machdep.c revision 53648
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 53648 1999-11-24 01:03:08Z archie $
39 */
40
41#include "apm.h"
42#include "ether.h"
43#include "npx.h"
44#include "opt_atalk.h"
45#include "opt_compat.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_inet.h"
49#include "opt_ipx.h"
50#include "opt_maxmem.h"
51#include "opt_msgbuf.h"
52#include "opt_perfmon.h"
53#include "opt_smp.h"
54#include "opt_sysvipc.h"
55#include "opt_user_ldt.h"
56#include "opt_userconfig.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/sysproto.h>
61#include <sys/signalvar.h>
62#include <sys/kernel.h>
63#include <sys/linker.h>
64#include <sys/proc.h>
65#include <sys/buf.h>
66#include <sys/reboot.h>
67#include <sys/callout.h>
68#include <sys/malloc.h>
69#include <sys/mbuf.h>
70#include <sys/msgbuf.h>
71#include <sys/sysent.h>
72#include <sys/sysctl.h>
73#include <sys/vmmeter.h>
74#include <sys/bus.h>
75
76#ifdef SYSVSHM
77#include <sys/shm.h>
78#endif
79
80#ifdef SYSVMSG
81#include <sys/msg.h>
82#endif
83
84#ifdef SYSVSEM
85#include <sys/sem.h>
86#endif
87
88#include <vm/vm.h>
89#include <vm/vm_param.h>
90#include <sys/lock.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_object.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_pager.h>
96#include <vm/vm_extern.h>
97
98#include <sys/user.h>
99#include <sys/exec.h>
100#include <sys/cons.h>
101
102#include <ddb/ddb.h>
103
104#include <net/netisr.h>
105
106#include <machine/cpu.h>
107#include <machine/reg.h>
108#include <machine/clock.h>
109#include <machine/specialreg.h>
110#include <machine/bootinfo.h>
111#include <machine/ipl.h>
112#include <machine/md_var.h>
113#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
114#ifdef SMP
115#include <machine/smp.h>
116#include <machine/globaldata.h>
117#endif
118#ifdef PERFMON
119#include <machine/perfmon.h>
120#endif
121
122#ifdef OLD_BUS_ARCH
123#include <i386/isa/isa_device.h>
124#endif
125#include <i386/isa/intr_machdep.h>
126#include <isa/rtc.h>
127#include <machine/vm86.h>
128#include <machine/random.h>
129#include <sys/ptrace.h>
130#include <machine/sigframe.h>
131
132extern void init386 __P((int first));
133extern void dblfault_handler __P((void));
134
135extern void printcpuinfo(void);	/* XXX header file */
136extern void earlysetcpuclass(void);	/* same header file */
137extern void finishidentcpu(void);
138extern void panicifcpuunsupported(void);
139extern void initializecpu(void);
140
141static void cpu_startup __P((void *));
142SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
143
144static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
145
146int	_udatasel, _ucodesel;
147u_int	atdevbase;
148
149#if defined(SWTCH_OPTIM_STATS)
150extern int swtch_optim_stats;
151SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
152	CTLFLAG_RD, &swtch_optim_stats, 0, "");
153SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
154	CTLFLAG_RD, &tlb_flush_count, 0, "");
155#endif
156
157#ifdef PC98
158static int	ispc98 = 1;
159#else
160static int	ispc98 = 0;
161#endif
162SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
163
164int physmem = 0;
165int cold = 1;
166
167static int
168sysctl_hw_physmem SYSCTL_HANDLER_ARGS
169{
170	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
171	return (error);
172}
173
174SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
175	0, 0, sysctl_hw_physmem, "I", "");
176
177static int
178sysctl_hw_usermem SYSCTL_HANDLER_ARGS
179{
180	int error = sysctl_handle_int(oidp, 0,
181		ctob(physmem - cnt.v_wire_count), req);
182	return (error);
183}
184
185SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
186	0, 0, sysctl_hw_usermem, "I", "");
187
188static int
189sysctl_hw_availpages SYSCTL_HANDLER_ARGS
190{
191	int error = sysctl_handle_int(oidp, 0,
192		i386_btop(avail_end - avail_start), req);
193	return (error);
194}
195
196SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
197	0, 0, sysctl_hw_availpages, "I", "");
198
199static int
200sysctl_machdep_msgbuf SYSCTL_HANDLER_ARGS
201{
202	int error;
203
204	/* Unwind the buffer, so that it's linear (possibly starting with
205	 * some initial nulls).
206	 */
207	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
208		msgbufp->msg_size-msgbufp->msg_bufr,req);
209	if(error) return(error);
210	if(msgbufp->msg_bufr>0) {
211		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
212			msgbufp->msg_bufr,req);
213	}
214	return(error);
215}
216
217SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
218	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
219
220static int msgbuf_clear;
221
222static int
223sysctl_machdep_msgbuf_clear SYSCTL_HANDLER_ARGS
224{
225	int error;
226	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
227		req);
228	if (!error && req->newptr) {
229		/* Clear the buffer and reset write pointer */
230		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
231		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
232		msgbuf_clear=0;
233	}
234	return (error);
235}
236
237SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
238	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
239	"Clear kernel message buffer");
240
241int bootverbose = 0, Maxmem = 0;
242long dumplo;
243
244vm_offset_t phys_avail[10];
245
246/* must be 2 less so 0 0 can signal end of chunks */
247#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
248
249static vm_offset_t buffer_sva, buffer_eva;
250vm_offset_t clean_sva, clean_eva;
251static vm_offset_t pager_sva, pager_eva;
252
253#define offsetof(type, member)	((size_t)(&((type *)0)->member))
254
255static void
256cpu_startup(dummy)
257	void *dummy;
258{
259	register unsigned i;
260	register caddr_t v;
261	vm_offset_t maxaddr;
262	vm_size_t size = 0;
263	int firstaddr;
264	vm_offset_t minaddr;
265
266	if (boothowto & RB_VERBOSE)
267		bootverbose++;
268
269	/*
270	 * Good {morning,afternoon,evening,night}.
271	 */
272	printf(version);
273	earlysetcpuclass();
274	startrtclock();
275	printcpuinfo();
276	panicifcpuunsupported();
277#ifdef PERFMON
278	perfmon_init();
279#endif
280	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
281	/*
282	 * Display any holes after the first chunk of extended memory.
283	 */
284	if (bootverbose) {
285		int indx;
286
287		printf("Physical memory chunk(s):\n");
288		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
289			int size1 = phys_avail[indx + 1] - phys_avail[indx];
290
291			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
292			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
293			    size1 / PAGE_SIZE);
294		}
295	}
296
297	/*
298	 * Calculate callout wheel size
299	 */
300	for (callwheelsize = 1, callwheelbits = 0;
301	     callwheelsize < ncallout;
302	     callwheelsize <<= 1, ++callwheelbits)
303		;
304	callwheelmask = callwheelsize - 1;
305
306	/*
307	 * Allocate space for system data structures.
308	 * The first available kernel virtual address is in "v".
309	 * As pages of kernel virtual memory are allocated, "v" is incremented.
310	 * As pages of memory are allocated and cleared,
311	 * "firstaddr" is incremented.
312	 * An index into the kernel page table corresponding to the
313	 * virtual memory address maintained in "v" is kept in "mapaddr".
314	 */
315
316	/*
317	 * Make two passes.  The first pass calculates how much memory is
318	 * needed and allocates it.  The second pass assigns virtual
319	 * addresses to the various data structures.
320	 */
321	firstaddr = 0;
322again:
323	v = (caddr_t)firstaddr;
324
325#define	valloc(name, type, num) \
326	    (name) = (type *)v; v = (caddr_t)((name)+(num))
327#define	valloclim(name, type, num, lim) \
328	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
329
330	valloc(callout, struct callout, ncallout);
331	valloc(callwheel, struct callout_tailq, callwheelsize);
332#ifdef SYSVSHM
333	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
334#endif
335#ifdef SYSVSEM
336	valloc(sema, struct semid_ds, seminfo.semmni);
337	valloc(sem, struct sem, seminfo.semmns);
338	/* This is pretty disgusting! */
339	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
340#endif
341#ifdef SYSVMSG
342	valloc(msgpool, char, msginfo.msgmax);
343	valloc(msgmaps, struct msgmap, msginfo.msgseg);
344	valloc(msghdrs, struct msg, msginfo.msgtql);
345	valloc(msqids, struct msqid_ds, msginfo.msgmni);
346#endif
347
348	if (nbuf == 0) {
349		nbuf = 50;
350		if (physmem > 1024)
351			nbuf += min((physmem - 1024) / 8, 2048);
352		if (physmem > 16384)
353			nbuf += (physmem - 16384) / 20;
354	}
355	nswbuf = max(min(nbuf/4, 256), 16);
356
357	valloc(swbuf, struct buf, nswbuf);
358	valloc(buf, struct buf, nbuf);
359	v = bufhashinit(v);
360
361	/*
362	 * End of first pass, size has been calculated so allocate memory
363	 */
364	if (firstaddr == 0) {
365		size = (vm_size_t)(v - firstaddr);
366		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
367		if (firstaddr == 0)
368			panic("startup: no room for tables");
369		goto again;
370	}
371
372	/*
373	 * End of second pass, addresses have been assigned
374	 */
375	if ((vm_size_t)(v - firstaddr) != size)
376		panic("startup: table size inconsistency");
377
378	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
379			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
380	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
381				(nbuf*BKVASIZE));
382	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
383				(nswbuf*MAXPHYS) + pager_map_size);
384	pager_map->system_map = 1;
385	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
386				(16*(ARG_MAX+(PAGE_SIZE*3))));
387
388	/*
389	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
390	 * we use the more space efficient malloc in place of kmem_alloc.
391	 */
392	{
393		vm_offset_t mb_map_size;
394
395		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
396		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
397		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
398		bzero(mclrefcnt, mb_map_size / MCLBYTES);
399		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
400			mb_map_size);
401		mb_map->system_map = 1;
402	}
403
404	/*
405	 * Initialize callouts
406	 */
407	SLIST_INIT(&callfree);
408	for (i = 0; i < ncallout; i++) {
409		callout_init(&callout[i]);
410		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
411		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
412	}
413
414	for (i = 0; i < callwheelsize; i++) {
415		TAILQ_INIT(&callwheel[i]);
416	}
417
418#if defined(USERCONFIG)
419	userconfig();
420	cninit();		/* the preferred console may have changed */
421#endif
422
423	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
424	    ptoa(cnt.v_free_count) / 1024);
425
426	/*
427	 * Set up buffers, so they can be used to read disk labels.
428	 */
429	bufinit();
430	vm_pager_bufferinit();
431
432#ifdef SMP
433	/*
434	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
435	 */
436	mp_start();			/* fire up the APs and APICs */
437	mp_announce();
438#endif  /* SMP */
439}
440
441int
442register_netisr(num, handler)
443	int num;
444	netisr_t *handler;
445{
446
447	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
448		printf("register_netisr: bad isr number: %d\n", num);
449		return (EINVAL);
450	}
451	netisrs[num] = handler;
452	return (0);
453}
454
455void
456netisr_sysinit(data)
457	void *data;
458{
459	const struct netisrtab *nit;
460
461	nit = (const struct netisrtab *)data;
462	register_netisr(nit->nit_num, nit->nit_isr);
463}
464
465/*
466 * Send an interrupt to process.
467 *
468 * Stack is set up to allow sigcode stored
469 * at top to call routine, followed by kcall
470 * to sigreturn routine below.  After sigreturn
471 * resets the signal mask, the stack, and the
472 * frame pointer, it returns to the user
473 * specified pc, psl.
474 */
475static void
476osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
477{
478	register struct proc *p = curproc;
479	register struct trapframe *regs;
480	register struct osigframe *fp;
481	struct osigframe sf;
482	struct sigacts *psp = p->p_sigacts;
483	int oonstack;
484
485	regs = p->p_md.md_regs;
486	oonstack = (p->p_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
487
488	/* Allocate and validate space for the signal handler context. */
489	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
490	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
491		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
492		    p->p_sigstk.ss_size - sizeof(struct osigframe));
493		p->p_sigstk.ss_flags |= SS_ONSTACK;
494	}
495	else
496		fp = (struct osigframe *)regs->tf_esp - 1;
497
498	/*
499	 * grow() will return FALSE if the fp will not fit inside the stack
500	 *	and the stack can not be grown. useracc will return FALSE
501	 *	if access is denied.
502	 */
503	if (grow_stack(p, (int)fp) == FALSE ||
504	    !useracc((caddr_t)fp, sizeof(struct osigframe), VM_PROT_WRITE)) {
505		/*
506		 * Process has trashed its stack; give it an illegal
507		 * instruction to halt it in its tracks.
508		 */
509		SIGACTION(p, SIGILL) = SIG_DFL;
510		SIGDELSET(p->p_sigignore, SIGILL);
511		SIGDELSET(p->p_sigcatch, SIGILL);
512		SIGDELSET(p->p_sigmask, SIGILL);
513		psignal(p, SIGILL);
514		return;
515	}
516
517	/* Translate the signal if appropriate */
518	if (p->p_sysent->sv_sigtbl) {
519		if (sig <= p->p_sysent->sv_sigsize)
520			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
521	}
522
523	/* Build the argument list for the signal handler. */
524	sf.sf_signum = sig;
525	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
526	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
527		/* Signal handler installed with SA_SIGINFO. */
528		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
529		sf.sf_siginfo.si_signo = sig;
530		sf.sf_siginfo.si_code = code;
531		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
532	}
533	else {
534		/* Old FreeBSD-style arguments. */
535		sf.sf_arg2 = code;
536		sf.sf_addr = (register_t *)regs->tf_err;
537		sf.sf_ahu.sf_handler = catcher;
538	}
539
540	/* save scratch registers */
541	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
542	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
543	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
544	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
545	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
546	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
547	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
548	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
549	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
550	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
551	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
552	sf.sf_siginfo.si_sc.sc_gs = rgs();
553	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
554
555	/* Build the signal context to be used by sigreturn. */
556	sf.sf_siginfo.si_sc.sc_onstack = oonstack;
557	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
558	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
559	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
560	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
561	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
562	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
563	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
564
565	/*
566	 * If we're a vm86 process, we want to save the segment registers.
567	 * We also change eflags to be our emulated eflags, not the actual
568	 * eflags.
569	 */
570	if (regs->tf_eflags & PSL_VM) {
571		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
572		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
573
574		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
575		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
576		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
577		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
578
579		if (vm86->vm86_has_vme == 0)
580			sf.sf_siginfo.si_sc.sc_ps =
581			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
582			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
583		/* see sendsig for comment */
584		tf->tf_eflags &= ~(PSL_VM|PSL_NT|PSL_T|PSL_VIF|PSL_VIP);
585	}
586
587	/* Copy the sigframe out to the user's stack. */
588	if (copyout(&sf, fp, sizeof(struct osigframe)) != 0) {
589		/*
590		 * Something is wrong with the stack pointer.
591		 * ...Kill the process.
592		 */
593		sigexit(p, SIGILL);
594	}
595
596	regs->tf_esp = (int)fp;
597	regs->tf_eip = PS_STRINGS - oszsigcode;
598	regs->tf_cs = _ucodesel;
599	regs->tf_ds = _udatasel;
600	regs->tf_es = _udatasel;
601	regs->tf_fs = _udatasel;
602	load_gs(_udatasel);
603	regs->tf_ss = _udatasel;
604}
605
606void
607sendsig(catcher, sig, mask, code)
608	sig_t catcher;
609	int sig;
610	sigset_t *mask;
611	u_long code;
612{
613	struct proc *p = curproc;
614	struct trapframe *regs;
615	struct sigacts *psp = p->p_sigacts;
616	struct sigframe sf, *sfp;
617	int oonstack;
618
619	if (SIGISMEMBER(psp->ps_osigset, sig)) {
620		osendsig(catcher, sig, mask, code);
621		return;
622	}
623
624	regs = p->p_md.md_regs;
625	oonstack = (p->p_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
626
627	/* save user context */
628	bzero(&sf, sizeof(struct sigframe));
629	sf.sf_uc.uc_sigmask = *mask;
630	sf.sf_uc.uc_stack = p->p_sigstk;
631	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
632	sf.sf_uc.uc_mcontext.mc_gs = rgs();
633	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(struct trapframe));
634
635	/* Allocate and validate space for the signal handler context. */
636        if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
637	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
638		sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
639		    p->p_sigstk.ss_size - sizeof(struct sigframe));
640		p->p_sigstk.ss_flags |= SS_ONSTACK;
641	}
642	else
643		sfp = (struct sigframe *)regs->tf_esp - 1;
644
645	/*
646	 * grow() will return FALSE if the sfp will not fit inside the stack
647	 * and the stack can not be grown. useracc will return FALSE if
648	 * access is denied.
649	 */
650	if (grow_stack(p, (int)sfp) == FALSE ||
651	    !useracc((caddr_t)sfp, sizeof(struct sigframe), VM_PROT_WRITE)) {
652		/*
653		 * Process has trashed its stack; give it an illegal
654		 * instruction to halt it in its tracks.
655		 */
656#ifdef DEBUG
657		printf("process %d has trashed its stack\n", p->p_pid);
658#endif
659		SIGACTION(p, SIGILL) = SIG_DFL;
660		SIGDELSET(p->p_sigignore, SIGILL);
661		SIGDELSET(p->p_sigcatch, SIGILL);
662		SIGDELSET(p->p_sigmask, SIGILL);
663		psignal(p, SIGILL);
664		return;
665	}
666
667	/* Translate the signal is appropriate */
668	if (p->p_sysent->sv_sigtbl) {
669		if (sig <= p->p_sysent->sv_sigsize)
670			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
671	}
672
673	/* Build the argument list for the signal handler. */
674	sf.sf_signum = sig;
675	sf.sf_ucontext = (register_t)&sfp->sf_uc;
676	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
677		/* Signal handler installed with SA_SIGINFO. */
678		sf.sf_siginfo = (register_t)&sfp->sf_si;
679		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
680
681		/* fill siginfo structure */
682		sf.sf_si.si_signo = sig;
683		sf.sf_si.si_code = code;
684		sf.sf_si.si_addr = (void*)regs->tf_err;
685	}
686	else {
687		/* Old FreeBSD-style arguments. */
688		sf.sf_siginfo = code;
689		sf.sf_addr = (register_t *)regs->tf_err;
690		sf.sf_ahu.sf_handler = catcher;
691	}
692
693	/*
694	 * If we're a vm86 process, we want to save the segment registers.
695	 * We also change eflags to be our emulated eflags, not the actual
696	 * eflags.
697	 */
698	if (regs->tf_eflags & PSL_VM) {
699		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
700		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
701
702		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
703		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
704		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
705		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
706
707		if (vm86->vm86_has_vme == 0)
708			sf.sf_uc.uc_mcontext.mc_eflags =
709			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
710			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
711
712		/*
713		 * We should never have PSL_T set when returning from vm86
714		 * mode.  It may be set here if we deliver a signal before
715		 * getting to vm86 mode, so turn it off.
716		 *
717		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
718		 * syscalls made by the signal handler.  This just avoids
719		 * wasting time for our lazy fixup of such faults.  PSL_NT
720		 * does nothing in vm86 mode, but vm86 programs can set it
721		 * almost legitimately in probes for old cpu types.
722		 */
723		tf->tf_eflags &= ~(PSL_VM|PSL_NT|PSL_T|PSL_VIF|PSL_VIP);
724	}
725
726	/*
727	 * Copy the sigframe out to the user's stack.
728	 */
729	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
730		/*
731		 * Something is wrong with the stack pointer.
732		 * ...Kill the process.
733		 */
734		sigexit(p, SIGILL);
735	}
736
737	regs->tf_esp = (int)sfp;
738	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
739	regs->tf_cs = _ucodesel;
740	regs->tf_ds = _udatasel;
741	regs->tf_es = _udatasel;
742	regs->tf_fs = _udatasel;
743	load_gs(_udatasel);
744	regs->tf_ss = _udatasel;
745}
746
747/*
748 * System call to cleanup state after a signal
749 * has been taken.  Reset signal mask and
750 * stack state from context left by sendsig (above).
751 * Return to previous pc and psl as specified by
752 * context left by sendsig. Check carefully to
753 * make sure that the user has not modified the
754 * state to gain improper privileges.
755 */
756#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
757#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
758
759int
760osigreturn(p, uap)
761	struct proc *p;
762	struct osigreturn_args /* {
763		struct osigcontext *sigcntxp;
764	} */ *uap;
765{
766	register struct osigcontext *scp;
767	register struct trapframe *regs = p->p_md.md_regs;
768	int eflags;
769
770	scp = uap->sigcntxp;
771
772	if (!useracc((caddr_t)scp, sizeof (struct osigcontext), VM_PROT_READ))
773		return(EFAULT);
774
775	eflags = scp->sc_ps;
776	if (eflags & PSL_VM) {
777		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
778		struct vm86_kernel *vm86;
779
780		/*
781		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
782		 * set up the vm86 area, and we can't enter vm86 mode.
783		 */
784		if (p->p_addr->u_pcb.pcb_ext == 0)
785			return (EINVAL);
786		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
787		if (vm86->vm86_inited == 0)
788			return (EINVAL);
789
790		/* go back to user mode if both flags are set */
791		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
792			trapsignal(p, SIGBUS, 0);
793
794		if (vm86->vm86_has_vme) {
795			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
796			    (eflags & VME_USERCHANGE) | PSL_VM;
797		} else {
798			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
799			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
800		}
801		tf->tf_vm86_ds = scp->sc_ds;
802		tf->tf_vm86_es = scp->sc_es;
803		tf->tf_vm86_fs = scp->sc_fs;
804		tf->tf_vm86_gs = scp->sc_gs;
805		tf->tf_ds = _udatasel;
806		tf->tf_es = _udatasel;
807		tf->tf_fs = _udatasel;
808	} else {
809		/*
810		 * Don't allow users to change privileged or reserved flags.
811		 */
812		/*
813		 * XXX do allow users to change the privileged flag PSL_RF.
814		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
815		 * should sometimes set it there too.  tf_eflags is kept in
816		 * the signal context during signal handling and there is no
817		 * other place to remember it, so the PSL_RF bit may be
818		 * corrupted by the signal handler without us knowing.
819		 * Corruption of the PSL_RF bit at worst causes one more or
820		 * one less debugger trap, so allowing it is fairly harmless.
821		 */
822		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
823	    		return(EINVAL);
824		}
825
826		/*
827		 * Don't allow users to load a valid privileged %cs.  Let the
828		 * hardware check for invalid selectors, excess privilege in
829		 * other selectors, invalid %eip's and invalid %esp's.
830		 */
831		if (!CS_SECURE(scp->sc_cs)) {
832			trapsignal(p, SIGBUS, T_PROTFLT);
833			return(EINVAL);
834		}
835		regs->tf_ds = scp->sc_ds;
836		regs->tf_es = scp->sc_es;
837		regs->tf_fs = scp->sc_fs;
838	}
839
840	/* restore scratch registers */
841	regs->tf_eax = scp->sc_eax;
842	regs->tf_ebx = scp->sc_ebx;
843	regs->tf_ecx = scp->sc_ecx;
844	regs->tf_edx = scp->sc_edx;
845	regs->tf_esi = scp->sc_esi;
846	regs->tf_edi = scp->sc_edi;
847	regs->tf_cs = scp->sc_cs;
848	regs->tf_ss = scp->sc_ss;
849	regs->tf_isp = scp->sc_isp;
850
851	if (scp->sc_onstack & 01)
852		p->p_sigstk.ss_flags |= SS_ONSTACK;
853	else
854		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
855
856	SIGSETOLD(p->p_sigmask, scp->sc_mask);
857	SIG_CANTMASK(p->p_sigmask);
858	regs->tf_ebp = scp->sc_fp;
859	regs->tf_esp = scp->sc_sp;
860	regs->tf_eip = scp->sc_pc;
861	regs->tf_eflags = eflags;
862	return(EJUSTRETURN);
863}
864
865int
866sigreturn(p, uap)
867	struct proc *p;
868	struct sigreturn_args /* {
869		ucontext_t *sigcntxp;
870	} */ *uap;
871{
872	struct trapframe *regs;
873	ucontext_t *ucp;
874	int cs, eflags;
875
876	ucp = uap->sigcntxp;
877
878	if (!useracc((caddr_t)ucp, sizeof(struct osigcontext), VM_PROT_READ))
879		return (EFAULT);
880	if (((struct osigcontext *)ucp)->sc_trapno == 0x01d516)
881		return (osigreturn(p, (struct osigreturn_args *)uap));
882
883	/*
884	 * Since ucp is not an osigcontext but a ucontext_t, we have to
885	 * check again if all of it is accessible.  A ucontext_t is
886	 * much larger, so instead of just checking for the pointer
887	 * being valid for the size of an osigcontext, now check for
888	 * it being valid for a whole, new-style ucontext_t.
889	 */
890	if (!useracc((caddr_t)ucp, sizeof(ucontext_t), VM_PROT_READ))
891		return (EFAULT);
892
893	regs = p->p_md.md_regs;
894	eflags = ucp->uc_mcontext.mc_eflags;
895
896	if (eflags & PSL_VM) {
897		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
898		struct vm86_kernel *vm86;
899
900		/*
901		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
902		 * set up the vm86 area, and we can't enter vm86 mode.
903		 */
904		if (p->p_addr->u_pcb.pcb_ext == 0)
905			return (EINVAL);
906		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
907		if (vm86->vm86_inited == 0)
908			return (EINVAL);
909
910		/* go back to user mode if both flags are set */
911		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
912			trapsignal(p, SIGBUS, 0);
913
914		if (vm86->vm86_has_vme) {
915			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
916			    (eflags & VME_USERCHANGE) | PSL_VM;
917		} else {
918			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
919			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
920		}
921		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
922		tf->tf_eflags = eflags;
923		tf->tf_vm86_ds = tf->tf_ds;
924		tf->tf_vm86_es = tf->tf_es;
925		tf->tf_vm86_fs = tf->tf_fs;
926		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
927		tf->tf_ds = _udatasel;
928		tf->tf_es = _udatasel;
929		tf->tf_fs = _udatasel;
930	} else {
931		/*
932		 * Don't allow users to change privileged or reserved flags.
933		 */
934		/*
935		 * XXX do allow users to change the privileged flag PSL_RF.
936		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
937		 * should sometimes set it there too.  tf_eflags is kept in
938		 * the signal context during signal handling and there is no
939		 * other place to remember it, so the PSL_RF bit may be
940		 * corrupted by the signal handler without us knowing.
941		 * Corruption of the PSL_RF bit at worst causes one more or
942		 * one less debugger trap, so allowing it is fairly harmless.
943		 */
944		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
945			printf("sigreturn: eflags = 0x%x\n", eflags);
946	    		return(EINVAL);
947		}
948
949		/*
950		 * Don't allow users to load a valid privileged %cs.  Let the
951		 * hardware check for invalid selectors, excess privilege in
952		 * other selectors, invalid %eip's and invalid %esp's.
953		 */
954		cs = ucp->uc_mcontext.mc_cs;
955		if (!CS_SECURE(cs)) {
956			printf("sigreturn: cs = 0x%x\n", cs);
957			trapsignal(p, SIGBUS, T_PROTFLT);
958			return(EINVAL);
959		}
960		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(struct trapframe));
961	}
962
963	if (ucp->uc_mcontext.mc_onstack & 1)
964		p->p_sigstk.ss_flags |= SS_ONSTACK;
965	else
966		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
967
968	p->p_sigmask = ucp->uc_sigmask;
969	SIG_CANTMASK(p->p_sigmask);
970	return(EJUSTRETURN);
971}
972
973/*
974 * Machine dependent boot() routine
975 *
976 * I haven't seen anything to put here yet
977 * Possibly some stuff might be grafted back here from boot()
978 */
979void
980cpu_boot(int howto)
981{
982}
983
984/*
985 * Shutdown the CPU as much as possible
986 */
987void
988cpu_halt(void)
989{
990	for (;;)
991		__asm__ ("hlt");
992}
993
994/*
995 * Clear registers on exec
996 */
997void
998setregs(p, entry, stack, ps_strings)
999	struct proc *p;
1000	u_long entry;
1001	u_long stack;
1002	u_long ps_strings;
1003{
1004	struct trapframe *regs = p->p_md.md_regs;
1005	struct pcb *pcb = &p->p_addr->u_pcb;
1006
1007#ifdef USER_LDT
1008	/* was i386_user_cleanup() in NetBSD */
1009	if (pcb->pcb_ldt) {
1010		if (pcb == curpcb) {
1011			lldt(_default_ldt);
1012			currentldt = _default_ldt;
1013		}
1014		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
1015			pcb->pcb_ldt_len * sizeof(union descriptor));
1016		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
1017 	}
1018#endif
1019
1020	bzero((char *)regs, sizeof(struct trapframe));
1021	regs->tf_eip = entry;
1022	regs->tf_esp = stack;
1023	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1024	regs->tf_ss = _udatasel;
1025	regs->tf_ds = _udatasel;
1026	regs->tf_es = _udatasel;
1027	regs->tf_fs = _udatasel;
1028	regs->tf_cs = _ucodesel;
1029
1030	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1031	regs->tf_ebx = ps_strings;
1032
1033	/* reset %gs as well */
1034	if (pcb == curpcb)
1035		load_gs(_udatasel);
1036	else
1037		pcb->pcb_gs = _udatasel;
1038
1039	/*
1040	 * Initialize the math emulator (if any) for the current process.
1041	 * Actually, just clear the bit that says that the emulator has
1042	 * been initialized.  Initialization is delayed until the process
1043	 * traps to the emulator (if it is done at all) mainly because
1044	 * emulators don't provide an entry point for initialization.
1045	 */
1046	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
1047
1048	/*
1049	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
1050	 * for why fwait must be trapped at least if there is an npx or an
1051	 * emulator).  This is mainly to handle the case where npx0 is not
1052	 * configured, since the npx routines normally set up the trap
1053	 * otherwise.  It should be done only at boot time, but doing it
1054	 * here allows modifying `npx_exists' for testing the emulator on
1055	 * systems with an npx.
1056	 */
1057	load_cr0(rcr0() | CR0_MP | CR0_TS);
1058
1059#if NNPX > 0
1060	/* Initialize the npx (if any) for the current process. */
1061	npxinit(__INITIAL_NPXCW__);
1062#endif
1063
1064      /*
1065       * XXX - Linux emulator
1066       * Make sure sure edx is 0x0 on entry. Linux binaries depend
1067       * on it.
1068       */
1069      p->p_retval[1] = 0;
1070}
1071
1072static int
1073sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
1074{
1075	int error;
1076	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1077		req);
1078	if (!error && req->newptr)
1079		resettodr();
1080	return (error);
1081}
1082
1083SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1084	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1085
1086SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1087	CTLFLAG_RW, &disable_rtc_set, 0, "");
1088
1089SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1090	CTLFLAG_RD, &bootinfo, bootinfo, "");
1091
1092SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1093	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1094
1095/*
1096 * Initialize 386 and configure to run kernel
1097 */
1098
1099/*
1100 * Initialize segments & interrupt table
1101 */
1102
1103int _default_ldt;
1104#ifdef SMP
1105union descriptor gdt[NGDT * NCPU];	/* global descriptor table */
1106#else
1107union descriptor gdt[NGDT];		/* global descriptor table */
1108#endif
1109static struct gate_descriptor idt0[NIDT];
1110struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1111union descriptor ldt[NLDT];		/* local descriptor table */
1112#ifdef SMP
1113/* table descriptors - used to load tables by microp */
1114struct region_descriptor r_gdt, r_idt;
1115#endif
1116
1117#ifndef SMP
1118extern struct segment_descriptor common_tssd, *tss_gdt;
1119#endif
1120int private_tss;			/* flag indicating private tss */
1121
1122#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1123extern int has_f00f_bug;
1124#endif
1125
1126static struct i386tss dblfault_tss;
1127static char dblfault_stack[PAGE_SIZE];
1128
1129extern  struct user *proc0paddr;
1130
1131
1132/* software prototypes -- in more palatable form */
1133struct soft_segment_descriptor gdt_segs[] = {
1134/* GNULL_SEL	0 Null Descriptor */
1135{	0x0,			/* segment base address  */
1136	0x0,			/* length */
1137	0,			/* segment type */
1138	0,			/* segment descriptor priority level */
1139	0,			/* segment descriptor present */
1140	0, 0,
1141	0,			/* default 32 vs 16 bit size */
1142	0  			/* limit granularity (byte/page units)*/ },
1143/* GCODE_SEL	1 Code Descriptor for kernel */
1144{	0x0,			/* segment base address  */
1145	0xfffff,		/* length - all address space */
1146	SDT_MEMERA,		/* segment type */
1147	0,			/* segment descriptor priority level */
1148	1,			/* segment descriptor present */
1149	0, 0,
1150	1,			/* default 32 vs 16 bit size */
1151	1  			/* limit granularity (byte/page units)*/ },
1152/* GDATA_SEL	2 Data Descriptor for kernel */
1153{	0x0,			/* segment base address  */
1154	0xfffff,		/* length - all address space */
1155	SDT_MEMRWA,		/* segment type */
1156	0,			/* segment descriptor priority level */
1157	1,			/* segment descriptor present */
1158	0, 0,
1159	1,			/* default 32 vs 16 bit size */
1160	1  			/* limit granularity (byte/page units)*/ },
1161/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1162{	0x0,			/* segment base address  */
1163	0xfffff,		/* length - all address space */
1164	SDT_MEMRWA,		/* segment type */
1165	0,			/* segment descriptor priority level */
1166	1,			/* segment descriptor present */
1167	0, 0,
1168	1,			/* default 32 vs 16 bit size */
1169	1  			/* limit granularity (byte/page units)*/ },
1170/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1171{
1172	0x0,			/* segment base address */
1173	sizeof(struct i386tss)-1,/* length - all address space */
1174	SDT_SYS386TSS,		/* segment type */
1175	0,			/* segment descriptor priority level */
1176	1,			/* segment descriptor present */
1177	0, 0,
1178	0,			/* unused - default 32 vs 16 bit size */
1179	0  			/* limit granularity (byte/page units)*/ },
1180/* GLDT_SEL	5 LDT Descriptor */
1181{	(int) ldt,		/* segment base address  */
1182	sizeof(ldt)-1,		/* length - all address space */
1183	SDT_SYSLDT,		/* segment type */
1184	SEL_UPL,		/* segment descriptor priority level */
1185	1,			/* segment descriptor present */
1186	0, 0,
1187	0,			/* unused - default 32 vs 16 bit size */
1188	0  			/* limit granularity (byte/page units)*/ },
1189/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1190{	(int) ldt,		/* segment base address  */
1191	(512 * sizeof(union descriptor)-1),		/* length */
1192	SDT_SYSLDT,		/* segment type */
1193	0,			/* segment descriptor priority level */
1194	1,			/* segment descriptor present */
1195	0, 0,
1196	0,			/* unused - default 32 vs 16 bit size */
1197	0  			/* limit granularity (byte/page units)*/ },
1198/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1199{	0x0,			/* segment base address  */
1200	0x0,			/* length - all address space */
1201	0,			/* segment type */
1202	0,			/* segment descriptor priority level */
1203	0,			/* segment descriptor present */
1204	0, 0,
1205	0,			/* default 32 vs 16 bit size */
1206	0  			/* limit granularity (byte/page units)*/ },
1207/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1208{	0x400,			/* segment base address */
1209	0xfffff,		/* length */
1210	SDT_MEMRWA,		/* segment type */
1211	0,			/* segment descriptor priority level */
1212	1,			/* segment descriptor present */
1213	0, 0,
1214	1,			/* default 32 vs 16 bit size */
1215	1  			/* limit granularity (byte/page units)*/ },
1216/* GPANIC_SEL	9 Panic Tss Descriptor */
1217{	(int) &dblfault_tss,	/* segment base address  */
1218	sizeof(struct i386tss)-1,/* length - all address space */
1219	SDT_SYS386TSS,		/* segment type */
1220	0,			/* segment descriptor priority level */
1221	1,			/* segment descriptor present */
1222	0, 0,
1223	0,			/* unused - default 32 vs 16 bit size */
1224	0  			/* limit granularity (byte/page units)*/ },
1225/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1226{	0,			/* segment base address (overwritten)  */
1227	0xfffff,		/* length */
1228	SDT_MEMERA,		/* segment type */
1229	0,			/* segment descriptor priority level */
1230	1,			/* segment descriptor present */
1231	0, 0,
1232	0,			/* default 32 vs 16 bit size */
1233	1  			/* limit granularity (byte/page units)*/ },
1234/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1235{	0,			/* segment base address (overwritten)  */
1236	0xfffff,		/* length */
1237	SDT_MEMERA,		/* segment type */
1238	0,			/* segment descriptor priority level */
1239	1,			/* segment descriptor present */
1240	0, 0,
1241	0,			/* default 32 vs 16 bit size */
1242	1  			/* limit granularity (byte/page units)*/ },
1243/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1244{	0,			/* segment base address (overwritten) */
1245	0xfffff,		/* length */
1246	SDT_MEMRWA,		/* segment type */
1247	0,			/* segment descriptor priority level */
1248	1,			/* segment descriptor present */
1249	0, 0,
1250	1,			/* default 32 vs 16 bit size */
1251	1  			/* limit granularity (byte/page units)*/ },
1252/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1253{	0,			/* segment base address (overwritten) */
1254	0xfffff,		/* length */
1255	SDT_MEMRWA,		/* segment type */
1256	0,			/* segment descriptor priority level */
1257	1,			/* segment descriptor present */
1258	0, 0,
1259	0,			/* default 32 vs 16 bit size */
1260	1  			/* limit granularity (byte/page units)*/ },
1261/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1262{	0,			/* segment base address (overwritten) */
1263	0xfffff,		/* length */
1264	SDT_MEMRWA,		/* segment type */
1265	0,			/* segment descriptor priority level */
1266	1,			/* segment descriptor present */
1267	0, 0,
1268	0,			/* default 32 vs 16 bit size */
1269	1  			/* limit granularity (byte/page units)*/ },
1270};
1271
1272static struct soft_segment_descriptor ldt_segs[] = {
1273	/* Null Descriptor - overwritten by call gate */
1274{	0x0,			/* segment base address  */
1275	0x0,			/* length - all address space */
1276	0,			/* segment type */
1277	0,			/* segment descriptor priority level */
1278	0,			/* segment descriptor present */
1279	0, 0,
1280	0,			/* default 32 vs 16 bit size */
1281	0  			/* limit granularity (byte/page units)*/ },
1282	/* Null Descriptor - overwritten by call gate */
1283{	0x0,			/* segment base address  */
1284	0x0,			/* length - all address space */
1285	0,			/* segment type */
1286	0,			/* segment descriptor priority level */
1287	0,			/* segment descriptor present */
1288	0, 0,
1289	0,			/* default 32 vs 16 bit size */
1290	0  			/* limit granularity (byte/page units)*/ },
1291	/* Null Descriptor - overwritten by call gate */
1292{	0x0,			/* segment base address  */
1293	0x0,			/* length - all address space */
1294	0,			/* segment type */
1295	0,			/* segment descriptor priority level */
1296	0,			/* segment descriptor present */
1297	0, 0,
1298	0,			/* default 32 vs 16 bit size */
1299	0  			/* limit granularity (byte/page units)*/ },
1300	/* Code Descriptor for user */
1301{	0x0,			/* segment base address  */
1302	0xfffff,		/* length - all address space */
1303	SDT_MEMERA,		/* segment type */
1304	SEL_UPL,		/* segment descriptor priority level */
1305	1,			/* segment descriptor present */
1306	0, 0,
1307	1,			/* default 32 vs 16 bit size */
1308	1  			/* limit granularity (byte/page units)*/ },
1309	/* Null Descriptor - overwritten by call gate */
1310{	0x0,			/* segment base address  */
1311	0x0,			/* length - all address space */
1312	0,			/* segment type */
1313	0,			/* segment descriptor priority level */
1314	0,			/* segment descriptor present */
1315	0, 0,
1316	0,			/* default 32 vs 16 bit size */
1317	0  			/* limit granularity (byte/page units)*/ },
1318	/* Data Descriptor for user */
1319{	0x0,			/* segment base address  */
1320	0xfffff,		/* length - all address space */
1321	SDT_MEMRWA,		/* segment type */
1322	SEL_UPL,		/* segment descriptor priority level */
1323	1,			/* segment descriptor present */
1324	0, 0,
1325	1,			/* default 32 vs 16 bit size */
1326	1  			/* limit granularity (byte/page units)*/ },
1327};
1328
1329void
1330setidt(idx, func, typ, dpl, selec)
1331	int idx;
1332	inthand_t *func;
1333	int typ;
1334	int dpl;
1335	int selec;
1336{
1337	struct gate_descriptor *ip;
1338
1339	ip = idt + idx;
1340	ip->gd_looffset = (int)func;
1341	ip->gd_selector = selec;
1342	ip->gd_stkcpy = 0;
1343	ip->gd_xx = 0;
1344	ip->gd_type = typ;
1345	ip->gd_dpl = dpl;
1346	ip->gd_p = 1;
1347	ip->gd_hioffset = ((int)func)>>16 ;
1348}
1349
1350#define	IDTVEC(name)	__CONCAT(X,name)
1351
1352extern inthand_t
1353	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1354	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1355	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1356	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1357	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1358
1359void
1360sdtossd(sd, ssd)
1361	struct segment_descriptor *sd;
1362	struct soft_segment_descriptor *ssd;
1363{
1364	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1365	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1366	ssd->ssd_type  = sd->sd_type;
1367	ssd->ssd_dpl   = sd->sd_dpl;
1368	ssd->ssd_p     = sd->sd_p;
1369	ssd->ssd_def32 = sd->sd_def32;
1370	ssd->ssd_gran  = sd->sd_gran;
1371}
1372
1373#define PHYSMAP_SIZE	(2 * 8)
1374
1375/*
1376 * Populate the (physmap) array with base/bound pairs describing the
1377 * available physical memory in the system, then test this memory and
1378 * build the phys_avail array describing the actually-available memory.
1379 *
1380 * If we cannot accurately determine the physical memory map, then use
1381 * value from the 0xE801 call, and failing that, the RTC.
1382 *
1383 * Total memory size may be set by the kernel environment variable
1384 * hw.physmem or the compile-time define MAXMEM.
1385 */
1386static void
1387getmemsize(int first)
1388{
1389	int i, physmap_idx, pa_indx;
1390	u_int basemem, extmem;
1391	struct vm86frame vmf;
1392	struct vm86context vmc;
1393	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1394	pt_entry_t pte;
1395	const char *cp;
1396	struct {
1397		u_int64_t base;
1398		u_int64_t length;
1399		u_int32_t type;
1400	} *smap;
1401
1402	bzero(&vmf, sizeof(struct vm86frame));
1403	bzero(physmap, sizeof(physmap));
1404
1405	/*
1406	 * Perform "base memory" related probes & setup
1407	 */
1408	vm86_intcall(0x12, &vmf);
1409	basemem = vmf.vmf_ax;
1410	if (basemem > 640) {
1411		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1412			basemem);
1413		basemem = 640;
1414	}
1415
1416	/*
1417	 * XXX if biosbasemem is now < 640, there is a `hole'
1418	 * between the end of base memory and the start of
1419	 * ISA memory.  The hole may be empty or it may
1420	 * contain BIOS code or data.  Map it read/write so
1421	 * that the BIOS can write to it.  (Memory from 0 to
1422	 * the physical end of the kernel is mapped read-only
1423	 * to begin with and then parts of it are remapped.
1424	 * The parts that aren't remapped form holes that
1425	 * remain read-only and are unused by the kernel.
1426	 * The base memory area is below the physical end of
1427	 * the kernel and right now forms a read-only hole.
1428	 * The part of it from PAGE_SIZE to
1429	 * (trunc_page(biosbasemem * 1024) - 1) will be
1430	 * remapped and used by the kernel later.)
1431	 *
1432	 * This code is similar to the code used in
1433	 * pmap_mapdev, but since no memory needs to be
1434	 * allocated we simply change the mapping.
1435	 */
1436	for (pa = trunc_page(basemem * 1024);
1437	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1438		pte = (pt_entry_t)vtopte(pa + KERNBASE);
1439		*pte = pa | PG_RW | PG_V;
1440	}
1441
1442	/*
1443	 * if basemem != 640, map pages r/w into vm86 page table so
1444	 * that the bios can scribble on it.
1445	 */
1446	pte = (pt_entry_t)vm86paddr;
1447	for (i = basemem / 4; i < 160; i++)
1448		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1449
1450	/*
1451	 * map page 1 R/W into the kernel page table so we can use it
1452	 * as a buffer.  The kernel will unmap this page later.
1453	 */
1454	pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
1455	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1456
1457	/*
1458	 * get memory map with INT 15:E820
1459	 */
1460#define SMAPSIZ 	sizeof(*smap)
1461#define SMAP_SIG	0x534D4150			/* 'SMAP' */
1462
1463	vmc.npages = 0;
1464	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1465	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1466
1467	physmap_idx = 0;
1468	vmf.vmf_ebx = 0;
1469	do {
1470		vmf.vmf_eax = 0xE820;
1471		vmf.vmf_edx = SMAP_SIG;
1472		vmf.vmf_ecx = SMAPSIZ;
1473		i = vm86_datacall(0x15, &vmf, &vmc);
1474		if (i || vmf.vmf_eax != SMAP_SIG)
1475			break;
1476		if (boothowto & RB_VERBOSE)
1477			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1478				smap->type,
1479				*(u_int32_t *)((char *)&smap->base + 4),
1480				(u_int32_t)smap->base,
1481				*(u_int32_t *)((char *)&smap->length + 4),
1482				(u_int32_t)smap->length);
1483
1484		if (smap->type != 0x01)
1485			goto next_run;
1486
1487		if (smap->length == 0)
1488			goto next_run;
1489
1490		if (smap->base >= 0xffffffff) {
1491			printf("%uK of memory above 4GB ignored\n",
1492			    (u_int)(smap->length / 1024));
1493			goto next_run;
1494		}
1495
1496		for (i = 0; i <= physmap_idx; i += 2) {
1497			if (smap->base < physmap[i + 1]) {
1498				if (boothowto & RB_VERBOSE)
1499					printf(
1500	"Overlapping or non-montonic memory region, ignoring second region\n");
1501				goto next_run;
1502			}
1503		}
1504
1505		if (smap->base == physmap[physmap_idx + 1]) {
1506			physmap[physmap_idx + 1] += smap->length;
1507			goto next_run;
1508		}
1509
1510		physmap_idx += 2;
1511		if (physmap_idx == PHYSMAP_SIZE) {
1512			printf(
1513		"Too many segments in the physical address map, giving up\n");
1514			break;
1515		}
1516		physmap[physmap_idx] = smap->base;
1517		physmap[physmap_idx + 1] = smap->base + smap->length;
1518next_run:
1519	} while (vmf.vmf_ebx != 0);
1520
1521	if (physmap[1] != 0)
1522		goto physmap_done;
1523
1524	/*
1525	 * If we failed above, try memory map with INT 15:E801
1526	 */
1527	vmf.vmf_ax = 0xE801;
1528	if (vm86_intcall(0x15, &vmf) == 0) {
1529		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1530	} else {
1531#if 0
1532		vmf.vmf_ah = 0x88;
1533		vm86_intcall(0x15, &vmf);
1534		extmem = vmf.vmf_ax;
1535#else
1536		/*
1537		 * Prefer the RTC value for extended memory.
1538		 */
1539		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1540#endif
1541	}
1542
1543	/*
1544	 * Special hack for chipsets that still remap the 384k hole when
1545	 * there's 16MB of memory - this really confuses people that
1546	 * are trying to use bus mastering ISA controllers with the
1547	 * "16MB limit"; they only have 16MB, but the remapping puts
1548	 * them beyond the limit.
1549	 *
1550	 * If extended memory is between 15-16MB (16-17MB phys address range),
1551	 *	chop it to 15MB.
1552	 */
1553	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1554		extmem = 15 * 1024;
1555
1556	physmap[0] = 0;
1557	physmap[1] = basemem * 1024;
1558	physmap_idx = 2;
1559	physmap[physmap_idx] = 0x100000;
1560	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1561
1562physmap_done:
1563	/*
1564	 * Now, physmap contains a map of physical memory.
1565	 */
1566
1567#ifdef SMP
1568	/* make hole for AP bootstrap code */
1569	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1570
1571	/* look for the MP hardware - needed for apic addresses */
1572	mp_probe();
1573#endif
1574
1575	/*
1576	 * Maxmem isn't the "maximum memory", it's one larger than the
1577	 * highest page of the physical address space.  It should be
1578	 * called something like "Maxphyspage".  We may adjust this
1579	 * based on ``hw.physmem'' and the results of the memory test.
1580	 */
1581	Maxmem = atop(physmap[physmap_idx + 1]);
1582
1583#ifdef MAXMEM
1584	Maxmem = MAXMEM / 4;
1585#endif
1586
1587	/*
1588	 * hw.maxmem is a size in bytes; we also allow k, m, and g suffixes
1589	 * for the appropriate modifiers.  This overrides MAXMEM.
1590	 */
1591	if ((cp = getenv("hw.physmem")) != NULL) {
1592		u_int64_t AllowMem, sanity;
1593		char *ep;
1594
1595		sanity = AllowMem = strtouq(cp, &ep, 0);
1596		if ((ep != cp) && (*ep != 0)) {
1597			switch(*ep) {
1598			case 'g':
1599			case 'G':
1600				AllowMem <<= 10;
1601			case 'm':
1602			case 'M':
1603				AllowMem <<= 10;
1604			case 'k':
1605			case 'K':
1606				AllowMem <<= 10;
1607				break;
1608			default:
1609				AllowMem = sanity = 0;
1610			}
1611			if (AllowMem < sanity)
1612				AllowMem = 0;
1613		}
1614		if (AllowMem == 0)
1615			printf("Ignoring invalid memory size of '%s'\n", cp);
1616		else
1617			Maxmem = atop(AllowMem);
1618	}
1619
1620	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1621	    (boothowto & RB_VERBOSE))
1622		printf("Physical memory use set to %uK\n", Maxmem * 4);
1623
1624	/*
1625	 * If Maxmem has been increased beyond what the system has detected,
1626	 * extend the last memory segment to the new limit.
1627	 */
1628	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1629		physmap[physmap_idx + 1] = ptoa(Maxmem);
1630
1631	/* call pmap initialization to make new kernel address space */
1632	pmap_bootstrap(first, 0);
1633
1634	/*
1635	 * Size up each available chunk of physical memory.
1636	 */
1637	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1638	pa_indx = 0;
1639	phys_avail[pa_indx++] = physmap[0];
1640	phys_avail[pa_indx] = physmap[0];
1641#if 0
1642	pte = (pt_entry_t)vtopte(KERNBASE);
1643#else
1644	pte = (pt_entry_t)CMAP1;
1645#endif
1646
1647	/*
1648	 * physmap is in bytes, so when converting to page boundaries,
1649	 * round up the start address and round down the end address.
1650	 */
1651	for (i = 0; i <= physmap_idx; i += 2) {
1652		vm_offset_t end;
1653
1654		end = ptoa(Maxmem);
1655		if (physmap[i + 1] < end)
1656			end = trunc_page(physmap[i + 1]);
1657		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1658			int tmp, page_bad;
1659#if 0
1660			int *ptr = 0;
1661#else
1662			int *ptr = (int *)CADDR1;
1663#endif
1664
1665			/*
1666			 * block out kernel memory as not available.
1667			 */
1668			if (pa >= 0x100000 && pa < first)
1669				continue;
1670
1671			page_bad = FALSE;
1672
1673			/*
1674			 * map page into kernel: valid, read/write,non-cacheable
1675			 */
1676			*pte = pa | PG_V | PG_RW | PG_N;
1677			invltlb();
1678
1679			tmp = *(int *)ptr;
1680			/*
1681			 * Test for alternating 1's and 0's
1682			 */
1683			*(volatile int *)ptr = 0xaaaaaaaa;
1684			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1685				page_bad = TRUE;
1686			}
1687			/*
1688			 * Test for alternating 0's and 1's
1689			 */
1690			*(volatile int *)ptr = 0x55555555;
1691			if (*(volatile int *)ptr != 0x55555555) {
1692			page_bad = TRUE;
1693			}
1694			/*
1695			 * Test for all 1's
1696			 */
1697			*(volatile int *)ptr = 0xffffffff;
1698			if (*(volatile int *)ptr != 0xffffffff) {
1699				page_bad = TRUE;
1700			}
1701			/*
1702			 * Test for all 0's
1703			 */
1704			*(volatile int *)ptr = 0x0;
1705			if (*(volatile int *)ptr != 0x0) {
1706				page_bad = TRUE;
1707			}
1708			/*
1709			 * Restore original value.
1710			 */
1711			*(int *)ptr = tmp;
1712
1713			/*
1714			 * Adjust array of valid/good pages.
1715			 */
1716			if (page_bad == TRUE) {
1717				continue;
1718			}
1719			/*
1720			 * If this good page is a continuation of the
1721			 * previous set of good pages, then just increase
1722			 * the end pointer. Otherwise start a new chunk.
1723			 * Note that "end" points one higher than end,
1724			 * making the range >= start and < end.
1725			 * If we're also doing a speculative memory
1726			 * test and we at or past the end, bump up Maxmem
1727			 * so that we keep going. The first bad page
1728			 * will terminate the loop.
1729			 */
1730			if (phys_avail[pa_indx] == pa) {
1731				phys_avail[pa_indx] += PAGE_SIZE;
1732			} else {
1733				pa_indx++;
1734				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1735					printf("Too many holes in the physical address space, giving up\n");
1736					pa_indx--;
1737					break;
1738				}
1739				phys_avail[pa_indx++] = pa;	/* start */
1740				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1741			}
1742			physmem++;
1743		}
1744	}
1745	*pte = 0;
1746	invltlb();
1747
1748	/*
1749	 * XXX
1750	 * The last chunk must contain at least one page plus the message
1751	 * buffer to avoid complicating other code (message buffer address
1752	 * calculation, etc.).
1753	 */
1754	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1755	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1756		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1757		phys_avail[pa_indx--] = 0;
1758		phys_avail[pa_indx--] = 0;
1759	}
1760
1761	Maxmem = atop(phys_avail[pa_indx]);
1762
1763	/* Trim off space for the message buffer. */
1764	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1765
1766	avail_end = phys_avail[pa_indx];
1767}
1768
1769void
1770init386(first)
1771	int first;
1772{
1773	int x;
1774	struct gate_descriptor *gdp;
1775	int gsel_tss;
1776#ifndef SMP
1777	/* table descriptors - used to load tables by microp */
1778	struct region_descriptor r_gdt, r_idt;
1779#endif
1780	int off;
1781
1782	/*
1783	 * Prevent lowering of the ipl if we call tsleep() early.
1784	 */
1785	safepri = cpl;
1786
1787	proc0.p_addr = proc0paddr;
1788
1789	atdevbase = ISA_HOLE_START + KERNBASE;
1790
1791	if (bootinfo.bi_modulep) {
1792		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1793		preload_bootstrap_relocate(KERNBASE);
1794	}
1795	if (bootinfo.bi_envp)
1796		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1797
1798	/*
1799	 * make gdt memory segments, the code segment goes up to end of the
1800	 * page with etext in it, the data segment goes to the end of
1801	 * the address space
1802	 */
1803	/*
1804	 * XXX text protection is temporarily (?) disabled.  The limit was
1805	 * i386_btop(round_page(etext)) - 1.
1806	 */
1807	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1808	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1809#ifdef SMP
1810	gdt_segs[GPRIV_SEL].ssd_limit =
1811		i386_btop(sizeof(struct privatespace)) - 1;
1812	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
1813	gdt_segs[GPROC0_SEL].ssd_base =
1814		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
1815	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0];
1816#else
1817	gdt_segs[GPRIV_SEL].ssd_limit = i386_btop(0) - 1;
1818	gdt_segs[GPROC0_SEL].ssd_base = (int) &common_tss;
1819#endif
1820
1821	for (x = 0; x < NGDT; x++) {
1822#ifdef BDE_DEBUGGER
1823		/* avoid overwriting db entries with APM ones */
1824		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1825			continue;
1826#endif
1827		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1828	}
1829
1830	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1831	r_gdt.rd_base =  (int) gdt;
1832	lgdt(&r_gdt);
1833
1834	/* make ldt memory segments */
1835	/*
1836	 * The data segment limit must not cover the user area because we
1837	 * don't want the user area to be writable in copyout() etc. (page
1838	 * level protection is lost in kernel mode on 386's).  Also, we
1839	 * don't want the user area to be writable directly (page level
1840	 * protection of the user area is not available on 486's with
1841	 * CR0_WP set, because there is no user-read/kernel-write mode).
1842	 *
1843	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1844	 * should be spelled ...MAX_USER...
1845	 */
1846#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1847	/*
1848	 * The code segment limit has to cover the user area until we move
1849	 * the signal trampoline out of the user area.  This is safe because
1850	 * the code segment cannot be written to directly.
1851	 */
1852#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1853	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1854	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1855	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1856		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1857
1858	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1859	lldt(_default_ldt);
1860#ifdef USER_LDT
1861	currentldt = _default_ldt;
1862#endif
1863
1864	/* exceptions */
1865	for (x = 0; x < NIDT; x++)
1866		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1867	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1868	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1869	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1870 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1871	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1872	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1873	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1874	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1875	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1876	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1877	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1878	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1879	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1880	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1881	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1882	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1883	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1884	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1885	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1886 	setidt(0x80, &IDTVEC(int0x80_syscall),
1887			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1888
1889	r_idt.rd_limit = sizeof(idt0) - 1;
1890	r_idt.rd_base = (int) idt;
1891	lidt(&r_idt);
1892
1893	/*
1894	 * Initialize the console before we print anything out.
1895	 */
1896	cninit();
1897
1898#include	"isa.h"
1899#if	NISA >0
1900	isa_defaultirq();
1901#endif
1902	rand_initialize();
1903
1904#ifdef DDB
1905	kdb_init();
1906	if (boothowto & RB_KDB)
1907		Debugger("Boot flags requested debugger");
1908#endif
1909
1910	finishidentcpu();	/* Final stage of CPU initialization */
1911	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1912	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1913	initializecpu();	/* Initialize CPU registers */
1914
1915	/* make an initial tss so cpu can get interrupt stack on syscall! */
1916	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
1917	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1918	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1919	private_tss = 0;
1920	tss_gdt = &gdt[GPROC0_SEL].sd;
1921	common_tssd = *tss_gdt;
1922	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1923	ltr(gsel_tss);
1924
1925	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1926	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1927	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1928	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1929	dblfault_tss.tss_cr3 = (int)IdlePTD;
1930	dblfault_tss.tss_eip = (int) dblfault_handler;
1931	dblfault_tss.tss_eflags = PSL_KERNEL;
1932	dblfault_tss.tss_ds = dblfault_tss.tss_es =
1933	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1934	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1935	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1936	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1937
1938	vm86_initialize();
1939	getmemsize(first);
1940
1941	/* now running on new page tables, configured,and u/iom is accessible */
1942
1943	/* Map the message buffer. */
1944	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1945		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1946
1947	msgbufinit(msgbufp, MSGBUF_SIZE);
1948
1949	/* make a call gate to reenter kernel with */
1950	gdp = &ldt[LSYS5CALLS_SEL].gd;
1951
1952	x = (int) &IDTVEC(syscall);
1953	gdp->gd_looffset = x++;
1954	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1955	gdp->gd_stkcpy = 1;
1956	gdp->gd_type = SDT_SYS386CGT;
1957	gdp->gd_dpl = SEL_UPL;
1958	gdp->gd_p = 1;
1959	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1960
1961	/* XXX does this work? */
1962	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1963	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
1964
1965	/* transfer to user mode */
1966
1967	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1968	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1969
1970	/* setup proc 0's pcb */
1971	proc0.p_addr->u_pcb.pcb_flags = 0;
1972	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1973#ifdef SMP
1974	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1975#endif
1976	proc0.p_addr->u_pcb.pcb_ext = 0;
1977}
1978
1979#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1980static void f00f_hack(void *unused);
1981SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1982
1983static void
1984f00f_hack(void *unused) {
1985	struct gate_descriptor *new_idt;
1986#ifndef SMP
1987	struct region_descriptor r_idt;
1988#endif
1989	vm_offset_t tmp;
1990
1991	if (!has_f00f_bug)
1992		return;
1993
1994	printf("Intel Pentium detected, installing workaround for F00F bug\n");
1995
1996	r_idt.rd_limit = sizeof(idt0) - 1;
1997
1998	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
1999	if (tmp == 0)
2000		panic("kmem_alloc returned 0");
2001	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2002		panic("kmem_alloc returned non-page-aligned memory");
2003	/* Put the first seven entries in the lower page */
2004	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2005	bcopy(idt, new_idt, sizeof(idt0));
2006	r_idt.rd_base = (int)new_idt;
2007	lidt(&r_idt);
2008	idt = new_idt;
2009	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2010			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2011		panic("vm_map_protect failed");
2012	return;
2013}
2014#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2015
2016int
2017ptrace_set_pc(p, addr)
2018	struct proc *p;
2019	unsigned long addr;
2020{
2021	p->p_md.md_regs->tf_eip = addr;
2022	return (0);
2023}
2024
2025int
2026ptrace_single_step(p)
2027	struct proc *p;
2028{
2029	p->p_md.md_regs->tf_eflags |= PSL_T;
2030	return (0);
2031}
2032
2033int ptrace_read_u_check(p, addr, len)
2034	struct proc *p;
2035	vm_offset_t addr;
2036	size_t len;
2037{
2038	vm_offset_t gap;
2039
2040	if ((vm_offset_t) (addr + len) < addr)
2041		return EPERM;
2042	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
2043		return 0;
2044
2045	gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
2046
2047	if ((vm_offset_t) addr < gap)
2048		return EPERM;
2049	if ((vm_offset_t) (addr + len) <=
2050	    (vm_offset_t) (gap + sizeof(struct trapframe)))
2051		return 0;
2052	return EPERM;
2053}
2054
2055int ptrace_write_u(p, off, data)
2056	struct proc *p;
2057	vm_offset_t off;
2058	long data;
2059{
2060	struct trapframe frame_copy;
2061	vm_offset_t min;
2062	struct trapframe *tp;
2063
2064	/*
2065	 * Privileged kernel state is scattered all over the user area.
2066	 * Only allow write access to parts of regs and to fpregs.
2067	 */
2068	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
2069	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
2070		tp = p->p_md.md_regs;
2071		frame_copy = *tp;
2072		*(int *)((char *)&frame_copy + (off - min)) = data;
2073		if (!EFL_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
2074		    !CS_SECURE(frame_copy.tf_cs))
2075			return (EINVAL);
2076		*(int*)((char *)p->p_addr + off) = data;
2077		return (0);
2078	}
2079	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
2080	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
2081		*(int*)((char *)p->p_addr + off) = data;
2082		return (0);
2083	}
2084	return (EFAULT);
2085}
2086
2087int
2088fill_regs(p, regs)
2089	struct proc *p;
2090	struct reg *regs;
2091{
2092	struct pcb *pcb;
2093	struct trapframe *tp;
2094
2095	tp = p->p_md.md_regs;
2096	regs->r_fs = tp->tf_fs;
2097	regs->r_es = tp->tf_es;
2098	regs->r_ds = tp->tf_ds;
2099	regs->r_edi = tp->tf_edi;
2100	regs->r_esi = tp->tf_esi;
2101	regs->r_ebp = tp->tf_ebp;
2102	regs->r_ebx = tp->tf_ebx;
2103	regs->r_edx = tp->tf_edx;
2104	regs->r_ecx = tp->tf_ecx;
2105	regs->r_eax = tp->tf_eax;
2106	regs->r_eip = tp->tf_eip;
2107	regs->r_cs = tp->tf_cs;
2108	regs->r_eflags = tp->tf_eflags;
2109	regs->r_esp = tp->tf_esp;
2110	regs->r_ss = tp->tf_ss;
2111	pcb = &p->p_addr->u_pcb;
2112	regs->r_gs = pcb->pcb_gs;
2113	return (0);
2114}
2115
2116int
2117set_regs(p, regs)
2118	struct proc *p;
2119	struct reg *regs;
2120{
2121	struct pcb *pcb;
2122	struct trapframe *tp;
2123
2124	tp = p->p_md.md_regs;
2125	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2126	    !CS_SECURE(regs->r_cs))
2127		return (EINVAL);
2128	tp->tf_fs = regs->r_fs;
2129	tp->tf_es = regs->r_es;
2130	tp->tf_ds = regs->r_ds;
2131	tp->tf_edi = regs->r_edi;
2132	tp->tf_esi = regs->r_esi;
2133	tp->tf_ebp = regs->r_ebp;
2134	tp->tf_ebx = regs->r_ebx;
2135	tp->tf_edx = regs->r_edx;
2136	tp->tf_ecx = regs->r_ecx;
2137	tp->tf_eax = regs->r_eax;
2138	tp->tf_eip = regs->r_eip;
2139	tp->tf_cs = regs->r_cs;
2140	tp->tf_eflags = regs->r_eflags;
2141	tp->tf_esp = regs->r_esp;
2142	tp->tf_ss = regs->r_ss;
2143	pcb = &p->p_addr->u_pcb;
2144	pcb->pcb_gs = regs->r_gs;
2145	return (0);
2146}
2147
2148int
2149fill_fpregs(p, fpregs)
2150	struct proc *p;
2151	struct fpreg *fpregs;
2152{
2153	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
2154	return (0);
2155}
2156
2157int
2158set_fpregs(p, fpregs)
2159	struct proc *p;
2160	struct fpreg *fpregs;
2161{
2162	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
2163	return (0);
2164}
2165
2166int
2167fill_dbregs(p, dbregs)
2168	struct proc *p;
2169	struct dbreg *dbregs;
2170{
2171	struct pcb *pcb;
2172
2173	pcb = &p->p_addr->u_pcb;
2174	dbregs->dr0 = pcb->pcb_dr0;
2175	dbregs->dr1 = pcb->pcb_dr1;
2176	dbregs->dr2 = pcb->pcb_dr2;
2177	dbregs->dr3 = pcb->pcb_dr3;
2178	dbregs->dr4 = 0;
2179	dbregs->dr5 = 0;
2180	dbregs->dr6 = pcb->pcb_dr6;
2181	dbregs->dr7 = pcb->pcb_dr7;
2182	return (0);
2183}
2184
2185int
2186set_dbregs(p, dbregs)
2187	struct proc *p;
2188	struct dbreg *dbregs;
2189{
2190	struct pcb *pcb;
2191
2192	pcb = &p->p_addr->u_pcb;
2193
2194	/*
2195	 * Don't let a process set a breakpoint that is not within the
2196	 * process's address space.  If a process could do this, it
2197	 * could halt the system by setting a breakpoint in the kernel
2198	 * (if ddb was enabled).  Thus, we need to check to make sure
2199	 * that no breakpoints are being enabled for addresses outside
2200	 * process's address space, unless, perhaps, we were called by
2201	 * uid 0.
2202	 *
2203	 * XXX - what about when the watched area of the user's
2204	 * address space is written into from within the kernel
2205	 * ... wouldn't that still cause a breakpoint to be generated
2206	 * from within kernel mode?
2207	 */
2208
2209	if (p->p_ucred->cr_uid != 0) {
2210		if (dbregs->dr7 & 0x3) {
2211			/* dr0 is enabled */
2212			if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2213				return (EINVAL);
2214		}
2215
2216		if (dbregs->dr7 & (0x3<<2)) {
2217			/* dr1 is enabled */
2218			if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2219				return (EINVAL);
2220		}
2221
2222		if (dbregs->dr7 & (0x3<<4)) {
2223			/* dr2 is enabled */
2224			if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2225       				return (EINVAL);
2226		}
2227
2228		if (dbregs->dr7 & (0x3<<6)) {
2229			/* dr3 is enabled */
2230			if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2231				return (EINVAL);
2232		}
2233	}
2234
2235	pcb->pcb_dr0 = dbregs->dr0;
2236	pcb->pcb_dr1 = dbregs->dr1;
2237	pcb->pcb_dr2 = dbregs->dr2;
2238	pcb->pcb_dr3 = dbregs->dr3;
2239	pcb->pcb_dr6 = dbregs->dr6;
2240	pcb->pcb_dr7 = dbregs->dr7;
2241
2242	pcb->pcb_flags |= PCB_DBREGS;
2243
2244	return (0);
2245}
2246
2247#ifndef DDB
2248void
2249Debugger(const char *msg)
2250{
2251	printf("Debugger(\"%s\") called.\n", msg);
2252}
2253#endif /* no DDB */
2254
2255#include <sys/disklabel.h>
2256
2257/*
2258 * Determine the size of the transfer, and make sure it is
2259 * within the boundaries of the partition. Adjust transfer
2260 * if needed, and signal errors or early completion.
2261 */
2262int
2263bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
2264{
2265        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
2266        int labelsect = lp->d_partitions[0].p_offset;
2267        int maxsz = p->p_size,
2268                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2269
2270        /* overwriting disk label ? */
2271        /* XXX should also protect bootstrap in first 8K */
2272        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
2273#if LABELSECTOR != 0
2274            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2275#endif
2276            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
2277                bp->b_error = EROFS;
2278                goto bad;
2279        }
2280
2281#if     defined(DOSBBSECTOR) && defined(notyet)
2282        /* overwriting master boot record? */
2283        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
2284            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
2285                bp->b_error = EROFS;
2286                goto bad;
2287        }
2288#endif
2289
2290        /* beyond partition? */
2291        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
2292                /* if exactly at end of disk, return an EOF */
2293                if (bp->b_blkno == maxsz) {
2294                        bp->b_resid = bp->b_bcount;
2295                        return(0);
2296                }
2297                /* or truncate if part of it fits */
2298                sz = maxsz - bp->b_blkno;
2299                if (sz <= 0) {
2300                        bp->b_error = EINVAL;
2301                        goto bad;
2302                }
2303                bp->b_bcount = sz << DEV_BSHIFT;
2304        }
2305
2306        bp->b_pblkno = bp->b_blkno + p->p_offset;
2307        return(1);
2308
2309bad:
2310        bp->b_flags |= B_ERROR;
2311        return(-1);
2312}
2313
2314#ifdef DDB
2315
2316/*
2317 * Provide inb() and outb() as functions.  They are normally only
2318 * available as macros calling inlined functions, thus cannot be
2319 * called inside DDB.
2320 *
2321 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2322 */
2323
2324#undef inb
2325#undef outb
2326
2327/* silence compiler warnings */
2328u_char inb(u_int);
2329void outb(u_int, u_char);
2330
2331u_char
2332inb(u_int port)
2333{
2334	u_char	data;
2335	/*
2336	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2337	 * %edx, while gcc generates inferior code (movw instead of movl)
2338	 * if we tell it to load (u_short) port.
2339	 */
2340	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2341	return (data);
2342}
2343
2344void
2345outb(u_int port, u_char data)
2346{
2347	u_char	al;
2348	/*
2349	 * Use an unnecessary assignment to help gcc's register allocator.
2350	 * This make a large difference for gcc-1.40 and a tiny difference
2351	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2352	 * best results.  gcc-2.6.0 can't handle this.
2353	 */
2354	al = data;
2355	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2356}
2357
2358#endif /* DDB */
2359