machdep.c revision 54188
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 54188 1999-12-06 04:53:08Z luoqi $
39 */
40
41#include "apm.h"
42#include "ether.h"
43#include "npx.h"
44#include "opt_atalk.h"
45#include "opt_compat.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_inet.h"
49#include "opt_ipx.h"
50#include "opt_maxmem.h"
51#include "opt_msgbuf.h"
52#include "opt_perfmon.h"
53#include "opt_smp.h"
54#include "opt_sysvipc.h"
55#include "opt_user_ldt.h"
56#include "opt_userconfig.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/sysproto.h>
61#include <sys/signalvar.h>
62#include <sys/kernel.h>
63#include <sys/linker.h>
64#include <sys/malloc.h>
65#include <sys/proc.h>
66#include <sys/buf.h>
67#include <sys/reboot.h>
68#include <sys/callout.h>
69#include <sys/mbuf.h>
70#include <sys/msgbuf.h>
71#include <sys/sysent.h>
72#include <sys/sysctl.h>
73#include <sys/vmmeter.h>
74#include <sys/bus.h>
75
76#ifdef SYSVSHM
77#include <sys/shm.h>
78#endif
79
80#ifdef SYSVMSG
81#include <sys/msg.h>
82#endif
83
84#ifdef SYSVSEM
85#include <sys/sem.h>
86#endif
87
88#include <vm/vm.h>
89#include <vm/vm_param.h>
90#include <sys/lock.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_object.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_pager.h>
96#include <vm/vm_extern.h>
97
98#include <sys/user.h>
99#include <sys/exec.h>
100#include <sys/cons.h>
101
102#include <ddb/ddb.h>
103
104#include <net/netisr.h>
105
106#include <machine/cpu.h>
107#include <machine/reg.h>
108#include <machine/clock.h>
109#include <machine/specialreg.h>
110#include <machine/bootinfo.h>
111#include <machine/ipl.h>
112#include <machine/md_var.h>
113#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
114#ifdef SMP
115#include <machine/smp.h>
116#include <machine/globaldata.h>
117#endif
118#ifdef PERFMON
119#include <machine/perfmon.h>
120#endif
121
122#ifdef OLD_BUS_ARCH
123#include <i386/isa/isa_device.h>
124#endif
125#include <i386/isa/intr_machdep.h>
126#include <isa/rtc.h>
127#include <machine/vm86.h>
128#include <machine/random.h>
129#include <sys/ptrace.h>
130#include <machine/sigframe.h>
131
132extern void init386 __P((int first));
133extern void dblfault_handler __P((void));
134
135extern void printcpuinfo(void);	/* XXX header file */
136extern void earlysetcpuclass(void);	/* same header file */
137extern void finishidentcpu(void);
138extern void panicifcpuunsupported(void);
139extern void initializecpu(void);
140
141static void cpu_startup __P((void *));
142SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
143
144static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
145
146int	_udatasel, _ucodesel;
147u_int	atdevbase;
148
149#if defined(SWTCH_OPTIM_STATS)
150extern int swtch_optim_stats;
151SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
152	CTLFLAG_RD, &swtch_optim_stats, 0, "");
153SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
154	CTLFLAG_RD, &tlb_flush_count, 0, "");
155#endif
156
157#ifdef PC98
158static int	ispc98 = 1;
159#else
160static int	ispc98 = 0;
161#endif
162SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
163
164int physmem = 0;
165int cold = 1;
166
167static int
168sysctl_hw_physmem SYSCTL_HANDLER_ARGS
169{
170	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
171	return (error);
172}
173
174SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
175	0, 0, sysctl_hw_physmem, "I", "");
176
177static int
178sysctl_hw_usermem SYSCTL_HANDLER_ARGS
179{
180	int error = sysctl_handle_int(oidp, 0,
181		ctob(physmem - cnt.v_wire_count), req);
182	return (error);
183}
184
185SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
186	0, 0, sysctl_hw_usermem, "I", "");
187
188static int
189sysctl_hw_availpages SYSCTL_HANDLER_ARGS
190{
191	int error = sysctl_handle_int(oidp, 0,
192		i386_btop(avail_end - avail_start), req);
193	return (error);
194}
195
196SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
197	0, 0, sysctl_hw_availpages, "I", "");
198
199static int
200sysctl_machdep_msgbuf SYSCTL_HANDLER_ARGS
201{
202	int error;
203
204	/* Unwind the buffer, so that it's linear (possibly starting with
205	 * some initial nulls).
206	 */
207	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
208		msgbufp->msg_size-msgbufp->msg_bufr,req);
209	if(error) return(error);
210	if(msgbufp->msg_bufr>0) {
211		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
212			msgbufp->msg_bufr,req);
213	}
214	return(error);
215}
216
217SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
218	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
219
220static int msgbuf_clear;
221
222static int
223sysctl_machdep_msgbuf_clear SYSCTL_HANDLER_ARGS
224{
225	int error;
226	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
227		req);
228	if (!error && req->newptr) {
229		/* Clear the buffer and reset write pointer */
230		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
231		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
232		msgbuf_clear=0;
233	}
234	return (error);
235}
236
237SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
238	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
239	"Clear kernel message buffer");
240
241int bootverbose = 0, Maxmem = 0;
242long dumplo;
243
244vm_offset_t phys_avail[10];
245
246/* must be 2 less so 0 0 can signal end of chunks */
247#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
248
249static vm_offset_t buffer_sva, buffer_eva;
250vm_offset_t clean_sva, clean_eva;
251static vm_offset_t pager_sva, pager_eva;
252
253#define offsetof(type, member)	((size_t)(&((type *)0)->member))
254
255static void
256cpu_startup(dummy)
257	void *dummy;
258{
259	register unsigned i;
260	register caddr_t v;
261	vm_offset_t maxaddr;
262	vm_size_t size = 0;
263	int firstaddr;
264	vm_offset_t minaddr;
265
266	if (boothowto & RB_VERBOSE)
267		bootverbose++;
268
269	/*
270	 * Good {morning,afternoon,evening,night}.
271	 */
272	printf(version);
273	earlysetcpuclass();
274	startrtclock();
275	printcpuinfo();
276	panicifcpuunsupported();
277#ifdef PERFMON
278	perfmon_init();
279#endif
280	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
281	/*
282	 * Display any holes after the first chunk of extended memory.
283	 */
284	if (bootverbose) {
285		int indx;
286
287		printf("Physical memory chunk(s):\n");
288		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
289			int size1 = phys_avail[indx + 1] - phys_avail[indx];
290
291			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
292			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
293			    size1 / PAGE_SIZE);
294		}
295	}
296
297	/*
298	 * Calculate callout wheel size
299	 */
300	for (callwheelsize = 1, callwheelbits = 0;
301	     callwheelsize < ncallout;
302	     callwheelsize <<= 1, ++callwheelbits)
303		;
304	callwheelmask = callwheelsize - 1;
305
306	/*
307	 * Allocate space for system data structures.
308	 * The first available kernel virtual address is in "v".
309	 * As pages of kernel virtual memory are allocated, "v" is incremented.
310	 * As pages of memory are allocated and cleared,
311	 * "firstaddr" is incremented.
312	 * An index into the kernel page table corresponding to the
313	 * virtual memory address maintained in "v" is kept in "mapaddr".
314	 */
315
316	/*
317	 * Make two passes.  The first pass calculates how much memory is
318	 * needed and allocates it.  The second pass assigns virtual
319	 * addresses to the various data structures.
320	 */
321	firstaddr = 0;
322again:
323	v = (caddr_t)firstaddr;
324
325#define	valloc(name, type, num) \
326	    (name) = (type *)v; v = (caddr_t)((name)+(num))
327#define	valloclim(name, type, num, lim) \
328	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
329
330	valloc(callout, struct callout, ncallout);
331	valloc(callwheel, struct callout_tailq, callwheelsize);
332#ifdef SYSVSHM
333	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
334#endif
335#ifdef SYSVSEM
336	valloc(sema, struct semid_ds, seminfo.semmni);
337	valloc(sem, struct sem, seminfo.semmns);
338	/* This is pretty disgusting! */
339	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
340#endif
341#ifdef SYSVMSG
342	valloc(msgpool, char, msginfo.msgmax);
343	valloc(msgmaps, struct msgmap, msginfo.msgseg);
344	valloc(msghdrs, struct msg, msginfo.msgtql);
345	valloc(msqids, struct msqid_ds, msginfo.msgmni);
346#endif
347
348	if (nbuf == 0) {
349		nbuf = 50;
350		if (physmem > 1024)
351			nbuf += min((physmem - 1024) / 8, 2048);
352		if (physmem > 16384)
353			nbuf += (physmem - 16384) / 20;
354	}
355	nswbuf = max(min(nbuf/4, 256), 16);
356
357	valloc(swbuf, struct buf, nswbuf);
358	valloc(buf, struct buf, nbuf);
359	v = bufhashinit(v);
360
361	/*
362	 * End of first pass, size has been calculated so allocate memory
363	 */
364	if (firstaddr == 0) {
365		size = (vm_size_t)(v - firstaddr);
366		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
367		if (firstaddr == 0)
368			panic("startup: no room for tables");
369		goto again;
370	}
371
372	/*
373	 * End of second pass, addresses have been assigned
374	 */
375	if ((vm_size_t)(v - firstaddr) != size)
376		panic("startup: table size inconsistency");
377
378	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
379			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
380	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
381				(nbuf*BKVASIZE));
382	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
383				(nswbuf*MAXPHYS) + pager_map_size);
384	pager_map->system_map = 1;
385	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
386				(16*(ARG_MAX+(PAGE_SIZE*3))));
387
388	/*
389	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
390	 * we use the more space efficient malloc in place of kmem_alloc.
391	 */
392	{
393		vm_offset_t mb_map_size;
394
395		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
396		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
397		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
398		bzero(mclrefcnt, mb_map_size / MCLBYTES);
399		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
400			mb_map_size);
401		mb_map->system_map = 1;
402	}
403
404	/*
405	 * Initialize callouts
406	 */
407	SLIST_INIT(&callfree);
408	for (i = 0; i < ncallout; i++) {
409		callout_init(&callout[i]);
410		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
411		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
412	}
413
414	for (i = 0; i < callwheelsize; i++) {
415		TAILQ_INIT(&callwheel[i]);
416	}
417
418#if defined(USERCONFIG)
419	userconfig();
420	cninit();		/* the preferred console may have changed */
421#endif
422
423	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
424	    ptoa(cnt.v_free_count) / 1024);
425
426	/*
427	 * Set up buffers, so they can be used to read disk labels.
428	 */
429	bufinit();
430	vm_pager_bufferinit();
431
432#ifdef SMP
433	/*
434	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
435	 */
436	mp_start();			/* fire up the APs and APICs */
437	mp_announce();
438#endif  /* SMP */
439}
440
441int
442register_netisr(num, handler)
443	int num;
444	netisr_t *handler;
445{
446
447	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
448		printf("register_netisr: bad isr number: %d\n", num);
449		return (EINVAL);
450	}
451	netisrs[num] = handler;
452	return (0);
453}
454
455void
456netisr_sysinit(data)
457	void *data;
458{
459	const struct netisrtab *nit;
460
461	nit = (const struct netisrtab *)data;
462	register_netisr(nit->nit_num, nit->nit_isr);
463}
464
465/*
466 * Send an interrupt to process.
467 *
468 * Stack is set up to allow sigcode stored
469 * at top to call routine, followed by kcall
470 * to sigreturn routine below.  After sigreturn
471 * resets the signal mask, the stack, and the
472 * frame pointer, it returns to the user
473 * specified pc, psl.
474 */
475static void
476osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
477{
478	register struct proc *p = curproc;
479	register struct trapframe *regs;
480	register struct osigframe *fp;
481	struct osigframe sf;
482	struct sigacts *psp = p->p_sigacts;
483	int oonstack;
484
485	regs = p->p_md.md_regs;
486	oonstack = (p->p_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
487
488	/* Allocate and validate space for the signal handler context. */
489	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
490	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
491		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
492		    p->p_sigstk.ss_size - sizeof(struct osigframe));
493		p->p_sigstk.ss_flags |= SS_ONSTACK;
494	}
495	else
496		fp = (struct osigframe *)regs->tf_esp - 1;
497
498	/*
499	 * grow() will return FALSE if the fp will not fit inside the stack
500	 *	and the stack can not be grown. useracc will return FALSE
501	 *	if access is denied.
502	 */
503	if (grow_stack(p, (int)fp) == FALSE ||
504	    !useracc((caddr_t)fp, sizeof(struct osigframe), VM_PROT_WRITE)) {
505		/*
506		 * Process has trashed its stack; give it an illegal
507		 * instruction to halt it in its tracks.
508		 */
509		SIGACTION(p, SIGILL) = SIG_DFL;
510		SIGDELSET(p->p_sigignore, SIGILL);
511		SIGDELSET(p->p_sigcatch, SIGILL);
512		SIGDELSET(p->p_sigmask, SIGILL);
513		psignal(p, SIGILL);
514		return;
515	}
516
517	/* Translate the signal if appropriate */
518	if (p->p_sysent->sv_sigtbl) {
519		if (sig <= p->p_sysent->sv_sigsize)
520			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
521	}
522
523	/* Build the argument list for the signal handler. */
524	sf.sf_signum = sig;
525	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
526	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
527		/* Signal handler installed with SA_SIGINFO. */
528		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
529		sf.sf_siginfo.si_signo = sig;
530		sf.sf_siginfo.si_code = code;
531		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
532	}
533	else {
534		/* Old FreeBSD-style arguments. */
535		sf.sf_arg2 = code;
536		sf.sf_addr = regs->tf_err;
537		sf.sf_ahu.sf_handler = catcher;
538	}
539
540	/* save scratch registers */
541	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
542	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
543	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
544	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
545	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
546	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
547	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
548	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
549	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
550	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
551	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
552	sf.sf_siginfo.si_sc.sc_gs = rgs();
553	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
554
555	/* Build the signal context to be used by sigreturn. */
556	sf.sf_siginfo.si_sc.sc_onstack = oonstack;
557	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
558	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
559	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
560	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
561	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
562	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
563	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
564
565	/*
566	 * If we're a vm86 process, we want to save the segment registers.
567	 * We also change eflags to be our emulated eflags, not the actual
568	 * eflags.
569	 */
570	if (regs->tf_eflags & PSL_VM) {
571		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
572		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
573
574		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
575		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
576		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
577		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
578
579		if (vm86->vm86_has_vme == 0)
580			sf.sf_siginfo.si_sc.sc_ps =
581			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
582			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
583		/* see sendsig for comment */
584		tf->tf_eflags &= ~(PSL_VM|PSL_NT|PSL_T|PSL_VIF|PSL_VIP);
585	}
586
587	/* Copy the sigframe out to the user's stack. */
588	if (copyout(&sf, fp, sizeof(struct osigframe)) != 0) {
589		/*
590		 * Something is wrong with the stack pointer.
591		 * ...Kill the process.
592		 */
593		sigexit(p, SIGILL);
594	}
595
596	regs->tf_esp = (int)fp;
597	regs->tf_eip = PS_STRINGS - szosigcode;
598	regs->tf_cs = _ucodesel;
599	regs->tf_ds = _udatasel;
600	regs->tf_es = _udatasel;
601	regs->tf_fs = _udatasel;
602	load_gs(_udatasel);
603	regs->tf_ss = _udatasel;
604}
605
606void
607sendsig(catcher, sig, mask, code)
608	sig_t catcher;
609	int sig;
610	sigset_t *mask;
611	u_long code;
612{
613	struct proc *p = curproc;
614	struct trapframe *regs;
615	struct sigacts *psp = p->p_sigacts;
616	struct sigframe sf, *sfp;
617	int oonstack;
618
619	if (SIGISMEMBER(psp->ps_osigset, sig)) {
620		osendsig(catcher, sig, mask, code);
621		return;
622	}
623
624	regs = p->p_md.md_regs;
625	oonstack = (p->p_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
626
627	/* save user context */
628	bzero(&sf, sizeof(struct sigframe));
629	sf.sf_uc.uc_sigmask = *mask;
630	sf.sf_uc.uc_stack = p->p_sigstk;
631	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
632	sf.sf_uc.uc_mcontext.mc_gs = rgs();
633	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(struct trapframe));
634
635	/* Allocate and validate space for the signal handler context. */
636        if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
637	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
638		sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
639		    p->p_sigstk.ss_size - sizeof(struct sigframe));
640		p->p_sigstk.ss_flags |= SS_ONSTACK;
641	}
642	else
643		sfp = (struct sigframe *)regs->tf_esp - 1;
644
645	/*
646	 * grow() will return FALSE if the sfp will not fit inside the stack
647	 * and the stack can not be grown. useracc will return FALSE if
648	 * access is denied.
649	 */
650	if (grow_stack(p, (int)sfp) == FALSE ||
651	    !useracc((caddr_t)sfp, sizeof(struct sigframe), VM_PROT_WRITE)) {
652		/*
653		 * Process has trashed its stack; give it an illegal
654		 * instruction to halt it in its tracks.
655		 */
656#ifdef DEBUG
657		printf("process %d has trashed its stack\n", p->p_pid);
658#endif
659		SIGACTION(p, SIGILL) = SIG_DFL;
660		SIGDELSET(p->p_sigignore, SIGILL);
661		SIGDELSET(p->p_sigcatch, SIGILL);
662		SIGDELSET(p->p_sigmask, SIGILL);
663		psignal(p, SIGILL);
664		return;
665	}
666
667	/* Translate the signal is appropriate */
668	if (p->p_sysent->sv_sigtbl) {
669		if (sig <= p->p_sysent->sv_sigsize)
670			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
671	}
672
673	/* Build the argument list for the signal handler. */
674	sf.sf_signum = sig;
675	sf.sf_ucontext = (register_t)&sfp->sf_uc;
676	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
677		/* Signal handler installed with SA_SIGINFO. */
678		sf.sf_siginfo = (register_t)&sfp->sf_si;
679		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
680
681		/* fill siginfo structure */
682		sf.sf_si.si_signo = sig;
683		sf.sf_si.si_code = code;
684		sf.sf_si.si_addr = (void*)regs->tf_err;
685	}
686	else {
687		/* Old FreeBSD-style arguments. */
688		sf.sf_siginfo = code;
689		sf.sf_addr = regs->tf_err;
690		sf.sf_ahu.sf_handler = catcher;
691	}
692
693	/*
694	 * If we're a vm86 process, we want to save the segment registers.
695	 * We also change eflags to be our emulated eflags, not the actual
696	 * eflags.
697	 */
698	if (regs->tf_eflags & PSL_VM) {
699		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
700		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
701
702		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
703		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
704		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
705		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
706
707		if (vm86->vm86_has_vme == 0)
708			sf.sf_uc.uc_mcontext.mc_eflags =
709			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
710			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
711
712		/*
713		 * We should never have PSL_T set when returning from vm86
714		 * mode.  It may be set here if we deliver a signal before
715		 * getting to vm86 mode, so turn it off.
716		 *
717		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
718		 * syscalls made by the signal handler.  This just avoids
719		 * wasting time for our lazy fixup of such faults.  PSL_NT
720		 * does nothing in vm86 mode, but vm86 programs can set it
721		 * almost legitimately in probes for old cpu types.
722		 */
723		tf->tf_eflags &= ~(PSL_VM|PSL_NT|PSL_T|PSL_VIF|PSL_VIP);
724	}
725
726	/*
727	 * Copy the sigframe out to the user's stack.
728	 */
729	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
730		/*
731		 * Something is wrong with the stack pointer.
732		 * ...Kill the process.
733		 */
734		sigexit(p, SIGILL);
735	}
736
737	regs->tf_esp = (int)sfp;
738	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
739	regs->tf_cs = _ucodesel;
740	regs->tf_ds = _udatasel;
741	regs->tf_es = _udatasel;
742	regs->tf_fs = _udatasel;
743	load_gs(_udatasel);
744	regs->tf_ss = _udatasel;
745}
746
747/*
748 * System call to cleanup state after a signal
749 * has been taken.  Reset signal mask and
750 * stack state from context left by sendsig (above).
751 * Return to previous pc and psl as specified by
752 * context left by sendsig. Check carefully to
753 * make sure that the user has not modified the
754 * state to gain improper privileges.
755 */
756#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
757#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
758
759int
760osigreturn(p, uap)
761	struct proc *p;
762	struct osigreturn_args /* {
763		struct osigcontext *sigcntxp;
764	} */ *uap;
765{
766	register struct osigcontext *scp;
767	register struct trapframe *regs = p->p_md.md_regs;
768	int eflags;
769
770	scp = uap->sigcntxp;
771
772	if (!useracc((caddr_t)scp, sizeof (struct osigcontext), VM_PROT_READ))
773		return(EFAULT);
774
775	eflags = scp->sc_ps;
776	if (eflags & PSL_VM) {
777		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
778		struct vm86_kernel *vm86;
779
780		/*
781		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
782		 * set up the vm86 area, and we can't enter vm86 mode.
783		 */
784		if (p->p_addr->u_pcb.pcb_ext == 0)
785			return (EINVAL);
786		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
787		if (vm86->vm86_inited == 0)
788			return (EINVAL);
789
790		/* go back to user mode if both flags are set */
791		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
792			trapsignal(p, SIGBUS, 0);
793
794		if (vm86->vm86_has_vme) {
795			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
796			    (eflags & VME_USERCHANGE) | PSL_VM;
797		} else {
798			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
799			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
800		}
801		tf->tf_vm86_ds = scp->sc_ds;
802		tf->tf_vm86_es = scp->sc_es;
803		tf->tf_vm86_fs = scp->sc_fs;
804		tf->tf_vm86_gs = scp->sc_gs;
805		tf->tf_ds = _udatasel;
806		tf->tf_es = _udatasel;
807		tf->tf_fs = _udatasel;
808	} else {
809		/*
810		 * Don't allow users to change privileged or reserved flags.
811		 */
812		/*
813		 * XXX do allow users to change the privileged flag PSL_RF.
814		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
815		 * should sometimes set it there too.  tf_eflags is kept in
816		 * the signal context during signal handling and there is no
817		 * other place to remember it, so the PSL_RF bit may be
818		 * corrupted by the signal handler without us knowing.
819		 * Corruption of the PSL_RF bit at worst causes one more or
820		 * one less debugger trap, so allowing it is fairly harmless.
821		 */
822		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
823	    		return(EINVAL);
824		}
825
826		/*
827		 * Don't allow users to load a valid privileged %cs.  Let the
828		 * hardware check for invalid selectors, excess privilege in
829		 * other selectors, invalid %eip's and invalid %esp's.
830		 */
831		if (!CS_SECURE(scp->sc_cs)) {
832			trapsignal(p, SIGBUS, T_PROTFLT);
833			return(EINVAL);
834		}
835		regs->tf_ds = scp->sc_ds;
836		regs->tf_es = scp->sc_es;
837		regs->tf_fs = scp->sc_fs;
838	}
839
840	/* restore scratch registers */
841	regs->tf_eax = scp->sc_eax;
842	regs->tf_ebx = scp->sc_ebx;
843	regs->tf_ecx = scp->sc_ecx;
844	regs->tf_edx = scp->sc_edx;
845	regs->tf_esi = scp->sc_esi;
846	regs->tf_edi = scp->sc_edi;
847	regs->tf_cs = scp->sc_cs;
848	regs->tf_ss = scp->sc_ss;
849	regs->tf_isp = scp->sc_isp;
850
851	if (scp->sc_onstack & 01)
852		p->p_sigstk.ss_flags |= SS_ONSTACK;
853	else
854		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
855
856	SIGSETOLD(p->p_sigmask, scp->sc_mask);
857	SIG_CANTMASK(p->p_sigmask);
858	regs->tf_ebp = scp->sc_fp;
859	regs->tf_esp = scp->sc_sp;
860	regs->tf_eip = scp->sc_pc;
861	regs->tf_eflags = eflags;
862	return(EJUSTRETURN);
863}
864
865int
866sigreturn(p, uap)
867	struct proc *p;
868	struct sigreturn_args /* {
869		ucontext_t *sigcntxp;
870	} */ *uap;
871{
872	struct trapframe *regs;
873	ucontext_t *ucp;
874	int cs, eflags;
875
876	ucp = uap->sigcntxp;
877
878	if (!useracc((caddr_t)ucp, sizeof(struct osigcontext), VM_PROT_READ))
879		return (EFAULT);
880	if (((struct osigcontext *)ucp)->sc_trapno == 0x01d516)
881		return (osigreturn(p, (struct osigreturn_args *)uap));
882
883	/*
884	 * Since ucp is not an osigcontext but a ucontext_t, we have to
885	 * check again if all of it is accessible.  A ucontext_t is
886	 * much larger, so instead of just checking for the pointer
887	 * being valid for the size of an osigcontext, now check for
888	 * it being valid for a whole, new-style ucontext_t.
889	 */
890	if (!useracc((caddr_t)ucp, sizeof(ucontext_t), VM_PROT_READ))
891		return (EFAULT);
892
893	regs = p->p_md.md_regs;
894	eflags = ucp->uc_mcontext.mc_eflags;
895
896	if (eflags & PSL_VM) {
897		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
898		struct vm86_kernel *vm86;
899
900		/*
901		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
902		 * set up the vm86 area, and we can't enter vm86 mode.
903		 */
904		if (p->p_addr->u_pcb.pcb_ext == 0)
905			return (EINVAL);
906		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
907		if (vm86->vm86_inited == 0)
908			return (EINVAL);
909
910		/* go back to user mode if both flags are set */
911		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
912			trapsignal(p, SIGBUS, 0);
913
914		if (vm86->vm86_has_vme) {
915			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
916			    (eflags & VME_USERCHANGE) | PSL_VM;
917		} else {
918			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
919			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
920		}
921		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
922		tf->tf_eflags = eflags;
923		tf->tf_vm86_ds = tf->tf_ds;
924		tf->tf_vm86_es = tf->tf_es;
925		tf->tf_vm86_fs = tf->tf_fs;
926		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
927		tf->tf_ds = _udatasel;
928		tf->tf_es = _udatasel;
929		tf->tf_fs = _udatasel;
930	} else {
931		/*
932		 * Don't allow users to change privileged or reserved flags.
933		 */
934		/*
935		 * XXX do allow users to change the privileged flag PSL_RF.
936		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
937		 * should sometimes set it there too.  tf_eflags is kept in
938		 * the signal context during signal handling and there is no
939		 * other place to remember it, so the PSL_RF bit may be
940		 * corrupted by the signal handler without us knowing.
941		 * Corruption of the PSL_RF bit at worst causes one more or
942		 * one less debugger trap, so allowing it is fairly harmless.
943		 */
944		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
945			printf("sigreturn: eflags = 0x%x\n", eflags);
946	    		return(EINVAL);
947		}
948
949		/*
950		 * Don't allow users to load a valid privileged %cs.  Let the
951		 * hardware check for invalid selectors, excess privilege in
952		 * other selectors, invalid %eip's and invalid %esp's.
953		 */
954		cs = ucp->uc_mcontext.mc_cs;
955		if (!CS_SECURE(cs)) {
956			printf("sigreturn: cs = 0x%x\n", cs);
957			trapsignal(p, SIGBUS, T_PROTFLT);
958			return(EINVAL);
959		}
960		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(struct trapframe));
961	}
962
963	if (ucp->uc_mcontext.mc_onstack & 1)
964		p->p_sigstk.ss_flags |= SS_ONSTACK;
965	else
966		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
967
968	p->p_sigmask = ucp->uc_sigmask;
969	SIG_CANTMASK(p->p_sigmask);
970	return(EJUSTRETURN);
971}
972
973/*
974 * Machine dependent boot() routine
975 *
976 * I haven't seen anything to put here yet
977 * Possibly some stuff might be grafted back here from boot()
978 */
979void
980cpu_boot(int howto)
981{
982}
983
984/*
985 * Shutdown the CPU as much as possible
986 */
987void
988cpu_halt(void)
989{
990	for (;;)
991		__asm__ ("hlt");
992}
993
994/*
995 * Clear registers on exec
996 */
997void
998setregs(p, entry, stack, ps_strings)
999	struct proc *p;
1000	u_long entry;
1001	u_long stack;
1002	u_long ps_strings;
1003{
1004	struct trapframe *regs = p->p_md.md_regs;
1005	struct pcb *pcb = &p->p_addr->u_pcb;
1006
1007#ifdef USER_LDT
1008	/* was i386_user_cleanup() in NetBSD */
1009	user_ldt_free(pcb);
1010#endif
1011
1012	bzero((char *)regs, sizeof(struct trapframe));
1013	regs->tf_eip = entry;
1014	regs->tf_esp = stack;
1015	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1016	regs->tf_ss = _udatasel;
1017	regs->tf_ds = _udatasel;
1018	regs->tf_es = _udatasel;
1019	regs->tf_fs = _udatasel;
1020	regs->tf_cs = _ucodesel;
1021
1022	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1023	regs->tf_ebx = ps_strings;
1024
1025	/* reset %gs as well */
1026	if (pcb == curpcb)
1027		load_gs(_udatasel);
1028	else
1029		pcb->pcb_gs = _udatasel;
1030
1031	/*
1032	 * Initialize the math emulator (if any) for the current process.
1033	 * Actually, just clear the bit that says that the emulator has
1034	 * been initialized.  Initialization is delayed until the process
1035	 * traps to the emulator (if it is done at all) mainly because
1036	 * emulators don't provide an entry point for initialization.
1037	 */
1038	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
1039
1040	/*
1041	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
1042	 * for why fwait must be trapped at least if there is an npx or an
1043	 * emulator).  This is mainly to handle the case where npx0 is not
1044	 * configured, since the npx routines normally set up the trap
1045	 * otherwise.  It should be done only at boot time, but doing it
1046	 * here allows modifying `npx_exists' for testing the emulator on
1047	 * systems with an npx.
1048	 */
1049	load_cr0(rcr0() | CR0_MP | CR0_TS);
1050
1051#if NNPX > 0
1052	/* Initialize the npx (if any) for the current process. */
1053	npxinit(__INITIAL_NPXCW__);
1054#endif
1055
1056      /*
1057       * XXX - Linux emulator
1058       * Make sure sure edx is 0x0 on entry. Linux binaries depend
1059       * on it.
1060       */
1061      p->p_retval[1] = 0;
1062}
1063
1064static int
1065sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
1066{
1067	int error;
1068	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1069		req);
1070	if (!error && req->newptr)
1071		resettodr();
1072	return (error);
1073}
1074
1075SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1076	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1077
1078SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1079	CTLFLAG_RW, &disable_rtc_set, 0, "");
1080
1081SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1082	CTLFLAG_RD, &bootinfo, bootinfo, "");
1083
1084SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1085	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1086
1087/*
1088 * Initialize 386 and configure to run kernel
1089 */
1090
1091/*
1092 * Initialize segments & interrupt table
1093 */
1094
1095int _default_ldt;
1096#ifdef SMP
1097union descriptor gdt[NGDT * NCPU];	/* global descriptor table */
1098#else
1099union descriptor gdt[NGDT];		/* global descriptor table */
1100#endif
1101static struct gate_descriptor idt0[NIDT];
1102struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1103union descriptor ldt[NLDT];		/* local descriptor table */
1104#ifdef SMP
1105/* table descriptors - used to load tables by microp */
1106struct region_descriptor r_gdt, r_idt;
1107#endif
1108
1109#ifndef SMP
1110extern struct segment_descriptor common_tssd, *tss_gdt;
1111#endif
1112int private_tss;			/* flag indicating private tss */
1113
1114#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1115extern int has_f00f_bug;
1116#endif
1117
1118static struct i386tss dblfault_tss;
1119static char dblfault_stack[PAGE_SIZE];
1120
1121extern  struct user *proc0paddr;
1122
1123
1124/* software prototypes -- in more palatable form */
1125struct soft_segment_descriptor gdt_segs[] = {
1126/* GNULL_SEL	0 Null Descriptor */
1127{	0x0,			/* segment base address  */
1128	0x0,			/* length */
1129	0,			/* segment type */
1130	0,			/* segment descriptor priority level */
1131	0,			/* segment descriptor present */
1132	0, 0,
1133	0,			/* default 32 vs 16 bit size */
1134	0  			/* limit granularity (byte/page units)*/ },
1135/* GCODE_SEL	1 Code Descriptor for kernel */
1136{	0x0,			/* segment base address  */
1137	0xfffff,		/* length - all address space */
1138	SDT_MEMERA,		/* segment type */
1139	0,			/* segment descriptor priority level */
1140	1,			/* segment descriptor present */
1141	0, 0,
1142	1,			/* default 32 vs 16 bit size */
1143	1  			/* limit granularity (byte/page units)*/ },
1144/* GDATA_SEL	2 Data Descriptor for kernel */
1145{	0x0,			/* segment base address  */
1146	0xfffff,		/* length - all address space */
1147	SDT_MEMRWA,		/* segment type */
1148	0,			/* segment descriptor priority level */
1149	1,			/* segment descriptor present */
1150	0, 0,
1151	1,			/* default 32 vs 16 bit size */
1152	1  			/* limit granularity (byte/page units)*/ },
1153/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1154{	0x0,			/* segment base address  */
1155	0xfffff,		/* length - all address space */
1156	SDT_MEMRWA,		/* segment type */
1157	0,			/* segment descriptor priority level */
1158	1,			/* segment descriptor present */
1159	0, 0,
1160	1,			/* default 32 vs 16 bit size */
1161	1  			/* limit granularity (byte/page units)*/ },
1162/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1163{
1164	0x0,			/* segment base address */
1165	sizeof(struct i386tss)-1,/* length - all address space */
1166	SDT_SYS386TSS,		/* segment type */
1167	0,			/* segment descriptor priority level */
1168	1,			/* segment descriptor present */
1169	0, 0,
1170	0,			/* unused - default 32 vs 16 bit size */
1171	0  			/* limit granularity (byte/page units)*/ },
1172/* GLDT_SEL	5 LDT Descriptor */
1173{	(int) ldt,		/* segment base address  */
1174	sizeof(ldt)-1,		/* length - all address space */
1175	SDT_SYSLDT,		/* segment type */
1176	SEL_UPL,		/* segment descriptor priority level */
1177	1,			/* segment descriptor present */
1178	0, 0,
1179	0,			/* unused - default 32 vs 16 bit size */
1180	0  			/* limit granularity (byte/page units)*/ },
1181/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1182{	(int) ldt,		/* segment base address  */
1183	(512 * sizeof(union descriptor)-1),		/* length */
1184	SDT_SYSLDT,		/* segment type */
1185	0,			/* segment descriptor priority level */
1186	1,			/* segment descriptor present */
1187	0, 0,
1188	0,			/* unused - default 32 vs 16 bit size */
1189	0  			/* limit granularity (byte/page units)*/ },
1190/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1191{	0x0,			/* segment base address  */
1192	0x0,			/* length - all address space */
1193	0,			/* segment type */
1194	0,			/* segment descriptor priority level */
1195	0,			/* segment descriptor present */
1196	0, 0,
1197	0,			/* default 32 vs 16 bit size */
1198	0  			/* limit granularity (byte/page units)*/ },
1199/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1200{	0x400,			/* segment base address */
1201	0xfffff,		/* length */
1202	SDT_MEMRWA,		/* segment type */
1203	0,			/* segment descriptor priority level */
1204	1,			/* segment descriptor present */
1205	0, 0,
1206	1,			/* default 32 vs 16 bit size */
1207	1  			/* limit granularity (byte/page units)*/ },
1208/* GPANIC_SEL	9 Panic Tss Descriptor */
1209{	(int) &dblfault_tss,	/* segment base address  */
1210	sizeof(struct i386tss)-1,/* length - all address space */
1211	SDT_SYS386TSS,		/* segment type */
1212	0,			/* segment descriptor priority level */
1213	1,			/* segment descriptor present */
1214	0, 0,
1215	0,			/* unused - default 32 vs 16 bit size */
1216	0  			/* limit granularity (byte/page units)*/ },
1217/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1218{	0,			/* segment base address (overwritten)  */
1219	0xfffff,		/* length */
1220	SDT_MEMERA,		/* segment type */
1221	0,			/* segment descriptor priority level */
1222	1,			/* segment descriptor present */
1223	0, 0,
1224	0,			/* default 32 vs 16 bit size */
1225	1  			/* limit granularity (byte/page units)*/ },
1226/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1227{	0,			/* segment base address (overwritten)  */
1228	0xfffff,		/* length */
1229	SDT_MEMERA,		/* segment type */
1230	0,			/* segment descriptor priority level */
1231	1,			/* segment descriptor present */
1232	0, 0,
1233	0,			/* default 32 vs 16 bit size */
1234	1  			/* limit granularity (byte/page units)*/ },
1235/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1236{	0,			/* segment base address (overwritten) */
1237	0xfffff,		/* length */
1238	SDT_MEMRWA,		/* segment type */
1239	0,			/* segment descriptor priority level */
1240	1,			/* segment descriptor present */
1241	0, 0,
1242	1,			/* default 32 vs 16 bit size */
1243	1  			/* limit granularity (byte/page units)*/ },
1244/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1245{	0,			/* segment base address (overwritten) */
1246	0xfffff,		/* length */
1247	SDT_MEMRWA,		/* segment type */
1248	0,			/* segment descriptor priority level */
1249	1,			/* segment descriptor present */
1250	0, 0,
1251	0,			/* default 32 vs 16 bit size */
1252	1  			/* limit granularity (byte/page units)*/ },
1253/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1254{	0,			/* segment base address (overwritten) */
1255	0xfffff,		/* length */
1256	SDT_MEMRWA,		/* segment type */
1257	0,			/* segment descriptor priority level */
1258	1,			/* segment descriptor present */
1259	0, 0,
1260	0,			/* default 32 vs 16 bit size */
1261	1  			/* limit granularity (byte/page units)*/ },
1262};
1263
1264static struct soft_segment_descriptor ldt_segs[] = {
1265	/* Null Descriptor - overwritten by call gate */
1266{	0x0,			/* segment base address  */
1267	0x0,			/* length - all address space */
1268	0,			/* segment type */
1269	0,			/* segment descriptor priority level */
1270	0,			/* segment descriptor present */
1271	0, 0,
1272	0,			/* default 32 vs 16 bit size */
1273	0  			/* limit granularity (byte/page units)*/ },
1274	/* Null Descriptor - overwritten by call gate */
1275{	0x0,			/* segment base address  */
1276	0x0,			/* length - all address space */
1277	0,			/* segment type */
1278	0,			/* segment descriptor priority level */
1279	0,			/* segment descriptor present */
1280	0, 0,
1281	0,			/* default 32 vs 16 bit size */
1282	0  			/* limit granularity (byte/page units)*/ },
1283	/* Null Descriptor - overwritten by call gate */
1284{	0x0,			/* segment base address  */
1285	0x0,			/* length - all address space */
1286	0,			/* segment type */
1287	0,			/* segment descriptor priority level */
1288	0,			/* segment descriptor present */
1289	0, 0,
1290	0,			/* default 32 vs 16 bit size */
1291	0  			/* limit granularity (byte/page units)*/ },
1292	/* Code Descriptor for user */
1293{	0x0,			/* segment base address  */
1294	0xfffff,		/* length - all address space */
1295	SDT_MEMERA,		/* segment type */
1296	SEL_UPL,		/* segment descriptor priority level */
1297	1,			/* segment descriptor present */
1298	0, 0,
1299	1,			/* default 32 vs 16 bit size */
1300	1  			/* limit granularity (byte/page units)*/ },
1301	/* Null Descriptor - overwritten by call gate */
1302{	0x0,			/* segment base address  */
1303	0x0,			/* length - all address space */
1304	0,			/* segment type */
1305	0,			/* segment descriptor priority level */
1306	0,			/* segment descriptor present */
1307	0, 0,
1308	0,			/* default 32 vs 16 bit size */
1309	0  			/* limit granularity (byte/page units)*/ },
1310	/* Data Descriptor for user */
1311{	0x0,			/* segment base address  */
1312	0xfffff,		/* length - all address space */
1313	SDT_MEMRWA,		/* segment type */
1314	SEL_UPL,		/* segment descriptor priority level */
1315	1,			/* segment descriptor present */
1316	0, 0,
1317	1,			/* default 32 vs 16 bit size */
1318	1  			/* limit granularity (byte/page units)*/ },
1319};
1320
1321void
1322setidt(idx, func, typ, dpl, selec)
1323	int idx;
1324	inthand_t *func;
1325	int typ;
1326	int dpl;
1327	int selec;
1328{
1329	struct gate_descriptor *ip;
1330
1331	ip = idt + idx;
1332	ip->gd_looffset = (int)func;
1333	ip->gd_selector = selec;
1334	ip->gd_stkcpy = 0;
1335	ip->gd_xx = 0;
1336	ip->gd_type = typ;
1337	ip->gd_dpl = dpl;
1338	ip->gd_p = 1;
1339	ip->gd_hioffset = ((int)func)>>16 ;
1340}
1341
1342#define	IDTVEC(name)	__CONCAT(X,name)
1343
1344extern inthand_t
1345	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1346	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1347	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1348	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1349	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1350
1351void
1352sdtossd(sd, ssd)
1353	struct segment_descriptor *sd;
1354	struct soft_segment_descriptor *ssd;
1355{
1356	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1357	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1358	ssd->ssd_type  = sd->sd_type;
1359	ssd->ssd_dpl   = sd->sd_dpl;
1360	ssd->ssd_p     = sd->sd_p;
1361	ssd->ssd_def32 = sd->sd_def32;
1362	ssd->ssd_gran  = sd->sd_gran;
1363}
1364
1365#define PHYSMAP_SIZE	(2 * 8)
1366
1367/*
1368 * Populate the (physmap) array with base/bound pairs describing the
1369 * available physical memory in the system, then test this memory and
1370 * build the phys_avail array describing the actually-available memory.
1371 *
1372 * If we cannot accurately determine the physical memory map, then use
1373 * value from the 0xE801 call, and failing that, the RTC.
1374 *
1375 * Total memory size may be set by the kernel environment variable
1376 * hw.physmem or the compile-time define MAXMEM.
1377 */
1378static void
1379getmemsize(int first)
1380{
1381	int i, physmap_idx, pa_indx;
1382	u_int basemem, extmem;
1383	struct vm86frame vmf;
1384	struct vm86context vmc;
1385	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1386	pt_entry_t pte;
1387	const char *cp;
1388	struct {
1389		u_int64_t base;
1390		u_int64_t length;
1391		u_int32_t type;
1392	} *smap;
1393
1394	bzero(&vmf, sizeof(struct vm86frame));
1395	bzero(physmap, sizeof(physmap));
1396
1397	/*
1398	 * Perform "base memory" related probes & setup
1399	 */
1400	vm86_intcall(0x12, &vmf);
1401	basemem = vmf.vmf_ax;
1402	if (basemem > 640) {
1403		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1404			basemem);
1405		basemem = 640;
1406	}
1407
1408	/*
1409	 * XXX if biosbasemem is now < 640, there is a `hole'
1410	 * between the end of base memory and the start of
1411	 * ISA memory.  The hole may be empty or it may
1412	 * contain BIOS code or data.  Map it read/write so
1413	 * that the BIOS can write to it.  (Memory from 0 to
1414	 * the physical end of the kernel is mapped read-only
1415	 * to begin with and then parts of it are remapped.
1416	 * The parts that aren't remapped form holes that
1417	 * remain read-only and are unused by the kernel.
1418	 * The base memory area is below the physical end of
1419	 * the kernel and right now forms a read-only hole.
1420	 * The part of it from PAGE_SIZE to
1421	 * (trunc_page(biosbasemem * 1024) - 1) will be
1422	 * remapped and used by the kernel later.)
1423	 *
1424	 * This code is similar to the code used in
1425	 * pmap_mapdev, but since no memory needs to be
1426	 * allocated we simply change the mapping.
1427	 */
1428	for (pa = trunc_page(basemem * 1024);
1429	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1430		pte = (pt_entry_t)vtopte(pa + KERNBASE);
1431		*pte = pa | PG_RW | PG_V;
1432	}
1433
1434	/*
1435	 * if basemem != 640, map pages r/w into vm86 page table so
1436	 * that the bios can scribble on it.
1437	 */
1438	pte = (pt_entry_t)vm86paddr;
1439	for (i = basemem / 4; i < 160; i++)
1440		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1441
1442	/*
1443	 * map page 1 R/W into the kernel page table so we can use it
1444	 * as a buffer.  The kernel will unmap this page later.
1445	 */
1446	pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
1447	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1448
1449	/*
1450	 * get memory map with INT 15:E820
1451	 */
1452#define SMAPSIZ 	sizeof(*smap)
1453#define SMAP_SIG	0x534D4150			/* 'SMAP' */
1454
1455	vmc.npages = 0;
1456	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1457	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1458
1459	physmap_idx = 0;
1460	vmf.vmf_ebx = 0;
1461	do {
1462		vmf.vmf_eax = 0xE820;
1463		vmf.vmf_edx = SMAP_SIG;
1464		vmf.vmf_ecx = SMAPSIZ;
1465		i = vm86_datacall(0x15, &vmf, &vmc);
1466		if (i || vmf.vmf_eax != SMAP_SIG)
1467			break;
1468		if (boothowto & RB_VERBOSE)
1469			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1470				smap->type,
1471				*(u_int32_t *)((char *)&smap->base + 4),
1472				(u_int32_t)smap->base,
1473				*(u_int32_t *)((char *)&smap->length + 4),
1474				(u_int32_t)smap->length);
1475
1476		if (smap->type != 0x01)
1477			goto next_run;
1478
1479		if (smap->length == 0)
1480			goto next_run;
1481
1482		if (smap->base >= 0xffffffff) {
1483			printf("%uK of memory above 4GB ignored\n",
1484			    (u_int)(smap->length / 1024));
1485			goto next_run;
1486		}
1487
1488		for (i = 0; i <= physmap_idx; i += 2) {
1489			if (smap->base < physmap[i + 1]) {
1490				if (boothowto & RB_VERBOSE)
1491					printf(
1492	"Overlapping or non-montonic memory region, ignoring second region\n");
1493				goto next_run;
1494			}
1495		}
1496
1497		if (smap->base == physmap[physmap_idx + 1]) {
1498			physmap[physmap_idx + 1] += smap->length;
1499			goto next_run;
1500		}
1501
1502		physmap_idx += 2;
1503		if (physmap_idx == PHYSMAP_SIZE) {
1504			printf(
1505		"Too many segments in the physical address map, giving up\n");
1506			break;
1507		}
1508		physmap[physmap_idx] = smap->base;
1509		physmap[physmap_idx + 1] = smap->base + smap->length;
1510next_run:
1511	} while (vmf.vmf_ebx != 0);
1512
1513	if (physmap[1] != 0)
1514		goto physmap_done;
1515
1516	/*
1517	 * If we failed above, try memory map with INT 15:E801
1518	 */
1519	vmf.vmf_ax = 0xE801;
1520	if (vm86_intcall(0x15, &vmf) == 0) {
1521		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1522	} else {
1523#if 0
1524		vmf.vmf_ah = 0x88;
1525		vm86_intcall(0x15, &vmf);
1526		extmem = vmf.vmf_ax;
1527#else
1528		/*
1529		 * Prefer the RTC value for extended memory.
1530		 */
1531		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1532#endif
1533	}
1534
1535	/*
1536	 * Special hack for chipsets that still remap the 384k hole when
1537	 * there's 16MB of memory - this really confuses people that
1538	 * are trying to use bus mastering ISA controllers with the
1539	 * "16MB limit"; they only have 16MB, but the remapping puts
1540	 * them beyond the limit.
1541	 *
1542	 * If extended memory is between 15-16MB (16-17MB phys address range),
1543	 *	chop it to 15MB.
1544	 */
1545	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1546		extmem = 15 * 1024;
1547
1548	physmap[0] = 0;
1549	physmap[1] = basemem * 1024;
1550	physmap_idx = 2;
1551	physmap[physmap_idx] = 0x100000;
1552	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1553
1554physmap_done:
1555	/*
1556	 * Now, physmap contains a map of physical memory.
1557	 */
1558
1559#ifdef SMP
1560	/* make hole for AP bootstrap code */
1561	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1562
1563	/* look for the MP hardware - needed for apic addresses */
1564	mp_probe();
1565#endif
1566
1567	/*
1568	 * Maxmem isn't the "maximum memory", it's one larger than the
1569	 * highest page of the physical address space.  It should be
1570	 * called something like "Maxphyspage".  We may adjust this
1571	 * based on ``hw.physmem'' and the results of the memory test.
1572	 */
1573	Maxmem = atop(physmap[physmap_idx + 1]);
1574
1575#ifdef MAXMEM
1576	Maxmem = MAXMEM / 4;
1577#endif
1578
1579	/*
1580	 * hw.maxmem is a size in bytes; we also allow k, m, and g suffixes
1581	 * for the appropriate modifiers.  This overrides MAXMEM.
1582	 */
1583	if ((cp = getenv("hw.physmem")) != NULL) {
1584		u_int64_t AllowMem, sanity;
1585		char *ep;
1586
1587		sanity = AllowMem = strtouq(cp, &ep, 0);
1588		if ((ep != cp) && (*ep != 0)) {
1589			switch(*ep) {
1590			case 'g':
1591			case 'G':
1592				AllowMem <<= 10;
1593			case 'm':
1594			case 'M':
1595				AllowMem <<= 10;
1596			case 'k':
1597			case 'K':
1598				AllowMem <<= 10;
1599				break;
1600			default:
1601				AllowMem = sanity = 0;
1602			}
1603			if (AllowMem < sanity)
1604				AllowMem = 0;
1605		}
1606		if (AllowMem == 0)
1607			printf("Ignoring invalid memory size of '%s'\n", cp);
1608		else
1609			Maxmem = atop(AllowMem);
1610	}
1611
1612	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1613	    (boothowto & RB_VERBOSE))
1614		printf("Physical memory use set to %uK\n", Maxmem * 4);
1615
1616	/*
1617	 * If Maxmem has been increased beyond what the system has detected,
1618	 * extend the last memory segment to the new limit.
1619	 */
1620	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1621		physmap[physmap_idx + 1] = ptoa(Maxmem);
1622
1623	/* call pmap initialization to make new kernel address space */
1624	pmap_bootstrap(first, 0);
1625
1626	/*
1627	 * Size up each available chunk of physical memory.
1628	 */
1629	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1630	pa_indx = 0;
1631	phys_avail[pa_indx++] = physmap[0];
1632	phys_avail[pa_indx] = physmap[0];
1633#if 0
1634	pte = (pt_entry_t)vtopte(KERNBASE);
1635#else
1636	pte = (pt_entry_t)CMAP1;
1637#endif
1638
1639	/*
1640	 * physmap is in bytes, so when converting to page boundaries,
1641	 * round up the start address and round down the end address.
1642	 */
1643	for (i = 0; i <= physmap_idx; i += 2) {
1644		vm_offset_t end;
1645
1646		end = ptoa(Maxmem);
1647		if (physmap[i + 1] < end)
1648			end = trunc_page(physmap[i + 1]);
1649		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1650			int tmp, page_bad;
1651#if 0
1652			int *ptr = 0;
1653#else
1654			int *ptr = (int *)CADDR1;
1655#endif
1656
1657			/*
1658			 * block out kernel memory as not available.
1659			 */
1660			if (pa >= 0x100000 && pa < first)
1661				continue;
1662
1663			page_bad = FALSE;
1664
1665			/*
1666			 * map page into kernel: valid, read/write,non-cacheable
1667			 */
1668			*pte = pa | PG_V | PG_RW | PG_N;
1669			invltlb();
1670
1671			tmp = *(int *)ptr;
1672			/*
1673			 * Test for alternating 1's and 0's
1674			 */
1675			*(volatile int *)ptr = 0xaaaaaaaa;
1676			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1677				page_bad = TRUE;
1678			}
1679			/*
1680			 * Test for alternating 0's and 1's
1681			 */
1682			*(volatile int *)ptr = 0x55555555;
1683			if (*(volatile int *)ptr != 0x55555555) {
1684			page_bad = TRUE;
1685			}
1686			/*
1687			 * Test for all 1's
1688			 */
1689			*(volatile int *)ptr = 0xffffffff;
1690			if (*(volatile int *)ptr != 0xffffffff) {
1691				page_bad = TRUE;
1692			}
1693			/*
1694			 * Test for all 0's
1695			 */
1696			*(volatile int *)ptr = 0x0;
1697			if (*(volatile int *)ptr != 0x0) {
1698				page_bad = TRUE;
1699			}
1700			/*
1701			 * Restore original value.
1702			 */
1703			*(int *)ptr = tmp;
1704
1705			/*
1706			 * Adjust array of valid/good pages.
1707			 */
1708			if (page_bad == TRUE) {
1709				continue;
1710			}
1711			/*
1712			 * If this good page is a continuation of the
1713			 * previous set of good pages, then just increase
1714			 * the end pointer. Otherwise start a new chunk.
1715			 * Note that "end" points one higher than end,
1716			 * making the range >= start and < end.
1717			 * If we're also doing a speculative memory
1718			 * test and we at or past the end, bump up Maxmem
1719			 * so that we keep going. The first bad page
1720			 * will terminate the loop.
1721			 */
1722			if (phys_avail[pa_indx] == pa) {
1723				phys_avail[pa_indx] += PAGE_SIZE;
1724			} else {
1725				pa_indx++;
1726				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1727					printf("Too many holes in the physical address space, giving up\n");
1728					pa_indx--;
1729					break;
1730				}
1731				phys_avail[pa_indx++] = pa;	/* start */
1732				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1733			}
1734			physmem++;
1735		}
1736	}
1737	*pte = 0;
1738	invltlb();
1739
1740	/*
1741	 * XXX
1742	 * The last chunk must contain at least one page plus the message
1743	 * buffer to avoid complicating other code (message buffer address
1744	 * calculation, etc.).
1745	 */
1746	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1747	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1748		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1749		phys_avail[pa_indx--] = 0;
1750		phys_avail[pa_indx--] = 0;
1751	}
1752
1753	Maxmem = atop(phys_avail[pa_indx]);
1754
1755	/* Trim off space for the message buffer. */
1756	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1757
1758	avail_end = phys_avail[pa_indx];
1759}
1760
1761void
1762init386(first)
1763	int first;
1764{
1765	int x;
1766	struct gate_descriptor *gdp;
1767	int gsel_tss;
1768#ifndef SMP
1769	/* table descriptors - used to load tables by microp */
1770	struct region_descriptor r_gdt, r_idt;
1771#endif
1772	int off;
1773
1774	/*
1775	 * Prevent lowering of the ipl if we call tsleep() early.
1776	 */
1777	safepri = cpl;
1778
1779	proc0.p_addr = proc0paddr;
1780
1781	atdevbase = ISA_HOLE_START + KERNBASE;
1782
1783	if (bootinfo.bi_modulep) {
1784		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1785		preload_bootstrap_relocate(KERNBASE);
1786	}
1787	if (bootinfo.bi_envp)
1788		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1789
1790	/*
1791	 * make gdt memory segments, the code segment goes up to end of the
1792	 * page with etext in it, the data segment goes to the end of
1793	 * the address space
1794	 */
1795	/*
1796	 * XXX text protection is temporarily (?) disabled.  The limit was
1797	 * i386_btop(round_page(etext)) - 1.
1798	 */
1799	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1800	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1801#ifdef SMP
1802	gdt_segs[GPRIV_SEL].ssd_limit =
1803		i386_btop(sizeof(struct privatespace)) - 1;
1804	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
1805	gdt_segs[GPROC0_SEL].ssd_base =
1806		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
1807	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0];
1808#else
1809	gdt_segs[GPRIV_SEL].ssd_limit = i386_btop(0) - 1;
1810	gdt_segs[GPROC0_SEL].ssd_base = (int) &common_tss;
1811#endif
1812
1813	for (x = 0; x < NGDT; x++) {
1814#ifdef BDE_DEBUGGER
1815		/* avoid overwriting db entries with APM ones */
1816		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1817			continue;
1818#endif
1819		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1820	}
1821
1822	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1823	r_gdt.rd_base =  (int) gdt;
1824	lgdt(&r_gdt);
1825
1826	/* make ldt memory segments */
1827	/*
1828	 * The data segment limit must not cover the user area because we
1829	 * don't want the user area to be writable in copyout() etc. (page
1830	 * level protection is lost in kernel mode on 386's).  Also, we
1831	 * don't want the user area to be writable directly (page level
1832	 * protection of the user area is not available on 486's with
1833	 * CR0_WP set, because there is no user-read/kernel-write mode).
1834	 *
1835	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1836	 * should be spelled ...MAX_USER...
1837	 */
1838#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1839	/*
1840	 * The code segment limit has to cover the user area until we move
1841	 * the signal trampoline out of the user area.  This is safe because
1842	 * the code segment cannot be written to directly.
1843	 */
1844#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1845	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1846	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1847	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1848		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1849
1850	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1851	lldt(_default_ldt);
1852#ifdef USER_LDT
1853	currentldt = _default_ldt;
1854#endif
1855
1856	/* exceptions */
1857	for (x = 0; x < NIDT; x++)
1858		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1859	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1860	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1861	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1862 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1863	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1864	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1865	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1866	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1867	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1868	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1869	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1870	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1871	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1872	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1873	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1874	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1875	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1876	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1877	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1878 	setidt(0x80, &IDTVEC(int0x80_syscall),
1879			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1880
1881	r_idt.rd_limit = sizeof(idt0) - 1;
1882	r_idt.rd_base = (int) idt;
1883	lidt(&r_idt);
1884
1885	/*
1886	 * Initialize the console before we print anything out.
1887	 */
1888	cninit();
1889
1890#include	"isa.h"
1891#if	NISA >0
1892	isa_defaultirq();
1893#endif
1894	rand_initialize();
1895
1896#ifdef DDB
1897	kdb_init();
1898	if (boothowto & RB_KDB)
1899		Debugger("Boot flags requested debugger");
1900#endif
1901
1902	finishidentcpu();	/* Final stage of CPU initialization */
1903	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1904	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1905	initializecpu();	/* Initialize CPU registers */
1906
1907	/* make an initial tss so cpu can get interrupt stack on syscall! */
1908	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
1909	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1910	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1911	private_tss = 0;
1912	tss_gdt = &gdt[GPROC0_SEL].sd;
1913	common_tssd = *tss_gdt;
1914	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1915	ltr(gsel_tss);
1916
1917	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1918	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1919	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1920	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1921	dblfault_tss.tss_cr3 = (int)IdlePTD;
1922	dblfault_tss.tss_eip = (int) dblfault_handler;
1923	dblfault_tss.tss_eflags = PSL_KERNEL;
1924	dblfault_tss.tss_ds = dblfault_tss.tss_es =
1925	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1926	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1927	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1928	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1929
1930	vm86_initialize();
1931	getmemsize(first);
1932
1933	/* now running on new page tables, configured,and u/iom is accessible */
1934
1935	/* Map the message buffer. */
1936	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1937		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1938
1939	msgbufinit(msgbufp, MSGBUF_SIZE);
1940
1941	/* make a call gate to reenter kernel with */
1942	gdp = &ldt[LSYS5CALLS_SEL].gd;
1943
1944	x = (int) &IDTVEC(syscall);
1945	gdp->gd_looffset = x++;
1946	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1947	gdp->gd_stkcpy = 1;
1948	gdp->gd_type = SDT_SYS386CGT;
1949	gdp->gd_dpl = SEL_UPL;
1950	gdp->gd_p = 1;
1951	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1952
1953	/* XXX does this work? */
1954	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1955	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
1956
1957	/* transfer to user mode */
1958
1959	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1960	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1961
1962	/* setup proc 0's pcb */
1963	proc0.p_addr->u_pcb.pcb_flags = 0;
1964	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1965#ifdef SMP
1966	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1967#endif
1968	proc0.p_addr->u_pcb.pcb_ext = 0;
1969}
1970
1971#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1972static void f00f_hack(void *unused);
1973SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1974
1975static void
1976f00f_hack(void *unused) {
1977	struct gate_descriptor *new_idt;
1978#ifndef SMP
1979	struct region_descriptor r_idt;
1980#endif
1981	vm_offset_t tmp;
1982
1983	if (!has_f00f_bug)
1984		return;
1985
1986	printf("Intel Pentium detected, installing workaround for F00F bug\n");
1987
1988	r_idt.rd_limit = sizeof(idt0) - 1;
1989
1990	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
1991	if (tmp == 0)
1992		panic("kmem_alloc returned 0");
1993	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1994		panic("kmem_alloc returned non-page-aligned memory");
1995	/* Put the first seven entries in the lower page */
1996	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1997	bcopy(idt, new_idt, sizeof(idt0));
1998	r_idt.rd_base = (int)new_idt;
1999	lidt(&r_idt);
2000	idt = new_idt;
2001	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2002			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2003		panic("vm_map_protect failed");
2004	return;
2005}
2006#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2007
2008int
2009ptrace_set_pc(p, addr)
2010	struct proc *p;
2011	unsigned long addr;
2012{
2013	p->p_md.md_regs->tf_eip = addr;
2014	return (0);
2015}
2016
2017int
2018ptrace_single_step(p)
2019	struct proc *p;
2020{
2021	p->p_md.md_regs->tf_eflags |= PSL_T;
2022	return (0);
2023}
2024
2025int ptrace_read_u_check(p, addr, len)
2026	struct proc *p;
2027	vm_offset_t addr;
2028	size_t len;
2029{
2030	vm_offset_t gap;
2031
2032	if ((vm_offset_t) (addr + len) < addr)
2033		return EPERM;
2034	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
2035		return 0;
2036
2037	gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
2038
2039	if ((vm_offset_t) addr < gap)
2040		return EPERM;
2041	if ((vm_offset_t) (addr + len) <=
2042	    (vm_offset_t) (gap + sizeof(struct trapframe)))
2043		return 0;
2044	return EPERM;
2045}
2046
2047int ptrace_write_u(p, off, data)
2048	struct proc *p;
2049	vm_offset_t off;
2050	long data;
2051{
2052	struct trapframe frame_copy;
2053	vm_offset_t min;
2054	struct trapframe *tp;
2055
2056	/*
2057	 * Privileged kernel state is scattered all over the user area.
2058	 * Only allow write access to parts of regs and to fpregs.
2059	 */
2060	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
2061	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
2062		tp = p->p_md.md_regs;
2063		frame_copy = *tp;
2064		*(int *)((char *)&frame_copy + (off - min)) = data;
2065		if (!EFL_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
2066		    !CS_SECURE(frame_copy.tf_cs))
2067			return (EINVAL);
2068		*(int*)((char *)p->p_addr + off) = data;
2069		return (0);
2070	}
2071	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
2072	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
2073		*(int*)((char *)p->p_addr + off) = data;
2074		return (0);
2075	}
2076	return (EFAULT);
2077}
2078
2079int
2080fill_regs(p, regs)
2081	struct proc *p;
2082	struct reg *regs;
2083{
2084	struct pcb *pcb;
2085	struct trapframe *tp;
2086
2087	tp = p->p_md.md_regs;
2088	regs->r_fs = tp->tf_fs;
2089	regs->r_es = tp->tf_es;
2090	regs->r_ds = tp->tf_ds;
2091	regs->r_edi = tp->tf_edi;
2092	regs->r_esi = tp->tf_esi;
2093	regs->r_ebp = tp->tf_ebp;
2094	regs->r_ebx = tp->tf_ebx;
2095	regs->r_edx = tp->tf_edx;
2096	regs->r_ecx = tp->tf_ecx;
2097	regs->r_eax = tp->tf_eax;
2098	regs->r_eip = tp->tf_eip;
2099	regs->r_cs = tp->tf_cs;
2100	regs->r_eflags = tp->tf_eflags;
2101	regs->r_esp = tp->tf_esp;
2102	regs->r_ss = tp->tf_ss;
2103	pcb = &p->p_addr->u_pcb;
2104	regs->r_gs = pcb->pcb_gs;
2105	return (0);
2106}
2107
2108int
2109set_regs(p, regs)
2110	struct proc *p;
2111	struct reg *regs;
2112{
2113	struct pcb *pcb;
2114	struct trapframe *tp;
2115
2116	tp = p->p_md.md_regs;
2117	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2118	    !CS_SECURE(regs->r_cs))
2119		return (EINVAL);
2120	tp->tf_fs = regs->r_fs;
2121	tp->tf_es = regs->r_es;
2122	tp->tf_ds = regs->r_ds;
2123	tp->tf_edi = regs->r_edi;
2124	tp->tf_esi = regs->r_esi;
2125	tp->tf_ebp = regs->r_ebp;
2126	tp->tf_ebx = regs->r_ebx;
2127	tp->tf_edx = regs->r_edx;
2128	tp->tf_ecx = regs->r_ecx;
2129	tp->tf_eax = regs->r_eax;
2130	tp->tf_eip = regs->r_eip;
2131	tp->tf_cs = regs->r_cs;
2132	tp->tf_eflags = regs->r_eflags;
2133	tp->tf_esp = regs->r_esp;
2134	tp->tf_ss = regs->r_ss;
2135	pcb = &p->p_addr->u_pcb;
2136	pcb->pcb_gs = regs->r_gs;
2137	return (0);
2138}
2139
2140int
2141fill_fpregs(p, fpregs)
2142	struct proc *p;
2143	struct fpreg *fpregs;
2144{
2145	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
2146	return (0);
2147}
2148
2149int
2150set_fpregs(p, fpregs)
2151	struct proc *p;
2152	struct fpreg *fpregs;
2153{
2154	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
2155	return (0);
2156}
2157
2158int
2159fill_dbregs(p, dbregs)
2160	struct proc *p;
2161	struct dbreg *dbregs;
2162{
2163	struct pcb *pcb;
2164
2165	pcb = &p->p_addr->u_pcb;
2166	dbregs->dr0 = pcb->pcb_dr0;
2167	dbregs->dr1 = pcb->pcb_dr1;
2168	dbregs->dr2 = pcb->pcb_dr2;
2169	dbregs->dr3 = pcb->pcb_dr3;
2170	dbregs->dr4 = 0;
2171	dbregs->dr5 = 0;
2172	dbregs->dr6 = pcb->pcb_dr6;
2173	dbregs->dr7 = pcb->pcb_dr7;
2174	return (0);
2175}
2176
2177int
2178set_dbregs(p, dbregs)
2179	struct proc *p;
2180	struct dbreg *dbregs;
2181{
2182	struct pcb *pcb;
2183
2184	pcb = &p->p_addr->u_pcb;
2185
2186	/*
2187	 * Don't let a process set a breakpoint that is not within the
2188	 * process's address space.  If a process could do this, it
2189	 * could halt the system by setting a breakpoint in the kernel
2190	 * (if ddb was enabled).  Thus, we need to check to make sure
2191	 * that no breakpoints are being enabled for addresses outside
2192	 * process's address space, unless, perhaps, we were called by
2193	 * uid 0.
2194	 *
2195	 * XXX - what about when the watched area of the user's
2196	 * address space is written into from within the kernel
2197	 * ... wouldn't that still cause a breakpoint to be generated
2198	 * from within kernel mode?
2199	 */
2200
2201	if (p->p_ucred->cr_uid != 0) {
2202		if (dbregs->dr7 & 0x3) {
2203			/* dr0 is enabled */
2204			if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2205				return (EINVAL);
2206		}
2207
2208		if (dbregs->dr7 & (0x3<<2)) {
2209			/* dr1 is enabled */
2210			if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2211				return (EINVAL);
2212		}
2213
2214		if (dbregs->dr7 & (0x3<<4)) {
2215			/* dr2 is enabled */
2216			if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2217       				return (EINVAL);
2218		}
2219
2220		if (dbregs->dr7 & (0x3<<6)) {
2221			/* dr3 is enabled */
2222			if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2223				return (EINVAL);
2224		}
2225	}
2226
2227	pcb->pcb_dr0 = dbregs->dr0;
2228	pcb->pcb_dr1 = dbregs->dr1;
2229	pcb->pcb_dr2 = dbregs->dr2;
2230	pcb->pcb_dr3 = dbregs->dr3;
2231	pcb->pcb_dr6 = dbregs->dr6;
2232	pcb->pcb_dr7 = dbregs->dr7;
2233
2234	pcb->pcb_flags |= PCB_DBREGS;
2235
2236	return (0);
2237}
2238
2239#ifndef DDB
2240void
2241Debugger(const char *msg)
2242{
2243	printf("Debugger(\"%s\") called.\n", msg);
2244}
2245#endif /* no DDB */
2246
2247#include <sys/disklabel.h>
2248
2249/*
2250 * Determine the size of the transfer, and make sure it is
2251 * within the boundaries of the partition. Adjust transfer
2252 * if needed, and signal errors or early completion.
2253 */
2254int
2255bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
2256{
2257        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
2258        int labelsect = lp->d_partitions[0].p_offset;
2259        int maxsz = p->p_size,
2260                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2261
2262        /* overwriting disk label ? */
2263        /* XXX should also protect bootstrap in first 8K */
2264        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
2265#if LABELSECTOR != 0
2266            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2267#endif
2268            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
2269                bp->b_error = EROFS;
2270                goto bad;
2271        }
2272
2273#if     defined(DOSBBSECTOR) && defined(notyet)
2274        /* overwriting master boot record? */
2275        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
2276            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
2277                bp->b_error = EROFS;
2278                goto bad;
2279        }
2280#endif
2281
2282        /* beyond partition? */
2283        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
2284                /* if exactly at end of disk, return an EOF */
2285                if (bp->b_blkno == maxsz) {
2286                        bp->b_resid = bp->b_bcount;
2287                        return(0);
2288                }
2289                /* or truncate if part of it fits */
2290                sz = maxsz - bp->b_blkno;
2291                if (sz <= 0) {
2292                        bp->b_error = EINVAL;
2293                        goto bad;
2294                }
2295                bp->b_bcount = sz << DEV_BSHIFT;
2296        }
2297
2298        bp->b_pblkno = bp->b_blkno + p->p_offset;
2299        return(1);
2300
2301bad:
2302        bp->b_flags |= B_ERROR;
2303        return(-1);
2304}
2305
2306#ifdef DDB
2307
2308/*
2309 * Provide inb() and outb() as functions.  They are normally only
2310 * available as macros calling inlined functions, thus cannot be
2311 * called inside DDB.
2312 *
2313 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2314 */
2315
2316#undef inb
2317#undef outb
2318
2319/* silence compiler warnings */
2320u_char inb(u_int);
2321void outb(u_int, u_char);
2322
2323u_char
2324inb(u_int port)
2325{
2326	u_char	data;
2327	/*
2328	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2329	 * %edx, while gcc generates inferior code (movw instead of movl)
2330	 * if we tell it to load (u_short) port.
2331	 */
2332	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2333	return (data);
2334}
2335
2336void
2337outb(u_int port, u_char data)
2338{
2339	u_char	al;
2340	/*
2341	 * Use an unnecessary assignment to help gcc's register allocator.
2342	 * This make a large difference for gcc-1.40 and a tiny difference
2343	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2344	 * best results.  gcc-2.6.0 can't handle this.
2345	 */
2346	al = data;
2347	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2348}
2349
2350#endif /* DDB */
2351