machdep.c revision 71647
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 71647 2001-01-25 19:37:26Z jhb $
39 */
40
41#include "opt_atalk.h"
42#include "opt_compat.h"
43#include "opt_cpu.h"
44#include "opt_ddb.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_maxmem.h"
48#include "opt_msgbuf.h"
49#include "opt_npx.h"
50#include "opt_perfmon.h"
51#include "opt_user_ldt.h"
52#include "opt_userconfig.h"
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysproto.h>
57#include <sys/signalvar.h>
58#include <sys/ipl.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/linker.h>
62#include <sys/malloc.h>
63#include <sys/mutex.h>
64#include <sys/proc.h>
65#include <sys/bio.h>
66#include <sys/buf.h>
67#include <sys/reboot.h>
68#include <sys/callout.h>
69#include <sys/msgbuf.h>
70#include <sys/sysent.h>
71#include <sys/sysctl.h>
72#include <sys/vmmeter.h>
73#include <sys/bus.h>
74#include <sys/eventhandler.h>
75
76#include <vm/vm.h>
77#include <vm/vm_param.h>
78#include <sys/lock.h>
79#include <vm/vm_kern.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82#include <vm/vm_map.h>
83#include <vm/vm_pager.h>
84#include <vm/vm_extern.h>
85
86#include <sys/user.h>
87#include <sys/exec.h>
88#include <sys/cons.h>
89
90#include <ddb/ddb.h>
91
92#include <net/netisr.h>
93
94#include <machine/cpu.h>
95#include <machine/cputypes.h>
96#include <machine/reg.h>
97#include <machine/clock.h>
98#include <machine/specialreg.h>
99#include <machine/bootinfo.h>
100#include <machine/md_var.h>
101#include <machine/pc/bios.h>
102#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
103#include <machine/globaldata.h>
104#include <machine/globals.h>
105#ifdef SMP
106#include <machine/smp.h>
107#endif
108#ifdef PERFMON
109#include <machine/perfmon.h>
110#endif
111
112#ifdef OLD_BUS_ARCH
113#include <i386/isa/isa_device.h>
114#endif
115#include <i386/isa/icu.h>
116#include <i386/isa/intr_machdep.h>
117#include <isa/rtc.h>
118#include <machine/vm86.h>
119#include <sys/ptrace.h>
120#include <machine/sigframe.h>
121
122extern void init386 __P((int first));
123extern void dblfault_handler __P((void));
124
125extern void printcpuinfo(void);	/* XXX header file */
126extern void earlysetcpuclass(void);	/* same header file */
127extern void finishidentcpu(void);
128extern void panicifcpuunsupported(void);
129extern void initializecpu(void);
130
131#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
132#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
133
134static void cpu_startup __P((void *));
135SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
136
137int	_udatasel, _ucodesel;
138u_int	atdevbase;
139
140#if defined(SWTCH_OPTIM_STATS)
141extern int swtch_optim_stats;
142SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
143	CTLFLAG_RD, &swtch_optim_stats, 0, "");
144SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
145	CTLFLAG_RD, &tlb_flush_count, 0, "");
146#endif
147
148#ifdef PC98
149static int	ispc98 = 1;
150#else
151static int	ispc98 = 0;
152#endif
153SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
154
155int physmem = 0;
156int cold = 1;
157
158static void osendsig __P((sig_t catcher, int sig, sigset_t *mask, u_long code));
159
160static int
161sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
162{
163	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
164	return (error);
165}
166
167SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
168	0, 0, sysctl_hw_physmem, "I", "");
169
170static int
171sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
172{
173	int error = sysctl_handle_int(oidp, 0,
174		ctob(physmem - cnt.v_wire_count), req);
175	return (error);
176}
177
178SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
179	0, 0, sysctl_hw_usermem, "I", "");
180
181static int
182sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
183{
184	int error = sysctl_handle_int(oidp, 0,
185		i386_btop(avail_end - avail_start), req);
186	return (error);
187}
188
189SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
190	0, 0, sysctl_hw_availpages, "I", "");
191
192static int
193sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
194{
195	int error;
196
197	/* Unwind the buffer, so that it's linear (possibly starting with
198	 * some initial nulls).
199	 */
200	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
201		msgbufp->msg_size-msgbufp->msg_bufr,req);
202	if(error) return(error);
203	if(msgbufp->msg_bufr>0) {
204		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
205			msgbufp->msg_bufr,req);
206	}
207	return(error);
208}
209
210SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
211	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
212
213static int msgbuf_clear;
214
215static int
216sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
217{
218	int error;
219	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
220		req);
221	if (!error && req->newptr) {
222		/* Clear the buffer and reset write pointer */
223		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
224		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
225		msgbuf_clear=0;
226	}
227	return (error);
228}
229
230SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
231	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
232	"Clear kernel message buffer");
233
234int bootverbose = 0, Maxmem = 0;
235long dumplo;
236
237vm_offset_t phys_avail[10];
238
239/* must be 2 less so 0 0 can signal end of chunks */
240#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
241
242static vm_offset_t buffer_sva, buffer_eva;
243vm_offset_t clean_sva, clean_eva;
244static vm_offset_t pager_sva, pager_eva;
245static struct trapframe proc0_tf;
246#ifndef SMP
247static struct globaldata __globaldata;
248#endif
249
250struct cpuhead cpuhead;
251
252struct mtx sched_lock;
253struct mtx Giant;
254
255static void
256cpu_startup(dummy)
257	void *dummy;
258{
259	register unsigned i;
260	register caddr_t v;
261	vm_offset_t maxaddr;
262	vm_size_t size = 0;
263	int firstaddr;
264	vm_offset_t minaddr;
265	int physmem_est;
266
267	if (boothowto & RB_VERBOSE)
268		bootverbose++;
269
270	/*
271	 * Good {morning,afternoon,evening,night}.
272	 */
273	printf("%s", version);
274	earlysetcpuclass();
275	startrtclock();
276	printcpuinfo();
277	panicifcpuunsupported();
278#ifdef PERFMON
279	perfmon_init();
280#endif
281	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
282	/*
283	 * Display any holes after the first chunk of extended memory.
284	 */
285	if (bootverbose) {
286		int indx;
287
288		printf("Physical memory chunk(s):\n");
289		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
290			unsigned int size1 = phys_avail[indx + 1] - phys_avail[indx];
291
292			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
293			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
294			    size1 / PAGE_SIZE);
295		}
296	}
297
298	/*
299	 * Calculate callout wheel size
300	 */
301	for (callwheelsize = 1, callwheelbits = 0;
302	     callwheelsize < ncallout;
303	     callwheelsize <<= 1, ++callwheelbits)
304		;
305	callwheelmask = callwheelsize - 1;
306
307	/*
308	 * Allocate space for system data structures.
309	 * The first available kernel virtual address is in "v".
310	 * As pages of kernel virtual memory are allocated, "v" is incremented.
311	 * As pages of memory are allocated and cleared,
312	 * "firstaddr" is incremented.
313	 * An index into the kernel page table corresponding to the
314	 * virtual memory address maintained in "v" is kept in "mapaddr".
315	 */
316
317	/*
318	 * Make two passes.  The first pass calculates how much memory is
319	 * needed and allocates it.  The second pass assigns virtual
320	 * addresses to the various data structures.
321	 */
322	firstaddr = 0;
323again:
324	v = (caddr_t)firstaddr;
325
326#define	valloc(name, type, num) \
327	    (name) = (type *)v; v = (caddr_t)((name)+(num))
328#define	valloclim(name, type, num, lim) \
329	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
330
331	valloc(callout, struct callout, ncallout);
332	valloc(callwheel, struct callout_tailq, callwheelsize);
333
334	/*
335	 * Discount the physical memory larger than the size of kernel_map
336	 * to avoid eating up all of KVA space.
337	 */
338	if (kernel_map->first_free == NULL) {
339		printf("Warning: no free entries in kernel_map.\n");
340		physmem_est = physmem;
341	} else
342		physmem_est = min(physmem, kernel_map->max_offset - kernel_map->min_offset);
343
344	/*
345	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
346	 * For the first 64MB of ram nominally allocate sufficient buffers to
347	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
348	 * buffers to cover 1/20 of our ram over 64MB.
349	 *
350	 * factor represents the 1/4 x ram conversion.
351	 */
352	if (nbuf == 0) {
353		int factor = 4 * BKVASIZE / PAGE_SIZE;
354
355		nbuf = 50;
356		if (physmem_est > 1024)
357			nbuf += min((physmem_est - 1024) / factor, 16384 / factor);
358		if (physmem_est > 16384)
359			nbuf += (physmem_est - 16384) * 2 / (factor * 5);
360	}
361
362	/*
363	 * Do not allow the buffer_map to be more then 1/2 the size of the
364	 * kernel_map.
365	 */
366	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
367	    (BKVASIZE * 2)) {
368		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
369		    (BKVASIZE * 2);
370		printf("Warning: nbufs capped at %d\n", nbuf);
371	}
372
373	nswbuf = max(min(nbuf/4, 256), 16);
374
375	valloc(swbuf, struct buf, nswbuf);
376	valloc(buf, struct buf, nbuf);
377	v = bufhashinit(v);
378
379	/*
380	 * End of first pass, size has been calculated so allocate memory
381	 */
382	if (firstaddr == 0) {
383		size = (vm_size_t)(v - firstaddr);
384		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
385		if (firstaddr == 0)
386			panic("startup: no room for tables");
387		goto again;
388	}
389
390	/*
391	 * End of second pass, addresses have been assigned
392	 */
393	if ((vm_size_t)(v - firstaddr) != size)
394		panic("startup: table size inconsistency");
395
396	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
397			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
398	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
399				(nbuf*BKVASIZE));
400	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
401				(nswbuf*MAXPHYS) + pager_map_size);
402	pager_map->system_map = 1;
403	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
404				(16*(ARG_MAX+(PAGE_SIZE*3))));
405
406	/*
407	 * XXX: Mbuf system machine-specific initializations should
408	 *      go here, if anywhere.
409	 */
410
411	/*
412	 * Initialize callouts
413	 */
414	SLIST_INIT(&callfree);
415	for (i = 0; i < ncallout; i++) {
416		callout_init(&callout[i], 0);
417		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
418		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
419	}
420
421	for (i = 0; i < callwheelsize; i++) {
422		TAILQ_INIT(&callwheel[i]);
423	}
424
425	mtx_init(&callout_lock, "callout", MTX_SPIN | MTX_RECURSE);
426
427#if defined(USERCONFIG)
428	userconfig();
429	cninit();		/* the preferred console may have changed */
430#endif
431
432	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
433	    ptoa(cnt.v_free_count) / 1024);
434
435	/*
436	 * Set up buffers, so they can be used to read disk labels.
437	 */
438	bufinit();
439	vm_pager_bufferinit();
440
441	SLIST_INIT(&cpuhead);
442	SLIST_INSERT_HEAD(&cpuhead, GLOBALDATA, gd_allcpu);
443
444#ifdef SMP
445	/*
446	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
447	 */
448	mp_start();			/* fire up the APs and APICs */
449	mp_announce();
450#endif  /* SMP */
451	cpu_setregs();
452}
453
454/*
455 * Send an interrupt to process.
456 *
457 * Stack is set up to allow sigcode stored
458 * at top to call routine, followed by kcall
459 * to sigreturn routine below.  After sigreturn
460 * resets the signal mask, the stack, and the
461 * frame pointer, it returns to the user
462 * specified pc, psl.
463 */
464static void
465osendsig(catcher, sig, mask, code)
466	sig_t catcher;
467	int sig;
468	sigset_t *mask;
469	u_long code;
470{
471	struct osigframe sf;
472	struct osigframe *fp;
473	struct proc *p;
474	struct sigacts *psp;
475	struct trapframe *regs;
476	int oonstack;
477
478	p = curproc;
479	PROC_LOCK(p);
480	psp = p->p_sigacts;
481	regs = p->p_md.md_regs;
482	oonstack = sigonstack(regs->tf_esp);
483
484	/* Allocate and validate space for the signal handler context. */
485	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
486	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
487		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
488		    p->p_sigstk.ss_size - sizeof(struct osigframe));
489#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
490		p->p_sigstk.ss_flags |= SS_ONSTACK;
491#endif
492	} else
493		fp = (struct osigframe *)regs->tf_esp - 1;
494	PROC_UNLOCK(p);
495
496	/*
497	 * grow_stack() will return 0 if *fp does not fit inside the stack
498	 * and the stack can not be grown.
499	 * useracc() will return FALSE if access is denied.
500	 */
501	if (grow_stack(p, (int)fp) == 0 ||
502	    !useracc((caddr_t)fp, sizeof(*fp), VM_PROT_WRITE)) {
503		/*
504		 * Process has trashed its stack; give it an illegal
505		 * instruction to halt it in its tracks.
506		 */
507		PROC_LOCK(p);
508		SIGACTION(p, SIGILL) = SIG_DFL;
509		SIGDELSET(p->p_sigignore, SIGILL);
510		SIGDELSET(p->p_sigcatch, SIGILL);
511		SIGDELSET(p->p_sigmask, SIGILL);
512		PROC_UNLOCK(p);
513		psignal(p, SIGILL);
514		return;
515	}
516
517	/* Translate the signal if appropriate. */
518	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
519		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
520
521	/* Build the argument list for the signal handler. */
522	sf.sf_signum = sig;
523	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
524	PROC_LOCK(p);
525	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
526		/* Signal handler installed with SA_SIGINFO. */
527		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
528		sf.sf_siginfo.si_signo = sig;
529		sf.sf_siginfo.si_code = code;
530		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
531	} else {
532		/* Old FreeBSD-style arguments. */
533		sf.sf_arg2 = code;
534		sf.sf_addr = regs->tf_err;
535		sf.sf_ahu.sf_handler = catcher;
536	}
537	PROC_UNLOCK(p);
538
539	/* Save most if not all of trap frame. */
540	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
541	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
542	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
543	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
544	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
545	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
546	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
547	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
548	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
549	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
550	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
551	sf.sf_siginfo.si_sc.sc_gs = rgs();
552	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
553
554	/* Build the signal context to be used by osigreturn(). */
555	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
556	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
557	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
558	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
559	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
560	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
561	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
562	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
563
564	/*
565	 * If we're a vm86 process, we want to save the segment registers.
566	 * We also change eflags to be our emulated eflags, not the actual
567	 * eflags.
568	 */
569	if (regs->tf_eflags & PSL_VM) {
570		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
571		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
572		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
573
574		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
575		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
576		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
577		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
578
579		if (vm86->vm86_has_vme == 0)
580			sf.sf_siginfo.si_sc.sc_ps =
581			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
582			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
583
584		/* See sendsig() for comments. */
585		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
586	}
587
588	/* Copy the sigframe out to the user's stack. */
589	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
590		/*
591		 * Something is wrong with the stack pointer.
592		 * ...Kill the process.
593		 */
594		sigexit(p, SIGILL);
595	}
596
597	regs->tf_esp = (int)fp;
598	regs->tf_eip = PS_STRINGS - szosigcode;
599	regs->tf_cs = _ucodesel;
600	regs->tf_ds = _udatasel;
601	regs->tf_es = _udatasel;
602	regs->tf_fs = _udatasel;
603	load_gs(_udatasel);
604	regs->tf_ss = _udatasel;
605}
606
607void
608sendsig(catcher, sig, mask, code)
609	sig_t catcher;
610	int sig;
611	sigset_t *mask;
612	u_long code;
613{
614	struct sigframe sf;
615	struct proc *p;
616	struct sigacts *psp;
617	struct trapframe *regs;
618	struct sigframe *sfp;
619	int oonstack;
620
621	p = curproc;
622	PROC_LOCK(p);
623	psp = p->p_sigacts;
624	if (SIGISMEMBER(psp->ps_osigset, sig)) {
625		PROC_UNLOCK(p);
626		osendsig(catcher, sig, mask, code);
627		return;
628	}
629	regs = p->p_md.md_regs;
630	oonstack = sigonstack(regs->tf_esp);
631
632	/* Save user context. */
633	bzero(&sf, sizeof(sf));
634	sf.sf_uc.uc_sigmask = *mask;
635	sf.sf_uc.uc_stack = p->p_sigstk;
636	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
637	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
638	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
639	sf.sf_uc.uc_mcontext.mc_gs = rgs();
640	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
641
642	/* Allocate and validate space for the signal handler context. */
643	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
644	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
645		sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
646		    p->p_sigstk.ss_size - sizeof(struct sigframe));
647#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
648		p->p_sigstk.ss_flags |= SS_ONSTACK;
649#endif
650	} else
651		sfp = (struct sigframe *)regs->tf_esp - 1;
652	PROC_UNLOCK(p);
653
654	/*
655	 * grow_stack() will return 0 if *sfp does not fit inside the stack
656	 * and the stack can not be grown.
657	 * useracc() will return FALSE if access is denied.
658	 */
659	if (grow_stack(p, (int)sfp) == 0 ||
660	    !useracc((caddr_t)sfp, sizeof(*sfp), VM_PROT_WRITE)) {
661		/*
662		 * Process has trashed its stack; give it an illegal
663		 * instruction to halt it in its tracks.
664		 */
665#ifdef DEBUG
666		printf("process %d has trashed its stack\n", p->p_pid);
667#endif
668		PROC_LOCK(p);
669		SIGACTION(p, SIGILL) = SIG_DFL;
670		SIGDELSET(p->p_sigignore, SIGILL);
671		SIGDELSET(p->p_sigcatch, SIGILL);
672		SIGDELSET(p->p_sigmask, SIGILL);
673		PROC_UNLOCK(p);
674		psignal(p, SIGILL);
675		return;
676	}
677
678	/* Translate the signal if appropriate. */
679	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
680		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
681
682	/* Build the argument list for the signal handler. */
683	sf.sf_signum = sig;
684	sf.sf_ucontext = (register_t)&sfp->sf_uc;
685	PROC_LOCK(p);
686	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
687		/* Signal handler installed with SA_SIGINFO. */
688		sf.sf_siginfo = (register_t)&sfp->sf_si;
689		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
690
691		/* Fill siginfo structure. */
692		sf.sf_si.si_signo = sig;
693		sf.sf_si.si_code = code;
694		sf.sf_si.si_addr = (void *)regs->tf_err;
695	} else {
696		/* Old FreeBSD-style arguments. */
697		sf.sf_siginfo = code;
698		sf.sf_addr = regs->tf_err;
699		sf.sf_ahu.sf_handler = catcher;
700	}
701	PROC_UNLOCK(p);
702
703	/*
704	 * If we're a vm86 process, we want to save the segment registers.
705	 * We also change eflags to be our emulated eflags, not the actual
706	 * eflags.
707	 */
708	if (regs->tf_eflags & PSL_VM) {
709		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
710		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
711
712		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
713		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
714		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
715		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
716
717		if (vm86->vm86_has_vme == 0)
718			sf.sf_uc.uc_mcontext.mc_eflags =
719			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
720			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
721
722		/*
723		 * We should never have PSL_T set when returning from vm86
724		 * mode.  It may be set here if we deliver a signal before
725		 * getting to vm86 mode, so turn it off.
726		 *
727		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
728		 * syscalls made by the signal handler.  This just avoids
729		 * wasting time for our lazy fixup of such faults.  PSL_NT
730		 * does nothing in vm86 mode, but vm86 programs can set it
731		 * almost legitimately in probes for old cpu types.
732		 */
733		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
734	}
735
736	/* Copy the sigframe out to the user's stack. */
737	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
738		/*
739		 * Something is wrong with the stack pointer.
740		 * ...Kill the process.
741		 */
742		sigexit(p, SIGILL);
743	}
744
745	regs->tf_esp = (int)sfp;
746	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
747	regs->tf_cs = _ucodesel;
748	regs->tf_ds = _udatasel;
749	regs->tf_es = _udatasel;
750	regs->tf_fs = _udatasel;
751	load_gs(_udatasel);
752	regs->tf_ss = _udatasel;
753}
754
755/*
756 * System call to cleanup state after a signal
757 * has been taken.  Reset signal mask and
758 * stack state from context left by sendsig (above).
759 * Return to previous pc and psl as specified by
760 * context left by sendsig. Check carefully to
761 * make sure that the user has not modified the
762 * state to gain improper privileges.
763 */
764int
765osigreturn(p, uap)
766	struct proc *p;
767	struct osigreturn_args /* {
768		struct osigcontext *sigcntxp;
769	} */ *uap;
770{
771	struct trapframe *regs;
772	struct osigcontext *scp;
773	int eflags;
774
775	regs = p->p_md.md_regs;
776	scp = uap->sigcntxp;
777	if (!useracc((caddr_t)scp, sizeof(*scp), VM_PROT_READ))
778		return (EFAULT);
779	eflags = scp->sc_ps;
780	if (eflags & PSL_VM) {
781		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
782		struct vm86_kernel *vm86;
783
784		/*
785		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
786		 * set up the vm86 area, and we can't enter vm86 mode.
787		 */
788		if (p->p_addr->u_pcb.pcb_ext == 0)
789			return (EINVAL);
790		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
791		if (vm86->vm86_inited == 0)
792			return (EINVAL);
793
794		/* Go back to user mode if both flags are set. */
795		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
796			trapsignal(p, SIGBUS, 0);
797
798		if (vm86->vm86_has_vme) {
799			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
800			    (eflags & VME_USERCHANGE) | PSL_VM;
801		} else {
802			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
803			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
804		}
805		tf->tf_vm86_ds = scp->sc_ds;
806		tf->tf_vm86_es = scp->sc_es;
807		tf->tf_vm86_fs = scp->sc_fs;
808		tf->tf_vm86_gs = scp->sc_gs;
809		tf->tf_ds = _udatasel;
810		tf->tf_es = _udatasel;
811		tf->tf_fs = _udatasel;
812	} else {
813		/*
814		 * Don't allow users to change privileged or reserved flags.
815		 */
816		/*
817		 * XXX do allow users to change the privileged flag PSL_RF.
818		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
819		 * should sometimes set it there too.  tf_eflags is kept in
820		 * the signal context during signal handling and there is no
821		 * other place to remember it, so the PSL_RF bit may be
822		 * corrupted by the signal handler without us knowing.
823		 * Corruption of the PSL_RF bit at worst causes one more or
824		 * one less debugger trap, so allowing it is fairly harmless.
825		 */
826		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
827	    		return (EINVAL);
828		}
829
830		/*
831		 * Don't allow users to load a valid privileged %cs.  Let the
832		 * hardware check for invalid selectors, excess privilege in
833		 * other selectors, invalid %eip's and invalid %esp's.
834		 */
835		if (!CS_SECURE(scp->sc_cs)) {
836			trapsignal(p, SIGBUS, T_PROTFLT);
837			return (EINVAL);
838		}
839		regs->tf_ds = scp->sc_ds;
840		regs->tf_es = scp->sc_es;
841		regs->tf_fs = scp->sc_fs;
842	}
843
844	/* Restore remaining registers. */
845	regs->tf_eax = scp->sc_eax;
846	regs->tf_ebx = scp->sc_ebx;
847	regs->tf_ecx = scp->sc_ecx;
848	regs->tf_edx = scp->sc_edx;
849	regs->tf_esi = scp->sc_esi;
850	regs->tf_edi = scp->sc_edi;
851	regs->tf_cs = scp->sc_cs;
852	regs->tf_ss = scp->sc_ss;
853	regs->tf_isp = scp->sc_isp;
854
855	PROC_LOCK(p);
856#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
857	if (scp->sc_onstack & 1)
858		p->p_sigstk.ss_flags |= SS_ONSTACK;
859	else
860		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
861#endif
862
863	SIGSETOLD(p->p_sigmask, scp->sc_mask);
864	SIG_CANTMASK(p->p_sigmask);
865	PROC_UNLOCK(p);
866	regs->tf_ebp = scp->sc_fp;
867	regs->tf_esp = scp->sc_sp;
868	regs->tf_eip = scp->sc_pc;
869	regs->tf_eflags = eflags;
870	return (EJUSTRETURN);
871}
872
873int
874sigreturn(p, uap)
875	struct proc *p;
876	struct sigreturn_args /* {
877		ucontext_t *sigcntxp;
878	} */ *uap;
879{
880	struct trapframe *regs;
881	ucontext_t *ucp;
882	int cs, eflags;
883
884	ucp = uap->sigcntxp;
885	if (!useracc((caddr_t)ucp, sizeof(struct osigcontext), VM_PROT_READ))
886		return (EFAULT);
887	if (((struct osigcontext *)ucp)->sc_trapno == 0x01d516)
888		return (osigreturn(p, (struct osigreturn_args *)uap));
889
890	/*
891	 * Since ucp is not an osigcontext but a ucontext_t, we have to
892	 * check again if all of it is accessible.  A ucontext_t is
893	 * much larger, so instead of just checking for the pointer
894	 * being valid for the size of an osigcontext, now check for
895	 * it being valid for a whole, new-style ucontext_t.
896	 */
897	if (!useracc((caddr_t)ucp, sizeof(*ucp), VM_PROT_READ))
898		return (EFAULT);
899
900	regs = p->p_md.md_regs;
901	eflags = ucp->uc_mcontext.mc_eflags;
902	if (eflags & PSL_VM) {
903		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
904		struct vm86_kernel *vm86;
905
906		/*
907		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
908		 * set up the vm86 area, and we can't enter vm86 mode.
909		 */
910		if (p->p_addr->u_pcb.pcb_ext == 0)
911			return (EINVAL);
912		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
913		if (vm86->vm86_inited == 0)
914			return (EINVAL);
915
916		/* Go back to user mode if both flags are set. */
917		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
918			trapsignal(p, SIGBUS, 0);
919
920		if (vm86->vm86_has_vme) {
921			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
922			    (eflags & VME_USERCHANGE) | PSL_VM;
923		} else {
924			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
925			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
926		}
927		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
928		tf->tf_eflags = eflags;
929		tf->tf_vm86_ds = tf->tf_ds;
930		tf->tf_vm86_es = tf->tf_es;
931		tf->tf_vm86_fs = tf->tf_fs;
932		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
933		tf->tf_ds = _udatasel;
934		tf->tf_es = _udatasel;
935		tf->tf_fs = _udatasel;
936	} else {
937		/*
938		 * Don't allow users to change privileged or reserved flags.
939		 */
940		/*
941		 * XXX do allow users to change the privileged flag PSL_RF.
942		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
943		 * should sometimes set it there too.  tf_eflags is kept in
944		 * the signal context during signal handling and there is no
945		 * other place to remember it, so the PSL_RF bit may be
946		 * corrupted by the signal handler without us knowing.
947		 * Corruption of the PSL_RF bit at worst causes one more or
948		 * one less debugger trap, so allowing it is fairly harmless.
949		 */
950		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
951			printf("sigreturn: eflags = 0x%x\n", eflags);
952	    		return (EINVAL);
953		}
954
955		/*
956		 * Don't allow users to load a valid privileged %cs.  Let the
957		 * hardware check for invalid selectors, excess privilege in
958		 * other selectors, invalid %eip's and invalid %esp's.
959		 */
960		cs = ucp->uc_mcontext.mc_cs;
961		if (!CS_SECURE(cs)) {
962			printf("sigreturn: cs = 0x%x\n", cs);
963			trapsignal(p, SIGBUS, T_PROTFLT);
964			return (EINVAL);
965		}
966
967		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
968	}
969
970	PROC_LOCK(p);
971#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
972	if (ucp->uc_mcontext.mc_onstack & 1)
973		p->p_sigstk.ss_flags |= SS_ONSTACK;
974	else
975		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
976#endif
977
978	p->p_sigmask = ucp->uc_sigmask;
979	SIG_CANTMASK(p->p_sigmask);
980	PROC_UNLOCK(p);
981	return (EJUSTRETURN);
982}
983
984/*
985 * Machine dependent boot() routine
986 *
987 * I haven't seen anything to put here yet
988 * Possibly some stuff might be grafted back here from boot()
989 */
990void
991cpu_boot(int howto)
992{
993}
994
995/*
996 * Shutdown the CPU as much as possible
997 */
998void
999cpu_halt(void)
1000{
1001	for (;;)
1002		__asm__ ("hlt");
1003}
1004
1005/*
1006 * Hook to idle the CPU when possible.  This currently only works in
1007 * the !SMP case, as there is no clean way to ensure that a CPU will be
1008 * woken when there is work available for it.
1009 */
1010static int	cpu_idle_hlt = 1;
1011SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1012    &cpu_idle_hlt, 0, "Idle loop HLT enable");
1013
1014/*
1015 * Note that we have to be careful here to avoid a race between checking
1016 * procrunnable() and actually halting.  If we don't do this, we may waste
1017 * the time between calling hlt and the next interrupt even though there
1018 * is a runnable process.
1019 */
1020void
1021cpu_idle(void)
1022{
1023#ifndef SMP
1024	if (cpu_idle_hlt) {
1025		disable_intr();
1026  		if (procrunnable())
1027			enable_intr();
1028		else {
1029			enable_intr();
1030			__asm __volatile("hlt");
1031		}
1032	}
1033#endif
1034}
1035
1036/*
1037 * Clear registers on exec
1038 */
1039void
1040setregs(p, entry, stack, ps_strings)
1041	struct proc *p;
1042	u_long entry;
1043	u_long stack;
1044	u_long ps_strings;
1045{
1046	struct trapframe *regs = p->p_md.md_regs;
1047	struct pcb *pcb = &p->p_addr->u_pcb;
1048
1049#ifdef USER_LDT
1050	/* was i386_user_cleanup() in NetBSD */
1051	user_ldt_free(pcb);
1052#endif
1053
1054	bzero((char *)regs, sizeof(struct trapframe));
1055	regs->tf_eip = entry;
1056	regs->tf_esp = stack;
1057	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1058	regs->tf_ss = _udatasel;
1059	regs->tf_ds = _udatasel;
1060	regs->tf_es = _udatasel;
1061	regs->tf_fs = _udatasel;
1062	regs->tf_cs = _ucodesel;
1063
1064	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1065	regs->tf_ebx = ps_strings;
1066
1067	/* reset %gs as well */
1068	if (pcb == PCPU_GET(curpcb))
1069		load_gs(_udatasel);
1070	else
1071		pcb->pcb_gs = _udatasel;
1072
1073        /*
1074         * Reset the hardware debug registers if they were in use.
1075         * They won't have any meaning for the newly exec'd process.
1076         */
1077        if (pcb->pcb_flags & PCB_DBREGS) {
1078                pcb->pcb_dr0 = 0;
1079                pcb->pcb_dr1 = 0;
1080                pcb->pcb_dr2 = 0;
1081                pcb->pcb_dr3 = 0;
1082                pcb->pcb_dr6 = 0;
1083                pcb->pcb_dr7 = 0;
1084                if (pcb == PCPU_GET(curpcb)) {
1085		        /*
1086			 * Clear the debug registers on the running
1087			 * CPU, otherwise they will end up affecting
1088			 * the next process we switch to.
1089			 */
1090		        reset_dbregs();
1091                }
1092                pcb->pcb_flags &= ~PCB_DBREGS;
1093        }
1094
1095	/*
1096	 * Initialize the math emulator (if any) for the current process.
1097	 * Actually, just clear the bit that says that the emulator has
1098	 * been initialized.  Initialization is delayed until the process
1099	 * traps to the emulator (if it is done at all) mainly because
1100	 * emulators don't provide an entry point for initialization.
1101	 */
1102	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
1103
1104	/*
1105	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
1106	 * for why fwait must be trapped at least if there is an npx or an
1107	 * emulator).  This is mainly to handle the case where npx0 is not
1108	 * configured, since the npx routines normally set up the trap
1109	 * otherwise.  It should be done only at boot time, but doing it
1110	 * here allows modifying `npx_exists' for testing the emulator on
1111	 * systems with an npx.
1112	 */
1113	load_cr0(rcr0() | CR0_MP | CR0_TS);
1114
1115#ifdef DEV_NPX
1116	/* Initialize the npx (if any) for the current process. */
1117	npxinit(__INITIAL_NPXCW__);
1118#endif
1119
1120	/*
1121	 * XXX - Linux emulator
1122	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1123	 * on it.
1124	 */
1125	p->p_retval[1] = 0;
1126}
1127
1128void
1129cpu_setregs(void)
1130{
1131	unsigned int cr0;
1132
1133	cr0 = rcr0();
1134	cr0 |= CR0_NE;			/* Done by npxinit() */
1135	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1136#ifndef I386_CPU
1137	cr0 |= CR0_WP | CR0_AM;
1138#endif
1139	load_cr0(cr0);
1140	load_gs(_udatasel);
1141}
1142
1143static int
1144sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1145{
1146	int error;
1147	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1148		req);
1149	if (!error && req->newptr)
1150		resettodr();
1151	return (error);
1152}
1153
1154SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1155	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1156
1157SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1158	CTLFLAG_RW, &disable_rtc_set, 0, "");
1159
1160SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1161	CTLFLAG_RD, &bootinfo, bootinfo, "");
1162
1163SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1164	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1165
1166/*
1167 * Initialize 386 and configure to run kernel
1168 */
1169
1170/*
1171 * Initialize segments & interrupt table
1172 */
1173
1174int _default_ldt;
1175union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1176static struct gate_descriptor idt0[NIDT];
1177struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1178union descriptor ldt[NLDT];		/* local descriptor table */
1179#ifdef SMP
1180/* table descriptors - used to load tables by microp */
1181struct region_descriptor r_gdt, r_idt;
1182#endif
1183
1184int private_tss;			/* flag indicating private tss */
1185
1186#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1187extern int has_f00f_bug;
1188#endif
1189
1190static struct i386tss dblfault_tss;
1191static char dblfault_stack[PAGE_SIZE];
1192
1193extern  struct user *proc0paddr;
1194
1195
1196/* software prototypes -- in more palatable form */
1197struct soft_segment_descriptor gdt_segs[] = {
1198/* GNULL_SEL	0 Null Descriptor */
1199{	0x0,			/* segment base address  */
1200	0x0,			/* length */
1201	0,			/* segment type */
1202	0,			/* segment descriptor priority level */
1203	0,			/* segment descriptor present */
1204	0, 0,
1205	0,			/* default 32 vs 16 bit size */
1206	0  			/* limit granularity (byte/page units)*/ },
1207/* GCODE_SEL	1 Code Descriptor for kernel */
1208{	0x0,			/* segment base address  */
1209	0xfffff,		/* length - all address space */
1210	SDT_MEMERA,		/* segment type */
1211	0,			/* segment descriptor priority level */
1212	1,			/* segment descriptor present */
1213	0, 0,
1214	1,			/* default 32 vs 16 bit size */
1215	1  			/* limit granularity (byte/page units)*/ },
1216/* GDATA_SEL	2 Data Descriptor for kernel */
1217{	0x0,			/* segment base address  */
1218	0xfffff,		/* length - all address space */
1219	SDT_MEMRWA,		/* segment type */
1220	0,			/* segment descriptor priority level */
1221	1,			/* segment descriptor present */
1222	0, 0,
1223	1,			/* default 32 vs 16 bit size */
1224	1  			/* limit granularity (byte/page units)*/ },
1225/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1226{	0x0,			/* segment base address  */
1227	0xfffff,		/* length - all address space */
1228	SDT_MEMRWA,		/* segment type */
1229	0,			/* segment descriptor priority level */
1230	1,			/* segment descriptor present */
1231	0, 0,
1232	1,			/* default 32 vs 16 bit size */
1233	1  			/* limit granularity (byte/page units)*/ },
1234/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1235{
1236	0x0,			/* segment base address */
1237	sizeof(struct i386tss)-1,/* length - all address space */
1238	SDT_SYS386TSS,		/* segment type */
1239	0,			/* segment descriptor priority level */
1240	1,			/* segment descriptor present */
1241	0, 0,
1242	0,			/* unused - default 32 vs 16 bit size */
1243	0  			/* limit granularity (byte/page units)*/ },
1244/* GLDT_SEL	5 LDT Descriptor */
1245{	(int) ldt,		/* segment base address  */
1246	sizeof(ldt)-1,		/* length - all address space */
1247	SDT_SYSLDT,		/* segment type */
1248	SEL_UPL,		/* segment descriptor priority level */
1249	1,			/* segment descriptor present */
1250	0, 0,
1251	0,			/* unused - default 32 vs 16 bit size */
1252	0  			/* limit granularity (byte/page units)*/ },
1253/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1254{	(int) ldt,		/* segment base address  */
1255	(512 * sizeof(union descriptor)-1),		/* length */
1256	SDT_SYSLDT,		/* segment type */
1257	0,			/* segment descriptor priority level */
1258	1,			/* segment descriptor present */
1259	0, 0,
1260	0,			/* unused - default 32 vs 16 bit size */
1261	0  			/* limit granularity (byte/page units)*/ },
1262/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1263{	0x0,			/* segment base address  */
1264	0x0,			/* length - all address space */
1265	0,			/* segment type */
1266	0,			/* segment descriptor priority level */
1267	0,			/* segment descriptor present */
1268	0, 0,
1269	0,			/* default 32 vs 16 bit size */
1270	0  			/* limit granularity (byte/page units)*/ },
1271/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1272{	0x400,			/* segment base address */
1273	0xfffff,		/* length */
1274	SDT_MEMRWA,		/* segment type */
1275	0,			/* segment descriptor priority level */
1276	1,			/* segment descriptor present */
1277	0, 0,
1278	1,			/* default 32 vs 16 bit size */
1279	1  			/* limit granularity (byte/page units)*/ },
1280/* GPANIC_SEL	9 Panic Tss Descriptor */
1281{	(int) &dblfault_tss,	/* segment base address  */
1282	sizeof(struct i386tss)-1,/* length - all address space */
1283	SDT_SYS386TSS,		/* segment type */
1284	0,			/* segment descriptor priority level */
1285	1,			/* segment descriptor present */
1286	0, 0,
1287	0,			/* unused - default 32 vs 16 bit size */
1288	0  			/* limit granularity (byte/page units)*/ },
1289/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1290{	0,			/* segment base address (overwritten)  */
1291	0xfffff,		/* length */
1292	SDT_MEMERA,		/* segment type */
1293	0,			/* segment descriptor priority level */
1294	1,			/* segment descriptor present */
1295	0, 0,
1296	0,			/* default 32 vs 16 bit size */
1297	1  			/* limit granularity (byte/page units)*/ },
1298/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1299{	0,			/* segment base address (overwritten)  */
1300	0xfffff,		/* length */
1301	SDT_MEMERA,		/* segment type */
1302	0,			/* segment descriptor priority level */
1303	1,			/* segment descriptor present */
1304	0, 0,
1305	0,			/* default 32 vs 16 bit size */
1306	1  			/* limit granularity (byte/page units)*/ },
1307/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1308{	0,			/* segment base address (overwritten) */
1309	0xfffff,		/* length */
1310	SDT_MEMRWA,		/* segment type */
1311	0,			/* segment descriptor priority level */
1312	1,			/* segment descriptor present */
1313	0, 0,
1314	1,			/* default 32 vs 16 bit size */
1315	1  			/* limit granularity (byte/page units)*/ },
1316/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1317{	0,			/* segment base address (overwritten) */
1318	0xfffff,		/* length */
1319	SDT_MEMRWA,		/* segment type */
1320	0,			/* segment descriptor priority level */
1321	1,			/* segment descriptor present */
1322	0, 0,
1323	0,			/* default 32 vs 16 bit size */
1324	1  			/* limit granularity (byte/page units)*/ },
1325/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1326{	0,			/* segment base address (overwritten) */
1327	0xfffff,		/* length */
1328	SDT_MEMRWA,		/* segment type */
1329	0,			/* segment descriptor priority level */
1330	1,			/* segment descriptor present */
1331	0, 0,
1332	0,			/* default 32 vs 16 bit size */
1333	1  			/* limit granularity (byte/page units)*/ },
1334};
1335
1336static struct soft_segment_descriptor ldt_segs[] = {
1337	/* Null Descriptor - overwritten by call gate */
1338{	0x0,			/* segment base address  */
1339	0x0,			/* length - all address space */
1340	0,			/* segment type */
1341	0,			/* segment descriptor priority level */
1342	0,			/* segment descriptor present */
1343	0, 0,
1344	0,			/* default 32 vs 16 bit size */
1345	0  			/* limit granularity (byte/page units)*/ },
1346	/* Null Descriptor - overwritten by call gate */
1347{	0x0,			/* segment base address  */
1348	0x0,			/* length - all address space */
1349	0,			/* segment type */
1350	0,			/* segment descriptor priority level */
1351	0,			/* segment descriptor present */
1352	0, 0,
1353	0,			/* default 32 vs 16 bit size */
1354	0  			/* limit granularity (byte/page units)*/ },
1355	/* Null Descriptor - overwritten by call gate */
1356{	0x0,			/* segment base address  */
1357	0x0,			/* length - all address space */
1358	0,			/* segment type */
1359	0,			/* segment descriptor priority level */
1360	0,			/* segment descriptor present */
1361	0, 0,
1362	0,			/* default 32 vs 16 bit size */
1363	0  			/* limit granularity (byte/page units)*/ },
1364	/* Code Descriptor for user */
1365{	0x0,			/* segment base address  */
1366	0xfffff,		/* length - all address space */
1367	SDT_MEMERA,		/* segment type */
1368	SEL_UPL,		/* segment descriptor priority level */
1369	1,			/* segment descriptor present */
1370	0, 0,
1371	1,			/* default 32 vs 16 bit size */
1372	1  			/* limit granularity (byte/page units)*/ },
1373	/* Null Descriptor - overwritten by call gate */
1374{	0x0,			/* segment base address  */
1375	0x0,			/* length - all address space */
1376	0,			/* segment type */
1377	0,			/* segment descriptor priority level */
1378	0,			/* segment descriptor present */
1379	0, 0,
1380	0,			/* default 32 vs 16 bit size */
1381	0  			/* limit granularity (byte/page units)*/ },
1382	/* Data Descriptor for user */
1383{	0x0,			/* segment base address  */
1384	0xfffff,		/* length - all address space */
1385	SDT_MEMRWA,		/* segment type */
1386	SEL_UPL,		/* segment descriptor priority level */
1387	1,			/* segment descriptor present */
1388	0, 0,
1389	1,			/* default 32 vs 16 bit size */
1390	1  			/* limit granularity (byte/page units)*/ },
1391};
1392
1393void
1394setidt(idx, func, typ, dpl, selec)
1395	int idx;
1396	inthand_t *func;
1397	int typ;
1398	int dpl;
1399	int selec;
1400{
1401	struct gate_descriptor *ip;
1402
1403	ip = idt + idx;
1404	ip->gd_looffset = (int)func;
1405	ip->gd_selector = selec;
1406	ip->gd_stkcpy = 0;
1407	ip->gd_xx = 0;
1408	ip->gd_type = typ;
1409	ip->gd_dpl = dpl;
1410	ip->gd_p = 1;
1411	ip->gd_hioffset = ((int)func)>>16 ;
1412}
1413
1414#define	IDTVEC(name)	__CONCAT(X,name)
1415
1416extern inthand_t
1417	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1418	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1419	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1420	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1421	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1422
1423void
1424sdtossd(sd, ssd)
1425	struct segment_descriptor *sd;
1426	struct soft_segment_descriptor *ssd;
1427{
1428	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1429	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1430	ssd->ssd_type  = sd->sd_type;
1431	ssd->ssd_dpl   = sd->sd_dpl;
1432	ssd->ssd_p     = sd->sd_p;
1433	ssd->ssd_def32 = sd->sd_def32;
1434	ssd->ssd_gran  = sd->sd_gran;
1435}
1436
1437#define PHYSMAP_SIZE	(2 * 8)
1438
1439/*
1440 * Populate the (physmap) array with base/bound pairs describing the
1441 * available physical memory in the system, then test this memory and
1442 * build the phys_avail array describing the actually-available memory.
1443 *
1444 * If we cannot accurately determine the physical memory map, then use
1445 * value from the 0xE801 call, and failing that, the RTC.
1446 *
1447 * Total memory size may be set by the kernel environment variable
1448 * hw.physmem or the compile-time define MAXMEM.
1449 */
1450static void
1451getmemsize(int first)
1452{
1453	int i, physmap_idx, pa_indx;
1454	u_int basemem, extmem;
1455	struct vm86frame vmf;
1456	struct vm86context vmc;
1457	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1458	pt_entry_t pte;
1459	const char *cp;
1460	struct bios_smap *smap;
1461
1462	bzero(&vmf, sizeof(struct vm86frame));
1463	bzero(physmap, sizeof(physmap));
1464
1465	/*
1466	 * Perform "base memory" related probes & setup
1467	 */
1468	vm86_intcall(0x12, &vmf);
1469	basemem = vmf.vmf_ax;
1470	if (basemem > 640) {
1471		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1472			basemem);
1473		basemem = 640;
1474	}
1475
1476	/*
1477	 * XXX if biosbasemem is now < 640, there is a `hole'
1478	 * between the end of base memory and the start of
1479	 * ISA memory.  The hole may be empty or it may
1480	 * contain BIOS code or data.  Map it read/write so
1481	 * that the BIOS can write to it.  (Memory from 0 to
1482	 * the physical end of the kernel is mapped read-only
1483	 * to begin with and then parts of it are remapped.
1484	 * The parts that aren't remapped form holes that
1485	 * remain read-only and are unused by the kernel.
1486	 * The base memory area is below the physical end of
1487	 * the kernel and right now forms a read-only hole.
1488	 * The part of it from PAGE_SIZE to
1489	 * (trunc_page(biosbasemem * 1024) - 1) will be
1490	 * remapped and used by the kernel later.)
1491	 *
1492	 * This code is similar to the code used in
1493	 * pmap_mapdev, but since no memory needs to be
1494	 * allocated we simply change the mapping.
1495	 */
1496	for (pa = trunc_page(basemem * 1024);
1497	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1498		pte = (pt_entry_t)vtopte(pa + KERNBASE);
1499		*pte = pa | PG_RW | PG_V;
1500	}
1501
1502	/*
1503	 * if basemem != 640, map pages r/w into vm86 page table so
1504	 * that the bios can scribble on it.
1505	 */
1506	pte = (pt_entry_t)vm86paddr;
1507	for (i = basemem / 4; i < 160; i++)
1508		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1509
1510	/*
1511	 * map page 1 R/W into the kernel page table so we can use it
1512	 * as a buffer.  The kernel will unmap this page later.
1513	 */
1514	pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
1515	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1516
1517	/*
1518	 * get memory map with INT 15:E820
1519	 */
1520	vmc.npages = 0;
1521	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1522	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1523
1524	physmap_idx = 0;
1525	vmf.vmf_ebx = 0;
1526	do {
1527		vmf.vmf_eax = 0xE820;
1528		vmf.vmf_edx = SMAP_SIG;
1529		vmf.vmf_ecx = sizeof(struct bios_smap);
1530		i = vm86_datacall(0x15, &vmf, &vmc);
1531		if (i || vmf.vmf_eax != SMAP_SIG)
1532			break;
1533		if (boothowto & RB_VERBOSE)
1534			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1535				smap->type,
1536				*(u_int32_t *)((char *)&smap->base + 4),
1537				(u_int32_t)smap->base,
1538				*(u_int32_t *)((char *)&smap->length + 4),
1539				(u_int32_t)smap->length);
1540
1541		if (smap->type != 0x01)
1542			goto next_run;
1543
1544		if (smap->length == 0)
1545			goto next_run;
1546
1547		if (smap->base >= 0xffffffff) {
1548			printf("%uK of memory above 4GB ignored\n",
1549			    (u_int)(smap->length / 1024));
1550			goto next_run;
1551		}
1552
1553		for (i = 0; i <= physmap_idx; i += 2) {
1554			if (smap->base < physmap[i + 1]) {
1555				if (boothowto & RB_VERBOSE)
1556					printf(
1557	"Overlapping or non-montonic memory region, ignoring second region\n");
1558				goto next_run;
1559			}
1560		}
1561
1562		if (smap->base == physmap[physmap_idx + 1]) {
1563			physmap[physmap_idx + 1] += smap->length;
1564			goto next_run;
1565		}
1566
1567		physmap_idx += 2;
1568		if (physmap_idx == PHYSMAP_SIZE) {
1569			printf(
1570		"Too many segments in the physical address map, giving up\n");
1571			break;
1572		}
1573		physmap[physmap_idx] = smap->base;
1574		physmap[physmap_idx + 1] = smap->base + smap->length;
1575next_run:
1576	} while (vmf.vmf_ebx != 0);
1577
1578	if (physmap[1] != 0)
1579		goto physmap_done;
1580
1581	/*
1582	 * If we failed above, try memory map with INT 15:E801
1583	 */
1584	vmf.vmf_ax = 0xE801;
1585	if (vm86_intcall(0x15, &vmf) == 0) {
1586		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1587	} else {
1588#if 0
1589		vmf.vmf_ah = 0x88;
1590		vm86_intcall(0x15, &vmf);
1591		extmem = vmf.vmf_ax;
1592#else
1593		/*
1594		 * Prefer the RTC value for extended memory.
1595		 */
1596		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1597#endif
1598	}
1599
1600	/*
1601	 * Special hack for chipsets that still remap the 384k hole when
1602	 * there's 16MB of memory - this really confuses people that
1603	 * are trying to use bus mastering ISA controllers with the
1604	 * "16MB limit"; they only have 16MB, but the remapping puts
1605	 * them beyond the limit.
1606	 *
1607	 * If extended memory is between 15-16MB (16-17MB phys address range),
1608	 *	chop it to 15MB.
1609	 */
1610	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1611		extmem = 15 * 1024;
1612
1613	physmap[0] = 0;
1614	physmap[1] = basemem * 1024;
1615	physmap_idx = 2;
1616	physmap[physmap_idx] = 0x100000;
1617	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1618
1619physmap_done:
1620	/*
1621	 * Now, physmap contains a map of physical memory.
1622	 */
1623
1624#ifdef SMP
1625	/* make hole for AP bootstrap code */
1626	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1627
1628	/* look for the MP hardware - needed for apic addresses */
1629	mp_probe();
1630#endif
1631
1632	/*
1633	 * Maxmem isn't the "maximum memory", it's one larger than the
1634	 * highest page of the physical address space.  It should be
1635	 * called something like "Maxphyspage".  We may adjust this
1636	 * based on ``hw.physmem'' and the results of the memory test.
1637	 */
1638	Maxmem = atop(physmap[physmap_idx + 1]);
1639
1640#ifdef MAXMEM
1641	Maxmem = MAXMEM / 4;
1642#endif
1643
1644	/*
1645	 * hw.maxmem is a size in bytes; we also allow k, m, and g suffixes
1646	 * for the appropriate modifiers.  This overrides MAXMEM.
1647	 */
1648	if ((cp = getenv("hw.physmem")) != NULL) {
1649		u_int64_t AllowMem, sanity;
1650		char *ep;
1651
1652		sanity = AllowMem = strtouq(cp, &ep, 0);
1653		if ((ep != cp) && (*ep != 0)) {
1654			switch(*ep) {
1655			case 'g':
1656			case 'G':
1657				AllowMem <<= 10;
1658			case 'm':
1659			case 'M':
1660				AllowMem <<= 10;
1661			case 'k':
1662			case 'K':
1663				AllowMem <<= 10;
1664				break;
1665			default:
1666				AllowMem = sanity = 0;
1667			}
1668			if (AllowMem < sanity)
1669				AllowMem = 0;
1670		}
1671		if (AllowMem == 0)
1672			printf("Ignoring invalid memory size of '%s'\n", cp);
1673		else
1674			Maxmem = atop(AllowMem);
1675	}
1676
1677	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1678	    (boothowto & RB_VERBOSE))
1679		printf("Physical memory use set to %uK\n", Maxmem * 4);
1680
1681	/*
1682	 * If Maxmem has been increased beyond what the system has detected,
1683	 * extend the last memory segment to the new limit.
1684	 */
1685	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1686		physmap[physmap_idx + 1] = ptoa(Maxmem);
1687
1688	/* call pmap initialization to make new kernel address space */
1689	pmap_bootstrap(first, 0);
1690
1691	/*
1692	 * Size up each available chunk of physical memory.
1693	 */
1694	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1695	pa_indx = 0;
1696	phys_avail[pa_indx++] = physmap[0];
1697	phys_avail[pa_indx] = physmap[0];
1698#if 0
1699	pte = (pt_entry_t)vtopte(KERNBASE);
1700#else
1701	pte = (pt_entry_t)CMAP1;
1702#endif
1703
1704	/*
1705	 * physmap is in bytes, so when converting to page boundaries,
1706	 * round up the start address and round down the end address.
1707	 */
1708	for (i = 0; i <= physmap_idx; i += 2) {
1709		vm_offset_t end;
1710
1711		end = ptoa(Maxmem);
1712		if (physmap[i + 1] < end)
1713			end = trunc_page(physmap[i + 1]);
1714		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1715			int tmp, page_bad;
1716#if 0
1717			int *ptr = 0;
1718#else
1719			int *ptr = (int *)CADDR1;
1720#endif
1721
1722			/*
1723			 * block out kernel memory as not available.
1724			 */
1725			if (pa >= 0x100000 && pa < first)
1726				continue;
1727
1728			page_bad = FALSE;
1729
1730			/*
1731			 * map page into kernel: valid, read/write,non-cacheable
1732			 */
1733			*pte = pa | PG_V | PG_RW | PG_N;
1734			invltlb();
1735
1736			tmp = *(int *)ptr;
1737			/*
1738			 * Test for alternating 1's and 0's
1739			 */
1740			*(volatile int *)ptr = 0xaaaaaaaa;
1741			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1742				page_bad = TRUE;
1743			}
1744			/*
1745			 * Test for alternating 0's and 1's
1746			 */
1747			*(volatile int *)ptr = 0x55555555;
1748			if (*(volatile int *)ptr != 0x55555555) {
1749			page_bad = TRUE;
1750			}
1751			/*
1752			 * Test for all 1's
1753			 */
1754			*(volatile int *)ptr = 0xffffffff;
1755			if (*(volatile int *)ptr != 0xffffffff) {
1756				page_bad = TRUE;
1757			}
1758			/*
1759			 * Test for all 0's
1760			 */
1761			*(volatile int *)ptr = 0x0;
1762			if (*(volatile int *)ptr != 0x0) {
1763				page_bad = TRUE;
1764			}
1765			/*
1766			 * Restore original value.
1767			 */
1768			*(int *)ptr = tmp;
1769
1770			/*
1771			 * Adjust array of valid/good pages.
1772			 */
1773			if (page_bad == TRUE) {
1774				continue;
1775			}
1776			/*
1777			 * If this good page is a continuation of the
1778			 * previous set of good pages, then just increase
1779			 * the end pointer. Otherwise start a new chunk.
1780			 * Note that "end" points one higher than end,
1781			 * making the range >= start and < end.
1782			 * If we're also doing a speculative memory
1783			 * test and we at or past the end, bump up Maxmem
1784			 * so that we keep going. The first bad page
1785			 * will terminate the loop.
1786			 */
1787			if (phys_avail[pa_indx] == pa) {
1788				phys_avail[pa_indx] += PAGE_SIZE;
1789			} else {
1790				pa_indx++;
1791				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1792					printf("Too many holes in the physical address space, giving up\n");
1793					pa_indx--;
1794					break;
1795				}
1796				phys_avail[pa_indx++] = pa;	/* start */
1797				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1798			}
1799			physmem++;
1800		}
1801	}
1802	*pte = 0;
1803	invltlb();
1804
1805	/*
1806	 * XXX
1807	 * The last chunk must contain at least one page plus the message
1808	 * buffer to avoid complicating other code (message buffer address
1809	 * calculation, etc.).
1810	 */
1811	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1812	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1813		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1814		phys_avail[pa_indx--] = 0;
1815		phys_avail[pa_indx--] = 0;
1816	}
1817
1818	Maxmem = atop(phys_avail[pa_indx]);
1819
1820	/* Trim off space for the message buffer. */
1821	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1822
1823	avail_end = phys_avail[pa_indx];
1824}
1825
1826void
1827init386(first)
1828	int first;
1829{
1830	int x;
1831	struct gate_descriptor *gdp;
1832	int gsel_tss;
1833#ifndef SMP
1834	/* table descriptors - used to load tables by microp */
1835	struct region_descriptor r_gdt, r_idt;
1836#endif
1837	int off;
1838
1839	proc0.p_addr = proc0paddr;
1840
1841	atdevbase = ISA_HOLE_START + KERNBASE;
1842
1843	if (bootinfo.bi_modulep) {
1844		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1845		preload_bootstrap_relocate(KERNBASE);
1846	} else {
1847		printf("WARNING: loader(8) metadata is missing!\n");
1848	}
1849	if (bootinfo.bi_envp)
1850		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1851
1852	/*
1853	 * make gdt memory segments, the code segment goes up to end of the
1854	 * page with etext in it, the data segment goes to the end of
1855	 * the address space
1856	 */
1857	/*
1858	 * XXX text protection is temporarily (?) disabled.  The limit was
1859	 * i386_btop(round_page(etext)) - 1.
1860	 */
1861	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1862	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1863#ifdef SMP
1864	gdt_segs[GPRIV_SEL].ssd_limit =
1865		i386_btop(sizeof(struct privatespace)) - 1;
1866	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
1867	gdt_segs[GPROC0_SEL].ssd_base =
1868		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
1869	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0].globaldata;
1870#else
1871	gdt_segs[GPRIV_SEL].ssd_limit =
1872		i386_btop(sizeof(struct globaldata)) - 1;
1873	gdt_segs[GPRIV_SEL].ssd_base = (int) &__globaldata;
1874	gdt_segs[GPROC0_SEL].ssd_base =
1875		(int) &__globaldata.gd_common_tss;
1876	__globaldata.gd_prvspace = &__globaldata;
1877#endif
1878
1879	for (x = 0; x < NGDT; x++) {
1880#ifdef BDE_DEBUGGER
1881		/* avoid overwriting db entries with APM ones */
1882		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1883			continue;
1884#endif
1885		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1886	}
1887
1888	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1889	r_gdt.rd_base =  (int) gdt;
1890	lgdt(&r_gdt);
1891
1892	/* setup curproc so that mutexes work */
1893	PCPU_SET(curproc, &proc0);
1894
1895	LIST_INIT(&proc0.p_heldmtx);
1896	LIST_INIT(&proc0.p_contested);
1897
1898	mtx_init(&sched_lock, "sched lock", MTX_SPIN | MTX_RECURSE);
1899#ifdef SMP
1900	/*
1901	 * Interrupts can happen very early, so initialize imen_mtx here, rather
1902	 * than in init_locks().
1903	 */
1904	mtx_init(&imen_mtx, "imen", MTX_SPIN);
1905#endif
1906
1907	/*
1908	 * Giant is used early for at least debugger traps and unexpected traps.
1909	 */
1910	mtx_init(&Giant, "Giant", MTX_DEF | MTX_RECURSE);
1911	mtx_enter(&Giant, MTX_DEF);
1912
1913	/* make ldt memory segments */
1914	/*
1915	 * The data segment limit must not cover the user area because we
1916	 * don't want the user area to be writable in copyout() etc. (page
1917	 * level protection is lost in kernel mode on 386's).  Also, we
1918	 * don't want the user area to be writable directly (page level
1919	 * protection of the user area is not available on 486's with
1920	 * CR0_WP set, because there is no user-read/kernel-write mode).
1921	 *
1922	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1923	 * should be spelled ...MAX_USER...
1924	 */
1925#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1926	/*
1927	 * The code segment limit has to cover the user area until we move
1928	 * the signal trampoline out of the user area.  This is safe because
1929	 * the code segment cannot be written to directly.
1930	 */
1931#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1932	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1933	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1934	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1935		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1936
1937	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1938	lldt(_default_ldt);
1939#ifdef USER_LDT
1940	PCPU_SET(currentldt, _default_ldt);
1941#endif
1942
1943	/* exceptions */
1944	for (x = 0; x < NIDT; x++)
1945		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1946	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1947	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1948	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1949 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1950	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1951	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1952	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1953	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1954	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1955	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1956	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1957	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1958	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1959	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1960	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1961	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1962	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1963	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1964	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1965 	setidt(0x80, &IDTVEC(int0x80_syscall),
1966			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1967
1968	r_idt.rd_limit = sizeof(idt0) - 1;
1969	r_idt.rd_base = (int) idt;
1970	lidt(&r_idt);
1971
1972	/*
1973	 * We need this mutex before the console probe.
1974	 */
1975	mtx_init(&clock_lock, "clk", MTX_SPIN | MTX_RECURSE);
1976
1977	/*
1978	 * Initialize the console before we print anything out.
1979	 */
1980	cninit();
1981
1982#include	"isa.h"
1983#if	NISA >0
1984	isa_defaultirq();
1985#endif
1986
1987#ifdef DDB
1988	kdb_init();
1989	if (boothowto & RB_KDB)
1990		Debugger("Boot flags requested debugger");
1991#endif
1992
1993	finishidentcpu();	/* Final stage of CPU initialization */
1994	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1995	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1996	initializecpu();	/* Initialize CPU registers */
1997
1998	/* make an initial tss so cpu can get interrupt stack on syscall! */
1999	PCPU_SET(common_tss.tss_esp0,
2000	    (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16);
2001	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
2002	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2003	private_tss = 0;
2004	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
2005	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
2006	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
2007	ltr(gsel_tss);
2008
2009	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2010	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
2011	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2012	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2013	dblfault_tss.tss_cr3 = (int)IdlePTD;
2014	dblfault_tss.tss_eip = (int) dblfault_handler;
2015	dblfault_tss.tss_eflags = PSL_KERNEL;
2016	dblfault_tss.tss_ds = dblfault_tss.tss_es =
2017	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2018	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2019	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2020	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2021
2022	vm86_initialize();
2023	getmemsize(first);
2024
2025	/* now running on new page tables, configured,and u/iom is accessible */
2026
2027	/* Map the message buffer. */
2028	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2029		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2030
2031	msgbufinit(msgbufp, MSGBUF_SIZE);
2032
2033	/* make a call gate to reenter kernel with */
2034	gdp = &ldt[LSYS5CALLS_SEL].gd;
2035
2036	x = (int) &IDTVEC(syscall);
2037	gdp->gd_looffset = x++;
2038	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2039	gdp->gd_stkcpy = 1;
2040	gdp->gd_type = SDT_SYS386CGT;
2041	gdp->gd_dpl = SEL_UPL;
2042	gdp->gd_p = 1;
2043	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
2044
2045	/* XXX does this work? */
2046	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2047	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2048
2049	/* transfer to user mode */
2050
2051	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
2052	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
2053
2054	/* setup proc 0's pcb */
2055	proc0.p_addr->u_pcb.pcb_flags = 0;
2056	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
2057	proc0.p_addr->u_pcb.pcb_schednest = 0;
2058	proc0.p_addr->u_pcb.pcb_ext = 0;
2059	proc0.p_md.md_regs = &proc0_tf;
2060}
2061
2062#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2063static void f00f_hack(void *unused);
2064SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2065
2066static void
2067f00f_hack(void *unused) {
2068	struct gate_descriptor *new_idt;
2069#ifndef SMP
2070	struct region_descriptor r_idt;
2071#endif
2072	vm_offset_t tmp;
2073
2074	if (!has_f00f_bug)
2075		return;
2076
2077	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2078
2079	r_idt.rd_limit = sizeof(idt0) - 1;
2080
2081	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
2082	if (tmp == 0)
2083		panic("kmem_alloc returned 0");
2084	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2085		panic("kmem_alloc returned non-page-aligned memory");
2086	/* Put the first seven entries in the lower page */
2087	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2088	bcopy(idt, new_idt, sizeof(idt0));
2089	r_idt.rd_base = (int)new_idt;
2090	lidt(&r_idt);
2091	idt = new_idt;
2092	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2093			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2094		panic("vm_map_protect failed");
2095	return;
2096}
2097#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2098
2099int
2100ptrace_set_pc(p, addr)
2101	struct proc *p;
2102	unsigned long addr;
2103{
2104	p->p_md.md_regs->tf_eip = addr;
2105	return (0);
2106}
2107
2108int
2109ptrace_single_step(p)
2110	struct proc *p;
2111{
2112	p->p_md.md_regs->tf_eflags |= PSL_T;
2113	return (0);
2114}
2115
2116int ptrace_read_u_check(p, addr, len)
2117	struct proc *p;
2118	vm_offset_t addr;
2119	size_t len;
2120{
2121	vm_offset_t gap;
2122
2123	if ((vm_offset_t) (addr + len) < addr)
2124		return EPERM;
2125	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
2126		return 0;
2127
2128	gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
2129
2130	if ((vm_offset_t) addr < gap)
2131		return EPERM;
2132	if ((vm_offset_t) (addr + len) <=
2133	    (vm_offset_t) (gap + sizeof(struct trapframe)))
2134		return 0;
2135	return EPERM;
2136}
2137
2138int ptrace_write_u(p, off, data)
2139	struct proc *p;
2140	vm_offset_t off;
2141	long data;
2142{
2143	struct trapframe frame_copy;
2144	vm_offset_t min;
2145	struct trapframe *tp;
2146
2147	/*
2148	 * Privileged kernel state is scattered all over the user area.
2149	 * Only allow write access to parts of regs and to fpregs.
2150	 */
2151	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
2152	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
2153		tp = p->p_md.md_regs;
2154		frame_copy = *tp;
2155		*(int *)((char *)&frame_copy + (off - min)) = data;
2156		if (!EFL_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
2157		    !CS_SECURE(frame_copy.tf_cs))
2158			return (EINVAL);
2159		*(int*)((char *)p->p_addr + off) = data;
2160		return (0);
2161	}
2162	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
2163	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
2164		*(int*)((char *)p->p_addr + off) = data;
2165		return (0);
2166	}
2167	return (EFAULT);
2168}
2169
2170int
2171fill_regs(p, regs)
2172	struct proc *p;
2173	struct reg *regs;
2174{
2175	struct pcb *pcb;
2176	struct trapframe *tp;
2177
2178	tp = p->p_md.md_regs;
2179	regs->r_fs = tp->tf_fs;
2180	regs->r_es = tp->tf_es;
2181	regs->r_ds = tp->tf_ds;
2182	regs->r_edi = tp->tf_edi;
2183	regs->r_esi = tp->tf_esi;
2184	regs->r_ebp = tp->tf_ebp;
2185	regs->r_ebx = tp->tf_ebx;
2186	regs->r_edx = tp->tf_edx;
2187	regs->r_ecx = tp->tf_ecx;
2188	regs->r_eax = tp->tf_eax;
2189	regs->r_eip = tp->tf_eip;
2190	regs->r_cs = tp->tf_cs;
2191	regs->r_eflags = tp->tf_eflags;
2192	regs->r_esp = tp->tf_esp;
2193	regs->r_ss = tp->tf_ss;
2194	pcb = &p->p_addr->u_pcb;
2195	regs->r_gs = pcb->pcb_gs;
2196	return (0);
2197}
2198
2199int
2200set_regs(p, regs)
2201	struct proc *p;
2202	struct reg *regs;
2203{
2204	struct pcb *pcb;
2205	struct trapframe *tp;
2206
2207	tp = p->p_md.md_regs;
2208	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2209	    !CS_SECURE(regs->r_cs))
2210		return (EINVAL);
2211	tp->tf_fs = regs->r_fs;
2212	tp->tf_es = regs->r_es;
2213	tp->tf_ds = regs->r_ds;
2214	tp->tf_edi = regs->r_edi;
2215	tp->tf_esi = regs->r_esi;
2216	tp->tf_ebp = regs->r_ebp;
2217	tp->tf_ebx = regs->r_ebx;
2218	tp->tf_edx = regs->r_edx;
2219	tp->tf_ecx = regs->r_ecx;
2220	tp->tf_eax = regs->r_eax;
2221	tp->tf_eip = regs->r_eip;
2222	tp->tf_cs = regs->r_cs;
2223	tp->tf_eflags = regs->r_eflags;
2224	tp->tf_esp = regs->r_esp;
2225	tp->tf_ss = regs->r_ss;
2226	pcb = &p->p_addr->u_pcb;
2227	pcb->pcb_gs = regs->r_gs;
2228	return (0);
2229}
2230
2231int
2232fill_fpregs(p, fpregs)
2233	struct proc *p;
2234	struct fpreg *fpregs;
2235{
2236	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
2237	return (0);
2238}
2239
2240int
2241set_fpregs(p, fpregs)
2242	struct proc *p;
2243	struct fpreg *fpregs;
2244{
2245	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
2246	return (0);
2247}
2248
2249int
2250fill_dbregs(p, dbregs)
2251	struct proc *p;
2252	struct dbreg *dbregs;
2253{
2254	struct pcb *pcb;
2255
2256	pcb = &p->p_addr->u_pcb;
2257	dbregs->dr0 = pcb->pcb_dr0;
2258	dbregs->dr1 = pcb->pcb_dr1;
2259	dbregs->dr2 = pcb->pcb_dr2;
2260	dbregs->dr3 = pcb->pcb_dr3;
2261	dbregs->dr4 = 0;
2262	dbregs->dr5 = 0;
2263	dbregs->dr6 = pcb->pcb_dr6;
2264	dbregs->dr7 = pcb->pcb_dr7;
2265	return (0);
2266}
2267
2268int
2269set_dbregs(p, dbregs)
2270	struct proc *p;
2271	struct dbreg *dbregs;
2272{
2273	struct pcb *pcb;
2274	int i;
2275	u_int32_t mask1, mask2;
2276
2277	/*
2278	 * Don't let an illegal value for dr7 get set.  Specifically,
2279	 * check for undefined settings.  Setting these bit patterns
2280	 * result in undefined behaviour and can lead to an unexpected
2281	 * TRCTRAP.
2282	 */
2283	for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2284	     i++, mask1 <<= 2, mask2 <<= 2)
2285		if ((dbregs->dr7 & mask1) == mask2)
2286			return (EINVAL);
2287
2288	if (dbregs->dr7 & 0x0000fc00)
2289		return (EINVAL);
2290
2291
2292
2293	pcb = &p->p_addr->u_pcb;
2294
2295	/*
2296	 * Don't let a process set a breakpoint that is not within the
2297	 * process's address space.  If a process could do this, it
2298	 * could halt the system by setting a breakpoint in the kernel
2299	 * (if ddb was enabled).  Thus, we need to check to make sure
2300	 * that no breakpoints are being enabled for addresses outside
2301	 * process's address space, unless, perhaps, we were called by
2302	 * uid 0.
2303	 *
2304	 * XXX - what about when the watched area of the user's
2305	 * address space is written into from within the kernel
2306	 * ... wouldn't that still cause a breakpoint to be generated
2307	 * from within kernel mode?
2308	 */
2309
2310	if (suser(p) != 0) {
2311		if (dbregs->dr7 & 0x3) {
2312			/* dr0 is enabled */
2313			if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2314				return (EINVAL);
2315		}
2316
2317		if (dbregs->dr7 & (0x3<<2)) {
2318			/* dr1 is enabled */
2319			if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2320				return (EINVAL);
2321		}
2322
2323		if (dbregs->dr7 & (0x3<<4)) {
2324			/* dr2 is enabled */
2325			if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2326       				return (EINVAL);
2327		}
2328
2329		if (dbregs->dr7 & (0x3<<6)) {
2330			/* dr3 is enabled */
2331			if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2332				return (EINVAL);
2333		}
2334	}
2335
2336	pcb->pcb_dr0 = dbregs->dr0;
2337	pcb->pcb_dr1 = dbregs->dr1;
2338	pcb->pcb_dr2 = dbregs->dr2;
2339	pcb->pcb_dr3 = dbregs->dr3;
2340	pcb->pcb_dr6 = dbregs->dr6;
2341	pcb->pcb_dr7 = dbregs->dr7;
2342
2343	pcb->pcb_flags |= PCB_DBREGS;
2344
2345	return (0);
2346}
2347
2348/*
2349 * Return > 0 if a hardware breakpoint has been hit, and the
2350 * breakpoint was in user space.  Return 0, otherwise.
2351 */
2352int
2353user_dbreg_trap(void)
2354{
2355        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2356        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
2357        int nbp;            /* number of breakpoints that triggered */
2358        caddr_t addr[4];    /* breakpoint addresses */
2359        int i;
2360
2361        dr7 = rdr7();
2362        if ((dr7 & 0x000000ff) == 0) {
2363                /*
2364                 * all GE and LE bits in the dr7 register are zero,
2365                 * thus the trap couldn't have been caused by the
2366                 * hardware debug registers
2367                 */
2368                return 0;
2369        }
2370
2371        nbp = 0;
2372        dr6 = rdr6();
2373        bp = dr6 & 0x0000000f;
2374
2375        if (!bp) {
2376                /*
2377                 * None of the breakpoint bits are set meaning this
2378                 * trap was not caused by any of the debug registers
2379                 */
2380                return 0;
2381        }
2382
2383        /*
2384         * at least one of the breakpoints were hit, check to see
2385         * which ones and if any of them are user space addresses
2386         */
2387
2388        if (bp & 0x01) {
2389                addr[nbp++] = (caddr_t)rdr0();
2390        }
2391        if (bp & 0x02) {
2392                addr[nbp++] = (caddr_t)rdr1();
2393        }
2394        if (bp & 0x04) {
2395                addr[nbp++] = (caddr_t)rdr2();
2396        }
2397        if (bp & 0x08) {
2398                addr[nbp++] = (caddr_t)rdr3();
2399        }
2400
2401        for (i=0; i<nbp; i++) {
2402                if (addr[i] <
2403                    (caddr_t)VM_MAXUSER_ADDRESS) {
2404                        /*
2405                         * addr[i] is in user space
2406                         */
2407                        return nbp;
2408                }
2409        }
2410
2411        /*
2412         * None of the breakpoints are in user space.
2413         */
2414        return 0;
2415}
2416
2417
2418#ifndef DDB
2419void
2420Debugger(const char *msg)
2421{
2422	printf("Debugger(\"%s\") called.\n", msg);
2423}
2424#endif /* no DDB */
2425
2426#include <sys/disklabel.h>
2427
2428/*
2429 * Determine the size of the transfer, and make sure it is
2430 * within the boundaries of the partition. Adjust transfer
2431 * if needed, and signal errors or early completion.
2432 */
2433int
2434bounds_check_with_label(struct bio *bp, struct disklabel *lp, int wlabel)
2435{
2436        struct partition *p = lp->d_partitions + dkpart(bp->bio_dev);
2437        int labelsect = lp->d_partitions[0].p_offset;
2438        int maxsz = p->p_size,
2439                sz = (bp->bio_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2440
2441        /* overwriting disk label ? */
2442        /* XXX should also protect bootstrap in first 8K */
2443        if (bp->bio_blkno + p->p_offset <= LABELSECTOR + labelsect &&
2444#if LABELSECTOR != 0
2445            bp->bio_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2446#endif
2447            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2448                bp->bio_error = EROFS;
2449                goto bad;
2450        }
2451
2452#if     defined(DOSBBSECTOR) && defined(notyet)
2453        /* overwriting master boot record? */
2454        if (bp->bio_blkno + p->p_offset <= DOSBBSECTOR &&
2455            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2456                bp->bio_error = EROFS;
2457                goto bad;
2458        }
2459#endif
2460
2461        /* beyond partition? */
2462        if (bp->bio_blkno < 0 || bp->bio_blkno + sz > maxsz) {
2463                /* if exactly at end of disk, return an EOF */
2464                if (bp->bio_blkno == maxsz) {
2465                        bp->bio_resid = bp->bio_bcount;
2466                        return(0);
2467                }
2468                /* or truncate if part of it fits */
2469                sz = maxsz - bp->bio_blkno;
2470                if (sz <= 0) {
2471                        bp->bio_error = EINVAL;
2472                        goto bad;
2473                }
2474                bp->bio_bcount = sz << DEV_BSHIFT;
2475        }
2476
2477        bp->bio_pblkno = bp->bio_blkno + p->p_offset;
2478        return(1);
2479
2480bad:
2481        bp->bio_flags |= BIO_ERROR;
2482        return(-1);
2483}
2484
2485#ifdef DDB
2486
2487/*
2488 * Provide inb() and outb() as functions.  They are normally only
2489 * available as macros calling inlined functions, thus cannot be
2490 * called inside DDB.
2491 *
2492 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2493 */
2494
2495#undef inb
2496#undef outb
2497
2498/* silence compiler warnings */
2499u_char inb(u_int);
2500void outb(u_int, u_char);
2501
2502u_char
2503inb(u_int port)
2504{
2505	u_char	data;
2506	/*
2507	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2508	 * %edx, while gcc generates inferior code (movw instead of movl)
2509	 * if we tell it to load (u_short) port.
2510	 */
2511	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2512	return (data);
2513}
2514
2515void
2516outb(u_int port, u_char data)
2517{
2518	u_char	al;
2519	/*
2520	 * Use an unnecessary assignment to help gcc's register allocator.
2521	 * This make a large difference for gcc-1.40 and a tiny difference
2522	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2523	 * best results.  gcc-2.6.0 can't handle this.
2524	 */
2525	al = data;
2526	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2527}
2528
2529#endif /* DDB */
2530