machdep.c revision 59249
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 59249 2000-04-15 05:54:02Z phk $
39 */
40
41#include "apm.h"
42#include "ether.h"
43#include "npx.h"
44#include "opt_atalk.h"
45#include "opt_compat.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_inet.h"
49#include "opt_ipx.h"
50#include "opt_maxmem.h"
51#include "opt_msgbuf.h"
52#include "opt_perfmon.h"
53#include "opt_smp.h"
54#include "opt_sysvipc.h"
55#include "opt_user_ldt.h"
56#include "opt_userconfig.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/sysproto.h>
61#include <sys/signalvar.h>
62#include <sys/kernel.h>
63#include <sys/linker.h>
64#include <sys/malloc.h>
65#include <sys/proc.h>
66#include <sys/buf.h>
67#include <sys/reboot.h>
68#include <sys/callout.h>
69#include <sys/mbuf.h>
70#include <sys/msgbuf.h>
71#include <sys/sysent.h>
72#include <sys/sysctl.h>
73#include <sys/vmmeter.h>
74#include <sys/bus.h>
75
76#ifdef SYSVMSG
77#include <sys/msg.h>
78#endif
79
80#ifdef SYSVSEM
81#include <sys/sem.h>
82#endif
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <sys/lock.h>
87#include <vm/vm_kern.h>
88#include <vm/vm_object.h>
89#include <vm/vm_page.h>
90#include <vm/vm_map.h>
91#include <vm/vm_pager.h>
92#include <vm/vm_extern.h>
93
94#include <sys/user.h>
95#include <sys/exec.h>
96#include <sys/cons.h>
97
98#include <ddb/ddb.h>
99
100#include <net/netisr.h>
101
102#include <machine/cpu.h>
103#include <machine/reg.h>
104#include <machine/clock.h>
105#include <machine/specialreg.h>
106#include <machine/bootinfo.h>
107#include <machine/ipl.h>
108#include <machine/md_var.h>
109#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
110#ifdef SMP
111#include <machine/smp.h>
112#include <machine/globaldata.h>
113#endif
114#ifdef PERFMON
115#include <machine/perfmon.h>
116#endif
117
118#ifdef OLD_BUS_ARCH
119#include <i386/isa/isa_device.h>
120#endif
121#include <i386/isa/intr_machdep.h>
122#include <isa/rtc.h>
123#include <machine/vm86.h>
124#include <machine/random.h>
125#include <sys/ptrace.h>
126#include <machine/sigframe.h>
127
128extern void init386 __P((int first));
129extern void dblfault_handler __P((void));
130
131extern void printcpuinfo(void);	/* XXX header file */
132extern void earlysetcpuclass(void);	/* same header file */
133extern void finishidentcpu(void);
134extern void panicifcpuunsupported(void);
135extern void initializecpu(void);
136
137static void cpu_startup __P((void *));
138SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
139
140static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
141
142int	_udatasel, _ucodesel;
143u_int	atdevbase;
144
145#if defined(SWTCH_OPTIM_STATS)
146extern int swtch_optim_stats;
147SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
148	CTLFLAG_RD, &swtch_optim_stats, 0, "");
149SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
150	CTLFLAG_RD, &tlb_flush_count, 0, "");
151#endif
152
153#ifdef PC98
154static int	ispc98 = 1;
155#else
156static int	ispc98 = 0;
157#endif
158SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
159
160int physmem = 0;
161int cold = 1;
162
163static int
164sysctl_hw_physmem SYSCTL_HANDLER_ARGS
165{
166	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
167	return (error);
168}
169
170SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
171	0, 0, sysctl_hw_physmem, "I", "");
172
173static int
174sysctl_hw_usermem SYSCTL_HANDLER_ARGS
175{
176	int error = sysctl_handle_int(oidp, 0,
177		ctob(physmem - cnt.v_wire_count), req);
178	return (error);
179}
180
181SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
182	0, 0, sysctl_hw_usermem, "I", "");
183
184static int
185sysctl_hw_availpages SYSCTL_HANDLER_ARGS
186{
187	int error = sysctl_handle_int(oidp, 0,
188		i386_btop(avail_end - avail_start), req);
189	return (error);
190}
191
192SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
193	0, 0, sysctl_hw_availpages, "I", "");
194
195static int
196sysctl_machdep_msgbuf SYSCTL_HANDLER_ARGS
197{
198	int error;
199
200	/* Unwind the buffer, so that it's linear (possibly starting with
201	 * some initial nulls).
202	 */
203	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
204		msgbufp->msg_size-msgbufp->msg_bufr,req);
205	if(error) return(error);
206	if(msgbufp->msg_bufr>0) {
207		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
208			msgbufp->msg_bufr,req);
209	}
210	return(error);
211}
212
213SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
214	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
215
216static int msgbuf_clear;
217
218static int
219sysctl_machdep_msgbuf_clear SYSCTL_HANDLER_ARGS
220{
221	int error;
222	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
223		req);
224	if (!error && req->newptr) {
225		/* Clear the buffer and reset write pointer */
226		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
227		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
228		msgbuf_clear=0;
229	}
230	return (error);
231}
232
233SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
234	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
235	"Clear kernel message buffer");
236
237int bootverbose = 0, Maxmem = 0;
238long dumplo;
239
240vm_offset_t phys_avail[10];
241
242/* must be 2 less so 0 0 can signal end of chunks */
243#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
244
245static vm_offset_t buffer_sva, buffer_eva;
246vm_offset_t clean_sva, clean_eva;
247static vm_offset_t pager_sva, pager_eva;
248
249#define offsetof(type, member)	((size_t)(&((type *)0)->member))
250
251static void
252cpu_startup(dummy)
253	void *dummy;
254{
255	register unsigned i;
256	register caddr_t v;
257	vm_offset_t maxaddr;
258	vm_size_t size = 0;
259	int firstaddr;
260	vm_offset_t minaddr;
261
262	if (boothowto & RB_VERBOSE)
263		bootverbose++;
264
265	/*
266	 * Good {morning,afternoon,evening,night}.
267	 */
268	printf(version);
269	earlysetcpuclass();
270	startrtclock();
271	printcpuinfo();
272	panicifcpuunsupported();
273#ifdef PERFMON
274	perfmon_init();
275#endif
276	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
277	/*
278	 * Display any holes after the first chunk of extended memory.
279	 */
280	if (bootverbose) {
281		int indx;
282
283		printf("Physical memory chunk(s):\n");
284		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
285			int size1 = phys_avail[indx + 1] - phys_avail[indx];
286
287			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
288			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
289			    size1 / PAGE_SIZE);
290		}
291	}
292
293	/*
294	 * Calculate callout wheel size
295	 */
296	for (callwheelsize = 1, callwheelbits = 0;
297	     callwheelsize < ncallout;
298	     callwheelsize <<= 1, ++callwheelbits)
299		;
300	callwheelmask = callwheelsize - 1;
301
302	/*
303	 * Allocate space for system data structures.
304	 * The first available kernel virtual address is in "v".
305	 * As pages of kernel virtual memory are allocated, "v" is incremented.
306	 * As pages of memory are allocated and cleared,
307	 * "firstaddr" is incremented.
308	 * An index into the kernel page table corresponding to the
309	 * virtual memory address maintained in "v" is kept in "mapaddr".
310	 */
311
312	/*
313	 * Make two passes.  The first pass calculates how much memory is
314	 * needed and allocates it.  The second pass assigns virtual
315	 * addresses to the various data structures.
316	 */
317	firstaddr = 0;
318again:
319	v = (caddr_t)firstaddr;
320
321#define	valloc(name, type, num) \
322	    (name) = (type *)v; v = (caddr_t)((name)+(num))
323#define	valloclim(name, type, num, lim) \
324	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
325
326	valloc(callout, struct callout, ncallout);
327	valloc(callwheel, struct callout_tailq, callwheelsize);
328#ifdef SYSVSEM
329	valloc(sema, struct semid_ds, seminfo.semmni);
330	valloc(sem, struct sem, seminfo.semmns);
331	/* This is pretty disgusting! */
332	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
333#endif
334#ifdef SYSVMSG
335	valloc(msgpool, char, msginfo.msgmax);
336	valloc(msgmaps, struct msgmap, msginfo.msgseg);
337	valloc(msghdrs, struct msg, msginfo.msgtql);
338	valloc(msqids, struct msqid_ds, msginfo.msgmni);
339#endif
340
341	/*
342	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
343	 * For the first 64MB of ram nominally allocate sufficient buffers to
344	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
345	 * buffers to cover 1/20 of our ram over 64MB.
346	 *
347	 * factor represents the 1/4 x ram conversion.
348	 */
349	if (nbuf == 0) {
350		int factor = 4 * BKVASIZE / PAGE_SIZE;
351
352		nbuf = 50;
353		if (physmem > 1024)
354			nbuf += min((physmem - 1024) / factor, 16384 / factor);
355		if (physmem > 16384)
356			nbuf += (physmem - 16384) * 2 / (factor * 5);
357	}
358
359	/*
360	 * Do not allow the buffer_map to be more then 1/2 the size of the
361	 * kernel_map.
362	 */
363	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
364	    (BKVASIZE * 2)) {
365		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
366		    (BKVASIZE * 2);
367		printf("Warning: nbufs capped at %d\n", nbuf);
368	}
369
370	nswbuf = max(min(nbuf/4, 256), 16);
371
372	valloc(swbuf, struct buf, nswbuf);
373	valloc(buf, struct buf, nbuf);
374	v = bufhashinit(v);
375
376	/*
377	 * End of first pass, size has been calculated so allocate memory
378	 */
379	if (firstaddr == 0) {
380		size = (vm_size_t)(v - firstaddr);
381		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
382		if (firstaddr == 0)
383			panic("startup: no room for tables");
384		goto again;
385	}
386
387	/*
388	 * End of second pass, addresses have been assigned
389	 */
390	if ((vm_size_t)(v - firstaddr) != size)
391		panic("startup: table size inconsistency");
392
393	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
394			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
395	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
396				(nbuf*BKVASIZE));
397	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
398				(nswbuf*MAXPHYS) + pager_map_size);
399	pager_map->system_map = 1;
400	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
401				(16*(ARG_MAX+(PAGE_SIZE*3))));
402
403	/*
404	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
405	 * we use the more space efficient malloc in place of kmem_alloc.
406	 */
407	{
408		vm_offset_t mb_map_size;
409
410		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
411		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
412		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
413		bzero(mclrefcnt, mb_map_size / MCLBYTES);
414		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
415			mb_map_size);
416		mb_map->system_map = 1;
417	}
418
419	/*
420	 * Initialize callouts
421	 */
422	SLIST_INIT(&callfree);
423	for (i = 0; i < ncallout; i++) {
424		callout_init(&callout[i]);
425		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
426		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
427	}
428
429	for (i = 0; i < callwheelsize; i++) {
430		TAILQ_INIT(&callwheel[i]);
431	}
432
433#if defined(USERCONFIG)
434	userconfig();
435	cninit();		/* the preferred console may have changed */
436#endif
437
438	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
439	    ptoa(cnt.v_free_count) / 1024);
440
441	/*
442	 * Set up buffers, so they can be used to read disk labels.
443	 */
444	bufinit();
445	vm_pager_bufferinit();
446
447#ifdef SMP
448	/*
449	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
450	 */
451	mp_start();			/* fire up the APs and APICs */
452	mp_announce();
453#endif  /* SMP */
454}
455
456int
457register_netisr(num, handler)
458	int num;
459	netisr_t *handler;
460{
461
462	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
463		printf("register_netisr: bad isr number: %d\n", num);
464		return (EINVAL);
465	}
466	netisrs[num] = handler;
467	return (0);
468}
469
470int
471unregister_netisr(num)
472	int num;
473{
474
475	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
476		printf("unregister_netisr: bad isr number: %d\n", num);
477		return (EINVAL);
478	}
479	netisrs[num] = NULL;
480	return (0);
481}
482
483/*
484 * Send an interrupt to process.
485 *
486 * Stack is set up to allow sigcode stored
487 * at top to call routine, followed by kcall
488 * to sigreturn routine below.  After sigreturn
489 * resets the signal mask, the stack, and the
490 * frame pointer, it returns to the user
491 * specified pc, psl.
492 */
493static void
494osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
495{
496	register struct proc *p = curproc;
497	register struct trapframe *regs;
498	register struct osigframe *fp;
499	struct osigframe sf;
500	struct sigacts *psp = p->p_sigacts;
501	int oonstack;
502
503	regs = p->p_md.md_regs;
504	oonstack = (p->p_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
505
506	/* Allocate and validate space for the signal handler context. */
507	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
508	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
509		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
510		    p->p_sigstk.ss_size - sizeof(struct osigframe));
511		p->p_sigstk.ss_flags |= SS_ONSTACK;
512	}
513	else
514		fp = (struct osigframe *)regs->tf_esp - 1;
515
516	/*
517	 * grow() will return FALSE if the fp will not fit inside the stack
518	 *	and the stack can not be grown. useracc will return FALSE
519	 *	if access is denied.
520	 */
521	if (grow_stack(p, (int)fp) == FALSE ||
522	    !useracc((caddr_t)fp, sizeof(struct osigframe), VM_PROT_WRITE)) {
523		/*
524		 * Process has trashed its stack; give it an illegal
525		 * instruction to halt it in its tracks.
526		 */
527		SIGACTION(p, SIGILL) = SIG_DFL;
528		SIGDELSET(p->p_sigignore, SIGILL);
529		SIGDELSET(p->p_sigcatch, SIGILL);
530		SIGDELSET(p->p_sigmask, SIGILL);
531		psignal(p, SIGILL);
532		return;
533	}
534
535	/* Translate the signal if appropriate */
536	if (p->p_sysent->sv_sigtbl) {
537		if (sig <= p->p_sysent->sv_sigsize)
538			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
539	}
540
541	/* Build the argument list for the signal handler. */
542	sf.sf_signum = sig;
543	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
544	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
545		/* Signal handler installed with SA_SIGINFO. */
546		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
547		sf.sf_siginfo.si_signo = sig;
548		sf.sf_siginfo.si_code = code;
549		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
550	}
551	else {
552		/* Old FreeBSD-style arguments. */
553		sf.sf_arg2 = code;
554		sf.sf_addr = regs->tf_err;
555		sf.sf_ahu.sf_handler = catcher;
556	}
557
558	/* save scratch registers */
559	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
560	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
561	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
562	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
563	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
564	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
565	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
566	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
567	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
568	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
569	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
570	sf.sf_siginfo.si_sc.sc_gs = rgs();
571	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
572
573	/* Build the signal context to be used by sigreturn. */
574	sf.sf_siginfo.si_sc.sc_onstack = oonstack;
575	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
576	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
577	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
578	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
579	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
580	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
581	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
582
583	/*
584	 * If we're a vm86 process, we want to save the segment registers.
585	 * We also change eflags to be our emulated eflags, not the actual
586	 * eflags.
587	 */
588	if (regs->tf_eflags & PSL_VM) {
589		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
590		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
591
592		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
593		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
594		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
595		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
596
597		if (vm86->vm86_has_vme == 0)
598			sf.sf_siginfo.si_sc.sc_ps =
599			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
600			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
601		/* see sendsig for comment */
602		tf->tf_eflags &= ~(PSL_VM|PSL_NT|PSL_T|PSL_VIF|PSL_VIP);
603	}
604
605	/* Copy the sigframe out to the user's stack. */
606	if (copyout(&sf, fp, sizeof(struct osigframe)) != 0) {
607		/*
608		 * Something is wrong with the stack pointer.
609		 * ...Kill the process.
610		 */
611		sigexit(p, SIGILL);
612	}
613
614	regs->tf_esp = (int)fp;
615	regs->tf_eip = PS_STRINGS - szosigcode;
616	regs->tf_cs = _ucodesel;
617	regs->tf_ds = _udatasel;
618	regs->tf_es = _udatasel;
619	regs->tf_fs = _udatasel;
620	load_gs(_udatasel);
621	regs->tf_ss = _udatasel;
622}
623
624void
625sendsig(catcher, sig, mask, code)
626	sig_t catcher;
627	int sig;
628	sigset_t *mask;
629	u_long code;
630{
631	struct proc *p = curproc;
632	struct trapframe *regs;
633	struct sigacts *psp = p->p_sigacts;
634	struct sigframe sf, *sfp;
635	int oonstack;
636
637	if (SIGISMEMBER(psp->ps_osigset, sig)) {
638		osendsig(catcher, sig, mask, code);
639		return;
640	}
641
642	regs = p->p_md.md_regs;
643	oonstack = (p->p_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
644
645	/* save user context */
646	bzero(&sf, sizeof(struct sigframe));
647	sf.sf_uc.uc_sigmask = *mask;
648	sf.sf_uc.uc_stack = p->p_sigstk;
649	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
650	sf.sf_uc.uc_mcontext.mc_gs = rgs();
651	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(struct trapframe));
652
653	/* Allocate and validate space for the signal handler context. */
654        if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
655	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
656		sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
657		    p->p_sigstk.ss_size - sizeof(struct sigframe));
658		p->p_sigstk.ss_flags |= SS_ONSTACK;
659	}
660	else
661		sfp = (struct sigframe *)regs->tf_esp - 1;
662
663	/*
664	 * grow() will return FALSE if the sfp will not fit inside the stack
665	 * and the stack can not be grown. useracc will return FALSE if
666	 * access is denied.
667	 */
668	if (grow_stack(p, (int)sfp) == FALSE ||
669	    !useracc((caddr_t)sfp, sizeof(struct sigframe), VM_PROT_WRITE)) {
670		/*
671		 * Process has trashed its stack; give it an illegal
672		 * instruction to halt it in its tracks.
673		 */
674#ifdef DEBUG
675		printf("process %d has trashed its stack\n", p->p_pid);
676#endif
677		SIGACTION(p, SIGILL) = SIG_DFL;
678		SIGDELSET(p->p_sigignore, SIGILL);
679		SIGDELSET(p->p_sigcatch, SIGILL);
680		SIGDELSET(p->p_sigmask, SIGILL);
681		psignal(p, SIGILL);
682		return;
683	}
684
685	/* Translate the signal is appropriate */
686	if (p->p_sysent->sv_sigtbl) {
687		if (sig <= p->p_sysent->sv_sigsize)
688			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
689	}
690
691	/* Build the argument list for the signal handler. */
692	sf.sf_signum = sig;
693	sf.sf_ucontext = (register_t)&sfp->sf_uc;
694	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
695		/* Signal handler installed with SA_SIGINFO. */
696		sf.sf_siginfo = (register_t)&sfp->sf_si;
697		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
698
699		/* fill siginfo structure */
700		sf.sf_si.si_signo = sig;
701		sf.sf_si.si_code = code;
702		sf.sf_si.si_addr = (void*)regs->tf_err;
703	}
704	else {
705		/* Old FreeBSD-style arguments. */
706		sf.sf_siginfo = code;
707		sf.sf_addr = regs->tf_err;
708		sf.sf_ahu.sf_handler = catcher;
709	}
710
711	/*
712	 * If we're a vm86 process, we want to save the segment registers.
713	 * We also change eflags to be our emulated eflags, not the actual
714	 * eflags.
715	 */
716	if (regs->tf_eflags & PSL_VM) {
717		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
718		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
719
720		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
721		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
722		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
723		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
724
725		if (vm86->vm86_has_vme == 0)
726			sf.sf_uc.uc_mcontext.mc_eflags =
727			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
728			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
729
730		/*
731		 * We should never have PSL_T set when returning from vm86
732		 * mode.  It may be set here if we deliver a signal before
733		 * getting to vm86 mode, so turn it off.
734		 *
735		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
736		 * syscalls made by the signal handler.  This just avoids
737		 * wasting time for our lazy fixup of such faults.  PSL_NT
738		 * does nothing in vm86 mode, but vm86 programs can set it
739		 * almost legitimately in probes for old cpu types.
740		 */
741		tf->tf_eflags &= ~(PSL_VM|PSL_NT|PSL_T|PSL_VIF|PSL_VIP);
742	}
743
744	/*
745	 * Copy the sigframe out to the user's stack.
746	 */
747	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
748		/*
749		 * Something is wrong with the stack pointer.
750		 * ...Kill the process.
751		 */
752		sigexit(p, SIGILL);
753	}
754
755	regs->tf_esp = (int)sfp;
756	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
757	regs->tf_cs = _ucodesel;
758	regs->tf_ds = _udatasel;
759	regs->tf_es = _udatasel;
760	regs->tf_fs = _udatasel;
761	load_gs(_udatasel);
762	regs->tf_ss = _udatasel;
763}
764
765/*
766 * System call to cleanup state after a signal
767 * has been taken.  Reset signal mask and
768 * stack state from context left by sendsig (above).
769 * Return to previous pc and psl as specified by
770 * context left by sendsig. Check carefully to
771 * make sure that the user has not modified the
772 * state to gain improper privileges.
773 */
774#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
775#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
776
777int
778osigreturn(p, uap)
779	struct proc *p;
780	struct osigreturn_args /* {
781		struct osigcontext *sigcntxp;
782	} */ *uap;
783{
784	register struct osigcontext *scp;
785	register struct trapframe *regs = p->p_md.md_regs;
786	int eflags;
787
788	scp = uap->sigcntxp;
789
790	if (!useracc((caddr_t)scp, sizeof (struct osigcontext), VM_PROT_READ))
791		return(EFAULT);
792
793	eflags = scp->sc_ps;
794	if (eflags & PSL_VM) {
795		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
796		struct vm86_kernel *vm86;
797
798		/*
799		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
800		 * set up the vm86 area, and we can't enter vm86 mode.
801		 */
802		if (p->p_addr->u_pcb.pcb_ext == 0)
803			return (EINVAL);
804		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
805		if (vm86->vm86_inited == 0)
806			return (EINVAL);
807
808		/* go back to user mode if both flags are set */
809		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
810			trapsignal(p, SIGBUS, 0);
811
812		if (vm86->vm86_has_vme) {
813			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
814			    (eflags & VME_USERCHANGE) | PSL_VM;
815		} else {
816			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
817			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
818		}
819		tf->tf_vm86_ds = scp->sc_ds;
820		tf->tf_vm86_es = scp->sc_es;
821		tf->tf_vm86_fs = scp->sc_fs;
822		tf->tf_vm86_gs = scp->sc_gs;
823		tf->tf_ds = _udatasel;
824		tf->tf_es = _udatasel;
825		tf->tf_fs = _udatasel;
826	} else {
827		/*
828		 * Don't allow users to change privileged or reserved flags.
829		 */
830		/*
831		 * XXX do allow users to change the privileged flag PSL_RF.
832		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
833		 * should sometimes set it there too.  tf_eflags is kept in
834		 * the signal context during signal handling and there is no
835		 * other place to remember it, so the PSL_RF bit may be
836		 * corrupted by the signal handler without us knowing.
837		 * Corruption of the PSL_RF bit at worst causes one more or
838		 * one less debugger trap, so allowing it is fairly harmless.
839		 */
840		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
841	    		return(EINVAL);
842		}
843
844		/*
845		 * Don't allow users to load a valid privileged %cs.  Let the
846		 * hardware check for invalid selectors, excess privilege in
847		 * other selectors, invalid %eip's and invalid %esp's.
848		 */
849		if (!CS_SECURE(scp->sc_cs)) {
850			trapsignal(p, SIGBUS, T_PROTFLT);
851			return(EINVAL);
852		}
853		regs->tf_ds = scp->sc_ds;
854		regs->tf_es = scp->sc_es;
855		regs->tf_fs = scp->sc_fs;
856	}
857
858	/* restore scratch registers */
859	regs->tf_eax = scp->sc_eax;
860	regs->tf_ebx = scp->sc_ebx;
861	regs->tf_ecx = scp->sc_ecx;
862	regs->tf_edx = scp->sc_edx;
863	regs->tf_esi = scp->sc_esi;
864	regs->tf_edi = scp->sc_edi;
865	regs->tf_cs = scp->sc_cs;
866	regs->tf_ss = scp->sc_ss;
867	regs->tf_isp = scp->sc_isp;
868
869	if (scp->sc_onstack & 01)
870		p->p_sigstk.ss_flags |= SS_ONSTACK;
871	else
872		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
873
874	SIGSETOLD(p->p_sigmask, scp->sc_mask);
875	SIG_CANTMASK(p->p_sigmask);
876	regs->tf_ebp = scp->sc_fp;
877	regs->tf_esp = scp->sc_sp;
878	regs->tf_eip = scp->sc_pc;
879	regs->tf_eflags = eflags;
880	return(EJUSTRETURN);
881}
882
883int
884sigreturn(p, uap)
885	struct proc *p;
886	struct sigreturn_args /* {
887		ucontext_t *sigcntxp;
888	} */ *uap;
889{
890	struct trapframe *regs;
891	ucontext_t *ucp;
892	int cs, eflags;
893
894	ucp = uap->sigcntxp;
895
896	if (!useracc((caddr_t)ucp, sizeof(struct osigcontext), VM_PROT_READ))
897		return (EFAULT);
898	if (((struct osigcontext *)ucp)->sc_trapno == 0x01d516)
899		return (osigreturn(p, (struct osigreturn_args *)uap));
900
901	/*
902	 * Since ucp is not an osigcontext but a ucontext_t, we have to
903	 * check again if all of it is accessible.  A ucontext_t is
904	 * much larger, so instead of just checking for the pointer
905	 * being valid for the size of an osigcontext, now check for
906	 * it being valid for a whole, new-style ucontext_t.
907	 */
908	if (!useracc((caddr_t)ucp, sizeof(ucontext_t), VM_PROT_READ))
909		return (EFAULT);
910
911	regs = p->p_md.md_regs;
912	eflags = ucp->uc_mcontext.mc_eflags;
913
914	if (eflags & PSL_VM) {
915		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
916		struct vm86_kernel *vm86;
917
918		/*
919		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
920		 * set up the vm86 area, and we can't enter vm86 mode.
921		 */
922		if (p->p_addr->u_pcb.pcb_ext == 0)
923			return (EINVAL);
924		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
925		if (vm86->vm86_inited == 0)
926			return (EINVAL);
927
928		/* go back to user mode if both flags are set */
929		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
930			trapsignal(p, SIGBUS, 0);
931
932		if (vm86->vm86_has_vme) {
933			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
934			    (eflags & VME_USERCHANGE) | PSL_VM;
935		} else {
936			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
937			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
938		}
939		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
940		tf->tf_eflags = eflags;
941		tf->tf_vm86_ds = tf->tf_ds;
942		tf->tf_vm86_es = tf->tf_es;
943		tf->tf_vm86_fs = tf->tf_fs;
944		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
945		tf->tf_ds = _udatasel;
946		tf->tf_es = _udatasel;
947		tf->tf_fs = _udatasel;
948	} else {
949		/*
950		 * Don't allow users to change privileged or reserved flags.
951		 */
952		/*
953		 * XXX do allow users to change the privileged flag PSL_RF.
954		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
955		 * should sometimes set it there too.  tf_eflags is kept in
956		 * the signal context during signal handling and there is no
957		 * other place to remember it, so the PSL_RF bit may be
958		 * corrupted by the signal handler without us knowing.
959		 * Corruption of the PSL_RF bit at worst causes one more or
960		 * one less debugger trap, so allowing it is fairly harmless.
961		 */
962		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
963			printf("sigreturn: eflags = 0x%x\n", eflags);
964	    		return(EINVAL);
965		}
966
967		/*
968		 * Don't allow users to load a valid privileged %cs.  Let the
969		 * hardware check for invalid selectors, excess privilege in
970		 * other selectors, invalid %eip's and invalid %esp's.
971		 */
972		cs = ucp->uc_mcontext.mc_cs;
973		if (!CS_SECURE(cs)) {
974			printf("sigreturn: cs = 0x%x\n", cs);
975			trapsignal(p, SIGBUS, T_PROTFLT);
976			return(EINVAL);
977		}
978		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(struct trapframe));
979	}
980
981	if (ucp->uc_mcontext.mc_onstack & 1)
982		p->p_sigstk.ss_flags |= SS_ONSTACK;
983	else
984		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
985
986	p->p_sigmask = ucp->uc_sigmask;
987	SIG_CANTMASK(p->p_sigmask);
988	return(EJUSTRETURN);
989}
990
991/*
992 * Machine dependent boot() routine
993 *
994 * I haven't seen anything to put here yet
995 * Possibly some stuff might be grafted back here from boot()
996 */
997void
998cpu_boot(int howto)
999{
1000}
1001
1002/*
1003 * Shutdown the CPU as much as possible
1004 */
1005void
1006cpu_halt(void)
1007{
1008	for (;;)
1009		__asm__ ("hlt");
1010}
1011
1012/*
1013 * Clear registers on exec
1014 */
1015void
1016setregs(p, entry, stack, ps_strings)
1017	struct proc *p;
1018	u_long entry;
1019	u_long stack;
1020	u_long ps_strings;
1021{
1022	struct trapframe *regs = p->p_md.md_regs;
1023	struct pcb *pcb = &p->p_addr->u_pcb;
1024
1025#ifdef USER_LDT
1026	/* was i386_user_cleanup() in NetBSD */
1027	user_ldt_free(pcb);
1028#endif
1029
1030	bzero((char *)regs, sizeof(struct trapframe));
1031	regs->tf_eip = entry;
1032	regs->tf_esp = stack;
1033	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1034	regs->tf_ss = _udatasel;
1035	regs->tf_ds = _udatasel;
1036	regs->tf_es = _udatasel;
1037	regs->tf_fs = _udatasel;
1038	regs->tf_cs = _ucodesel;
1039
1040	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1041	regs->tf_ebx = ps_strings;
1042
1043	/* reset %gs as well */
1044	if (pcb == curpcb)
1045		load_gs(_udatasel);
1046	else
1047		pcb->pcb_gs = _udatasel;
1048
1049        /*
1050         * Reset the hardware debug registers if they were in use.
1051         * They won't have any meaning for the newly exec'd process.
1052         */
1053        if (pcb->pcb_flags & PCB_DBREGS) {
1054                pcb->pcb_dr0 = 0;
1055                pcb->pcb_dr1 = 0;
1056                pcb->pcb_dr2 = 0;
1057                pcb->pcb_dr3 = 0;
1058                pcb->pcb_dr6 = 0;
1059                pcb->pcb_dr7 = 0;
1060                if (pcb == curpcb) {
1061		        /*
1062			 * Clear the debug registers on the running
1063			 * CPU, otherwise they will end up affecting
1064			 * the next process we switch to.
1065			 */
1066		        reset_dbregs();
1067                }
1068                pcb->pcb_flags &= ~PCB_DBREGS;
1069        }
1070
1071	/*
1072	 * Initialize the math emulator (if any) for the current process.
1073	 * Actually, just clear the bit that says that the emulator has
1074	 * been initialized.  Initialization is delayed until the process
1075	 * traps to the emulator (if it is done at all) mainly because
1076	 * emulators don't provide an entry point for initialization.
1077	 */
1078	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
1079
1080	/*
1081	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
1082	 * for why fwait must be trapped at least if there is an npx or an
1083	 * emulator).  This is mainly to handle the case where npx0 is not
1084	 * configured, since the npx routines normally set up the trap
1085	 * otherwise.  It should be done only at boot time, but doing it
1086	 * here allows modifying `npx_exists' for testing the emulator on
1087	 * systems with an npx.
1088	 */
1089	load_cr0(rcr0() | CR0_MP | CR0_TS);
1090
1091#if NNPX > 0
1092	/* Initialize the npx (if any) for the current process. */
1093	npxinit(__INITIAL_NPXCW__);
1094#endif
1095
1096      /*
1097       * XXX - Linux emulator
1098       * Make sure sure edx is 0x0 on entry. Linux binaries depend
1099       * on it.
1100       */
1101      p->p_retval[1] = 0;
1102}
1103
1104static int
1105sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
1106{
1107	int error;
1108	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1109		req);
1110	if (!error && req->newptr)
1111		resettodr();
1112	return (error);
1113}
1114
1115SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1116	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1117
1118SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1119	CTLFLAG_RW, &disable_rtc_set, 0, "");
1120
1121SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1122	CTLFLAG_RD, &bootinfo, bootinfo, "");
1123
1124SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1125	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1126
1127/*
1128 * Initialize 386 and configure to run kernel
1129 */
1130
1131/*
1132 * Initialize segments & interrupt table
1133 */
1134
1135int _default_ldt;
1136#ifdef SMP
1137union descriptor gdt[NGDT * NCPU];	/* global descriptor table */
1138#else
1139union descriptor gdt[NGDT];		/* global descriptor table */
1140#endif
1141static struct gate_descriptor idt0[NIDT];
1142struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1143union descriptor ldt[NLDT];		/* local descriptor table */
1144#ifdef SMP
1145/* table descriptors - used to load tables by microp */
1146struct region_descriptor r_gdt, r_idt;
1147#endif
1148
1149#ifndef SMP
1150extern struct segment_descriptor common_tssd, *tss_gdt;
1151#endif
1152int private_tss;			/* flag indicating private tss */
1153
1154#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1155extern int has_f00f_bug;
1156#endif
1157
1158static struct i386tss dblfault_tss;
1159static char dblfault_stack[PAGE_SIZE];
1160
1161extern  struct user *proc0paddr;
1162
1163
1164/* software prototypes -- in more palatable form */
1165struct soft_segment_descriptor gdt_segs[] = {
1166/* GNULL_SEL	0 Null Descriptor */
1167{	0x0,			/* segment base address  */
1168	0x0,			/* length */
1169	0,			/* segment type */
1170	0,			/* segment descriptor priority level */
1171	0,			/* segment descriptor present */
1172	0, 0,
1173	0,			/* default 32 vs 16 bit size */
1174	0  			/* limit granularity (byte/page units)*/ },
1175/* GCODE_SEL	1 Code Descriptor for kernel */
1176{	0x0,			/* segment base address  */
1177	0xfffff,		/* length - all address space */
1178	SDT_MEMERA,		/* segment type */
1179	0,			/* segment descriptor priority level */
1180	1,			/* segment descriptor present */
1181	0, 0,
1182	1,			/* default 32 vs 16 bit size */
1183	1  			/* limit granularity (byte/page units)*/ },
1184/* GDATA_SEL	2 Data Descriptor for kernel */
1185{	0x0,			/* segment base address  */
1186	0xfffff,		/* length - all address space */
1187	SDT_MEMRWA,		/* segment type */
1188	0,			/* segment descriptor priority level */
1189	1,			/* segment descriptor present */
1190	0, 0,
1191	1,			/* default 32 vs 16 bit size */
1192	1  			/* limit granularity (byte/page units)*/ },
1193/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1194{	0x0,			/* segment base address  */
1195	0xfffff,		/* length - all address space */
1196	SDT_MEMRWA,		/* segment type */
1197	0,			/* segment descriptor priority level */
1198	1,			/* segment descriptor present */
1199	0, 0,
1200	1,			/* default 32 vs 16 bit size */
1201	1  			/* limit granularity (byte/page units)*/ },
1202/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1203{
1204	0x0,			/* segment base address */
1205	sizeof(struct i386tss)-1,/* length - all address space */
1206	SDT_SYS386TSS,		/* segment type */
1207	0,			/* segment descriptor priority level */
1208	1,			/* segment descriptor present */
1209	0, 0,
1210	0,			/* unused - default 32 vs 16 bit size */
1211	0  			/* limit granularity (byte/page units)*/ },
1212/* GLDT_SEL	5 LDT Descriptor */
1213{	(int) ldt,		/* segment base address  */
1214	sizeof(ldt)-1,		/* length - all address space */
1215	SDT_SYSLDT,		/* segment type */
1216	SEL_UPL,		/* segment descriptor priority level */
1217	1,			/* segment descriptor present */
1218	0, 0,
1219	0,			/* unused - default 32 vs 16 bit size */
1220	0  			/* limit granularity (byte/page units)*/ },
1221/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1222{	(int) ldt,		/* segment base address  */
1223	(512 * sizeof(union descriptor)-1),		/* length */
1224	SDT_SYSLDT,		/* segment type */
1225	0,			/* segment descriptor priority level */
1226	1,			/* segment descriptor present */
1227	0, 0,
1228	0,			/* unused - default 32 vs 16 bit size */
1229	0  			/* limit granularity (byte/page units)*/ },
1230/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1231{	0x0,			/* segment base address  */
1232	0x0,			/* length - all address space */
1233	0,			/* segment type */
1234	0,			/* segment descriptor priority level */
1235	0,			/* segment descriptor present */
1236	0, 0,
1237	0,			/* default 32 vs 16 bit size */
1238	0  			/* limit granularity (byte/page units)*/ },
1239/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1240{	0x400,			/* segment base address */
1241	0xfffff,		/* length */
1242	SDT_MEMRWA,		/* segment type */
1243	0,			/* segment descriptor priority level */
1244	1,			/* segment descriptor present */
1245	0, 0,
1246	1,			/* default 32 vs 16 bit size */
1247	1  			/* limit granularity (byte/page units)*/ },
1248/* GPANIC_SEL	9 Panic Tss Descriptor */
1249{	(int) &dblfault_tss,	/* segment base address  */
1250	sizeof(struct i386tss)-1,/* length - all address space */
1251	SDT_SYS386TSS,		/* segment type */
1252	0,			/* segment descriptor priority level */
1253	1,			/* segment descriptor present */
1254	0, 0,
1255	0,			/* unused - default 32 vs 16 bit size */
1256	0  			/* limit granularity (byte/page units)*/ },
1257/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1258{	0,			/* segment base address (overwritten)  */
1259	0xfffff,		/* length */
1260	SDT_MEMERA,		/* segment type */
1261	0,			/* segment descriptor priority level */
1262	1,			/* segment descriptor present */
1263	0, 0,
1264	0,			/* default 32 vs 16 bit size */
1265	1  			/* limit granularity (byte/page units)*/ },
1266/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1267{	0,			/* segment base address (overwritten)  */
1268	0xfffff,		/* length */
1269	SDT_MEMERA,		/* segment type */
1270	0,			/* segment descriptor priority level */
1271	1,			/* segment descriptor present */
1272	0, 0,
1273	0,			/* default 32 vs 16 bit size */
1274	1  			/* limit granularity (byte/page units)*/ },
1275/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1276{	0,			/* segment base address (overwritten) */
1277	0xfffff,		/* length */
1278	SDT_MEMRWA,		/* segment type */
1279	0,			/* segment descriptor priority level */
1280	1,			/* segment descriptor present */
1281	0, 0,
1282	1,			/* default 32 vs 16 bit size */
1283	1  			/* limit granularity (byte/page units)*/ },
1284/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1285{	0,			/* segment base address (overwritten) */
1286	0xfffff,		/* length */
1287	SDT_MEMRWA,		/* segment type */
1288	0,			/* segment descriptor priority level */
1289	1,			/* segment descriptor present */
1290	0, 0,
1291	0,			/* default 32 vs 16 bit size */
1292	1  			/* limit granularity (byte/page units)*/ },
1293/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1294{	0,			/* segment base address (overwritten) */
1295	0xfffff,		/* length */
1296	SDT_MEMRWA,		/* segment type */
1297	0,			/* segment descriptor priority level */
1298	1,			/* segment descriptor present */
1299	0, 0,
1300	0,			/* default 32 vs 16 bit size */
1301	1  			/* limit granularity (byte/page units)*/ },
1302};
1303
1304static struct soft_segment_descriptor ldt_segs[] = {
1305	/* Null Descriptor - overwritten by call gate */
1306{	0x0,			/* segment base address  */
1307	0x0,			/* length - all address space */
1308	0,			/* segment type */
1309	0,			/* segment descriptor priority level */
1310	0,			/* segment descriptor present */
1311	0, 0,
1312	0,			/* default 32 vs 16 bit size */
1313	0  			/* limit granularity (byte/page units)*/ },
1314	/* Null Descriptor - overwritten by call gate */
1315{	0x0,			/* segment base address  */
1316	0x0,			/* length - all address space */
1317	0,			/* segment type */
1318	0,			/* segment descriptor priority level */
1319	0,			/* segment descriptor present */
1320	0, 0,
1321	0,			/* default 32 vs 16 bit size */
1322	0  			/* limit granularity (byte/page units)*/ },
1323	/* Null Descriptor - overwritten by call gate */
1324{	0x0,			/* segment base address  */
1325	0x0,			/* length - all address space */
1326	0,			/* segment type */
1327	0,			/* segment descriptor priority level */
1328	0,			/* segment descriptor present */
1329	0, 0,
1330	0,			/* default 32 vs 16 bit size */
1331	0  			/* limit granularity (byte/page units)*/ },
1332	/* Code Descriptor for user */
1333{	0x0,			/* segment base address  */
1334	0xfffff,		/* length - all address space */
1335	SDT_MEMERA,		/* segment type */
1336	SEL_UPL,		/* segment descriptor priority level */
1337	1,			/* segment descriptor present */
1338	0, 0,
1339	1,			/* default 32 vs 16 bit size */
1340	1  			/* limit granularity (byte/page units)*/ },
1341	/* Null Descriptor - overwritten by call gate */
1342{	0x0,			/* segment base address  */
1343	0x0,			/* length - all address space */
1344	0,			/* segment type */
1345	0,			/* segment descriptor priority level */
1346	0,			/* segment descriptor present */
1347	0, 0,
1348	0,			/* default 32 vs 16 bit size */
1349	0  			/* limit granularity (byte/page units)*/ },
1350	/* Data Descriptor for user */
1351{	0x0,			/* segment base address  */
1352	0xfffff,		/* length - all address space */
1353	SDT_MEMRWA,		/* segment type */
1354	SEL_UPL,		/* segment descriptor priority level */
1355	1,			/* segment descriptor present */
1356	0, 0,
1357	1,			/* default 32 vs 16 bit size */
1358	1  			/* limit granularity (byte/page units)*/ },
1359};
1360
1361void
1362setidt(idx, func, typ, dpl, selec)
1363	int idx;
1364	inthand_t *func;
1365	int typ;
1366	int dpl;
1367	int selec;
1368{
1369	struct gate_descriptor *ip;
1370
1371	ip = idt + idx;
1372	ip->gd_looffset = (int)func;
1373	ip->gd_selector = selec;
1374	ip->gd_stkcpy = 0;
1375	ip->gd_xx = 0;
1376	ip->gd_type = typ;
1377	ip->gd_dpl = dpl;
1378	ip->gd_p = 1;
1379	ip->gd_hioffset = ((int)func)>>16 ;
1380}
1381
1382#define	IDTVEC(name)	__CONCAT(X,name)
1383
1384extern inthand_t
1385	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1386	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1387	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1388	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1389	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1390
1391void
1392sdtossd(sd, ssd)
1393	struct segment_descriptor *sd;
1394	struct soft_segment_descriptor *ssd;
1395{
1396	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1397	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1398	ssd->ssd_type  = sd->sd_type;
1399	ssd->ssd_dpl   = sd->sd_dpl;
1400	ssd->ssd_p     = sd->sd_p;
1401	ssd->ssd_def32 = sd->sd_def32;
1402	ssd->ssd_gran  = sd->sd_gran;
1403}
1404
1405#define PHYSMAP_SIZE	(2 * 8)
1406
1407/*
1408 * Populate the (physmap) array with base/bound pairs describing the
1409 * available physical memory in the system, then test this memory and
1410 * build the phys_avail array describing the actually-available memory.
1411 *
1412 * If we cannot accurately determine the physical memory map, then use
1413 * value from the 0xE801 call, and failing that, the RTC.
1414 *
1415 * Total memory size may be set by the kernel environment variable
1416 * hw.physmem or the compile-time define MAXMEM.
1417 */
1418static void
1419getmemsize(int first)
1420{
1421	int i, physmap_idx, pa_indx;
1422	u_int basemem, extmem;
1423	struct vm86frame vmf;
1424	struct vm86context vmc;
1425	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1426	pt_entry_t pte;
1427	const char *cp;
1428	struct {
1429		u_int64_t base;
1430		u_int64_t length;
1431		u_int32_t type;
1432	} *smap;
1433
1434	bzero(&vmf, sizeof(struct vm86frame));
1435	bzero(physmap, sizeof(physmap));
1436
1437	/*
1438	 * Perform "base memory" related probes & setup
1439	 */
1440	vm86_intcall(0x12, &vmf);
1441	basemem = vmf.vmf_ax;
1442	if (basemem > 640) {
1443		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1444			basemem);
1445		basemem = 640;
1446	}
1447
1448	/*
1449	 * XXX if biosbasemem is now < 640, there is a `hole'
1450	 * between the end of base memory and the start of
1451	 * ISA memory.  The hole may be empty or it may
1452	 * contain BIOS code or data.  Map it read/write so
1453	 * that the BIOS can write to it.  (Memory from 0 to
1454	 * the physical end of the kernel is mapped read-only
1455	 * to begin with and then parts of it are remapped.
1456	 * The parts that aren't remapped form holes that
1457	 * remain read-only and are unused by the kernel.
1458	 * The base memory area is below the physical end of
1459	 * the kernel and right now forms a read-only hole.
1460	 * The part of it from PAGE_SIZE to
1461	 * (trunc_page(biosbasemem * 1024) - 1) will be
1462	 * remapped and used by the kernel later.)
1463	 *
1464	 * This code is similar to the code used in
1465	 * pmap_mapdev, but since no memory needs to be
1466	 * allocated we simply change the mapping.
1467	 */
1468	for (pa = trunc_page(basemem * 1024);
1469	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1470		pte = (pt_entry_t)vtopte(pa + KERNBASE);
1471		*pte = pa | PG_RW | PG_V;
1472	}
1473
1474	/*
1475	 * if basemem != 640, map pages r/w into vm86 page table so
1476	 * that the bios can scribble on it.
1477	 */
1478	pte = (pt_entry_t)vm86paddr;
1479	for (i = basemem / 4; i < 160; i++)
1480		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1481
1482	/*
1483	 * map page 1 R/W into the kernel page table so we can use it
1484	 * as a buffer.  The kernel will unmap this page later.
1485	 */
1486	pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
1487	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1488
1489	/*
1490	 * get memory map with INT 15:E820
1491	 */
1492#define SMAPSIZ 	sizeof(*smap)
1493#define SMAP_SIG	0x534D4150			/* 'SMAP' */
1494
1495	vmc.npages = 0;
1496	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1497	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1498
1499	physmap_idx = 0;
1500	vmf.vmf_ebx = 0;
1501	do {
1502		vmf.vmf_eax = 0xE820;
1503		vmf.vmf_edx = SMAP_SIG;
1504		vmf.vmf_ecx = SMAPSIZ;
1505		i = vm86_datacall(0x15, &vmf, &vmc);
1506		if (i || vmf.vmf_eax != SMAP_SIG)
1507			break;
1508		if (boothowto & RB_VERBOSE)
1509			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1510				smap->type,
1511				*(u_int32_t *)((char *)&smap->base + 4),
1512				(u_int32_t)smap->base,
1513				*(u_int32_t *)((char *)&smap->length + 4),
1514				(u_int32_t)smap->length);
1515
1516		if (smap->type != 0x01)
1517			goto next_run;
1518
1519		if (smap->length == 0)
1520			goto next_run;
1521
1522		if (smap->base >= 0xffffffff) {
1523			printf("%uK of memory above 4GB ignored\n",
1524			    (u_int)(smap->length / 1024));
1525			goto next_run;
1526		}
1527
1528		for (i = 0; i <= physmap_idx; i += 2) {
1529			if (smap->base < physmap[i + 1]) {
1530				if (boothowto & RB_VERBOSE)
1531					printf(
1532	"Overlapping or non-montonic memory region, ignoring second region\n");
1533				goto next_run;
1534			}
1535		}
1536
1537		if (smap->base == physmap[physmap_idx + 1]) {
1538			physmap[physmap_idx + 1] += smap->length;
1539			goto next_run;
1540		}
1541
1542		physmap_idx += 2;
1543		if (physmap_idx == PHYSMAP_SIZE) {
1544			printf(
1545		"Too many segments in the physical address map, giving up\n");
1546			break;
1547		}
1548		physmap[physmap_idx] = smap->base;
1549		physmap[physmap_idx + 1] = smap->base + smap->length;
1550next_run:
1551	} while (vmf.vmf_ebx != 0);
1552
1553	if (physmap[1] != 0)
1554		goto physmap_done;
1555
1556	/*
1557	 * If we failed above, try memory map with INT 15:E801
1558	 */
1559	vmf.vmf_ax = 0xE801;
1560	if (vm86_intcall(0x15, &vmf) == 0) {
1561		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1562	} else {
1563#if 0
1564		vmf.vmf_ah = 0x88;
1565		vm86_intcall(0x15, &vmf);
1566		extmem = vmf.vmf_ax;
1567#else
1568		/*
1569		 * Prefer the RTC value for extended memory.
1570		 */
1571		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1572#endif
1573	}
1574
1575	/*
1576	 * Special hack for chipsets that still remap the 384k hole when
1577	 * there's 16MB of memory - this really confuses people that
1578	 * are trying to use bus mastering ISA controllers with the
1579	 * "16MB limit"; they only have 16MB, but the remapping puts
1580	 * them beyond the limit.
1581	 *
1582	 * If extended memory is between 15-16MB (16-17MB phys address range),
1583	 *	chop it to 15MB.
1584	 */
1585	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1586		extmem = 15 * 1024;
1587
1588	physmap[0] = 0;
1589	physmap[1] = basemem * 1024;
1590	physmap_idx = 2;
1591	physmap[physmap_idx] = 0x100000;
1592	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1593
1594physmap_done:
1595	/*
1596	 * Now, physmap contains a map of physical memory.
1597	 */
1598
1599#ifdef SMP
1600	/* make hole for AP bootstrap code */
1601	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1602
1603	/* look for the MP hardware - needed for apic addresses */
1604	mp_probe();
1605#endif
1606
1607	/*
1608	 * Maxmem isn't the "maximum memory", it's one larger than the
1609	 * highest page of the physical address space.  It should be
1610	 * called something like "Maxphyspage".  We may adjust this
1611	 * based on ``hw.physmem'' and the results of the memory test.
1612	 */
1613	Maxmem = atop(physmap[physmap_idx + 1]);
1614
1615#ifdef MAXMEM
1616	Maxmem = MAXMEM / 4;
1617#endif
1618
1619	/*
1620	 * hw.maxmem is a size in bytes; we also allow k, m, and g suffixes
1621	 * for the appropriate modifiers.  This overrides MAXMEM.
1622	 */
1623	if ((cp = getenv("hw.physmem")) != NULL) {
1624		u_int64_t AllowMem, sanity;
1625		char *ep;
1626
1627		sanity = AllowMem = strtouq(cp, &ep, 0);
1628		if ((ep != cp) && (*ep != 0)) {
1629			switch(*ep) {
1630			case 'g':
1631			case 'G':
1632				AllowMem <<= 10;
1633			case 'm':
1634			case 'M':
1635				AllowMem <<= 10;
1636			case 'k':
1637			case 'K':
1638				AllowMem <<= 10;
1639				break;
1640			default:
1641				AllowMem = sanity = 0;
1642			}
1643			if (AllowMem < sanity)
1644				AllowMem = 0;
1645		}
1646		if (AllowMem == 0)
1647			printf("Ignoring invalid memory size of '%s'\n", cp);
1648		else
1649			Maxmem = atop(AllowMem);
1650	}
1651
1652	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1653	    (boothowto & RB_VERBOSE))
1654		printf("Physical memory use set to %uK\n", Maxmem * 4);
1655
1656	/*
1657	 * If Maxmem has been increased beyond what the system has detected,
1658	 * extend the last memory segment to the new limit.
1659	 */
1660	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1661		physmap[physmap_idx + 1] = ptoa(Maxmem);
1662
1663	/* call pmap initialization to make new kernel address space */
1664	pmap_bootstrap(first, 0);
1665
1666	/*
1667	 * Size up each available chunk of physical memory.
1668	 */
1669	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1670	pa_indx = 0;
1671	phys_avail[pa_indx++] = physmap[0];
1672	phys_avail[pa_indx] = physmap[0];
1673#if 0
1674	pte = (pt_entry_t)vtopte(KERNBASE);
1675#else
1676	pte = (pt_entry_t)CMAP1;
1677#endif
1678
1679	/*
1680	 * physmap is in bytes, so when converting to page boundaries,
1681	 * round up the start address and round down the end address.
1682	 */
1683	for (i = 0; i <= physmap_idx; i += 2) {
1684		vm_offset_t end;
1685
1686		end = ptoa(Maxmem);
1687		if (physmap[i + 1] < end)
1688			end = trunc_page(physmap[i + 1]);
1689		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1690			int tmp, page_bad;
1691#if 0
1692			int *ptr = 0;
1693#else
1694			int *ptr = (int *)CADDR1;
1695#endif
1696
1697			/*
1698			 * block out kernel memory as not available.
1699			 */
1700			if (pa >= 0x100000 && pa < first)
1701				continue;
1702
1703			page_bad = FALSE;
1704
1705			/*
1706			 * map page into kernel: valid, read/write,non-cacheable
1707			 */
1708			*pte = pa | PG_V | PG_RW | PG_N;
1709			invltlb();
1710
1711			tmp = *(int *)ptr;
1712			/*
1713			 * Test for alternating 1's and 0's
1714			 */
1715			*(volatile int *)ptr = 0xaaaaaaaa;
1716			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1717				page_bad = TRUE;
1718			}
1719			/*
1720			 * Test for alternating 0's and 1's
1721			 */
1722			*(volatile int *)ptr = 0x55555555;
1723			if (*(volatile int *)ptr != 0x55555555) {
1724			page_bad = TRUE;
1725			}
1726			/*
1727			 * Test for all 1's
1728			 */
1729			*(volatile int *)ptr = 0xffffffff;
1730			if (*(volatile int *)ptr != 0xffffffff) {
1731				page_bad = TRUE;
1732			}
1733			/*
1734			 * Test for all 0's
1735			 */
1736			*(volatile int *)ptr = 0x0;
1737			if (*(volatile int *)ptr != 0x0) {
1738				page_bad = TRUE;
1739			}
1740			/*
1741			 * Restore original value.
1742			 */
1743			*(int *)ptr = tmp;
1744
1745			/*
1746			 * Adjust array of valid/good pages.
1747			 */
1748			if (page_bad == TRUE) {
1749				continue;
1750			}
1751			/*
1752			 * If this good page is a continuation of the
1753			 * previous set of good pages, then just increase
1754			 * the end pointer. Otherwise start a new chunk.
1755			 * Note that "end" points one higher than end,
1756			 * making the range >= start and < end.
1757			 * If we're also doing a speculative memory
1758			 * test and we at or past the end, bump up Maxmem
1759			 * so that we keep going. The first bad page
1760			 * will terminate the loop.
1761			 */
1762			if (phys_avail[pa_indx] == pa) {
1763				phys_avail[pa_indx] += PAGE_SIZE;
1764			} else {
1765				pa_indx++;
1766				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1767					printf("Too many holes in the physical address space, giving up\n");
1768					pa_indx--;
1769					break;
1770				}
1771				phys_avail[pa_indx++] = pa;	/* start */
1772				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1773			}
1774			physmem++;
1775		}
1776	}
1777	*pte = 0;
1778	invltlb();
1779
1780	/*
1781	 * XXX
1782	 * The last chunk must contain at least one page plus the message
1783	 * buffer to avoid complicating other code (message buffer address
1784	 * calculation, etc.).
1785	 */
1786	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1787	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1788		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1789		phys_avail[pa_indx--] = 0;
1790		phys_avail[pa_indx--] = 0;
1791	}
1792
1793	Maxmem = atop(phys_avail[pa_indx]);
1794
1795	/* Trim off space for the message buffer. */
1796	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1797
1798	avail_end = phys_avail[pa_indx];
1799}
1800
1801void
1802init386(first)
1803	int first;
1804{
1805	int x;
1806	struct gate_descriptor *gdp;
1807	int gsel_tss;
1808#ifndef SMP
1809	/* table descriptors - used to load tables by microp */
1810	struct region_descriptor r_gdt, r_idt;
1811#endif
1812	int off;
1813
1814	/*
1815	 * Prevent lowering of the ipl if we call tsleep() early.
1816	 */
1817	safepri = cpl;
1818
1819	proc0.p_addr = proc0paddr;
1820
1821	atdevbase = ISA_HOLE_START + KERNBASE;
1822
1823	if (bootinfo.bi_modulep) {
1824		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1825		preload_bootstrap_relocate(KERNBASE);
1826	}
1827	if (bootinfo.bi_envp)
1828		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1829
1830	/*
1831	 * make gdt memory segments, the code segment goes up to end of the
1832	 * page with etext in it, the data segment goes to the end of
1833	 * the address space
1834	 */
1835	/*
1836	 * XXX text protection is temporarily (?) disabled.  The limit was
1837	 * i386_btop(round_page(etext)) - 1.
1838	 */
1839	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1840	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1841#ifdef SMP
1842	gdt_segs[GPRIV_SEL].ssd_limit =
1843		i386_btop(sizeof(struct privatespace)) - 1;
1844	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
1845	gdt_segs[GPROC0_SEL].ssd_base =
1846		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
1847	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0];
1848#else
1849	gdt_segs[GPRIV_SEL].ssd_limit = i386_btop(0) - 1;
1850	gdt_segs[GPROC0_SEL].ssd_base = (int) &common_tss;
1851#endif
1852
1853	for (x = 0; x < NGDT; x++) {
1854#ifdef BDE_DEBUGGER
1855		/* avoid overwriting db entries with APM ones */
1856		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1857			continue;
1858#endif
1859		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1860	}
1861
1862	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1863	r_gdt.rd_base =  (int) gdt;
1864	lgdt(&r_gdt);
1865
1866	/* make ldt memory segments */
1867	/*
1868	 * The data segment limit must not cover the user area because we
1869	 * don't want the user area to be writable in copyout() etc. (page
1870	 * level protection is lost in kernel mode on 386's).  Also, we
1871	 * don't want the user area to be writable directly (page level
1872	 * protection of the user area is not available on 486's with
1873	 * CR0_WP set, because there is no user-read/kernel-write mode).
1874	 *
1875	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1876	 * should be spelled ...MAX_USER...
1877	 */
1878#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1879	/*
1880	 * The code segment limit has to cover the user area until we move
1881	 * the signal trampoline out of the user area.  This is safe because
1882	 * the code segment cannot be written to directly.
1883	 */
1884#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1885	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1886	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1887	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1888		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1889
1890	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1891	lldt(_default_ldt);
1892#ifdef USER_LDT
1893	currentldt = _default_ldt;
1894#endif
1895
1896	/* exceptions */
1897	for (x = 0; x < NIDT; x++)
1898		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1899	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1900	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1901	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1902 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1903	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1904	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1905	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1906	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1907	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1908	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1909	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1910	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1911	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1912	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1913	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1914	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1915	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1916	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1917	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1918 	setidt(0x80, &IDTVEC(int0x80_syscall),
1919			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1920
1921	r_idt.rd_limit = sizeof(idt0) - 1;
1922	r_idt.rd_base = (int) idt;
1923	lidt(&r_idt);
1924
1925	/*
1926	 * Initialize the console before we print anything out.
1927	 */
1928	cninit();
1929
1930#include	"isa.h"
1931#if	NISA >0
1932	isa_defaultirq();
1933#endif
1934	rand_initialize();
1935
1936#ifdef DDB
1937	kdb_init();
1938	if (boothowto & RB_KDB)
1939		Debugger("Boot flags requested debugger");
1940#endif
1941
1942	finishidentcpu();	/* Final stage of CPU initialization */
1943	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1944	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1945	initializecpu();	/* Initialize CPU registers */
1946
1947	/* make an initial tss so cpu can get interrupt stack on syscall! */
1948	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
1949	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1950	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1951	private_tss = 0;
1952	tss_gdt = &gdt[GPROC0_SEL].sd;
1953	common_tssd = *tss_gdt;
1954	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1955	ltr(gsel_tss);
1956
1957	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1958	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1959	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1960	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1961	dblfault_tss.tss_cr3 = (int)IdlePTD;
1962	dblfault_tss.tss_eip = (int) dblfault_handler;
1963	dblfault_tss.tss_eflags = PSL_KERNEL;
1964	dblfault_tss.tss_ds = dblfault_tss.tss_es =
1965	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1966	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1967	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1968	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1969
1970	vm86_initialize();
1971	getmemsize(first);
1972
1973	/* now running on new page tables, configured,and u/iom is accessible */
1974
1975	/* Map the message buffer. */
1976	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1977		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1978
1979	msgbufinit(msgbufp, MSGBUF_SIZE);
1980
1981	/* make a call gate to reenter kernel with */
1982	gdp = &ldt[LSYS5CALLS_SEL].gd;
1983
1984	x = (int) &IDTVEC(syscall);
1985	gdp->gd_looffset = x++;
1986	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1987	gdp->gd_stkcpy = 1;
1988	gdp->gd_type = SDT_SYS386CGT;
1989	gdp->gd_dpl = SEL_UPL;
1990	gdp->gd_p = 1;
1991	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1992
1993	/* XXX does this work? */
1994	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1995	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
1996
1997	/* transfer to user mode */
1998
1999	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
2000	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
2001
2002	/* setup proc 0's pcb */
2003	proc0.p_addr->u_pcb.pcb_flags = 0;
2004	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
2005#ifdef SMP
2006	proc0.p_addr->u_pcb.pcb_mpnest = 1;
2007#endif
2008	proc0.p_addr->u_pcb.pcb_ext = 0;
2009}
2010
2011#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2012static void f00f_hack(void *unused);
2013SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2014
2015static void
2016f00f_hack(void *unused) {
2017	struct gate_descriptor *new_idt;
2018#ifndef SMP
2019	struct region_descriptor r_idt;
2020#endif
2021	vm_offset_t tmp;
2022
2023	if (!has_f00f_bug)
2024		return;
2025
2026	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2027
2028	r_idt.rd_limit = sizeof(idt0) - 1;
2029
2030	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
2031	if (tmp == 0)
2032		panic("kmem_alloc returned 0");
2033	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2034		panic("kmem_alloc returned non-page-aligned memory");
2035	/* Put the first seven entries in the lower page */
2036	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2037	bcopy(idt, new_idt, sizeof(idt0));
2038	r_idt.rd_base = (int)new_idt;
2039	lidt(&r_idt);
2040	idt = new_idt;
2041	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2042			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2043		panic("vm_map_protect failed");
2044	return;
2045}
2046#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2047
2048int
2049ptrace_set_pc(p, addr)
2050	struct proc *p;
2051	unsigned long addr;
2052{
2053	p->p_md.md_regs->tf_eip = addr;
2054	return (0);
2055}
2056
2057int
2058ptrace_single_step(p)
2059	struct proc *p;
2060{
2061	p->p_md.md_regs->tf_eflags |= PSL_T;
2062	return (0);
2063}
2064
2065int ptrace_read_u_check(p, addr, len)
2066	struct proc *p;
2067	vm_offset_t addr;
2068	size_t len;
2069{
2070	vm_offset_t gap;
2071
2072	if ((vm_offset_t) (addr + len) < addr)
2073		return EPERM;
2074	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
2075		return 0;
2076
2077	gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
2078
2079	if ((vm_offset_t) addr < gap)
2080		return EPERM;
2081	if ((vm_offset_t) (addr + len) <=
2082	    (vm_offset_t) (gap + sizeof(struct trapframe)))
2083		return 0;
2084	return EPERM;
2085}
2086
2087int ptrace_write_u(p, off, data)
2088	struct proc *p;
2089	vm_offset_t off;
2090	long data;
2091{
2092	struct trapframe frame_copy;
2093	vm_offset_t min;
2094	struct trapframe *tp;
2095
2096	/*
2097	 * Privileged kernel state is scattered all over the user area.
2098	 * Only allow write access to parts of regs and to fpregs.
2099	 */
2100	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
2101	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
2102		tp = p->p_md.md_regs;
2103		frame_copy = *tp;
2104		*(int *)((char *)&frame_copy + (off - min)) = data;
2105		if (!EFL_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
2106		    !CS_SECURE(frame_copy.tf_cs))
2107			return (EINVAL);
2108		*(int*)((char *)p->p_addr + off) = data;
2109		return (0);
2110	}
2111	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
2112	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
2113		*(int*)((char *)p->p_addr + off) = data;
2114		return (0);
2115	}
2116	return (EFAULT);
2117}
2118
2119int
2120fill_regs(p, regs)
2121	struct proc *p;
2122	struct reg *regs;
2123{
2124	struct pcb *pcb;
2125	struct trapframe *tp;
2126
2127	tp = p->p_md.md_regs;
2128	regs->r_fs = tp->tf_fs;
2129	regs->r_es = tp->tf_es;
2130	regs->r_ds = tp->tf_ds;
2131	regs->r_edi = tp->tf_edi;
2132	regs->r_esi = tp->tf_esi;
2133	regs->r_ebp = tp->tf_ebp;
2134	regs->r_ebx = tp->tf_ebx;
2135	regs->r_edx = tp->tf_edx;
2136	regs->r_ecx = tp->tf_ecx;
2137	regs->r_eax = tp->tf_eax;
2138	regs->r_eip = tp->tf_eip;
2139	regs->r_cs = tp->tf_cs;
2140	regs->r_eflags = tp->tf_eflags;
2141	regs->r_esp = tp->tf_esp;
2142	regs->r_ss = tp->tf_ss;
2143	pcb = &p->p_addr->u_pcb;
2144	regs->r_gs = pcb->pcb_gs;
2145	return (0);
2146}
2147
2148int
2149set_regs(p, regs)
2150	struct proc *p;
2151	struct reg *regs;
2152{
2153	struct pcb *pcb;
2154	struct trapframe *tp;
2155
2156	tp = p->p_md.md_regs;
2157	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2158	    !CS_SECURE(regs->r_cs))
2159		return (EINVAL);
2160	tp->tf_fs = regs->r_fs;
2161	tp->tf_es = regs->r_es;
2162	tp->tf_ds = regs->r_ds;
2163	tp->tf_edi = regs->r_edi;
2164	tp->tf_esi = regs->r_esi;
2165	tp->tf_ebp = regs->r_ebp;
2166	tp->tf_ebx = regs->r_ebx;
2167	tp->tf_edx = regs->r_edx;
2168	tp->tf_ecx = regs->r_ecx;
2169	tp->tf_eax = regs->r_eax;
2170	tp->tf_eip = regs->r_eip;
2171	tp->tf_cs = regs->r_cs;
2172	tp->tf_eflags = regs->r_eflags;
2173	tp->tf_esp = regs->r_esp;
2174	tp->tf_ss = regs->r_ss;
2175	pcb = &p->p_addr->u_pcb;
2176	pcb->pcb_gs = regs->r_gs;
2177	return (0);
2178}
2179
2180int
2181fill_fpregs(p, fpregs)
2182	struct proc *p;
2183	struct fpreg *fpregs;
2184{
2185	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
2186	return (0);
2187}
2188
2189int
2190set_fpregs(p, fpregs)
2191	struct proc *p;
2192	struct fpreg *fpregs;
2193{
2194	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
2195	return (0);
2196}
2197
2198int
2199fill_dbregs(p, dbregs)
2200	struct proc *p;
2201	struct dbreg *dbregs;
2202{
2203	struct pcb *pcb;
2204
2205	pcb = &p->p_addr->u_pcb;
2206	dbregs->dr0 = pcb->pcb_dr0;
2207	dbregs->dr1 = pcb->pcb_dr1;
2208	dbregs->dr2 = pcb->pcb_dr2;
2209	dbregs->dr3 = pcb->pcb_dr3;
2210	dbregs->dr4 = 0;
2211	dbregs->dr5 = 0;
2212	dbregs->dr6 = pcb->pcb_dr6;
2213	dbregs->dr7 = pcb->pcb_dr7;
2214	return (0);
2215}
2216
2217int
2218set_dbregs(p, dbregs)
2219	struct proc *p;
2220	struct dbreg *dbregs;
2221{
2222	struct pcb *pcb;
2223
2224	pcb = &p->p_addr->u_pcb;
2225
2226	/*
2227	 * Don't let a process set a breakpoint that is not within the
2228	 * process's address space.  If a process could do this, it
2229	 * could halt the system by setting a breakpoint in the kernel
2230	 * (if ddb was enabled).  Thus, we need to check to make sure
2231	 * that no breakpoints are being enabled for addresses outside
2232	 * process's address space, unless, perhaps, we were called by
2233	 * uid 0.
2234	 *
2235	 * XXX - what about when the watched area of the user's
2236	 * address space is written into from within the kernel
2237	 * ... wouldn't that still cause a breakpoint to be generated
2238	 * from within kernel mode?
2239	 */
2240
2241	if (p->p_ucred->cr_uid != 0) {
2242		if (dbregs->dr7 & 0x3) {
2243			/* dr0 is enabled */
2244			if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2245				return (EINVAL);
2246		}
2247
2248		if (dbregs->dr7 & (0x3<<2)) {
2249			/* dr1 is enabled */
2250			if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2251				return (EINVAL);
2252		}
2253
2254		if (dbregs->dr7 & (0x3<<4)) {
2255			/* dr2 is enabled */
2256			if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2257       				return (EINVAL);
2258		}
2259
2260		if (dbregs->dr7 & (0x3<<6)) {
2261			/* dr3 is enabled */
2262			if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2263				return (EINVAL);
2264		}
2265	}
2266
2267	pcb->pcb_dr0 = dbregs->dr0;
2268	pcb->pcb_dr1 = dbregs->dr1;
2269	pcb->pcb_dr2 = dbregs->dr2;
2270	pcb->pcb_dr3 = dbregs->dr3;
2271	pcb->pcb_dr6 = dbregs->dr6;
2272	pcb->pcb_dr7 = dbregs->dr7;
2273
2274	pcb->pcb_flags |= PCB_DBREGS;
2275
2276	return (0);
2277}
2278
2279/*
2280 * Return > 0 if a hardware breakpoint has been hit, and the
2281 * breakpoint was in user space.  Return 0, otherwise.
2282 */
2283int
2284user_dbreg_trap(void)
2285{
2286        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2287        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
2288        int nbp;            /* number of breakpoints that triggered */
2289        caddr_t addr[4];    /* breakpoint addresses */
2290        int i;
2291
2292        dr7 = rdr7();
2293        if ((dr7 & 0x000000ff) == 0) {
2294                /*
2295                 * all GE and LE bits in the dr7 register are zero,
2296                 * thus the trap couldn't have been caused by the
2297                 * hardware debug registers
2298                 */
2299                return 0;
2300        }
2301
2302        nbp = 0;
2303        dr6 = rdr6();
2304        bp = dr6 & 0x0000000f;
2305
2306        if (!bp) {
2307                /*
2308                 * None of the breakpoint bits are set meaning this
2309                 * trap was not caused by any of the debug registers
2310                 */
2311                return 0;
2312        }
2313
2314        /*
2315         * at least one of the breakpoints were hit, check to see
2316         * which ones and if any of them are user space addresses
2317         */
2318
2319        if (bp & 0x01) {
2320                addr[nbp++] = (caddr_t)rdr0();
2321        }
2322        if (bp & 0x02) {
2323                addr[nbp++] = (caddr_t)rdr1();
2324        }
2325        if (bp & 0x04) {
2326                addr[nbp++] = (caddr_t)rdr2();
2327        }
2328        if (bp & 0x08) {
2329                addr[nbp++] = (caddr_t)rdr3();
2330        }
2331
2332        for (i=0; i<nbp; i++) {
2333                if (addr[i] <
2334                    (caddr_t)VM_MAXUSER_ADDRESS) {
2335                        /*
2336                         * addr[i] is in user space
2337                         */
2338                        return nbp;
2339                }
2340        }
2341
2342        /*
2343         * None of the breakpoints are in user space.
2344         */
2345        return 0;
2346}
2347
2348
2349#ifndef DDB
2350void
2351Debugger(const char *msg)
2352{
2353	printf("Debugger(\"%s\") called.\n", msg);
2354}
2355#endif /* no DDB */
2356
2357#include <sys/disklabel.h>
2358
2359/*
2360 * Determine the size of the transfer, and make sure it is
2361 * within the boundaries of the partition. Adjust transfer
2362 * if needed, and signal errors or early completion.
2363 */
2364int
2365bounds_check_with_label(struct bio *bp, struct disklabel *lp, int wlabel)
2366{
2367        struct partition *p = lp->d_partitions + dkpart(bp->bio_dev);
2368        int labelsect = lp->d_partitions[0].p_offset;
2369        int maxsz = p->p_size,
2370                sz = (bp->bio_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2371
2372        /* overwriting disk label ? */
2373        /* XXX should also protect bootstrap in first 8K */
2374        if (bp->bio_blkno + p->p_offset <= LABELSECTOR + labelsect &&
2375#if LABELSECTOR != 0
2376            bp->bio_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2377#endif
2378            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2379                bp->bio_error = EROFS;
2380                goto bad;
2381        }
2382
2383#if     defined(DOSBBSECTOR) && defined(notyet)
2384        /* overwriting master boot record? */
2385        if (bp->bio_blkno + p->p_offset <= DOSBBSECTOR &&
2386            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2387                bp->bio_error = EROFS;
2388                goto bad;
2389        }
2390#endif
2391
2392        /* beyond partition? */
2393        if (bp->bio_blkno < 0 || bp->bio_blkno + sz > maxsz) {
2394                /* if exactly at end of disk, return an EOF */
2395                if (bp->bio_blkno == maxsz) {
2396                        bp->bio_resid = bp->bio_bcount;
2397                        return(0);
2398                }
2399                /* or truncate if part of it fits */
2400                sz = maxsz - bp->bio_blkno;
2401                if (sz <= 0) {
2402                        bp->bio_error = EINVAL;
2403                        goto bad;
2404                }
2405                bp->bio_bcount = sz << DEV_BSHIFT;
2406        }
2407
2408        bp->bio_pblkno = bp->bio_blkno + p->p_offset;
2409        return(1);
2410
2411bad:
2412        bp->bio_flags |= BIO_ERROR;
2413        return(-1);
2414}
2415
2416#ifdef DDB
2417
2418/*
2419 * Provide inb() and outb() as functions.  They are normally only
2420 * available as macros calling inlined functions, thus cannot be
2421 * called inside DDB.
2422 *
2423 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2424 */
2425
2426#undef inb
2427#undef outb
2428
2429/* silence compiler warnings */
2430u_char inb(u_int);
2431void outb(u_int, u_char);
2432
2433u_char
2434inb(u_int port)
2435{
2436	u_char	data;
2437	/*
2438	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2439	 * %edx, while gcc generates inferior code (movw instead of movl)
2440	 * if we tell it to load (u_short) port.
2441	 */
2442	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2443	return (data);
2444}
2445
2446void
2447outb(u_int port, u_char data)
2448{
2449	u_char	al;
2450	/*
2451	 * Use an unnecessary assignment to help gcc's register allocator.
2452	 * This make a large difference for gcc-1.40 and a tiny difference
2453	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2454	 * best results.  gcc-2.6.0 can't handle this.
2455	 */
2456	al = data;
2457	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2458}
2459
2460#endif /* DDB */
2461