572
573		/* See sendsig() for comments. */
574		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
575	}
576
577	/* Copy the sigframe out to the user's stack. */
578	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
579		/*
580		 * Something is wrong with the stack pointer.
581		 * ...Kill the process.
582		 */
583		PROC_LOCK(p);
584		sigexit(p, SIGILL);
585		/* NOTREACHED */
586	}
587
588	regs->tf_esp = (int)fp;
589	regs->tf_eip = PS_STRINGS - szosigcode;
590	regs->tf_cs = _ucodesel;
591	regs->tf_ds = _udatasel;
592	regs->tf_es = _udatasel;
593	regs->tf_fs = _udatasel;
594	load_gs(_udatasel);
595	regs->tf_ss = _udatasel;
596}
597
598void
599sendsig(catcher, sig, mask, code)
600	sig_t catcher;
601	int sig;
602	sigset_t *mask;
603	u_long code;
604{
605	struct sigframe sf;
606	struct proc *p;
607	struct sigacts *psp;
608	struct trapframe *regs;
609	struct sigframe *sfp;
610	int oonstack;
611
612	p = curproc;
613	PROC_LOCK(p);
614	psp = p->p_sigacts;
615	if (SIGISMEMBER(psp->ps_osigset, sig)) {
616		PROC_UNLOCK(p);
617		osendsig(catcher, sig, mask, code);
618		return;
619	}
620	regs = p->p_md.md_regs;
621	oonstack = sigonstack(regs->tf_esp);
622
623	/* Save user context. */
624	bzero(&sf, sizeof(sf));
625	sf.sf_uc.uc_sigmask = *mask;
626	sf.sf_uc.uc_stack = p->p_sigstk;
627	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
628	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
629	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
630	sf.sf_uc.uc_mcontext.mc_gs = rgs();
631	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
632
633	/* Allocate and validate space for the signal handler context. */
634	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
635	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
636		sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
637		    p->p_sigstk.ss_size - sizeof(struct sigframe));
638#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
639		p->p_sigstk.ss_flags |= SS_ONSTACK;
640#endif
641	} else
642		sfp = (struct sigframe *)regs->tf_esp - 1;
643	PROC_UNLOCK(p);
644
645	/*
646	 * grow_stack() will return 0 if *sfp does not fit inside the stack
647	 * and the stack can not be grown.
648	 * useracc() will return FALSE if access is denied.
649	 */
650	if (grow_stack(p, (int)sfp) == 0 ||
651	    !useracc((caddr_t)sfp, sizeof(*sfp), VM_PROT_WRITE)) {
652		/*
653		 * Process has trashed its stack; give it an illegal
654		 * instruction to halt it in its tracks.
655		 */
656#ifdef DEBUG
657		printf("process %d has trashed its stack\n", p->p_pid);
658#endif
659		PROC_LOCK(p);
660		SIGACTION(p, SIGILL) = SIG_DFL;
661		SIGDELSET(p->p_sigignore, SIGILL);
662		SIGDELSET(p->p_sigcatch, SIGILL);
663		SIGDELSET(p->p_sigmask, SIGILL);
664		psignal(p, SIGILL);
665		PROC_UNLOCK(p);
666		return;
667	}
668
669	/* Translate the signal if appropriate. */
670	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
671		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
672
673	/* Build the argument list for the signal handler. */
674	sf.sf_signum = sig;
675	sf.sf_ucontext = (register_t)&sfp->sf_uc;
676	PROC_LOCK(p);
677	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
678		/* Signal handler installed with SA_SIGINFO. */
679		sf.sf_siginfo = (register_t)&sfp->sf_si;
680		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
681
682		/* Fill siginfo structure. */
683		sf.sf_si.si_signo = sig;
684		sf.sf_si.si_code = code;
685		sf.sf_si.si_addr = (void *)regs->tf_err;
686	} else {
687		/* Old FreeBSD-style arguments. */
688		sf.sf_siginfo = code;
689		sf.sf_addr = regs->tf_err;
690		sf.sf_ahu.sf_handler = catcher;
691	}
692	PROC_UNLOCK(p);
693
694	/*
695	 * If we're a vm86 process, we want to save the segment registers.
696	 * We also change eflags to be our emulated eflags, not the actual
697	 * eflags.
698	 */
699	if (regs->tf_eflags & PSL_VM) {
700		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
701		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
702
703		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
704		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
705		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
706		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
707
708		if (vm86->vm86_has_vme == 0)
709			sf.sf_uc.uc_mcontext.mc_eflags =
710			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
711			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
712
713		/*
714		 * We should never have PSL_T set when returning from vm86
715		 * mode.  It may be set here if we deliver a signal before
716		 * getting to vm86 mode, so turn it off.
717		 *
718		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
719		 * syscalls made by the signal handler.  This just avoids
720		 * wasting time for our lazy fixup of such faults.  PSL_NT
721		 * does nothing in vm86 mode, but vm86 programs can set it
722		 * almost legitimately in probes for old cpu types.
723		 */
724		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
725	}
726
727	/* Copy the sigframe out to the user's stack. */
728	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
729		/*
730		 * Something is wrong with the stack pointer.
731		 * ...Kill the process.
732		 */
733		PROC_LOCK(p);
734		sigexit(p, SIGILL);
735		/* NOTREACHED */
736	}
737
738	regs->tf_esp = (int)sfp;
739	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
740	regs->tf_cs = _ucodesel;
741	regs->tf_ds = _udatasel;
742	regs->tf_es = _udatasel;
743	regs->tf_fs = _udatasel;
744	regs->tf_ss = _udatasel;
745}
746
747/*
748 * System call to cleanup state after a signal
749 * has been taken.  Reset signal mask and
750 * stack state from context left by sendsig (above).
751 * Return to previous pc and psl as specified by
752 * context left by sendsig. Check carefully to
753 * make sure that the user has not modified the
754 * state to gain improper privileges.
755 */
756int
757osigreturn(p, uap)
758	struct proc *p;
759	struct osigreturn_args /* {
760		struct osigcontext *sigcntxp;
761	} */ *uap;
762{
763	struct trapframe *regs;
764	struct osigcontext *scp;
765	int eflags;
766
767	regs = p->p_md.md_regs;
768	scp = uap->sigcntxp;
769	if (!useracc((caddr_t)scp, sizeof(*scp), VM_PROT_READ))
770		return (EFAULT);
771	eflags = scp->sc_ps;
772	if (eflags & PSL_VM) {
773		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
774		struct vm86_kernel *vm86;
775
776		/*
777		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
778		 * set up the vm86 area, and we can't enter vm86 mode.
779		 */
780		if (p->p_addr->u_pcb.pcb_ext == 0)
781			return (EINVAL);
782		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
783		if (vm86->vm86_inited == 0)
784			return (EINVAL);
785
786		/* Go back to user mode if both flags are set. */
787		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
788			trapsignal(p, SIGBUS, 0);
789
790		if (vm86->vm86_has_vme) {
791			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
792			    (eflags & VME_USERCHANGE) | PSL_VM;
793		} else {
794			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
795			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
796		}
797		tf->tf_vm86_ds = scp->sc_ds;
798		tf->tf_vm86_es = scp->sc_es;
799		tf->tf_vm86_fs = scp->sc_fs;
800		tf->tf_vm86_gs = scp->sc_gs;
801		tf->tf_ds = _udatasel;
802		tf->tf_es = _udatasel;
803		tf->tf_fs = _udatasel;
804	} else {
805		/*
806		 * Don't allow users to change privileged or reserved flags.
807		 */
808		/*
809		 * XXX do allow users to change the privileged flag PSL_RF.
810		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
811		 * should sometimes set it there too.  tf_eflags is kept in
812		 * the signal context during signal handling and there is no
813		 * other place to remember it, so the PSL_RF bit may be
814		 * corrupted by the signal handler without us knowing.
815		 * Corruption of the PSL_RF bit at worst causes one more or
816		 * one less debugger trap, so allowing it is fairly harmless.
817		 */
818		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
819	    		return (EINVAL);
820		}
821
822		/*
823		 * Don't allow users to load a valid privileged %cs.  Let the
824		 * hardware check for invalid selectors, excess privilege in
825		 * other selectors, invalid %eip's and invalid %esp's.
826		 */
827		if (!CS_SECURE(scp->sc_cs)) {
828			trapsignal(p, SIGBUS, T_PROTFLT);
829			return (EINVAL);
830		}
831		regs->tf_ds = scp->sc_ds;
832		regs->tf_es = scp->sc_es;
833		regs->tf_fs = scp->sc_fs;
834	}
835
836	/* Restore remaining registers. */
837	regs->tf_eax = scp->sc_eax;
838	regs->tf_ebx = scp->sc_ebx;
839	regs->tf_ecx = scp->sc_ecx;
840	regs->tf_edx = scp->sc_edx;
841	regs->tf_esi = scp->sc_esi;
842	regs->tf_edi = scp->sc_edi;
843	regs->tf_cs = scp->sc_cs;
844	regs->tf_ss = scp->sc_ss;
845	regs->tf_isp = scp->sc_isp;
846
847	PROC_LOCK(p);
848#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
849	if (scp->sc_onstack & 1)
850		p->p_sigstk.ss_flags |= SS_ONSTACK;
851	else
852		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
853#endif
854
855	SIGSETOLD(p->p_sigmask, scp->sc_mask);
856	SIG_CANTMASK(p->p_sigmask);
857	PROC_UNLOCK(p);
858	regs->tf_ebp = scp->sc_fp;
859	regs->tf_esp = scp->sc_sp;
860	regs->tf_eip = scp->sc_pc;
861	regs->tf_eflags = eflags;
862	return (EJUSTRETURN);
863}
864
865int
866sigreturn(p, uap)
867	struct proc *p;
868	struct sigreturn_args /* {
869		ucontext_t *sigcntxp;
870	} */ *uap;
871{
872	struct trapframe *regs;
873	ucontext_t *ucp;
874	int cs, eflags;
875
876	ucp = uap->sigcntxp;
877	if (!useracc((caddr_t)ucp, sizeof(struct osigcontext), VM_PROT_READ))
878		return (EFAULT);
879	if (((struct osigcontext *)ucp)->sc_trapno == 0x01d516)
880		return (osigreturn(p, (struct osigreturn_args *)uap));
881
882	/*
883	 * Since ucp is not an osigcontext but a ucontext_t, we have to
884	 * check again if all of it is accessible.  A ucontext_t is
885	 * much larger, so instead of just checking for the pointer
886	 * being valid for the size of an osigcontext, now check for
887	 * it being valid for a whole, new-style ucontext_t.
888	 */
889	if (!useracc((caddr_t)ucp, sizeof(*ucp), VM_PROT_READ))
890		return (EFAULT);
891
892	regs = p->p_md.md_regs;
893	eflags = ucp->uc_mcontext.mc_eflags;
894	if (eflags & PSL_VM) {
895		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
896		struct vm86_kernel *vm86;
897
898		/*
899		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
900		 * set up the vm86 area, and we can't enter vm86 mode.
901		 */
902		if (p->p_addr->u_pcb.pcb_ext == 0)
903			return (EINVAL);
904		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
905		if (vm86->vm86_inited == 0)
906			return (EINVAL);
907
908		/* Go back to user mode if both flags are set. */
909		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
910			trapsignal(p, SIGBUS, 0);
911
912		if (vm86->vm86_has_vme) {
913			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
914			    (eflags & VME_USERCHANGE) | PSL_VM;
915		} else {
916			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
917			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
918		}
919		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
920		tf->tf_eflags = eflags;
921		tf->tf_vm86_ds = tf->tf_ds;
922		tf->tf_vm86_es = tf->tf_es;
923		tf->tf_vm86_fs = tf->tf_fs;
924		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
925		tf->tf_ds = _udatasel;
926		tf->tf_es = _udatasel;
927		tf->tf_fs = _udatasel;
928	} else {
929		/*
930		 * Don't allow users to change privileged or reserved flags.
931		 */
932		/*
933		 * XXX do allow users to change the privileged flag PSL_RF.
934		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
935		 * should sometimes set it there too.  tf_eflags is kept in
936		 * the signal context during signal handling and there is no
937		 * other place to remember it, so the PSL_RF bit may be
938		 * corrupted by the signal handler without us knowing.
939		 * Corruption of the PSL_RF bit at worst causes one more or
940		 * one less debugger trap, so allowing it is fairly harmless.
941		 */
942		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
943			printf("sigreturn: eflags = 0x%x\n", eflags);
944	    		return (EINVAL);
945		}
946
947		/*
948		 * Don't allow users to load a valid privileged %cs.  Let the
949		 * hardware check for invalid selectors, excess privilege in
950		 * other selectors, invalid %eip's and invalid %esp's.
951		 */
952		cs = ucp->uc_mcontext.mc_cs;
953		if (!CS_SECURE(cs)) {
954			printf("sigreturn: cs = 0x%x\n", cs);
955			trapsignal(p, SIGBUS, T_PROTFLT);
956			return (EINVAL);
957		}
958
959		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
960	}
961
962	PROC_LOCK(p);
963#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
964	if (ucp->uc_mcontext.mc_onstack & 1)
965		p->p_sigstk.ss_flags |= SS_ONSTACK;
966	else
967		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
968#endif
969
970	p->p_sigmask = ucp->uc_sigmask;
971	SIG_CANTMASK(p->p_sigmask);
972	PROC_UNLOCK(p);
973	return (EJUSTRETURN);
974}
975
976/*
977 * Machine dependent boot() routine
978 *
979 * I haven't seen anything to put here yet
980 * Possibly some stuff might be grafted back here from boot()
981 */
982void
983cpu_boot(int howto)
984{
985}
986
987/*
988 * Shutdown the CPU as much as possible
989 */
990void
991cpu_halt(void)
992{
993	for (;;)
994		__asm__ ("hlt");
995}
996
997/*
998 * Hook to idle the CPU when possible.  This currently only works in
999 * the !SMP case, as there is no clean way to ensure that a CPU will be
1000 * woken when there is work available for it.
1001 */
1002static int	cpu_idle_hlt = 1;
1003SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1004    &cpu_idle_hlt, 0, "Idle loop HLT enable");
1005
1006/*
1007 * Note that we have to be careful here to avoid a race between checking
1008 * procrunnable() and actually halting.  If we don't do this, we may waste
1009 * the time between calling hlt and the next interrupt even though there
1010 * is a runnable process.
1011 */
1012void
1013cpu_idle(void)
1014{
1015#ifndef SMP
1016	if (cpu_idle_hlt) {
1017		disable_intr();
1018  		if (procrunnable())
1019			enable_intr();
1020		else {
1021			enable_intr();
1022			__asm __volatile("hlt");
1023		}
1024	}
1025#endif
1026}
1027
1028/*
1029 * Clear registers on exec
1030 */
1031void
1032setregs(p, entry, stack, ps_strings)
1033	struct proc *p;
1034	u_long entry;
1035	u_long stack;
1036	u_long ps_strings;
1037{
1038	struct trapframe *regs = p->p_md.md_regs;
1039	struct pcb *pcb = &p->p_addr->u_pcb;
1040
1041	if (pcb->pcb_ldt)
1042		user_ldt_free(pcb);
1043
1044	bzero((char *)regs, sizeof(struct trapframe));
1045	regs->tf_eip = entry;
1046	regs->tf_esp = stack;
1047	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1048	regs->tf_ss = _udatasel;
1049	regs->tf_ds = _udatasel;
1050	regs->tf_es = _udatasel;
1051	regs->tf_fs = _udatasel;
1052	regs->tf_cs = _ucodesel;
1053
1054	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1055	regs->tf_ebx = ps_strings;
1056
1057	/* reset %gs as well */
1058	if (pcb == PCPU_GET(curpcb))
1059		load_gs(_udatasel);
1060	else
1061		pcb->pcb_gs = _udatasel;
1062
1063        /*
1064         * Reset the hardware debug registers if they were in use.
1065         * They won't have any meaning for the newly exec'd process.
1066         */
1067        if (pcb->pcb_flags & PCB_DBREGS) {
1068                pcb->pcb_dr0 = 0;
1069                pcb->pcb_dr1 = 0;
1070                pcb->pcb_dr2 = 0;
1071                pcb->pcb_dr3 = 0;
1072                pcb->pcb_dr6 = 0;
1073                pcb->pcb_dr7 = 0;
1074                if (pcb == PCPU_GET(curpcb)) {
1075		        /*
1076			 * Clear the debug registers on the running
1077			 * CPU, otherwise they will end up affecting
1078			 * the next process we switch to.
1079			 */
1080		        reset_dbregs();
1081                }
1082                pcb->pcb_flags &= ~PCB_DBREGS;
1083        }
1084
1085	/*
1086	 * Initialize the math emulator (if any) for the current process.
1087	 * Actually, just clear the bit that says that the emulator has
1088	 * been initialized.  Initialization is delayed until the process
1089	 * traps to the emulator (if it is done at all) mainly because
1090	 * emulators don't provide an entry point for initialization.
1091	 */
1092	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
1093
1094	/*
1095	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
1096	 * for why fwait must be trapped at least if there is an npx or an
1097	 * emulator).  This is mainly to handle the case where npx0 is not
1098	 * configured, since the npx routines normally set up the trap
1099	 * otherwise.  It should be done only at boot time, but doing it
1100	 * here allows modifying `npx_exists' for testing the emulator on
1101	 * systems with an npx.
1102	 */
1103	load_cr0(rcr0() | CR0_MP | CR0_TS);
1104
1105#ifdef DEV_NPX
1106	/* Initialize the npx (if any) for the current process. */
1107	npxinit(__INITIAL_NPXCW__);
1108#endif
1109
1110	/*
1111	 * XXX - Linux emulator
1112	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1113	 * on it.
1114	 */
1115	p->p_retval[1] = 0;
1116}
1117
1118void
1119cpu_setregs(void)
1120{
1121	unsigned int cr0;
1122
1123	cr0 = rcr0();
1124	cr0 |= CR0_NE;			/* Done by npxinit() */
1125	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1126#ifndef I386_CPU
1127	cr0 |= CR0_WP | CR0_AM;
1128#endif
1129	load_cr0(cr0);
1130	load_gs(_udatasel);
1131}
1132
1133static int
1134sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1135{
1136	int error;
1137	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1138		req);
1139	if (!error && req->newptr)
1140		resettodr();
1141	return (error);
1142}
1143
1144SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1145	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1146
1147SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1148	CTLFLAG_RW, &disable_rtc_set, 0, "");
1149
1150SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1151	CTLFLAG_RD, &bootinfo, bootinfo, "");
1152
1153SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1154	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1155
1156/*
1157 * Initialize 386 and configure to run kernel
1158 */
1159
1160/*
1161 * Initialize segments & interrupt table
1162 */
1163
1164int _default_ldt;
1165union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1166static struct gate_descriptor idt0[NIDT];
1167struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1168union descriptor ldt[NLDT];		/* local descriptor table */
1169#ifdef SMP
1170/* table descriptors - used to load tables by microp */
1171struct region_descriptor r_gdt, r_idt;
1172#endif
1173
1174int private_tss;			/* flag indicating private tss */
1175
1176#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1177extern int has_f00f_bug;
1178#endif
1179
1180static struct i386tss dblfault_tss;
1181static char dblfault_stack[PAGE_SIZE];
1182
1183extern  struct user *proc0paddr;
1184
1185
1186/* software prototypes -- in more palatable form */
1187struct soft_segment_descriptor gdt_segs[] = {
1188/* GNULL_SEL	0 Null Descriptor */
1189{	0x0,			/* segment base address  */
1190	0x0,			/* length */
1191	0,			/* segment type */
1192	0,			/* segment descriptor priority level */
1193	0,			/* segment descriptor present */
1194	0, 0,
1195	0,			/* default 32 vs 16 bit size */
1196	0  			/* limit granularity (byte/page units)*/ },
1197/* GCODE_SEL	1 Code Descriptor for kernel */
1198{	0x0,			/* segment base address  */
1199	0xfffff,		/* length - all address space */
1200	SDT_MEMERA,		/* segment type */
1201	0,			/* segment descriptor priority level */
1202	1,			/* segment descriptor present */
1203	0, 0,
1204	1,			/* default 32 vs 16 bit size */
1205	1  			/* limit granularity (byte/page units)*/ },
1206/* GDATA_SEL	2 Data Descriptor for kernel */
1207{	0x0,			/* segment base address  */
1208	0xfffff,		/* length - all address space */
1209	SDT_MEMRWA,		/* segment type */
1210	0,			/* segment descriptor priority level */
1211	1,			/* segment descriptor present */
1212	0, 0,
1213	1,			/* default 32 vs 16 bit size */
1214	1  			/* limit granularity (byte/page units)*/ },
1215/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1216{	0x0,			/* segment base address  */
1217	0xfffff,		/* length - all address space */
1218	SDT_MEMRWA,		/* segment type */
1219	0,			/* segment descriptor priority level */
1220	1,			/* segment descriptor present */
1221	0, 0,
1222	1,			/* default 32 vs 16 bit size */
1223	1  			/* limit granularity (byte/page units)*/ },
1224/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1225{
1226	0x0,			/* segment base address */
1227	sizeof(struct i386tss)-1,/* length - all address space */
1228	SDT_SYS386TSS,		/* segment type */
1229	0,			/* segment descriptor priority level */
1230	1,			/* segment descriptor present */
1231	0, 0,
1232	0,			/* unused - default 32 vs 16 bit size */
1233	0  			/* limit granularity (byte/page units)*/ },
1234/* GLDT_SEL	5 LDT Descriptor */
1235{	(int) ldt,		/* segment base address  */
1236	sizeof(ldt)-1,		/* length - all address space */
1237	SDT_SYSLDT,		/* segment type */
1238	SEL_UPL,		/* segment descriptor priority level */
1239	1,			/* segment descriptor present */
1240	0, 0,
1241	0,			/* unused - default 32 vs 16 bit size */
1242	0  			/* limit granularity (byte/page units)*/ },
1243/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1244{	(int) ldt,		/* segment base address  */
1245	(512 * sizeof(union descriptor)-1),		/* length */
1246	SDT_SYSLDT,		/* segment type */
1247	0,			/* segment descriptor priority level */
1248	1,			/* segment descriptor present */
1249	0, 0,
1250	0,			/* unused - default 32 vs 16 bit size */
1251	0  			/* limit granularity (byte/page units)*/ },
1252/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1253{	0x0,			/* segment base address  */
1254	0x0,			/* length - all address space */
1255	0,			/* segment type */
1256	0,			/* segment descriptor priority level */
1257	0,			/* segment descriptor present */
1258	0, 0,
1259	0,			/* default 32 vs 16 bit size */
1260	0  			/* limit granularity (byte/page units)*/ },
1261/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1262{	0x400,			/* segment base address */
1263	0xfffff,		/* length */
1264	SDT_MEMRWA,		/* segment type */
1265	0,			/* segment descriptor priority level */
1266	1,			/* segment descriptor present */
1267	0, 0,
1268	1,			/* default 32 vs 16 bit size */
1269	1  			/* limit granularity (byte/page units)*/ },
1270/* GPANIC_SEL	9 Panic Tss Descriptor */
1271{	(int) &dblfault_tss,	/* segment base address  */
1272	sizeof(struct i386tss)-1,/* length - all address space */
1273	SDT_SYS386TSS,		/* segment type */
1274	0,			/* segment descriptor priority level */
1275	1,			/* segment descriptor present */
1276	0, 0,
1277	0,			/* unused - default 32 vs 16 bit size */
1278	0  			/* limit granularity (byte/page units)*/ },
1279/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1280{	0,			/* segment base address (overwritten)  */
1281	0xfffff,		/* length */
1282	SDT_MEMERA,		/* segment type */
1283	0,			/* segment descriptor priority level */
1284	1,			/* segment descriptor present */
1285	0, 0,
1286	0,			/* default 32 vs 16 bit size */
1287	1  			/* limit granularity (byte/page units)*/ },
1288/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1289{	0,			/* segment base address (overwritten)  */
1290	0xfffff,		/* length */
1291	SDT_MEMERA,		/* segment type */
1292	0,			/* segment descriptor priority level */
1293	1,			/* segment descriptor present */
1294	0, 0,
1295	0,			/* default 32 vs 16 bit size */
1296	1  			/* limit granularity (byte/page units)*/ },
1297/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1298{	0,			/* segment base address (overwritten) */
1299	0xfffff,		/* length */
1300	SDT_MEMRWA,		/* segment type */
1301	0,			/* segment descriptor priority level */
1302	1,			/* segment descriptor present */
1303	0, 0,
1304	1,			/* default 32 vs 16 bit size */
1305	1  			/* limit granularity (byte/page units)*/ },
1306/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1307{	0,			/* segment base address (overwritten) */
1308	0xfffff,		/* length */
1309	SDT_MEMRWA,		/* segment type */
1310	0,			/* segment descriptor priority level */
1311	1,			/* segment descriptor present */
1312	0, 0,
1313	0,			/* default 32 vs 16 bit size */
1314	1  			/* limit granularity (byte/page units)*/ },
1315/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1316{	0,			/* segment base address (overwritten) */
1317	0xfffff,		/* length */
1318	SDT_MEMRWA,		/* segment type */
1319	0,			/* segment descriptor priority level */
1320	1,			/* segment descriptor present */
1321	0, 0,
1322	0,			/* default 32 vs 16 bit size */
1323	1  			/* limit granularity (byte/page units)*/ },
1324};
1325
1326static struct soft_segment_descriptor ldt_segs[] = {
1327	/* Null Descriptor - overwritten by call gate */
1328{	0x0,			/* segment base address  */
1329	0x0,			/* length - all address space */
1330	0,			/* segment type */
1331	0,			/* segment descriptor priority level */
1332	0,			/* segment descriptor present */
1333	0, 0,
1334	0,			/* default 32 vs 16 bit size */
1335	0  			/* limit granularity (byte/page units)*/ },
1336	/* Null Descriptor - overwritten by call gate */
1337{	0x0,			/* segment base address  */
1338	0x0,			/* length - all address space */
1339	0,			/* segment type */
1340	0,			/* segment descriptor priority level */
1341	0,			/* segment descriptor present */
1342	0, 0,
1343	0,			/* default 32 vs 16 bit size */
1344	0  			/* limit granularity (byte/page units)*/ },
1345	/* Null Descriptor - overwritten by call gate */
1346{	0x0,			/* segment base address  */
1347	0x0,			/* length - all address space */
1348	0,			/* segment type */
1349	0,			/* segment descriptor priority level */
1350	0,			/* segment descriptor present */
1351	0, 0,
1352	0,			/* default 32 vs 16 bit size */
1353	0  			/* limit granularity (byte/page units)*/ },
1354	/* Code Descriptor for user */
1355{	0x0,			/* segment base address  */
1356	0xfffff,		/* length - all address space */
1357	SDT_MEMERA,		/* segment type */
1358	SEL_UPL,		/* segment descriptor priority level */
1359	1,			/* segment descriptor present */
1360	0, 0,
1361	1,			/* default 32 vs 16 bit size */
1362	1  			/* limit granularity (byte/page units)*/ },
1363	/* Null Descriptor - overwritten by call gate */
1364{	0x0,			/* segment base address  */
1365	0x0,			/* length - all address space */
1366	0,			/* segment type */
1367	0,			/* segment descriptor priority level */
1368	0,			/* segment descriptor present */
1369	0, 0,
1370	0,			/* default 32 vs 16 bit size */
1371	0  			/* limit granularity (byte/page units)*/ },
1372	/* Data Descriptor for user */
1373{	0x0,			/* segment base address  */
1374	0xfffff,		/* length - all address space */
1375	SDT_MEMRWA,		/* segment type */
1376	SEL_UPL,		/* segment descriptor priority level */
1377	1,			/* segment descriptor present */
1378	0, 0,
1379	1,			/* default 32 vs 16 bit size */
1380	1  			/* limit granularity (byte/page units)*/ },
1381};
1382
1383void
1384setidt(idx, func, typ, dpl, selec)
1385	int idx;
1386	inthand_t *func;
1387	int typ;
1388	int dpl;
1389	int selec;
1390{
1391	struct gate_descriptor *ip;
1392
1393	ip = idt + idx;
1394	ip->gd_looffset = (int)func;
1395	ip->gd_selector = selec;
1396	ip->gd_stkcpy = 0;
1397	ip->gd_xx = 0;
1398	ip->gd_type = typ;
1399	ip->gd_dpl = dpl;
1400	ip->gd_p = 1;
1401	ip->gd_hioffset = ((int)func)>>16 ;
1402}
1403
1404#define	IDTVEC(name)	__CONCAT(X,name)
1405
1406extern inthand_t
1407	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1408	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1409	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1410	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1411	IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1412
1413void
1414sdtossd(sd, ssd)
1415	struct segment_descriptor *sd;
1416	struct soft_segment_descriptor *ssd;
1417{
1418	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1419	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1420	ssd->ssd_type  = sd->sd_type;
1421	ssd->ssd_dpl   = sd->sd_dpl;
1422	ssd->ssd_p     = sd->sd_p;
1423	ssd->ssd_def32 = sd->sd_def32;
1424	ssd->ssd_gran  = sd->sd_gran;
1425}
1426
1427#define PHYSMAP_SIZE	(2 * 8)
1428
1429/*
1430 * Populate the (physmap) array with base/bound pairs describing the
1431 * available physical memory in the system, then test this memory and
1432 * build the phys_avail array describing the actually-available memory.
1433 *
1434 * If we cannot accurately determine the physical memory map, then use
1435 * value from the 0xE801 call, and failing that, the RTC.
1436 *
1437 * Total memory size may be set by the kernel environment variable
1438 * hw.physmem or the compile-time define MAXMEM.
1439 */
1440static void
1441getmemsize(int first)
1442{
1443	int i, physmap_idx, pa_indx;
1444	u_int basemem, extmem;
1445	struct vm86frame vmf;
1446	struct vm86context vmc;
1447	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1448	pt_entry_t pte;
1449	const char *cp;
1450	struct bios_smap *smap;
1451
1452	bzero(&vmf, sizeof(struct vm86frame));
1453	bzero(physmap, sizeof(physmap));
1454
1455	/*
1456	 * Perform "base memory" related probes & setup
1457	 */
1458	vm86_intcall(0x12, &vmf);
1459	basemem = vmf.vmf_ax;
1460	if (basemem > 640) {
1461		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1462			basemem);
1463		basemem = 640;
1464	}
1465
1466	/*
1467	 * XXX if biosbasemem is now < 640, there is a `hole'
1468	 * between the end of base memory and the start of
1469	 * ISA memory.  The hole may be empty or it may
1470	 * contain BIOS code or data.  Map it read/write so
1471	 * that the BIOS can write to it.  (Memory from 0 to
1472	 * the physical end of the kernel is mapped read-only
1473	 * to begin with and then parts of it are remapped.
1474	 * The parts that aren't remapped form holes that
1475	 * remain read-only and are unused by the kernel.
1476	 * The base memory area is below the physical end of
1477	 * the kernel and right now forms a read-only hole.
1478	 * The part of it from PAGE_SIZE to
1479	 * (trunc_page(biosbasemem * 1024) - 1) will be
1480	 * remapped and used by the kernel later.)
1481	 *
1482	 * This code is similar to the code used in
1483	 * pmap_mapdev, but since no memory needs to be
1484	 * allocated we simply change the mapping.
1485	 */
1486	for (pa = trunc_page(basemem * 1024);
1487	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1488		pte = (pt_entry_t)vtopte(pa + KERNBASE);
1489		*pte = pa | PG_RW | PG_V;
1490	}
1491
1492	/*
1493	 * if basemem != 640, map pages r/w into vm86 page table so
1494	 * that the bios can scribble on it.
1495	 */
1496	pte = (pt_entry_t)vm86paddr;
1497	for (i = basemem / 4; i < 160; i++)
1498		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1499
1500	/*
1501	 * map page 1 R/W into the kernel page table so we can use it
1502	 * as a buffer.  The kernel will unmap this page later.
1503	 */
1504	pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
1505	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1506
1507	/*
1508	 * get memory map with INT 15:E820
1509	 */
1510	vmc.npages = 0;
1511	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1512	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1513
1514	physmap_idx = 0;
1515	vmf.vmf_ebx = 0;
1516	do {
1517		vmf.vmf_eax = 0xE820;
1518		vmf.vmf_edx = SMAP_SIG;
1519		vmf.vmf_ecx = sizeof(struct bios_smap);
1520		i = vm86_datacall(0x15, &vmf, &vmc);
1521		if (i || vmf.vmf_eax != SMAP_SIG)
1522			break;
1523		if (boothowto & RB_VERBOSE)
1524			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1525				smap->type,
1526				*(u_int32_t *)((char *)&smap->base + 4),
1527				(u_int32_t)smap->base,
1528				*(u_int32_t *)((char *)&smap->length + 4),
1529				(u_int32_t)smap->length);
1530
1531		if (smap->type != 0x01)
1532			goto next_run;
1533
1534		if (smap->length == 0)
1535			goto next_run;
1536
1537		if (smap->base >= 0xffffffff) {
1538			printf("%uK of memory above 4GB ignored\n",
1539			    (u_int)(smap->length / 1024));
1540			goto next_run;
1541		}
1542
1543		for (i = 0; i <= physmap_idx; i += 2) {
1544			if (smap->base < physmap[i + 1]) {
1545				if (boothowto & RB_VERBOSE)
1546					printf(
1547	"Overlapping or non-montonic memory region, ignoring second region\n");
1548				goto next_run;
1549			}
1550		}
1551
1552		if (smap->base == physmap[physmap_idx + 1]) {
1553			physmap[physmap_idx + 1] += smap->length;
1554			goto next_run;
1555		}
1556
1557		physmap_idx += 2;
1558		if (physmap_idx == PHYSMAP_SIZE) {
1559			printf(
1560		"Too many segments in the physical address map, giving up\n");
1561			break;
1562		}
1563		physmap[physmap_idx] = smap->base;
1564		physmap[physmap_idx + 1] = smap->base + smap->length;
1565next_run:
1566	} while (vmf.vmf_ebx != 0);
1567
1568	if (physmap[1] != 0)
1569		goto physmap_done;
1570
1571	/*
1572	 * If we failed above, try memory map with INT 15:E801
1573	 */
1574	vmf.vmf_ax = 0xE801;
1575	if (vm86_intcall(0x15, &vmf) == 0) {
1576		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1577	} else {
1578#if 0
1579		vmf.vmf_ah = 0x88;
1580		vm86_intcall(0x15, &vmf);
1581		extmem = vmf.vmf_ax;
1582#else
1583		/*
1584		 * Prefer the RTC value for extended memory.
1585		 */
1586		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1587#endif
1588	}
1589
1590	/*
1591	 * Special hack for chipsets that still remap the 384k hole when
1592	 * there's 16MB of memory - this really confuses people that
1593	 * are trying to use bus mastering ISA controllers with the
1594	 * "16MB limit"; they only have 16MB, but the remapping puts
1595	 * them beyond the limit.
1596	 *
1597	 * If extended memory is between 15-16MB (16-17MB phys address range),
1598	 *	chop it to 15MB.
1599	 */
1600	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1601		extmem = 15 * 1024;
1602
1603	physmap[0] = 0;
1604	physmap[1] = basemem * 1024;
1605	physmap_idx = 2;
1606	physmap[physmap_idx] = 0x100000;
1607	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1608
1609physmap_done:
1610	/*
1611	 * Now, physmap contains a map of physical memory.
1612	 */
1613
1614#ifdef SMP
1615	/* make hole for AP bootstrap code */
1616	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1617
1618	/* look for the MP hardware - needed for apic addresses */
1619	i386_mp_probe();
1620#endif
1621
1622	/*
1623	 * Maxmem isn't the "maximum memory", it's one larger than the
1624	 * highest page of the physical address space.  It should be
1625	 * called something like "Maxphyspage".  We may adjust this
1626	 * based on ``hw.physmem'' and the results of the memory test.
1627	 */
1628	Maxmem = atop(physmap[physmap_idx + 1]);
1629
1630#ifdef MAXMEM
1631	Maxmem = MAXMEM / 4;
1632#endif
1633
1634	/*
1635	 * hw.maxmem is a size in bytes; we also allow k, m, and g suffixes
1636	 * for the appropriate modifiers.  This overrides MAXMEM.
1637	 */
1638	if ((cp = getenv("hw.physmem")) != NULL) {
1639		u_int64_t AllowMem, sanity;
1640		char *ep;
1641
1642		sanity = AllowMem = strtouq(cp, &ep, 0);
1643		if ((ep != cp) && (*ep != 0)) {
1644			switch(*ep) {
1645			case 'g':
1646			case 'G':
1647				AllowMem <<= 10;
1648			case 'm':
1649			case 'M':
1650				AllowMem <<= 10;
1651			case 'k':
1652			case 'K':
1653				AllowMem <<= 10;
1654				break;
1655			default:
1656				AllowMem = sanity = 0;
1657			}
1658			if (AllowMem < sanity)
1659				AllowMem = 0;
1660		}
1661		if (AllowMem == 0)
1662			printf("Ignoring invalid memory size of '%s'\n", cp);
1663		else
1664			Maxmem = atop(AllowMem);
1665	}
1666
1667	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1668	    (boothowto & RB_VERBOSE))
1669		printf("Physical memory use set to %uK\n", Maxmem * 4);
1670
1671	/*
1672	 * If Maxmem has been increased beyond what the system has detected,
1673	 * extend the last memory segment to the new limit.
1674	 */
1675	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1676		physmap[physmap_idx + 1] = ptoa(Maxmem);
1677
1678	/* call pmap initialization to make new kernel address space */
1679	pmap_bootstrap(first, 0);
1680
1681	/*
1682	 * Size up each available chunk of physical memory.
1683	 */
1684	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1685	pa_indx = 0;
1686	phys_avail[pa_indx++] = physmap[0];
1687	phys_avail[pa_indx] = physmap[0];
1688#if 0
1689	pte = (pt_entry_t)vtopte(KERNBASE);
1690#else
1691	pte = (pt_entry_t)CMAP1;
1692#endif
1693
1694	/*
1695	 * physmap is in bytes, so when converting to page boundaries,
1696	 * round up the start address and round down the end address.
1697	 */
1698	for (i = 0; i <= physmap_idx; i += 2) {
1699		vm_offset_t end;
1700
1701		end = ptoa(Maxmem);
1702		if (physmap[i + 1] < end)
1703			end = trunc_page(physmap[i + 1]);
1704		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1705			int tmp, page_bad;
1706#if 0
1707			int *ptr = 0;
1708#else
1709			int *ptr = (int *)CADDR1;
1710#endif
1711
1712			/*
1713			 * block out kernel memory as not available.
1714			 */
1715			if (pa >= 0x100000 && pa < first)
1716				continue;
1717
1718			page_bad = FALSE;
1719
1720			/*
1721			 * map page into kernel: valid, read/write,non-cacheable
1722			 */
1723			*pte = pa | PG_V | PG_RW | PG_N;
1724			invltlb();
1725
1726			tmp = *(int *)ptr;
1727			/*
1728			 * Test for alternating 1's and 0's
1729			 */
1730			*(volatile int *)ptr = 0xaaaaaaaa;
1731			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1732				page_bad = TRUE;
1733			}
1734			/*
1735			 * Test for alternating 0's and 1's
1736			 */
1737			*(volatile int *)ptr = 0x55555555;
1738			if (*(volatile int *)ptr != 0x55555555) {
1739			page_bad = TRUE;
1740			}
1741			/*
1742			 * Test for all 1's
1743			 */
1744			*(volatile int *)ptr = 0xffffffff;
1745			if (*(volatile int *)ptr != 0xffffffff) {
1746				page_bad = TRUE;
1747			}
1748			/*
1749			 * Test for all 0's
1750			 */
1751			*(volatile int *)ptr = 0x0;
1752			if (*(volatile int *)ptr != 0x0) {
1753				page_bad = TRUE;
1754			}
1755			/*
1756			 * Restore original value.
1757			 */
1758			*(int *)ptr = tmp;
1759
1760			/*
1761			 * Adjust array of valid/good pages.
1762			 */
1763			if (page_bad == TRUE) {
1764				continue;
1765			}
1766			/*
1767			 * If this good page is a continuation of the
1768			 * previous set of good pages, then just increase
1769			 * the end pointer. Otherwise start a new chunk.
1770			 * Note that "end" points one higher than end,
1771			 * making the range >= start and < end.
1772			 * If we're also doing a speculative memory
1773			 * test and we at or past the end, bump up Maxmem
1774			 * so that we keep going. The first bad page
1775			 * will terminate the loop.
1776			 */
1777			if (phys_avail[pa_indx] == pa) {
1778				phys_avail[pa_indx] += PAGE_SIZE;
1779			} else {
1780				pa_indx++;
1781				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1782					printf("Too many holes in the physical address space, giving up\n");
1783					pa_indx--;
1784					break;
1785				}
1786				phys_avail[pa_indx++] = pa;	/* start */
1787				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1788			}
1789			physmem++;
1790		}
1791	}
1792	*pte = 0;
1793	invltlb();
1794
1795	/*
1796	 * XXX
1797	 * The last chunk must contain at least one page plus the message
1798	 * buffer to avoid complicating other code (message buffer address
1799	 * calculation, etc.).
1800	 */
1801	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1802	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1803		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1804		phys_avail[pa_indx--] = 0;
1805		phys_avail[pa_indx--] = 0;
1806	}
1807
1808	Maxmem = atop(phys_avail[pa_indx]);
1809
1810	/* Trim off space for the message buffer. */
1811	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1812
1813	avail_end = phys_avail[pa_indx];
1814}
1815
1816void
1817init386(first)
1818	int first;
1819{
1820	int x;
1821	struct gate_descriptor *gdp;
1822	int gsel_tss;
1823#ifndef SMP
1824	/* table descriptors - used to load tables by microp */
1825	struct region_descriptor r_gdt, r_idt;
1826#endif
1827	int off;
1828
1829	proc0.p_addr = proc0paddr;
1830
1831	atdevbase = ISA_HOLE_START + KERNBASE;
1832
1833	if (bootinfo.bi_modulep) {
1834		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1835		preload_bootstrap_relocate(KERNBASE);
1836	} else {
1837		printf("WARNING: loader(8) metadata is missing!\n");
1838	}
1839	if (bootinfo.bi_envp)
1840		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1841
1842	/*
1843	 * make gdt memory segments, the code segment goes up to end of the
1844	 * page with etext in it, the data segment goes to the end of
1845	 * the address space
1846	 */
1847	/*
1848	 * XXX text protection is temporarily (?) disabled.  The limit was
1849	 * i386_btop(round_page(etext)) - 1.
1850	 */
1851	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1852	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1853#ifdef SMP
1854	gdt_segs[GPRIV_SEL].ssd_limit =
1855		i386_btop(sizeof(struct privatespace)) - 1;
1856	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
1857	gdt_segs[GPROC0_SEL].ssd_base =
1858		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
1859	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0].globaldata;
1860#else
1861	gdt_segs[GPRIV_SEL].ssd_limit =
1862		i386_btop(sizeof(struct globaldata)) - 1;
1863	gdt_segs[GPRIV_SEL].ssd_base = (int) &__globaldata;
1864	gdt_segs[GPROC0_SEL].ssd_base =
1865		(int) &__globaldata.gd_common_tss;
1866	__globaldata.gd_prvspace = &__globaldata;
1867#endif
1868
1869	for (x = 0; x < NGDT; x++) {
1870#ifdef BDE_DEBUGGER
1871		/* avoid overwriting db entries with APM ones */
1872		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1873			continue;
1874#endif
1875		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1876	}
1877
1878	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1879	r_gdt.rd_base =  (int) gdt;
1880	lgdt(&r_gdt);
1881
1882	/* setup curproc so that mutexes work */
1883	PCPU_SET(curproc, &proc0);
1884	PCPU_SET(spinlocks, NULL);
1885
1886	LIST_INIT(&proc0.p_contested);
1887
1888	/*
1889	 * Initialize mutexes.
1890	 */
1891	mtx_init(&Giant, "Giant", MTX_DEF | MTX_RECURSE);
1892	mtx_init(&sched_lock, "sched lock", MTX_SPIN | MTX_RECURSE);
1893	mtx_init(&proc0.p_mtx, "process lock", MTX_DEF);
1894	mtx_init(&clock_lock, "clk", MTX_SPIN | MTX_RECURSE);
1895#ifdef SMP
1896	mtx_init(&imen_mtx, "imen", MTX_SPIN);
1897#endif
1898	mtx_lock(&Giant);
1899
1900	/* make ldt memory segments */
1901	/*
1902	 * The data segment limit must not cover the user area because we
1903	 * don't want the user area to be writable in copyout() etc. (page
1904	 * level protection is lost in kernel mode on 386's).  Also, we
1905	 * don't want the user area to be writable directly (page level
1906	 * protection of the user area is not available on 486's with
1907	 * CR0_WP set, because there is no user-read/kernel-write mode).
1908	 *
1909	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1910	 * should be spelled ...MAX_USER...
1911	 */
1912#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1913	/*
1914	 * The code segment limit has to cover the user area until we move
1915	 * the signal trampoline out of the user area.  This is safe because
1916	 * the code segment cannot be written to directly.
1917	 */
1918#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1919	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1920	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1921	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1922		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1923
1924	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1925	lldt(_default_ldt);
1926	PCPU_SET(currentldt, _default_ldt);
1927
1928	/* exceptions */
1929	for (x = 0; x < NIDT; x++)
1930		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1931	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1932	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1933	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1934 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1935	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1936	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1937	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1938	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1939	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1940	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1941	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1942	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1943	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1944	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1945	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1946	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1947	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1948	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1949	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1950 	setidt(0x80, &IDTVEC(int0x80_syscall),
1951			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1952
1953	r_idt.rd_limit = sizeof(idt0) - 1;
1954	r_idt.rd_base = (int) idt;
1955	lidt(&r_idt);
1956
1957	/*
1958	 * Initialize the console before we print anything out.
1959	 */
1960	cninit();
1961
1962#ifdef DEV_ISA
1963	isa_defaultirq();
1964#endif
1965
1966#ifdef DDB
1967	kdb_init();
1968	if (boothowto & RB_KDB)
1969		Debugger("Boot flags requested debugger");
1970#endif
1971
1972	finishidentcpu();	/* Final stage of CPU initialization */
1973	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1974	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1975	initializecpu();	/* Initialize CPU registers */
1976
1977	/* make an initial tss so cpu can get interrupt stack on syscall! */
1978	PCPU_SET(common_tss.tss_esp0,
1979	    (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16);
1980	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
1981	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1982	private_tss = 0;
1983	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
1984	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
1985	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
1986	ltr(gsel_tss);
1987
1988	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1989	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1990	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1991	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1992	dblfault_tss.tss_cr3 = (int)IdlePTD;
1993	dblfault_tss.tss_eip = (int) dblfault_handler;
1994	dblfault_tss.tss_eflags = PSL_KERNEL;
1995	dblfault_tss.tss_ds = dblfault_tss.tss_es =
1996	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1997	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1998	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1999	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2000
2001	vm86_initialize();
2002	getmemsize(first);
2003
2004	/* now running on new page tables, configured,and u/iom is accessible */
2005
2006	/* Map the message buffer. */
2007	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2008		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2009
2010	msgbufinit(msgbufp, MSGBUF_SIZE);
2011
2012	/* make a call gate to reenter kernel with */
2013	gdp = &ldt[LSYS5CALLS_SEL].gd;
2014
2015	x = (int) &IDTVEC(lcall_syscall);
2016	gdp->gd_looffset = x;
2017	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2018	gdp->gd_stkcpy = 1;
2019	gdp->gd_type = SDT_SYS386CGT;
2020	gdp->gd_dpl = SEL_UPL;
2021	gdp->gd_p = 1;
2022	gdp->gd_hioffset = x >> 16;
2023
2024	/* XXX does this work? */
2025	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2026	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2027
2028	/* transfer to user mode */
2029
2030	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
2031	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
2032
2033	/* setup proc 0's pcb */
2034	proc0.p_addr->u_pcb.pcb_flags = 0;
2035	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
2036	proc0.p_addr->u_pcb.pcb_ext = 0;
2037	proc0.p_md.md_regs = &proc0_tf;
2038}
2039
2040#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2041static void f00f_hack(void *unused);
2042SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2043
2044static void
2045f00f_hack(void *unused) {
2046	struct gate_descriptor *new_idt;
2047#ifndef SMP
2048	struct region_descriptor r_idt;
2049#endif
2050	vm_offset_t tmp;
2051
2052	if (!has_f00f_bug)
2053		return;
2054
2055	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2056
2057	r_idt.rd_limit = sizeof(idt0) - 1;
2058
2059	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
2060	if (tmp == 0)
2061		panic("kmem_alloc returned 0");
2062	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2063		panic("kmem_alloc returned non-page-aligned memory");
2064	/* Put the first seven entries in the lower page */
2065	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2066	bcopy(idt, new_idt, sizeof(idt0));
2067	r_idt.rd_base = (int)new_idt;
2068	lidt(&r_idt);
2069	idt = new_idt;
2070	mtx_lock(&vm_mtx);
2071	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2072			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2073		panic("vm_map_protect failed");
2074	mtx_unlock(&vm_mtx);
2075	return;
2076}
2077#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2078
2079int
2080ptrace_set_pc(p, addr)
2081	struct proc *p;
2082	unsigned long addr;
2083{
2084	p->p_md.md_regs->tf_eip = addr;
2085	return (0);
2086}
2087
2088int
2089ptrace_single_step(p)
2090	struct proc *p;
2091{
2092	p->p_md.md_regs->tf_eflags |= PSL_T;
2093	return (0);
2094}
2095
2096int ptrace_read_u_check(p, addr, len)
2097	struct proc *p;
2098	vm_offset_t addr;
2099	size_t len;
2100{
2101	vm_offset_t gap;
2102
2103	if ((vm_offset_t) (addr + len) < addr)
2104		return EPERM;
2105	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
2106		return 0;
2107
2108	gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
2109
2110	if ((vm_offset_t) addr < gap)
2111		return EPERM;
2112	if ((vm_offset_t) (addr + len) <=
2113	    (vm_offset_t) (gap + sizeof(struct trapframe)))
2114		return 0;
2115	return EPERM;
2116}
2117
2118int ptrace_write_u(p, off, data)
2119	struct proc *p;
2120	vm_offset_t off;
2121	long data;
2122{
2123	struct trapframe frame_copy;
2124	vm_offset_t min;
2125	struct trapframe *tp;
2126
2127	/*
2128	 * Privileged kernel state is scattered all over the user area.
2129	 * Only allow write access to parts of regs and to fpregs.
2130	 */
2131	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
2132	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
2133		tp = p->p_md.md_regs;
2134		frame_copy = *tp;
2135		*(int *)((char *)&frame_copy + (off - min)) = data;
2136		if (!EFL_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
2137		    !CS_SECURE(frame_copy.tf_cs))
2138			return (EINVAL);
2139		*(int*)((char *)p->p_addr + off) = data;
2140		return (0);
2141	}
2142	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
2143	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
2144		*(int*)((char *)p->p_addr + off) = data;
2145		return (0);
2146	}
2147	return (EFAULT);
2148}
2149
2150int
2151fill_regs(p, regs)
2152	struct proc *p;
2153	struct reg *regs;
2154{
2155	struct pcb *pcb;
2156	struct trapframe *tp;
2157
2158	tp = p->p_md.md_regs;
2159	regs->r_fs = tp->tf_fs;
2160	regs->r_es = tp->tf_es;
2161	regs->r_ds = tp->tf_ds;
2162	regs->r_edi = tp->tf_edi;
2163	regs->r_esi = tp->tf_esi;
2164	regs->r_ebp = tp->tf_ebp;
2165	regs->r_ebx = tp->tf_ebx;
2166	regs->r_edx = tp->tf_edx;
2167	regs->r_ecx = tp->tf_ecx;
2168	regs->r_eax = tp->tf_eax;
2169	regs->r_eip = tp->tf_eip;
2170	regs->r_cs = tp->tf_cs;
2171	regs->r_eflags = tp->tf_eflags;
2172	regs->r_esp = tp->tf_esp;
2173	regs->r_ss = tp->tf_ss;
2174	pcb = &p->p_addr->u_pcb;
2175	regs->r_gs = pcb->pcb_gs;
2176	return (0);
2177}
2178
2179int
2180set_regs(p, regs)
2181	struct proc *p;
2182	struct reg *regs;
2183{
2184	struct pcb *pcb;
2185	struct trapframe *tp;
2186
2187	tp = p->p_md.md_regs;
2188	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2189	    !CS_SECURE(regs->r_cs))
2190		return (EINVAL);
2191	tp->tf_fs = regs->r_fs;
2192	tp->tf_es = regs->r_es;
2193	tp->tf_ds = regs->r_ds;
2194	tp->tf_edi = regs->r_edi;
2195	tp->tf_esi = regs->r_esi;
2196	tp->tf_ebp = regs->r_ebp;
2197	tp->tf_ebx = regs->r_ebx;
2198	tp->tf_edx = regs->r_edx;
2199	tp->tf_ecx = regs->r_ecx;
2200	tp->tf_eax = regs->r_eax;
2201	tp->tf_eip = regs->r_eip;
2202	tp->tf_cs = regs->r_cs;
2203	tp->tf_eflags = regs->r_eflags;
2204	tp->tf_esp = regs->r_esp;
2205	tp->tf_ss = regs->r_ss;
2206	pcb = &p->p_addr->u_pcb;
2207	pcb->pcb_gs = regs->r_gs;
2208	return (0);
2209}
2210
2211int
2212fill_fpregs(p, fpregs)
2213	struct proc *p;
2214	struct fpreg *fpregs;
2215{
2216	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
2217	return (0);
2218}
2219
2220int
2221set_fpregs(p, fpregs)
2222	struct proc *p;
2223	struct fpreg *fpregs;
2224{
2225	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
2226	return (0);
2227}
2228
2229int
2230fill_dbregs(p, dbregs)
2231	struct proc *p;
2232	struct dbreg *dbregs;
2233{
2234	struct pcb *pcb;
2235
2236	pcb = &p->p_addr->u_pcb;
2237	dbregs->dr0 = pcb->pcb_dr0;
2238	dbregs->dr1 = pcb->pcb_dr1;
2239	dbregs->dr2 = pcb->pcb_dr2;
2240	dbregs->dr3 = pcb->pcb_dr3;
2241	dbregs->dr4 = 0;
2242	dbregs->dr5 = 0;
2243	dbregs->dr6 = pcb->pcb_dr6;
2244	dbregs->dr7 = pcb->pcb_dr7;
2245	return (0);
2246}
2247
2248int
2249set_dbregs(p, dbregs)
2250	struct proc *p;
2251	struct dbreg *dbregs;
2252{
2253	struct pcb *pcb;
2254	int i;
2255	u_int32_t mask1, mask2;
2256
2257	/*
2258	 * Don't let an illegal value for dr7 get set.  Specifically,
2259	 * check for undefined settings.  Setting these bit patterns
2260	 * result in undefined behaviour and can lead to an unexpected
2261	 * TRCTRAP.
2262	 */
2263	for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2264	     i++, mask1 <<= 2, mask2 <<= 2)
2265		if ((dbregs->dr7 & mask1) == mask2)
2266			return (EINVAL);
2267
2268	if (dbregs->dr7 & 0x0000fc00)
2269		return (EINVAL);
2270
2271
2272
2273	pcb = &p->p_addr->u_pcb;
2274
2275	/*
2276	 * Don't let a process set a breakpoint that is not within the
2277	 * process's address space.  If a process could do this, it
2278	 * could halt the system by setting a breakpoint in the kernel
2279	 * (if ddb was enabled).  Thus, we need to check to make sure
2280	 * that no breakpoints are being enabled for addresses outside
2281	 * process's address space, unless, perhaps, we were called by
2282	 * uid 0.
2283	 *
2284	 * XXX - what about when the watched area of the user's
2285	 * address space is written into from within the kernel
2286	 * ... wouldn't that still cause a breakpoint to be generated
2287	 * from within kernel mode?
2288	 */
2289
2290	if (suser(p) != 0) {
2291		if (dbregs->dr7 & 0x3) {
2292			/* dr0 is enabled */
2293			if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2294				return (EINVAL);
2295		}
2296
2297		if (dbregs->dr7 & (0x3<<2)) {
2298			/* dr1 is enabled */
2299			if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2300				return (EINVAL);
2301		}
2302
2303		if (dbregs->dr7 & (0x3<<4)) {
2304			/* dr2 is enabled */
2305			if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2306       				return (EINVAL);
2307		}
2308
2309		if (dbregs->dr7 & (0x3<<6)) {
2310			/* dr3 is enabled */
2311			if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2312				return (EINVAL);
2313		}
2314	}
2315
2316	pcb->pcb_dr0 = dbregs->dr0;
2317	pcb->pcb_dr1 = dbregs->dr1;
2318	pcb->pcb_dr2 = dbregs->dr2;
2319	pcb->pcb_dr3 = dbregs->dr3;
2320	pcb->pcb_dr6 = dbregs->dr6;
2321	pcb->pcb_dr7 = dbregs->dr7;
2322
2323	pcb->pcb_flags |= PCB_DBREGS;
2324
2325	return (0);
2326}
2327
2328/*
2329 * Return > 0 if a hardware breakpoint has been hit, and the
2330 * breakpoint was in user space.  Return 0, otherwise.
2331 */
2332int
2333user_dbreg_trap(void)
2334{
2335        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2336        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
2337        int nbp;            /* number of breakpoints that triggered */
2338        caddr_t addr[4];    /* breakpoint addresses */
2339        int i;
2340
2341        dr7 = rdr7();
2342        if ((dr7 & 0x000000ff) == 0) {
2343                /*
2344                 * all GE and LE bits in the dr7 register are zero,
2345                 * thus the trap couldn't have been caused by the
2346                 * hardware debug registers
2347                 */
2348                return 0;
2349        }
2350
2351        nbp = 0;
2352        dr6 = rdr6();
2353        bp = dr6 & 0x0000000f;
2354
2355        if (!bp) {
2356                /*
2357                 * None of the breakpoint bits are set meaning this
2358                 * trap was not caused by any of the debug registers
2359                 */
2360                return 0;
2361        }
2362
2363        /*
2364         * at least one of the breakpoints were hit, check to see
2365         * which ones and if any of them are user space addresses
2366         */
2367
2368        if (bp & 0x01) {
2369                addr[nbp++] = (caddr_t)rdr0();
2370        }
2371        if (bp & 0x02) {
2372                addr[nbp++] = (caddr_t)rdr1();
2373        }
2374        if (bp & 0x04) {
2375                addr[nbp++] = (caddr_t)rdr2();
2376        }
2377        if (bp & 0x08) {
2378                addr[nbp++] = (caddr_t)rdr3();
2379        }
2380
2381        for (i=0; i<nbp; i++) {
2382                if (addr[i] <
2383                    (caddr_t)VM_MAXUSER_ADDRESS) {
2384                        /*
2385                         * addr[i] is in user space
2386                         */
2387                        return nbp;
2388                }
2389        }
2390
2391        /*
2392         * None of the breakpoints are in user space.
2393         */
2394        return 0;
2395}
2396
2397
2398#ifndef DDB
2399void
2400Debugger(const char *msg)
2401{
2402	printf("Debugger(\"%s\") called.\n", msg);
2403}
2404#endif /* no DDB */
2405
2406#include <sys/disklabel.h>
2407
2408/*
2409 * Determine the size of the transfer, and make sure it is
2410 * within the boundaries of the partition. Adjust transfer
2411 * if needed, and signal errors or early completion.
2412 */
2413int
2414bounds_check_with_label(struct bio *bp, struct disklabel *lp, int wlabel)
2415{
2416        struct partition *p = lp->d_partitions + dkpart(bp->bio_dev);
2417        int labelsect = lp->d_partitions[0].p_offset;
2418        int maxsz = p->p_size,
2419                sz = (bp->bio_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2420
2421        /* overwriting disk label ? */
2422        /* XXX should also protect bootstrap in first 8K */
2423        if (bp->bio_blkno + p->p_offset <= LABELSECTOR + labelsect &&
2424#if LABELSECTOR != 0
2425            bp->bio_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2426#endif
2427            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2428                bp->bio_error = EROFS;
2429                goto bad;
2430        }
2431
2432#if     defined(DOSBBSECTOR) && defined(notyet)
2433        /* overwriting master boot record? */
2434        if (bp->bio_blkno + p->p_offset <= DOSBBSECTOR &&
2435            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2436                bp->bio_error = EROFS;
2437                goto bad;
2438        }
2439#endif
2440
2441        /* beyond partition? */
2442        if (bp->bio_blkno < 0 || bp->bio_blkno + sz > maxsz) {
2443                /* if exactly at end of disk, return an EOF */
2444                if (bp->bio_blkno == maxsz) {
2445                        bp->bio_resid = bp->bio_bcount;
2446                        return(0);
2447                }
2448                /* or truncate if part of it fits */
2449                sz = maxsz - bp->bio_blkno;
2450                if (sz <= 0) {
2451                        bp->bio_error = EINVAL;
2452                        goto bad;
2453                }
2454                bp->bio_bcount = sz << DEV_BSHIFT;
2455        }
2456
2457        bp->bio_pblkno = bp->bio_blkno + p->p_offset;
2458        return(1);
2459
2460bad:
2461        bp->bio_flags |= BIO_ERROR;
2462        return(-1);
2463}
2464
2465#ifdef DDB
2466
2467/*
2468 * Provide inb() and outb() as functions.  They are normally only
2469 * available as macros calling inlined functions, thus cannot be
2470 * called inside DDB.
2471 *
2472 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2473 */
2474
2475#undef inb
2476#undef outb
2477
2478/* silence compiler warnings */
2479u_char inb(u_int);
2480void outb(u_int, u_char);
2481
2482u_char
2483inb(u_int port)
2484{
2485	u_char	data;
2486	/*
2487	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2488	 * %edx, while gcc generates inferior code (movw instead of movl)
2489	 * if we tell it to load (u_short) port.
2490	 */
2491	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2492	return (data);
2493}
2494
2495void
2496outb(u_int port, u_char data)
2497{
2498	u_char	al;
2499	/*
2500	 * Use an unnecessary assignment to help gcc's register allocator.
2501	 * This make a large difference for gcc-1.40 and a tiny difference
2502	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2503	 * best results.  gcc-2.6.0 can't handle this.
2504	 */
2505	al = data;
2506	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2507}
2508
2509#endif /* DDB */
2510