machdep.c revision 57178
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 57178 2000-02-13 03:32:07Z peter $
39 */
40
41#include "apm.h"
42#include "ether.h"
43#include "npx.h"
44#include "opt_atalk.h"
45#include "opt_compat.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_inet.h"
49#include "opt_ipx.h"
50#include "opt_maxmem.h"
51#include "opt_msgbuf.h"
52#include "opt_perfmon.h"
53#include "opt_smp.h"
54#include "opt_sysvipc.h"
55#include "opt_user_ldt.h"
56#include "opt_userconfig.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/sysproto.h>
61#include <sys/signalvar.h>
62#include <sys/kernel.h>
63#include <sys/linker.h>
64#include <sys/malloc.h>
65#include <sys/proc.h>
66#include <sys/buf.h>
67#include <sys/reboot.h>
68#include <sys/callout.h>
69#include <sys/mbuf.h>
70#include <sys/msgbuf.h>
71#include <sys/sysent.h>
72#include <sys/sysctl.h>
73#include <sys/vmmeter.h>
74#include <sys/bus.h>
75
76#ifdef SYSVSHM
77#include <sys/shm.h>
78#endif
79
80#ifdef SYSVMSG
81#include <sys/msg.h>
82#endif
83
84#ifdef SYSVSEM
85#include <sys/sem.h>
86#endif
87
88#include <vm/vm.h>
89#include <vm/vm_param.h>
90#include <sys/lock.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_object.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_pager.h>
96#include <vm/vm_extern.h>
97
98#include <sys/user.h>
99#include <sys/exec.h>
100#include <sys/cons.h>
101
102#include <ddb/ddb.h>
103
104#include <net/netisr.h>
105
106#include <machine/cpu.h>
107#include <machine/reg.h>
108#include <machine/clock.h>
109#include <machine/specialreg.h>
110#include <machine/bootinfo.h>
111#include <machine/ipl.h>
112#include <machine/md_var.h>
113#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
114#ifdef SMP
115#include <machine/smp.h>
116#include <machine/globaldata.h>
117#endif
118#ifdef PERFMON
119#include <machine/perfmon.h>
120#endif
121
122#ifdef OLD_BUS_ARCH
123#include <i386/isa/isa_device.h>
124#endif
125#include <i386/isa/intr_machdep.h>
126#include <isa/rtc.h>
127#include <machine/vm86.h>
128#include <machine/random.h>
129#include <sys/ptrace.h>
130#include <machine/sigframe.h>
131
132extern void init386 __P((int first));
133extern void dblfault_handler __P((void));
134
135extern void printcpuinfo(void);	/* XXX header file */
136extern void earlysetcpuclass(void);	/* same header file */
137extern void finishidentcpu(void);
138extern void panicifcpuunsupported(void);
139extern void initializecpu(void);
140
141static void cpu_startup __P((void *));
142SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
143
144static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
145
146int	_udatasel, _ucodesel;
147u_int	atdevbase;
148
149#if defined(SWTCH_OPTIM_STATS)
150extern int swtch_optim_stats;
151SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
152	CTLFLAG_RD, &swtch_optim_stats, 0, "");
153SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
154	CTLFLAG_RD, &tlb_flush_count, 0, "");
155#endif
156
157#ifdef PC98
158static int	ispc98 = 1;
159#else
160static int	ispc98 = 0;
161#endif
162SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
163
164int physmem = 0;
165int cold = 1;
166
167static int
168sysctl_hw_physmem SYSCTL_HANDLER_ARGS
169{
170	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
171	return (error);
172}
173
174SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
175	0, 0, sysctl_hw_physmem, "I", "");
176
177static int
178sysctl_hw_usermem SYSCTL_HANDLER_ARGS
179{
180	int error = sysctl_handle_int(oidp, 0,
181		ctob(physmem - cnt.v_wire_count), req);
182	return (error);
183}
184
185SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
186	0, 0, sysctl_hw_usermem, "I", "");
187
188static int
189sysctl_hw_availpages SYSCTL_HANDLER_ARGS
190{
191	int error = sysctl_handle_int(oidp, 0,
192		i386_btop(avail_end - avail_start), req);
193	return (error);
194}
195
196SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
197	0, 0, sysctl_hw_availpages, "I", "");
198
199static int
200sysctl_machdep_msgbuf SYSCTL_HANDLER_ARGS
201{
202	int error;
203
204	/* Unwind the buffer, so that it's linear (possibly starting with
205	 * some initial nulls).
206	 */
207	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
208		msgbufp->msg_size-msgbufp->msg_bufr,req);
209	if(error) return(error);
210	if(msgbufp->msg_bufr>0) {
211		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
212			msgbufp->msg_bufr,req);
213	}
214	return(error);
215}
216
217SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
218	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
219
220static int msgbuf_clear;
221
222static int
223sysctl_machdep_msgbuf_clear SYSCTL_HANDLER_ARGS
224{
225	int error;
226	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
227		req);
228	if (!error && req->newptr) {
229		/* Clear the buffer and reset write pointer */
230		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
231		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
232		msgbuf_clear=0;
233	}
234	return (error);
235}
236
237SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
238	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
239	"Clear kernel message buffer");
240
241int bootverbose = 0, Maxmem = 0;
242long dumplo;
243
244vm_offset_t phys_avail[10];
245
246/* must be 2 less so 0 0 can signal end of chunks */
247#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
248
249static vm_offset_t buffer_sva, buffer_eva;
250vm_offset_t clean_sva, clean_eva;
251static vm_offset_t pager_sva, pager_eva;
252
253#define offsetof(type, member)	((size_t)(&((type *)0)->member))
254
255static void
256cpu_startup(dummy)
257	void *dummy;
258{
259	register unsigned i;
260	register caddr_t v;
261	vm_offset_t maxaddr;
262	vm_size_t size = 0;
263	int firstaddr;
264	vm_offset_t minaddr;
265
266	if (boothowto & RB_VERBOSE)
267		bootverbose++;
268
269	/*
270	 * Good {morning,afternoon,evening,night}.
271	 */
272	printf(version);
273	earlysetcpuclass();
274	startrtclock();
275	printcpuinfo();
276	panicifcpuunsupported();
277#ifdef PERFMON
278	perfmon_init();
279#endif
280	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
281	/*
282	 * Display any holes after the first chunk of extended memory.
283	 */
284	if (bootverbose) {
285		int indx;
286
287		printf("Physical memory chunk(s):\n");
288		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
289			int size1 = phys_avail[indx + 1] - phys_avail[indx];
290
291			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
292			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
293			    size1 / PAGE_SIZE);
294		}
295	}
296
297	/*
298	 * Calculate callout wheel size
299	 */
300	for (callwheelsize = 1, callwheelbits = 0;
301	     callwheelsize < ncallout;
302	     callwheelsize <<= 1, ++callwheelbits)
303		;
304	callwheelmask = callwheelsize - 1;
305
306	/*
307	 * Allocate space for system data structures.
308	 * The first available kernel virtual address is in "v".
309	 * As pages of kernel virtual memory are allocated, "v" is incremented.
310	 * As pages of memory are allocated and cleared,
311	 * "firstaddr" is incremented.
312	 * An index into the kernel page table corresponding to the
313	 * virtual memory address maintained in "v" is kept in "mapaddr".
314	 */
315
316	/*
317	 * Make two passes.  The first pass calculates how much memory is
318	 * needed and allocates it.  The second pass assigns virtual
319	 * addresses to the various data structures.
320	 */
321	firstaddr = 0;
322again:
323	v = (caddr_t)firstaddr;
324
325#define	valloc(name, type, num) \
326	    (name) = (type *)v; v = (caddr_t)((name)+(num))
327#define	valloclim(name, type, num, lim) \
328	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
329
330	valloc(callout, struct callout, ncallout);
331	valloc(callwheel, struct callout_tailq, callwheelsize);
332#ifdef SYSVSHM
333	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
334#endif
335#ifdef SYSVSEM
336	valloc(sema, struct semid_ds, seminfo.semmni);
337	valloc(sem, struct sem, seminfo.semmns);
338	/* This is pretty disgusting! */
339	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
340#endif
341#ifdef SYSVMSG
342	valloc(msgpool, char, msginfo.msgmax);
343	valloc(msgmaps, struct msgmap, msginfo.msgseg);
344	valloc(msghdrs, struct msg, msginfo.msgtql);
345	valloc(msqids, struct msqid_ds, msginfo.msgmni);
346#endif
347
348	if (nbuf == 0) {
349		nbuf = 50;
350		if (physmem > 1024)
351			nbuf += min((physmem - 1024) / 8, 2048);
352		if (physmem > 16384)
353			nbuf += (physmem - 16384) / 20;
354	}
355	nswbuf = max(min(nbuf/4, 256), 16);
356
357	valloc(swbuf, struct buf, nswbuf);
358	valloc(buf, struct buf, nbuf);
359	v = bufhashinit(v);
360
361	/*
362	 * End of first pass, size has been calculated so allocate memory
363	 */
364	if (firstaddr == 0) {
365		size = (vm_size_t)(v - firstaddr);
366		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
367		if (firstaddr == 0)
368			panic("startup: no room for tables");
369		goto again;
370	}
371
372	/*
373	 * End of second pass, addresses have been assigned
374	 */
375	if ((vm_size_t)(v - firstaddr) != size)
376		panic("startup: table size inconsistency");
377
378	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
379			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
380	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
381				(nbuf*BKVASIZE));
382	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
383				(nswbuf*MAXPHYS) + pager_map_size);
384	pager_map->system_map = 1;
385	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
386				(16*(ARG_MAX+(PAGE_SIZE*3))));
387
388	/*
389	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
390	 * we use the more space efficient malloc in place of kmem_alloc.
391	 */
392	{
393		vm_offset_t mb_map_size;
394
395		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
396		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
397		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
398		bzero(mclrefcnt, mb_map_size / MCLBYTES);
399		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
400			mb_map_size);
401		mb_map->system_map = 1;
402	}
403
404	/*
405	 * Initialize callouts
406	 */
407	SLIST_INIT(&callfree);
408	for (i = 0; i < ncallout; i++) {
409		callout_init(&callout[i]);
410		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
411		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
412	}
413
414	for (i = 0; i < callwheelsize; i++) {
415		TAILQ_INIT(&callwheel[i]);
416	}
417
418#if defined(USERCONFIG)
419	userconfig();
420	cninit();		/* the preferred console may have changed */
421#endif
422
423	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
424	    ptoa(cnt.v_free_count) / 1024);
425
426	/*
427	 * Set up buffers, so they can be used to read disk labels.
428	 */
429	bufinit();
430	vm_pager_bufferinit();
431
432#ifdef SMP
433	/*
434	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
435	 */
436	mp_start();			/* fire up the APs and APICs */
437	mp_announce();
438#endif  /* SMP */
439}
440
441int
442register_netisr(num, handler)
443	int num;
444	netisr_t *handler;
445{
446
447	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
448		printf("register_netisr: bad isr number: %d\n", num);
449		return (EINVAL);
450	}
451	netisrs[num] = handler;
452	return (0);
453}
454
455int
456unregister_netisr(num)
457	int num;
458{
459
460	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
461		printf("unregister_netisr: bad isr number: %d\n", num);
462		return (EINVAL);
463	}
464	netisrs[num] = NULL;
465	return (0);
466}
467
468/*
469 * Send an interrupt to process.
470 *
471 * Stack is set up to allow sigcode stored
472 * at top to call routine, followed by kcall
473 * to sigreturn routine below.  After sigreturn
474 * resets the signal mask, the stack, and the
475 * frame pointer, it returns to the user
476 * specified pc, psl.
477 */
478static void
479osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
480{
481	register struct proc *p = curproc;
482	register struct trapframe *regs;
483	register struct osigframe *fp;
484	struct osigframe sf;
485	struct sigacts *psp = p->p_sigacts;
486	int oonstack;
487
488	regs = p->p_md.md_regs;
489	oonstack = (p->p_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
490
491	/* Allocate and validate space for the signal handler context. */
492	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
493	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
494		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
495		    p->p_sigstk.ss_size - sizeof(struct osigframe));
496		p->p_sigstk.ss_flags |= SS_ONSTACK;
497	}
498	else
499		fp = (struct osigframe *)regs->tf_esp - 1;
500
501	/*
502	 * grow() will return FALSE if the fp will not fit inside the stack
503	 *	and the stack can not be grown. useracc will return FALSE
504	 *	if access is denied.
505	 */
506	if (grow_stack(p, (int)fp) == FALSE ||
507	    !useracc((caddr_t)fp, sizeof(struct osigframe), VM_PROT_WRITE)) {
508		/*
509		 * Process has trashed its stack; give it an illegal
510		 * instruction to halt it in its tracks.
511		 */
512		SIGACTION(p, SIGILL) = SIG_DFL;
513		SIGDELSET(p->p_sigignore, SIGILL);
514		SIGDELSET(p->p_sigcatch, SIGILL);
515		SIGDELSET(p->p_sigmask, SIGILL);
516		psignal(p, SIGILL);
517		return;
518	}
519
520	/* Translate the signal if appropriate */
521	if (p->p_sysent->sv_sigtbl) {
522		if (sig <= p->p_sysent->sv_sigsize)
523			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
524	}
525
526	/* Build the argument list for the signal handler. */
527	sf.sf_signum = sig;
528	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
529	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
530		/* Signal handler installed with SA_SIGINFO. */
531		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
532		sf.sf_siginfo.si_signo = sig;
533		sf.sf_siginfo.si_code = code;
534		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
535	}
536	else {
537		/* Old FreeBSD-style arguments. */
538		sf.sf_arg2 = code;
539		sf.sf_addr = regs->tf_err;
540		sf.sf_ahu.sf_handler = catcher;
541	}
542
543	/* save scratch registers */
544	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
545	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
546	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
547	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
548	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
549	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
550	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
551	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
552	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
553	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
554	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
555	sf.sf_siginfo.si_sc.sc_gs = rgs();
556	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
557
558	/* Build the signal context to be used by sigreturn. */
559	sf.sf_siginfo.si_sc.sc_onstack = oonstack;
560	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
561	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
562	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
563	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
564	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
565	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
566	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
567
568	/*
569	 * If we're a vm86 process, we want to save the segment registers.
570	 * We also change eflags to be our emulated eflags, not the actual
571	 * eflags.
572	 */
573	if (regs->tf_eflags & PSL_VM) {
574		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
575		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
576
577		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
578		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
579		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
580		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
581
582		if (vm86->vm86_has_vme == 0)
583			sf.sf_siginfo.si_sc.sc_ps =
584			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
585			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
586		/* see sendsig for comment */
587		tf->tf_eflags &= ~(PSL_VM|PSL_NT|PSL_T|PSL_VIF|PSL_VIP);
588	}
589
590	/* Copy the sigframe out to the user's stack. */
591	if (copyout(&sf, fp, sizeof(struct osigframe)) != 0) {
592		/*
593		 * Something is wrong with the stack pointer.
594		 * ...Kill the process.
595		 */
596		sigexit(p, SIGILL);
597	}
598
599	regs->tf_esp = (int)fp;
600	regs->tf_eip = PS_STRINGS - szosigcode;
601	regs->tf_cs = _ucodesel;
602	regs->tf_ds = _udatasel;
603	regs->tf_es = _udatasel;
604	regs->tf_fs = _udatasel;
605	load_gs(_udatasel);
606	regs->tf_ss = _udatasel;
607}
608
609void
610sendsig(catcher, sig, mask, code)
611	sig_t catcher;
612	int sig;
613	sigset_t *mask;
614	u_long code;
615{
616	struct proc *p = curproc;
617	struct trapframe *regs;
618	struct sigacts *psp = p->p_sigacts;
619	struct sigframe sf, *sfp;
620	int oonstack;
621
622	if (SIGISMEMBER(psp->ps_osigset, sig)) {
623		osendsig(catcher, sig, mask, code);
624		return;
625	}
626
627	regs = p->p_md.md_regs;
628	oonstack = (p->p_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
629
630	/* save user context */
631	bzero(&sf, sizeof(struct sigframe));
632	sf.sf_uc.uc_sigmask = *mask;
633	sf.sf_uc.uc_stack = p->p_sigstk;
634	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
635	sf.sf_uc.uc_mcontext.mc_gs = rgs();
636	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(struct trapframe));
637
638	/* Allocate and validate space for the signal handler context. */
639        if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
640	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
641		sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
642		    p->p_sigstk.ss_size - sizeof(struct sigframe));
643		p->p_sigstk.ss_flags |= SS_ONSTACK;
644	}
645	else
646		sfp = (struct sigframe *)regs->tf_esp - 1;
647
648	/*
649	 * grow() will return FALSE if the sfp will not fit inside the stack
650	 * and the stack can not be grown. useracc will return FALSE if
651	 * access is denied.
652	 */
653	if (grow_stack(p, (int)sfp) == FALSE ||
654	    !useracc((caddr_t)sfp, sizeof(struct sigframe), VM_PROT_WRITE)) {
655		/*
656		 * Process has trashed its stack; give it an illegal
657		 * instruction to halt it in its tracks.
658		 */
659#ifdef DEBUG
660		printf("process %d has trashed its stack\n", p->p_pid);
661#endif
662		SIGACTION(p, SIGILL) = SIG_DFL;
663		SIGDELSET(p->p_sigignore, SIGILL);
664		SIGDELSET(p->p_sigcatch, SIGILL);
665		SIGDELSET(p->p_sigmask, SIGILL);
666		psignal(p, SIGILL);
667		return;
668	}
669
670	/* Translate the signal is appropriate */
671	if (p->p_sysent->sv_sigtbl) {
672		if (sig <= p->p_sysent->sv_sigsize)
673			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
674	}
675
676	/* Build the argument list for the signal handler. */
677	sf.sf_signum = sig;
678	sf.sf_ucontext = (register_t)&sfp->sf_uc;
679	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
680		/* Signal handler installed with SA_SIGINFO. */
681		sf.sf_siginfo = (register_t)&sfp->sf_si;
682		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
683
684		/* fill siginfo structure */
685		sf.sf_si.si_signo = sig;
686		sf.sf_si.si_code = code;
687		sf.sf_si.si_addr = (void*)regs->tf_err;
688	}
689	else {
690		/* Old FreeBSD-style arguments. */
691		sf.sf_siginfo = code;
692		sf.sf_addr = regs->tf_err;
693		sf.sf_ahu.sf_handler = catcher;
694	}
695
696	/*
697	 * If we're a vm86 process, we want to save the segment registers.
698	 * We also change eflags to be our emulated eflags, not the actual
699	 * eflags.
700	 */
701	if (regs->tf_eflags & PSL_VM) {
702		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
703		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
704
705		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
706		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
707		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
708		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
709
710		if (vm86->vm86_has_vme == 0)
711			sf.sf_uc.uc_mcontext.mc_eflags =
712			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
713			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
714
715		/*
716		 * We should never have PSL_T set when returning from vm86
717		 * mode.  It may be set here if we deliver a signal before
718		 * getting to vm86 mode, so turn it off.
719		 *
720		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
721		 * syscalls made by the signal handler.  This just avoids
722		 * wasting time for our lazy fixup of such faults.  PSL_NT
723		 * does nothing in vm86 mode, but vm86 programs can set it
724		 * almost legitimately in probes for old cpu types.
725		 */
726		tf->tf_eflags &= ~(PSL_VM|PSL_NT|PSL_T|PSL_VIF|PSL_VIP);
727	}
728
729	/*
730	 * Copy the sigframe out to the user's stack.
731	 */
732	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
733		/*
734		 * Something is wrong with the stack pointer.
735		 * ...Kill the process.
736		 */
737		sigexit(p, SIGILL);
738	}
739
740	regs->tf_esp = (int)sfp;
741	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
742	regs->tf_cs = _ucodesel;
743	regs->tf_ds = _udatasel;
744	regs->tf_es = _udatasel;
745	regs->tf_fs = _udatasel;
746	load_gs(_udatasel);
747	regs->tf_ss = _udatasel;
748}
749
750/*
751 * System call to cleanup state after a signal
752 * has been taken.  Reset signal mask and
753 * stack state from context left by sendsig (above).
754 * Return to previous pc and psl as specified by
755 * context left by sendsig. Check carefully to
756 * make sure that the user has not modified the
757 * state to gain improper privileges.
758 */
759#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
760#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
761
762int
763osigreturn(p, uap)
764	struct proc *p;
765	struct osigreturn_args /* {
766		struct osigcontext *sigcntxp;
767	} */ *uap;
768{
769	register struct osigcontext *scp;
770	register struct trapframe *regs = p->p_md.md_regs;
771	int eflags;
772
773	scp = uap->sigcntxp;
774
775	if (!useracc((caddr_t)scp, sizeof (struct osigcontext), VM_PROT_READ))
776		return(EFAULT);
777
778	eflags = scp->sc_ps;
779	if (eflags & PSL_VM) {
780		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
781		struct vm86_kernel *vm86;
782
783		/*
784		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
785		 * set up the vm86 area, and we can't enter vm86 mode.
786		 */
787		if (p->p_addr->u_pcb.pcb_ext == 0)
788			return (EINVAL);
789		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
790		if (vm86->vm86_inited == 0)
791			return (EINVAL);
792
793		/* go back to user mode if both flags are set */
794		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
795			trapsignal(p, SIGBUS, 0);
796
797		if (vm86->vm86_has_vme) {
798			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
799			    (eflags & VME_USERCHANGE) | PSL_VM;
800		} else {
801			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
802			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
803		}
804		tf->tf_vm86_ds = scp->sc_ds;
805		tf->tf_vm86_es = scp->sc_es;
806		tf->tf_vm86_fs = scp->sc_fs;
807		tf->tf_vm86_gs = scp->sc_gs;
808		tf->tf_ds = _udatasel;
809		tf->tf_es = _udatasel;
810		tf->tf_fs = _udatasel;
811	} else {
812		/*
813		 * Don't allow users to change privileged or reserved flags.
814		 */
815		/*
816		 * XXX do allow users to change the privileged flag PSL_RF.
817		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
818		 * should sometimes set it there too.  tf_eflags is kept in
819		 * the signal context during signal handling and there is no
820		 * other place to remember it, so the PSL_RF bit may be
821		 * corrupted by the signal handler without us knowing.
822		 * Corruption of the PSL_RF bit at worst causes one more or
823		 * one less debugger trap, so allowing it is fairly harmless.
824		 */
825		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
826	    		return(EINVAL);
827		}
828
829		/*
830		 * Don't allow users to load a valid privileged %cs.  Let the
831		 * hardware check for invalid selectors, excess privilege in
832		 * other selectors, invalid %eip's and invalid %esp's.
833		 */
834		if (!CS_SECURE(scp->sc_cs)) {
835			trapsignal(p, SIGBUS, T_PROTFLT);
836			return(EINVAL);
837		}
838		regs->tf_ds = scp->sc_ds;
839		regs->tf_es = scp->sc_es;
840		regs->tf_fs = scp->sc_fs;
841	}
842
843	/* restore scratch registers */
844	regs->tf_eax = scp->sc_eax;
845	regs->tf_ebx = scp->sc_ebx;
846	regs->tf_ecx = scp->sc_ecx;
847	regs->tf_edx = scp->sc_edx;
848	regs->tf_esi = scp->sc_esi;
849	regs->tf_edi = scp->sc_edi;
850	regs->tf_cs = scp->sc_cs;
851	regs->tf_ss = scp->sc_ss;
852	regs->tf_isp = scp->sc_isp;
853
854	if (scp->sc_onstack & 01)
855		p->p_sigstk.ss_flags |= SS_ONSTACK;
856	else
857		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
858
859	SIGSETOLD(p->p_sigmask, scp->sc_mask);
860	SIG_CANTMASK(p->p_sigmask);
861	regs->tf_ebp = scp->sc_fp;
862	regs->tf_esp = scp->sc_sp;
863	regs->tf_eip = scp->sc_pc;
864	regs->tf_eflags = eflags;
865	return(EJUSTRETURN);
866}
867
868int
869sigreturn(p, uap)
870	struct proc *p;
871	struct sigreturn_args /* {
872		ucontext_t *sigcntxp;
873	} */ *uap;
874{
875	struct trapframe *regs;
876	ucontext_t *ucp;
877	int cs, eflags;
878
879	ucp = uap->sigcntxp;
880
881	if (!useracc((caddr_t)ucp, sizeof(struct osigcontext), VM_PROT_READ))
882		return (EFAULT);
883	if (((struct osigcontext *)ucp)->sc_trapno == 0x01d516)
884		return (osigreturn(p, (struct osigreturn_args *)uap));
885
886	/*
887	 * Since ucp is not an osigcontext but a ucontext_t, we have to
888	 * check again if all of it is accessible.  A ucontext_t is
889	 * much larger, so instead of just checking for the pointer
890	 * being valid for the size of an osigcontext, now check for
891	 * it being valid for a whole, new-style ucontext_t.
892	 */
893	if (!useracc((caddr_t)ucp, sizeof(ucontext_t), VM_PROT_READ))
894		return (EFAULT);
895
896	regs = p->p_md.md_regs;
897	eflags = ucp->uc_mcontext.mc_eflags;
898
899	if (eflags & PSL_VM) {
900		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
901		struct vm86_kernel *vm86;
902
903		/*
904		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
905		 * set up the vm86 area, and we can't enter vm86 mode.
906		 */
907		if (p->p_addr->u_pcb.pcb_ext == 0)
908			return (EINVAL);
909		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
910		if (vm86->vm86_inited == 0)
911			return (EINVAL);
912
913		/* go back to user mode if both flags are set */
914		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
915			trapsignal(p, SIGBUS, 0);
916
917		if (vm86->vm86_has_vme) {
918			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
919			    (eflags & VME_USERCHANGE) | PSL_VM;
920		} else {
921			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
922			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
923		}
924		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
925		tf->tf_eflags = eflags;
926		tf->tf_vm86_ds = tf->tf_ds;
927		tf->tf_vm86_es = tf->tf_es;
928		tf->tf_vm86_fs = tf->tf_fs;
929		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
930		tf->tf_ds = _udatasel;
931		tf->tf_es = _udatasel;
932		tf->tf_fs = _udatasel;
933	} else {
934		/*
935		 * Don't allow users to change privileged or reserved flags.
936		 */
937		/*
938		 * XXX do allow users to change the privileged flag PSL_RF.
939		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
940		 * should sometimes set it there too.  tf_eflags is kept in
941		 * the signal context during signal handling and there is no
942		 * other place to remember it, so the PSL_RF bit may be
943		 * corrupted by the signal handler without us knowing.
944		 * Corruption of the PSL_RF bit at worst causes one more or
945		 * one less debugger trap, so allowing it is fairly harmless.
946		 */
947		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
948			printf("sigreturn: eflags = 0x%x\n", eflags);
949	    		return(EINVAL);
950		}
951
952		/*
953		 * Don't allow users to load a valid privileged %cs.  Let the
954		 * hardware check for invalid selectors, excess privilege in
955		 * other selectors, invalid %eip's and invalid %esp's.
956		 */
957		cs = ucp->uc_mcontext.mc_cs;
958		if (!CS_SECURE(cs)) {
959			printf("sigreturn: cs = 0x%x\n", cs);
960			trapsignal(p, SIGBUS, T_PROTFLT);
961			return(EINVAL);
962		}
963		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(struct trapframe));
964	}
965
966	if (ucp->uc_mcontext.mc_onstack & 1)
967		p->p_sigstk.ss_flags |= SS_ONSTACK;
968	else
969		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
970
971	p->p_sigmask = ucp->uc_sigmask;
972	SIG_CANTMASK(p->p_sigmask);
973	return(EJUSTRETURN);
974}
975
976/*
977 * Machine dependent boot() routine
978 *
979 * I haven't seen anything to put here yet
980 * Possibly some stuff might be grafted back here from boot()
981 */
982void
983cpu_boot(int howto)
984{
985}
986
987/*
988 * Shutdown the CPU as much as possible
989 */
990void
991cpu_halt(void)
992{
993	for (;;)
994		__asm__ ("hlt");
995}
996
997/*
998 * Clear registers on exec
999 */
1000void
1001setregs(p, entry, stack, ps_strings)
1002	struct proc *p;
1003	u_long entry;
1004	u_long stack;
1005	u_long ps_strings;
1006{
1007	struct trapframe *regs = p->p_md.md_regs;
1008	struct pcb *pcb = &p->p_addr->u_pcb;
1009
1010#ifdef USER_LDT
1011	/* was i386_user_cleanup() in NetBSD */
1012	user_ldt_free(pcb);
1013#endif
1014
1015	bzero((char *)regs, sizeof(struct trapframe));
1016	regs->tf_eip = entry;
1017	regs->tf_esp = stack;
1018	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1019	regs->tf_ss = _udatasel;
1020	regs->tf_ds = _udatasel;
1021	regs->tf_es = _udatasel;
1022	regs->tf_fs = _udatasel;
1023	regs->tf_cs = _ucodesel;
1024
1025	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1026	regs->tf_ebx = ps_strings;
1027
1028	/* reset %gs as well */
1029	if (pcb == curpcb)
1030		load_gs(_udatasel);
1031	else
1032		pcb->pcb_gs = _udatasel;
1033
1034	/*
1035	 * Initialize the math emulator (if any) for the current process.
1036	 * Actually, just clear the bit that says that the emulator has
1037	 * been initialized.  Initialization is delayed until the process
1038	 * traps to the emulator (if it is done at all) mainly because
1039	 * emulators don't provide an entry point for initialization.
1040	 */
1041	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
1042
1043	/*
1044	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
1045	 * for why fwait must be trapped at least if there is an npx or an
1046	 * emulator).  This is mainly to handle the case where npx0 is not
1047	 * configured, since the npx routines normally set up the trap
1048	 * otherwise.  It should be done only at boot time, but doing it
1049	 * here allows modifying `npx_exists' for testing the emulator on
1050	 * systems with an npx.
1051	 */
1052	load_cr0(rcr0() | CR0_MP | CR0_TS);
1053
1054#if NNPX > 0
1055	/* Initialize the npx (if any) for the current process. */
1056	npxinit(__INITIAL_NPXCW__);
1057#endif
1058
1059      /*
1060       * XXX - Linux emulator
1061       * Make sure sure edx is 0x0 on entry. Linux binaries depend
1062       * on it.
1063       */
1064      p->p_retval[1] = 0;
1065}
1066
1067static int
1068sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
1069{
1070	int error;
1071	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1072		req);
1073	if (!error && req->newptr)
1074		resettodr();
1075	return (error);
1076}
1077
1078SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1079	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1080
1081SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1082	CTLFLAG_RW, &disable_rtc_set, 0, "");
1083
1084SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1085	CTLFLAG_RD, &bootinfo, bootinfo, "");
1086
1087SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1088	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1089
1090/*
1091 * Initialize 386 and configure to run kernel
1092 */
1093
1094/*
1095 * Initialize segments & interrupt table
1096 */
1097
1098int _default_ldt;
1099#ifdef SMP
1100union descriptor gdt[NGDT * NCPU];	/* global descriptor table */
1101#else
1102union descriptor gdt[NGDT];		/* global descriptor table */
1103#endif
1104static struct gate_descriptor idt0[NIDT];
1105struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1106union descriptor ldt[NLDT];		/* local descriptor table */
1107#ifdef SMP
1108/* table descriptors - used to load tables by microp */
1109struct region_descriptor r_gdt, r_idt;
1110#endif
1111
1112#ifndef SMP
1113extern struct segment_descriptor common_tssd, *tss_gdt;
1114#endif
1115int private_tss;			/* flag indicating private tss */
1116
1117#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1118extern int has_f00f_bug;
1119#endif
1120
1121static struct i386tss dblfault_tss;
1122static char dblfault_stack[PAGE_SIZE];
1123
1124extern  struct user *proc0paddr;
1125
1126
1127/* software prototypes -- in more palatable form */
1128struct soft_segment_descriptor gdt_segs[] = {
1129/* GNULL_SEL	0 Null Descriptor */
1130{	0x0,			/* segment base address  */
1131	0x0,			/* length */
1132	0,			/* segment type */
1133	0,			/* segment descriptor priority level */
1134	0,			/* segment descriptor present */
1135	0, 0,
1136	0,			/* default 32 vs 16 bit size */
1137	0  			/* limit granularity (byte/page units)*/ },
1138/* GCODE_SEL	1 Code Descriptor for kernel */
1139{	0x0,			/* segment base address  */
1140	0xfffff,		/* length - all address space */
1141	SDT_MEMERA,		/* segment type */
1142	0,			/* segment descriptor priority level */
1143	1,			/* segment descriptor present */
1144	0, 0,
1145	1,			/* default 32 vs 16 bit size */
1146	1  			/* limit granularity (byte/page units)*/ },
1147/* GDATA_SEL	2 Data Descriptor for kernel */
1148{	0x0,			/* segment base address  */
1149	0xfffff,		/* length - all address space */
1150	SDT_MEMRWA,		/* segment type */
1151	0,			/* segment descriptor priority level */
1152	1,			/* segment descriptor present */
1153	0, 0,
1154	1,			/* default 32 vs 16 bit size */
1155	1  			/* limit granularity (byte/page units)*/ },
1156/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1157{	0x0,			/* segment base address  */
1158	0xfffff,		/* length - all address space */
1159	SDT_MEMRWA,		/* segment type */
1160	0,			/* segment descriptor priority level */
1161	1,			/* segment descriptor present */
1162	0, 0,
1163	1,			/* default 32 vs 16 bit size */
1164	1  			/* limit granularity (byte/page units)*/ },
1165/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1166{
1167	0x0,			/* segment base address */
1168	sizeof(struct i386tss)-1,/* length - all address space */
1169	SDT_SYS386TSS,		/* segment type */
1170	0,			/* segment descriptor priority level */
1171	1,			/* segment descriptor present */
1172	0, 0,
1173	0,			/* unused - default 32 vs 16 bit size */
1174	0  			/* limit granularity (byte/page units)*/ },
1175/* GLDT_SEL	5 LDT Descriptor */
1176{	(int) ldt,		/* segment base address  */
1177	sizeof(ldt)-1,		/* length - all address space */
1178	SDT_SYSLDT,		/* segment type */
1179	SEL_UPL,		/* segment descriptor priority level */
1180	1,			/* segment descriptor present */
1181	0, 0,
1182	0,			/* unused - default 32 vs 16 bit size */
1183	0  			/* limit granularity (byte/page units)*/ },
1184/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1185{	(int) ldt,		/* segment base address  */
1186	(512 * sizeof(union descriptor)-1),		/* length */
1187	SDT_SYSLDT,		/* segment type */
1188	0,			/* segment descriptor priority level */
1189	1,			/* segment descriptor present */
1190	0, 0,
1191	0,			/* unused - default 32 vs 16 bit size */
1192	0  			/* limit granularity (byte/page units)*/ },
1193/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1194{	0x0,			/* segment base address  */
1195	0x0,			/* length - all address space */
1196	0,			/* segment type */
1197	0,			/* segment descriptor priority level */
1198	0,			/* segment descriptor present */
1199	0, 0,
1200	0,			/* default 32 vs 16 bit size */
1201	0  			/* limit granularity (byte/page units)*/ },
1202/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1203{	0x400,			/* segment base address */
1204	0xfffff,		/* length */
1205	SDT_MEMRWA,		/* segment type */
1206	0,			/* segment descriptor priority level */
1207	1,			/* segment descriptor present */
1208	0, 0,
1209	1,			/* default 32 vs 16 bit size */
1210	1  			/* limit granularity (byte/page units)*/ },
1211/* GPANIC_SEL	9 Panic Tss Descriptor */
1212{	(int) &dblfault_tss,	/* segment base address  */
1213	sizeof(struct i386tss)-1,/* length - all address space */
1214	SDT_SYS386TSS,		/* segment type */
1215	0,			/* segment descriptor priority level */
1216	1,			/* segment descriptor present */
1217	0, 0,
1218	0,			/* unused - default 32 vs 16 bit size */
1219	0  			/* limit granularity (byte/page units)*/ },
1220/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1221{	0,			/* segment base address (overwritten)  */
1222	0xfffff,		/* length */
1223	SDT_MEMERA,		/* segment type */
1224	0,			/* segment descriptor priority level */
1225	1,			/* segment descriptor present */
1226	0, 0,
1227	0,			/* default 32 vs 16 bit size */
1228	1  			/* limit granularity (byte/page units)*/ },
1229/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1230{	0,			/* segment base address (overwritten)  */
1231	0xfffff,		/* length */
1232	SDT_MEMERA,		/* segment type */
1233	0,			/* segment descriptor priority level */
1234	1,			/* segment descriptor present */
1235	0, 0,
1236	0,			/* default 32 vs 16 bit size */
1237	1  			/* limit granularity (byte/page units)*/ },
1238/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1239{	0,			/* segment base address (overwritten) */
1240	0xfffff,		/* length */
1241	SDT_MEMRWA,		/* segment type */
1242	0,			/* segment descriptor priority level */
1243	1,			/* segment descriptor present */
1244	0, 0,
1245	1,			/* default 32 vs 16 bit size */
1246	1  			/* limit granularity (byte/page units)*/ },
1247/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1248{	0,			/* segment base address (overwritten) */
1249	0xfffff,		/* length */
1250	SDT_MEMRWA,		/* segment type */
1251	0,			/* segment descriptor priority level */
1252	1,			/* segment descriptor present */
1253	0, 0,
1254	0,			/* default 32 vs 16 bit size */
1255	1  			/* limit granularity (byte/page units)*/ },
1256/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1257{	0,			/* segment base address (overwritten) */
1258	0xfffff,		/* length */
1259	SDT_MEMRWA,		/* segment type */
1260	0,			/* segment descriptor priority level */
1261	1,			/* segment descriptor present */
1262	0, 0,
1263	0,			/* default 32 vs 16 bit size */
1264	1  			/* limit granularity (byte/page units)*/ },
1265};
1266
1267static struct soft_segment_descriptor ldt_segs[] = {
1268	/* Null Descriptor - overwritten by call gate */
1269{	0x0,			/* segment base address  */
1270	0x0,			/* length - all address space */
1271	0,			/* segment type */
1272	0,			/* segment descriptor priority level */
1273	0,			/* segment descriptor present */
1274	0, 0,
1275	0,			/* default 32 vs 16 bit size */
1276	0  			/* limit granularity (byte/page units)*/ },
1277	/* Null Descriptor - overwritten by call gate */
1278{	0x0,			/* segment base address  */
1279	0x0,			/* length - all address space */
1280	0,			/* segment type */
1281	0,			/* segment descriptor priority level */
1282	0,			/* segment descriptor present */
1283	0, 0,
1284	0,			/* default 32 vs 16 bit size */
1285	0  			/* limit granularity (byte/page units)*/ },
1286	/* Null Descriptor - overwritten by call gate */
1287{	0x0,			/* segment base address  */
1288	0x0,			/* length - all address space */
1289	0,			/* segment type */
1290	0,			/* segment descriptor priority level */
1291	0,			/* segment descriptor present */
1292	0, 0,
1293	0,			/* default 32 vs 16 bit size */
1294	0  			/* limit granularity (byte/page units)*/ },
1295	/* Code Descriptor for user */
1296{	0x0,			/* segment base address  */
1297	0xfffff,		/* length - all address space */
1298	SDT_MEMERA,		/* segment type */
1299	SEL_UPL,		/* segment descriptor priority level */
1300	1,			/* segment descriptor present */
1301	0, 0,
1302	1,			/* default 32 vs 16 bit size */
1303	1  			/* limit granularity (byte/page units)*/ },
1304	/* Null Descriptor - overwritten by call gate */
1305{	0x0,			/* segment base address  */
1306	0x0,			/* length - all address space */
1307	0,			/* segment type */
1308	0,			/* segment descriptor priority level */
1309	0,			/* segment descriptor present */
1310	0, 0,
1311	0,			/* default 32 vs 16 bit size */
1312	0  			/* limit granularity (byte/page units)*/ },
1313	/* Data Descriptor for user */
1314{	0x0,			/* segment base address  */
1315	0xfffff,		/* length - all address space */
1316	SDT_MEMRWA,		/* segment type */
1317	SEL_UPL,		/* segment descriptor priority level */
1318	1,			/* segment descriptor present */
1319	0, 0,
1320	1,			/* default 32 vs 16 bit size */
1321	1  			/* limit granularity (byte/page units)*/ },
1322};
1323
1324void
1325setidt(idx, func, typ, dpl, selec)
1326	int idx;
1327	inthand_t *func;
1328	int typ;
1329	int dpl;
1330	int selec;
1331{
1332	struct gate_descriptor *ip;
1333
1334	ip = idt + idx;
1335	ip->gd_looffset = (int)func;
1336	ip->gd_selector = selec;
1337	ip->gd_stkcpy = 0;
1338	ip->gd_xx = 0;
1339	ip->gd_type = typ;
1340	ip->gd_dpl = dpl;
1341	ip->gd_p = 1;
1342	ip->gd_hioffset = ((int)func)>>16 ;
1343}
1344
1345#define	IDTVEC(name)	__CONCAT(X,name)
1346
1347extern inthand_t
1348	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1349	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1350	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1351	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1352	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1353
1354void
1355sdtossd(sd, ssd)
1356	struct segment_descriptor *sd;
1357	struct soft_segment_descriptor *ssd;
1358{
1359	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1360	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1361	ssd->ssd_type  = sd->sd_type;
1362	ssd->ssd_dpl   = sd->sd_dpl;
1363	ssd->ssd_p     = sd->sd_p;
1364	ssd->ssd_def32 = sd->sd_def32;
1365	ssd->ssd_gran  = sd->sd_gran;
1366}
1367
1368#define PHYSMAP_SIZE	(2 * 8)
1369
1370/*
1371 * Populate the (physmap) array with base/bound pairs describing the
1372 * available physical memory in the system, then test this memory and
1373 * build the phys_avail array describing the actually-available memory.
1374 *
1375 * If we cannot accurately determine the physical memory map, then use
1376 * value from the 0xE801 call, and failing that, the RTC.
1377 *
1378 * Total memory size may be set by the kernel environment variable
1379 * hw.physmem or the compile-time define MAXMEM.
1380 */
1381static void
1382getmemsize(int first)
1383{
1384	int i, physmap_idx, pa_indx;
1385	u_int basemem, extmem;
1386	struct vm86frame vmf;
1387	struct vm86context vmc;
1388	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1389	pt_entry_t pte;
1390	const char *cp;
1391	struct {
1392		u_int64_t base;
1393		u_int64_t length;
1394		u_int32_t type;
1395	} *smap;
1396
1397	bzero(&vmf, sizeof(struct vm86frame));
1398	bzero(physmap, sizeof(physmap));
1399
1400	/*
1401	 * Perform "base memory" related probes & setup
1402	 */
1403	vm86_intcall(0x12, &vmf);
1404	basemem = vmf.vmf_ax;
1405	if (basemem > 640) {
1406		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1407			basemem);
1408		basemem = 640;
1409	}
1410
1411	/*
1412	 * XXX if biosbasemem is now < 640, there is a `hole'
1413	 * between the end of base memory and the start of
1414	 * ISA memory.  The hole may be empty or it may
1415	 * contain BIOS code or data.  Map it read/write so
1416	 * that the BIOS can write to it.  (Memory from 0 to
1417	 * the physical end of the kernel is mapped read-only
1418	 * to begin with and then parts of it are remapped.
1419	 * The parts that aren't remapped form holes that
1420	 * remain read-only and are unused by the kernel.
1421	 * The base memory area is below the physical end of
1422	 * the kernel and right now forms a read-only hole.
1423	 * The part of it from PAGE_SIZE to
1424	 * (trunc_page(biosbasemem * 1024) - 1) will be
1425	 * remapped and used by the kernel later.)
1426	 *
1427	 * This code is similar to the code used in
1428	 * pmap_mapdev, but since no memory needs to be
1429	 * allocated we simply change the mapping.
1430	 */
1431	for (pa = trunc_page(basemem * 1024);
1432	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1433		pte = (pt_entry_t)vtopte(pa + KERNBASE);
1434		*pte = pa | PG_RW | PG_V;
1435	}
1436
1437	/*
1438	 * if basemem != 640, map pages r/w into vm86 page table so
1439	 * that the bios can scribble on it.
1440	 */
1441	pte = (pt_entry_t)vm86paddr;
1442	for (i = basemem / 4; i < 160; i++)
1443		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1444
1445	/*
1446	 * map page 1 R/W into the kernel page table so we can use it
1447	 * as a buffer.  The kernel will unmap this page later.
1448	 */
1449	pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
1450	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1451
1452	/*
1453	 * get memory map with INT 15:E820
1454	 */
1455#define SMAPSIZ 	sizeof(*smap)
1456#define SMAP_SIG	0x534D4150			/* 'SMAP' */
1457
1458	vmc.npages = 0;
1459	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1460	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1461
1462	physmap_idx = 0;
1463	vmf.vmf_ebx = 0;
1464	do {
1465		vmf.vmf_eax = 0xE820;
1466		vmf.vmf_edx = SMAP_SIG;
1467		vmf.vmf_ecx = SMAPSIZ;
1468		i = vm86_datacall(0x15, &vmf, &vmc);
1469		if (i || vmf.vmf_eax != SMAP_SIG)
1470			break;
1471		if (boothowto & RB_VERBOSE)
1472			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1473				smap->type,
1474				*(u_int32_t *)((char *)&smap->base + 4),
1475				(u_int32_t)smap->base,
1476				*(u_int32_t *)((char *)&smap->length + 4),
1477				(u_int32_t)smap->length);
1478
1479		if (smap->type != 0x01)
1480			goto next_run;
1481
1482		if (smap->length == 0)
1483			goto next_run;
1484
1485		if (smap->base >= 0xffffffff) {
1486			printf("%uK of memory above 4GB ignored\n",
1487			    (u_int)(smap->length / 1024));
1488			goto next_run;
1489		}
1490
1491		for (i = 0; i <= physmap_idx; i += 2) {
1492			if (smap->base < physmap[i + 1]) {
1493				if (boothowto & RB_VERBOSE)
1494					printf(
1495	"Overlapping or non-montonic memory region, ignoring second region\n");
1496				goto next_run;
1497			}
1498		}
1499
1500		if (smap->base == physmap[physmap_idx + 1]) {
1501			physmap[physmap_idx + 1] += smap->length;
1502			goto next_run;
1503		}
1504
1505		physmap_idx += 2;
1506		if (physmap_idx == PHYSMAP_SIZE) {
1507			printf(
1508		"Too many segments in the physical address map, giving up\n");
1509			break;
1510		}
1511		physmap[physmap_idx] = smap->base;
1512		physmap[physmap_idx + 1] = smap->base + smap->length;
1513next_run:
1514	} while (vmf.vmf_ebx != 0);
1515
1516	if (physmap[1] != 0)
1517		goto physmap_done;
1518
1519	/*
1520	 * If we failed above, try memory map with INT 15:E801
1521	 */
1522	vmf.vmf_ax = 0xE801;
1523	if (vm86_intcall(0x15, &vmf) == 0) {
1524		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1525	} else {
1526#if 0
1527		vmf.vmf_ah = 0x88;
1528		vm86_intcall(0x15, &vmf);
1529		extmem = vmf.vmf_ax;
1530#else
1531		/*
1532		 * Prefer the RTC value for extended memory.
1533		 */
1534		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1535#endif
1536	}
1537
1538	/*
1539	 * Special hack for chipsets that still remap the 384k hole when
1540	 * there's 16MB of memory - this really confuses people that
1541	 * are trying to use bus mastering ISA controllers with the
1542	 * "16MB limit"; they only have 16MB, but the remapping puts
1543	 * them beyond the limit.
1544	 *
1545	 * If extended memory is between 15-16MB (16-17MB phys address range),
1546	 *	chop it to 15MB.
1547	 */
1548	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1549		extmem = 15 * 1024;
1550
1551	physmap[0] = 0;
1552	physmap[1] = basemem * 1024;
1553	physmap_idx = 2;
1554	physmap[physmap_idx] = 0x100000;
1555	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1556
1557physmap_done:
1558	/*
1559	 * Now, physmap contains a map of physical memory.
1560	 */
1561
1562#ifdef SMP
1563	/* make hole for AP bootstrap code */
1564	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1565
1566	/* look for the MP hardware - needed for apic addresses */
1567	mp_probe();
1568#endif
1569
1570	/*
1571	 * Maxmem isn't the "maximum memory", it's one larger than the
1572	 * highest page of the physical address space.  It should be
1573	 * called something like "Maxphyspage".  We may adjust this
1574	 * based on ``hw.physmem'' and the results of the memory test.
1575	 */
1576	Maxmem = atop(physmap[physmap_idx + 1]);
1577
1578#ifdef MAXMEM
1579	Maxmem = MAXMEM / 4;
1580#endif
1581
1582	/*
1583	 * hw.maxmem is a size in bytes; we also allow k, m, and g suffixes
1584	 * for the appropriate modifiers.  This overrides MAXMEM.
1585	 */
1586	if ((cp = getenv("hw.physmem")) != NULL) {
1587		u_int64_t AllowMem, sanity;
1588		char *ep;
1589
1590		sanity = AllowMem = strtouq(cp, &ep, 0);
1591		if ((ep != cp) && (*ep != 0)) {
1592			switch(*ep) {
1593			case 'g':
1594			case 'G':
1595				AllowMem <<= 10;
1596			case 'm':
1597			case 'M':
1598				AllowMem <<= 10;
1599			case 'k':
1600			case 'K':
1601				AllowMem <<= 10;
1602				break;
1603			default:
1604				AllowMem = sanity = 0;
1605			}
1606			if (AllowMem < sanity)
1607				AllowMem = 0;
1608		}
1609		if (AllowMem == 0)
1610			printf("Ignoring invalid memory size of '%s'\n", cp);
1611		else
1612			Maxmem = atop(AllowMem);
1613	}
1614
1615	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1616	    (boothowto & RB_VERBOSE))
1617		printf("Physical memory use set to %uK\n", Maxmem * 4);
1618
1619	/*
1620	 * If Maxmem has been increased beyond what the system has detected,
1621	 * extend the last memory segment to the new limit.
1622	 */
1623	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1624		physmap[physmap_idx + 1] = ptoa(Maxmem);
1625
1626	/* call pmap initialization to make new kernel address space */
1627	pmap_bootstrap(first, 0);
1628
1629	/*
1630	 * Size up each available chunk of physical memory.
1631	 */
1632	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1633	pa_indx = 0;
1634	phys_avail[pa_indx++] = physmap[0];
1635	phys_avail[pa_indx] = physmap[0];
1636#if 0
1637	pte = (pt_entry_t)vtopte(KERNBASE);
1638#else
1639	pte = (pt_entry_t)CMAP1;
1640#endif
1641
1642	/*
1643	 * physmap is in bytes, so when converting to page boundaries,
1644	 * round up the start address and round down the end address.
1645	 */
1646	for (i = 0; i <= physmap_idx; i += 2) {
1647		vm_offset_t end;
1648
1649		end = ptoa(Maxmem);
1650		if (physmap[i + 1] < end)
1651			end = trunc_page(physmap[i + 1]);
1652		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1653			int tmp, page_bad;
1654#if 0
1655			int *ptr = 0;
1656#else
1657			int *ptr = (int *)CADDR1;
1658#endif
1659
1660			/*
1661			 * block out kernel memory as not available.
1662			 */
1663			if (pa >= 0x100000 && pa < first)
1664				continue;
1665
1666			page_bad = FALSE;
1667
1668			/*
1669			 * map page into kernel: valid, read/write,non-cacheable
1670			 */
1671			*pte = pa | PG_V | PG_RW | PG_N;
1672			invltlb();
1673
1674			tmp = *(int *)ptr;
1675			/*
1676			 * Test for alternating 1's and 0's
1677			 */
1678			*(volatile int *)ptr = 0xaaaaaaaa;
1679			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1680				page_bad = TRUE;
1681			}
1682			/*
1683			 * Test for alternating 0's and 1's
1684			 */
1685			*(volatile int *)ptr = 0x55555555;
1686			if (*(volatile int *)ptr != 0x55555555) {
1687			page_bad = TRUE;
1688			}
1689			/*
1690			 * Test for all 1's
1691			 */
1692			*(volatile int *)ptr = 0xffffffff;
1693			if (*(volatile int *)ptr != 0xffffffff) {
1694				page_bad = TRUE;
1695			}
1696			/*
1697			 * Test for all 0's
1698			 */
1699			*(volatile int *)ptr = 0x0;
1700			if (*(volatile int *)ptr != 0x0) {
1701				page_bad = TRUE;
1702			}
1703			/*
1704			 * Restore original value.
1705			 */
1706			*(int *)ptr = tmp;
1707
1708			/*
1709			 * Adjust array of valid/good pages.
1710			 */
1711			if (page_bad == TRUE) {
1712				continue;
1713			}
1714			/*
1715			 * If this good page is a continuation of the
1716			 * previous set of good pages, then just increase
1717			 * the end pointer. Otherwise start a new chunk.
1718			 * Note that "end" points one higher than end,
1719			 * making the range >= start and < end.
1720			 * If we're also doing a speculative memory
1721			 * test and we at or past the end, bump up Maxmem
1722			 * so that we keep going. The first bad page
1723			 * will terminate the loop.
1724			 */
1725			if (phys_avail[pa_indx] == pa) {
1726				phys_avail[pa_indx] += PAGE_SIZE;
1727			} else {
1728				pa_indx++;
1729				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1730					printf("Too many holes in the physical address space, giving up\n");
1731					pa_indx--;
1732					break;
1733				}
1734				phys_avail[pa_indx++] = pa;	/* start */
1735				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1736			}
1737			physmem++;
1738		}
1739	}
1740	*pte = 0;
1741	invltlb();
1742
1743	/*
1744	 * XXX
1745	 * The last chunk must contain at least one page plus the message
1746	 * buffer to avoid complicating other code (message buffer address
1747	 * calculation, etc.).
1748	 */
1749	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1750	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1751		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1752		phys_avail[pa_indx--] = 0;
1753		phys_avail[pa_indx--] = 0;
1754	}
1755
1756	Maxmem = atop(phys_avail[pa_indx]);
1757
1758	/* Trim off space for the message buffer. */
1759	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1760
1761	avail_end = phys_avail[pa_indx];
1762}
1763
1764void
1765init386(first)
1766	int first;
1767{
1768	int x;
1769	struct gate_descriptor *gdp;
1770	int gsel_tss;
1771#ifndef SMP
1772	/* table descriptors - used to load tables by microp */
1773	struct region_descriptor r_gdt, r_idt;
1774#endif
1775	int off;
1776
1777	/*
1778	 * Prevent lowering of the ipl if we call tsleep() early.
1779	 */
1780	safepri = cpl;
1781
1782	proc0.p_addr = proc0paddr;
1783
1784	atdevbase = ISA_HOLE_START + KERNBASE;
1785
1786	if (bootinfo.bi_modulep) {
1787		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1788		preload_bootstrap_relocate(KERNBASE);
1789	}
1790	if (bootinfo.bi_envp)
1791		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1792
1793	/*
1794	 * make gdt memory segments, the code segment goes up to end of the
1795	 * page with etext in it, the data segment goes to the end of
1796	 * the address space
1797	 */
1798	/*
1799	 * XXX text protection is temporarily (?) disabled.  The limit was
1800	 * i386_btop(round_page(etext)) - 1.
1801	 */
1802	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1803	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1804#ifdef SMP
1805	gdt_segs[GPRIV_SEL].ssd_limit =
1806		i386_btop(sizeof(struct privatespace)) - 1;
1807	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
1808	gdt_segs[GPROC0_SEL].ssd_base =
1809		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
1810	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0];
1811#else
1812	gdt_segs[GPRIV_SEL].ssd_limit = i386_btop(0) - 1;
1813	gdt_segs[GPROC0_SEL].ssd_base = (int) &common_tss;
1814#endif
1815
1816	for (x = 0; x < NGDT; x++) {
1817#ifdef BDE_DEBUGGER
1818		/* avoid overwriting db entries with APM ones */
1819		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1820			continue;
1821#endif
1822		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1823	}
1824
1825	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1826	r_gdt.rd_base =  (int) gdt;
1827	lgdt(&r_gdt);
1828
1829	/* make ldt memory segments */
1830	/*
1831	 * The data segment limit must not cover the user area because we
1832	 * don't want the user area to be writable in copyout() etc. (page
1833	 * level protection is lost in kernel mode on 386's).  Also, we
1834	 * don't want the user area to be writable directly (page level
1835	 * protection of the user area is not available on 486's with
1836	 * CR0_WP set, because there is no user-read/kernel-write mode).
1837	 *
1838	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1839	 * should be spelled ...MAX_USER...
1840	 */
1841#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1842	/*
1843	 * The code segment limit has to cover the user area until we move
1844	 * the signal trampoline out of the user area.  This is safe because
1845	 * the code segment cannot be written to directly.
1846	 */
1847#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1848	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1849	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1850	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1851		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1852
1853	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1854	lldt(_default_ldt);
1855#ifdef USER_LDT
1856	currentldt = _default_ldt;
1857#endif
1858
1859	/* exceptions */
1860	for (x = 0; x < NIDT; x++)
1861		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1862	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1863	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1864	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1865 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1866	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1867	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1868	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1869	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1870	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1871	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1872	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1873	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1874	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1875	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1876	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1877	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1878	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1879	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1880	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1881 	setidt(0x80, &IDTVEC(int0x80_syscall),
1882			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1883
1884	r_idt.rd_limit = sizeof(idt0) - 1;
1885	r_idt.rd_base = (int) idt;
1886	lidt(&r_idt);
1887
1888	/*
1889	 * Initialize the console before we print anything out.
1890	 */
1891	cninit();
1892
1893#include	"isa.h"
1894#if	NISA >0
1895	isa_defaultirq();
1896#endif
1897	rand_initialize();
1898
1899#ifdef DDB
1900	kdb_init();
1901	if (boothowto & RB_KDB)
1902		Debugger("Boot flags requested debugger");
1903#endif
1904
1905	finishidentcpu();	/* Final stage of CPU initialization */
1906	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1907	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1908	initializecpu();	/* Initialize CPU registers */
1909
1910	/* make an initial tss so cpu can get interrupt stack on syscall! */
1911	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
1912	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1913	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1914	private_tss = 0;
1915	tss_gdt = &gdt[GPROC0_SEL].sd;
1916	common_tssd = *tss_gdt;
1917	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1918	ltr(gsel_tss);
1919
1920	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1921	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1922	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1923	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1924	dblfault_tss.tss_cr3 = (int)IdlePTD;
1925	dblfault_tss.tss_eip = (int) dblfault_handler;
1926	dblfault_tss.tss_eflags = PSL_KERNEL;
1927	dblfault_tss.tss_ds = dblfault_tss.tss_es =
1928	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1929	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1930	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1931	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1932
1933	vm86_initialize();
1934	getmemsize(first);
1935
1936	/* now running on new page tables, configured,and u/iom is accessible */
1937
1938	/* Map the message buffer. */
1939	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1940		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1941
1942	msgbufinit(msgbufp, MSGBUF_SIZE);
1943
1944	/* make a call gate to reenter kernel with */
1945	gdp = &ldt[LSYS5CALLS_SEL].gd;
1946
1947	x = (int) &IDTVEC(syscall);
1948	gdp->gd_looffset = x++;
1949	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1950	gdp->gd_stkcpy = 1;
1951	gdp->gd_type = SDT_SYS386CGT;
1952	gdp->gd_dpl = SEL_UPL;
1953	gdp->gd_p = 1;
1954	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1955
1956	/* XXX does this work? */
1957	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1958	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
1959
1960	/* transfer to user mode */
1961
1962	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1963	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1964
1965	/* setup proc 0's pcb */
1966	proc0.p_addr->u_pcb.pcb_flags = 0;
1967	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1968#ifdef SMP
1969	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1970#endif
1971	proc0.p_addr->u_pcb.pcb_ext = 0;
1972}
1973
1974#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1975static void f00f_hack(void *unused);
1976SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1977
1978static void
1979f00f_hack(void *unused) {
1980	struct gate_descriptor *new_idt;
1981#ifndef SMP
1982	struct region_descriptor r_idt;
1983#endif
1984	vm_offset_t tmp;
1985
1986	if (!has_f00f_bug)
1987		return;
1988
1989	printf("Intel Pentium detected, installing workaround for F00F bug\n");
1990
1991	r_idt.rd_limit = sizeof(idt0) - 1;
1992
1993	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
1994	if (tmp == 0)
1995		panic("kmem_alloc returned 0");
1996	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1997		panic("kmem_alloc returned non-page-aligned memory");
1998	/* Put the first seven entries in the lower page */
1999	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2000	bcopy(idt, new_idt, sizeof(idt0));
2001	r_idt.rd_base = (int)new_idt;
2002	lidt(&r_idt);
2003	idt = new_idt;
2004	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2005			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2006		panic("vm_map_protect failed");
2007	return;
2008}
2009#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2010
2011int
2012ptrace_set_pc(p, addr)
2013	struct proc *p;
2014	unsigned long addr;
2015{
2016	p->p_md.md_regs->tf_eip = addr;
2017	return (0);
2018}
2019
2020int
2021ptrace_single_step(p)
2022	struct proc *p;
2023{
2024	p->p_md.md_regs->tf_eflags |= PSL_T;
2025	return (0);
2026}
2027
2028int ptrace_read_u_check(p, addr, len)
2029	struct proc *p;
2030	vm_offset_t addr;
2031	size_t len;
2032{
2033	vm_offset_t gap;
2034
2035	if ((vm_offset_t) (addr + len) < addr)
2036		return EPERM;
2037	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
2038		return 0;
2039
2040	gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
2041
2042	if ((vm_offset_t) addr < gap)
2043		return EPERM;
2044	if ((vm_offset_t) (addr + len) <=
2045	    (vm_offset_t) (gap + sizeof(struct trapframe)))
2046		return 0;
2047	return EPERM;
2048}
2049
2050int ptrace_write_u(p, off, data)
2051	struct proc *p;
2052	vm_offset_t off;
2053	long data;
2054{
2055	struct trapframe frame_copy;
2056	vm_offset_t min;
2057	struct trapframe *tp;
2058
2059	/*
2060	 * Privileged kernel state is scattered all over the user area.
2061	 * Only allow write access to parts of regs and to fpregs.
2062	 */
2063	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
2064	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
2065		tp = p->p_md.md_regs;
2066		frame_copy = *tp;
2067		*(int *)((char *)&frame_copy + (off - min)) = data;
2068		if (!EFL_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
2069		    !CS_SECURE(frame_copy.tf_cs))
2070			return (EINVAL);
2071		*(int*)((char *)p->p_addr + off) = data;
2072		return (0);
2073	}
2074	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
2075	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
2076		*(int*)((char *)p->p_addr + off) = data;
2077		return (0);
2078	}
2079	return (EFAULT);
2080}
2081
2082int
2083fill_regs(p, regs)
2084	struct proc *p;
2085	struct reg *regs;
2086{
2087	struct pcb *pcb;
2088	struct trapframe *tp;
2089
2090	tp = p->p_md.md_regs;
2091	regs->r_fs = tp->tf_fs;
2092	regs->r_es = tp->tf_es;
2093	regs->r_ds = tp->tf_ds;
2094	regs->r_edi = tp->tf_edi;
2095	regs->r_esi = tp->tf_esi;
2096	regs->r_ebp = tp->tf_ebp;
2097	regs->r_ebx = tp->tf_ebx;
2098	regs->r_edx = tp->tf_edx;
2099	regs->r_ecx = tp->tf_ecx;
2100	regs->r_eax = tp->tf_eax;
2101	regs->r_eip = tp->tf_eip;
2102	regs->r_cs = tp->tf_cs;
2103	regs->r_eflags = tp->tf_eflags;
2104	regs->r_esp = tp->tf_esp;
2105	regs->r_ss = tp->tf_ss;
2106	pcb = &p->p_addr->u_pcb;
2107	regs->r_gs = pcb->pcb_gs;
2108	return (0);
2109}
2110
2111int
2112set_regs(p, regs)
2113	struct proc *p;
2114	struct reg *regs;
2115{
2116	struct pcb *pcb;
2117	struct trapframe *tp;
2118
2119	tp = p->p_md.md_regs;
2120	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2121	    !CS_SECURE(regs->r_cs))
2122		return (EINVAL);
2123	tp->tf_fs = regs->r_fs;
2124	tp->tf_es = regs->r_es;
2125	tp->tf_ds = regs->r_ds;
2126	tp->tf_edi = regs->r_edi;
2127	tp->tf_esi = regs->r_esi;
2128	tp->tf_ebp = regs->r_ebp;
2129	tp->tf_ebx = regs->r_ebx;
2130	tp->tf_edx = regs->r_edx;
2131	tp->tf_ecx = regs->r_ecx;
2132	tp->tf_eax = regs->r_eax;
2133	tp->tf_eip = regs->r_eip;
2134	tp->tf_cs = regs->r_cs;
2135	tp->tf_eflags = regs->r_eflags;
2136	tp->tf_esp = regs->r_esp;
2137	tp->tf_ss = regs->r_ss;
2138	pcb = &p->p_addr->u_pcb;
2139	pcb->pcb_gs = regs->r_gs;
2140	return (0);
2141}
2142
2143int
2144fill_fpregs(p, fpregs)
2145	struct proc *p;
2146	struct fpreg *fpregs;
2147{
2148	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
2149	return (0);
2150}
2151
2152int
2153set_fpregs(p, fpregs)
2154	struct proc *p;
2155	struct fpreg *fpregs;
2156{
2157	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
2158	return (0);
2159}
2160
2161int
2162fill_dbregs(p, dbregs)
2163	struct proc *p;
2164	struct dbreg *dbregs;
2165{
2166	struct pcb *pcb;
2167
2168	pcb = &p->p_addr->u_pcb;
2169	dbregs->dr0 = pcb->pcb_dr0;
2170	dbregs->dr1 = pcb->pcb_dr1;
2171	dbregs->dr2 = pcb->pcb_dr2;
2172	dbregs->dr3 = pcb->pcb_dr3;
2173	dbregs->dr4 = 0;
2174	dbregs->dr5 = 0;
2175	dbregs->dr6 = pcb->pcb_dr6;
2176	dbregs->dr7 = pcb->pcb_dr7;
2177	return (0);
2178}
2179
2180int
2181set_dbregs(p, dbregs)
2182	struct proc *p;
2183	struct dbreg *dbregs;
2184{
2185	struct pcb *pcb;
2186
2187	pcb = &p->p_addr->u_pcb;
2188
2189	/*
2190	 * Don't let a process set a breakpoint that is not within the
2191	 * process's address space.  If a process could do this, it
2192	 * could halt the system by setting a breakpoint in the kernel
2193	 * (if ddb was enabled).  Thus, we need to check to make sure
2194	 * that no breakpoints are being enabled for addresses outside
2195	 * process's address space, unless, perhaps, we were called by
2196	 * uid 0.
2197	 *
2198	 * XXX - what about when the watched area of the user's
2199	 * address space is written into from within the kernel
2200	 * ... wouldn't that still cause a breakpoint to be generated
2201	 * from within kernel mode?
2202	 */
2203
2204	if (p->p_ucred->cr_uid != 0) {
2205		if (dbregs->dr7 & 0x3) {
2206			/* dr0 is enabled */
2207			if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2208				return (EINVAL);
2209		}
2210
2211		if (dbregs->dr7 & (0x3<<2)) {
2212			/* dr1 is enabled */
2213			if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2214				return (EINVAL);
2215		}
2216
2217		if (dbregs->dr7 & (0x3<<4)) {
2218			/* dr2 is enabled */
2219			if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2220       				return (EINVAL);
2221		}
2222
2223		if (dbregs->dr7 & (0x3<<6)) {
2224			/* dr3 is enabled */
2225			if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2226				return (EINVAL);
2227		}
2228	}
2229
2230	pcb->pcb_dr0 = dbregs->dr0;
2231	pcb->pcb_dr1 = dbregs->dr1;
2232	pcb->pcb_dr2 = dbregs->dr2;
2233	pcb->pcb_dr3 = dbregs->dr3;
2234	pcb->pcb_dr6 = dbregs->dr6;
2235	pcb->pcb_dr7 = dbregs->dr7;
2236
2237	pcb->pcb_flags |= PCB_DBREGS;
2238
2239	return (0);
2240}
2241
2242#ifndef DDB
2243void
2244Debugger(const char *msg)
2245{
2246	printf("Debugger(\"%s\") called.\n", msg);
2247}
2248#endif /* no DDB */
2249
2250#include <sys/disklabel.h>
2251
2252/*
2253 * Determine the size of the transfer, and make sure it is
2254 * within the boundaries of the partition. Adjust transfer
2255 * if needed, and signal errors or early completion.
2256 */
2257int
2258bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
2259{
2260        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
2261        int labelsect = lp->d_partitions[0].p_offset;
2262        int maxsz = p->p_size,
2263                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2264
2265        /* overwriting disk label ? */
2266        /* XXX should also protect bootstrap in first 8K */
2267        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
2268#if LABELSECTOR != 0
2269            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2270#endif
2271            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
2272                bp->b_error = EROFS;
2273                goto bad;
2274        }
2275
2276#if     defined(DOSBBSECTOR) && defined(notyet)
2277        /* overwriting master boot record? */
2278        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
2279            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
2280                bp->b_error = EROFS;
2281                goto bad;
2282        }
2283#endif
2284
2285        /* beyond partition? */
2286        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
2287                /* if exactly at end of disk, return an EOF */
2288                if (bp->b_blkno == maxsz) {
2289                        bp->b_resid = bp->b_bcount;
2290                        return(0);
2291                }
2292                /* or truncate if part of it fits */
2293                sz = maxsz - bp->b_blkno;
2294                if (sz <= 0) {
2295                        bp->b_error = EINVAL;
2296                        goto bad;
2297                }
2298                bp->b_bcount = sz << DEV_BSHIFT;
2299        }
2300
2301        bp->b_pblkno = bp->b_blkno + p->p_offset;
2302        return(1);
2303
2304bad:
2305        bp->b_flags |= B_ERROR;
2306        return(-1);
2307}
2308
2309#ifdef DDB
2310
2311/*
2312 * Provide inb() and outb() as functions.  They are normally only
2313 * available as macros calling inlined functions, thus cannot be
2314 * called inside DDB.
2315 *
2316 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2317 */
2318
2319#undef inb
2320#undef outb
2321
2322/* silence compiler warnings */
2323u_char inb(u_int);
2324void outb(u_int, u_char);
2325
2326u_char
2327inb(u_int port)
2328{
2329	u_char	data;
2330	/*
2331	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2332	 * %edx, while gcc generates inferior code (movw instead of movl)
2333	 * if we tell it to load (u_short) port.
2334	 */
2335	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2336	return (data);
2337}
2338
2339void
2340outb(u_int port, u_char data)
2341{
2342	u_char	al;
2343	/*
2344	 * Use an unnecessary assignment to help gcc's register allocator.
2345	 * This make a large difference for gcc-1.40 and a tiny difference
2346	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2347	 * best results.  gcc-2.6.0 can't handle this.
2348	 */
2349	al = data;
2350	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2351}
2352
2353#endif /* DDB */
2354