machdep.c revision 51792
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 51792 1999-09-29 15:06:27Z marcel $
39 */
40
41#include "apm.h"
42#include "ether.h"
43#include "npx.h"
44#include "opt_atalk.h"
45#include "opt_cpu.h"
46#include "opt_ddb.h"
47#include "opt_inet.h"
48#include "opt_ipx.h"
49#include "opt_maxmem.h"
50#include "opt_msgbuf.h"
51#include "opt_perfmon.h"
52#include "opt_smp.h"
53#include "opt_sysvipc.h"
54#include "opt_user_ldt.h"
55#include "opt_userconfig.h"
56
57#include <sys/param.h>
58#include <sys/systm.h>
59#include <sys/sysproto.h>
60#include <sys/signalvar.h>
61#include <sys/kernel.h>
62#include <sys/linker.h>
63#include <sys/proc.h>
64#include <sys/buf.h>
65#include <sys/reboot.h>
66#include <sys/callout.h>
67#include <sys/malloc.h>
68#include <sys/mbuf.h>
69#include <sys/msgbuf.h>
70#include <sys/sysent.h>
71#include <sys/sysctl.h>
72#include <sys/vmmeter.h>
73#include <sys/bus.h>
74
75#ifdef SYSVSHM
76#include <sys/shm.h>
77#endif
78
79#ifdef SYSVMSG
80#include <sys/msg.h>
81#endif
82
83#ifdef SYSVSEM
84#include <sys/sem.h>
85#endif
86
87#include <vm/vm.h>
88#include <vm/vm_param.h>
89#include <vm/vm_prot.h>
90#include <sys/lock.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_object.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_pager.h>
96#include <vm/vm_extern.h>
97
98#include <sys/user.h>
99#include <sys/exec.h>
100#include <sys/cons.h>
101
102#include <ddb/ddb.h>
103
104#include <net/netisr.h>
105
106#include <machine/cpu.h>
107#include <machine/reg.h>
108#include <machine/clock.h>
109#include <machine/specialreg.h>
110#include <machine/bootinfo.h>
111#include <machine/ipl.h>
112#include <machine/md_var.h>
113#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
114#ifdef SMP
115#include <machine/smp.h>
116#include <machine/globaldata.h>
117#endif
118#ifdef PERFMON
119#include <machine/perfmon.h>
120#endif
121
122#ifdef OLD_BUS_ARCH
123#include <i386/isa/isa_device.h>
124#endif
125#include <i386/isa/intr_machdep.h>
126#include <isa/rtc.h>
127#include <machine/vm86.h>
128#include <machine/random.h>
129#include <sys/ptrace.h>
130#include <machine/sigframe.h>
131
132extern void init386 __P((int first));
133extern void dblfault_handler __P((void));
134
135extern void printcpuinfo(void);	/* XXX header file */
136extern void earlysetcpuclass(void);	/* same header file */
137extern void finishidentcpu(void);
138extern void panicifcpuunsupported(void);
139extern void initializecpu(void);
140
141static void cpu_startup __P((void *));
142SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
143
144static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
145
146int	_udatasel, _ucodesel;
147u_int	atdevbase;
148
149#if defined(SWTCH_OPTIM_STATS)
150extern int swtch_optim_stats;
151SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
152	CTLFLAG_RD, &swtch_optim_stats, 0, "");
153SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
154	CTLFLAG_RD, &tlb_flush_count, 0, "");
155#endif
156
157#ifdef PC98
158static int	ispc98 = 1;
159#else
160static int	ispc98 = 0;
161#endif
162SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
163
164int physmem = 0;
165int cold = 1;
166
167static int
168sysctl_hw_physmem SYSCTL_HANDLER_ARGS
169{
170	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
171	return (error);
172}
173
174SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
175	0, 0, sysctl_hw_physmem, "I", "");
176
177static int
178sysctl_hw_usermem SYSCTL_HANDLER_ARGS
179{
180	int error = sysctl_handle_int(oidp, 0,
181		ctob(physmem - cnt.v_wire_count), req);
182	return (error);
183}
184
185SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
186	0, 0, sysctl_hw_usermem, "I", "");
187
188static int
189sysctl_hw_availpages SYSCTL_HANDLER_ARGS
190{
191	int error = sysctl_handle_int(oidp, 0,
192		i386_btop(avail_end - avail_start), req);
193	return (error);
194}
195
196SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
197	0, 0, sysctl_hw_availpages, "I", "");
198
199static int
200sysctl_machdep_msgbuf SYSCTL_HANDLER_ARGS
201{
202	int error;
203
204	/* Unwind the buffer, so that it's linear (possibly starting with
205	 * some initial nulls).
206	 */
207	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
208		msgbufp->msg_size-msgbufp->msg_bufr,req);
209	if(error) return(error);
210	if(msgbufp->msg_bufr>0) {
211		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
212			msgbufp->msg_bufr,req);
213	}
214	return(error);
215}
216
217SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
218	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
219
220static int msgbuf_clear;
221
222static int
223sysctl_machdep_msgbuf_clear SYSCTL_HANDLER_ARGS
224{
225	int error;
226	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
227		req);
228	if (!error && req->newptr) {
229		/* Clear the buffer and reset write pointer */
230		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
231		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
232		msgbuf_clear=0;
233	}
234	return (error);
235}
236
237SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
238	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
239	"Clear kernel message buffer");
240
241int bootverbose = 0, Maxmem = 0;
242long dumplo;
243
244vm_offset_t phys_avail[10];
245
246/* must be 2 less so 0 0 can signal end of chunks */
247#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
248
249static vm_offset_t buffer_sva, buffer_eva;
250vm_offset_t clean_sva, clean_eva;
251static vm_offset_t pager_sva, pager_eva;
252
253#define offsetof(type, member)	((size_t)(&((type *)0)->member))
254
255static void
256cpu_startup(dummy)
257	void *dummy;
258{
259	register unsigned i;
260	register caddr_t v;
261	vm_offset_t maxaddr;
262	vm_size_t size = 0;
263	int firstaddr;
264	vm_offset_t minaddr;
265
266	if (boothowto & RB_VERBOSE)
267		bootverbose++;
268
269	/*
270	 * Good {morning,afternoon,evening,night}.
271	 */
272	printf(version);
273	earlysetcpuclass();
274	startrtclock();
275	printcpuinfo();
276	panicifcpuunsupported();
277#ifdef PERFMON
278	perfmon_init();
279#endif
280	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
281	/*
282	 * Display any holes after the first chunk of extended memory.
283	 */
284	if (bootverbose) {
285		int indx;
286
287		printf("Physical memory chunk(s):\n");
288		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
289			int size1 = phys_avail[indx + 1] - phys_avail[indx];
290
291			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
292			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
293			    size1 / PAGE_SIZE);
294		}
295	}
296
297	/*
298	 * Calculate callout wheel size
299	 */
300	for (callwheelsize = 1, callwheelbits = 0;
301	     callwheelsize < ncallout;
302	     callwheelsize <<= 1, ++callwheelbits)
303		;
304	callwheelmask = callwheelsize - 1;
305
306	/*
307	 * Allocate space for system data structures.
308	 * The first available kernel virtual address is in "v".
309	 * As pages of kernel virtual memory are allocated, "v" is incremented.
310	 * As pages of memory are allocated and cleared,
311	 * "firstaddr" is incremented.
312	 * An index into the kernel page table corresponding to the
313	 * virtual memory address maintained in "v" is kept in "mapaddr".
314	 */
315
316	/*
317	 * Make two passes.  The first pass calculates how much memory is
318	 * needed and allocates it.  The second pass assigns virtual
319	 * addresses to the various data structures.
320	 */
321	firstaddr = 0;
322again:
323	v = (caddr_t)firstaddr;
324
325#define	valloc(name, type, num) \
326	    (name) = (type *)v; v = (caddr_t)((name)+(num))
327#define	valloclim(name, type, num, lim) \
328	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
329
330	valloc(callout, struct callout, ncallout);
331	valloc(callwheel, struct callout_tailq, callwheelsize);
332#ifdef SYSVSHM
333	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
334#endif
335#ifdef SYSVSEM
336	valloc(sema, struct semid_ds, seminfo.semmni);
337	valloc(sem, struct sem, seminfo.semmns);
338	/* This is pretty disgusting! */
339	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
340#endif
341#ifdef SYSVMSG
342	valloc(msgpool, char, msginfo.msgmax);
343	valloc(msgmaps, struct msgmap, msginfo.msgseg);
344	valloc(msghdrs, struct msg, msginfo.msgtql);
345	valloc(msqids, struct msqid_ds, msginfo.msgmni);
346#endif
347
348	if (nbuf == 0) {
349		nbuf = 30;
350		if (physmem > 1024)
351			nbuf += min((physmem - 1024) / 8, 2048);
352		if (physmem > 16384)
353			nbuf += (physmem - 16384) / 20;
354	}
355	nswbuf = max(min(nbuf/4, 256), 16);
356
357	valloc(swbuf, struct buf, nswbuf);
358	valloc(buf, struct buf, nbuf);
359	v = bufhashinit(v);
360
361	/*
362	 * End of first pass, size has been calculated so allocate memory
363	 */
364	if (firstaddr == 0) {
365		size = (vm_size_t)(v - firstaddr);
366		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
367		if (firstaddr == 0)
368			panic("startup: no room for tables");
369		goto again;
370	}
371
372	/*
373	 * End of second pass, addresses have been assigned
374	 */
375	if ((vm_size_t)(v - firstaddr) != size)
376		panic("startup: table size inconsistency");
377
378	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
379			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
380	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
381				(nbuf*BKVASIZE));
382	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
383				(nswbuf*MAXPHYS) + pager_map_size);
384	pager_map->system_map = 1;
385	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
386				(16*(ARG_MAX+(PAGE_SIZE*3))));
387
388	/*
389	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
390	 * we use the more space efficient malloc in place of kmem_alloc.
391	 */
392	{
393		vm_offset_t mb_map_size;
394
395		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
396		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
397		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
398		bzero(mclrefcnt, mb_map_size / MCLBYTES);
399		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
400			mb_map_size);
401		mb_map->system_map = 1;
402	}
403
404	/*
405	 * Initialize callouts
406	 */
407	SLIST_INIT(&callfree);
408	for (i = 0; i < ncallout; i++) {
409		callout_init(&callout[i]);
410		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
411		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
412	}
413
414	for (i = 0; i < callwheelsize; i++) {
415		TAILQ_INIT(&callwheel[i]);
416	}
417
418#if defined(USERCONFIG)
419	userconfig();
420	cninit();		/* the preferred console may have changed */
421#endif
422
423	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
424	    ptoa(cnt.v_free_count) / 1024);
425
426	/*
427	 * Set up buffers, so they can be used to read disk labels.
428	 */
429	bufinit();
430	vm_pager_bufferinit();
431
432#ifdef SMP
433	/*
434	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
435	 */
436	mp_start();			/* fire up the APs and APICs */
437	mp_announce();
438#endif  /* SMP */
439}
440
441int
442register_netisr(num, handler)
443	int num;
444	netisr_t *handler;
445{
446
447	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
448		printf("register_netisr: bad isr number: %d\n", num);
449		return (EINVAL);
450	}
451	netisrs[num] = handler;
452	return (0);
453}
454
455void
456netisr_sysinit(data)
457	void *data;
458{
459	const struct netisrtab *nit;
460
461	nit = (const struct netisrtab *)data;
462	register_netisr(nit->nit_num, nit->nit_isr);
463}
464
465/*
466 * Send an interrupt to process.
467 *
468 * Stack is set up to allow sigcode stored
469 * at top to call routine, followed by kcall
470 * to sigreturn routine below.  After sigreturn
471 * resets the signal mask, the stack, and the
472 * frame pointer, it returns to the user
473 * specified pc, psl.
474 */
475static void
476osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
477{
478	register struct proc *p = curproc;
479	register struct trapframe *regs;
480	register struct osigframe *fp;
481	struct osigframe sf;
482	struct sigacts *psp = p->p_sigacts;
483	int oonstack;
484
485	regs = p->p_md.md_regs;
486	oonstack = (psp->ps_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
487
488	/* Allocate and validate space for the signal handler context. */
489	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
490	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
491		fp = (struct osigframe *)(psp->ps_sigstk.ss_sp +
492		    psp->ps_sigstk.ss_size - sizeof(struct osigframe));
493		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
494	}
495	else
496		fp = (struct osigframe *)regs->tf_esp - 1;
497
498	/*
499	 * grow() will return FALSE if the fp will not fit inside the stack
500	 *	and the stack can not be grown. useracc will return FALSE
501	 *	if access is denied.
502	 */
503	if (grow_stack(p, (int)fp) == FALSE ||
504	    useracc((caddr_t)fp, sizeof(struct osigframe), B_WRITE) == FALSE) {
505		/*
506		 * Process has trashed its stack; give it an illegal
507		 * instruction to halt it in its tracks.
508		 */
509		SIGACTION(p, SIGILL) = SIG_DFL;
510		SIGDELSET(p->p_sigignore, SIGILL);
511		SIGDELSET(p->p_sigcatch, SIGILL);
512		SIGDELSET(p->p_sigmask, SIGILL);
513		psignal(p, SIGILL);
514		return;
515	}
516
517	/* Translate the signal if appropriate */
518	if (p->p_sysent->sv_sigtbl) {
519		if (sig <= p->p_sysent->sv_sigsize)
520			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
521	}
522
523	/* Build the argument list for the signal handler. */
524	sf.sf_signum = sig;
525	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
526	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
527		/* Signal handler installed with SA_SIGINFO. */
528		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
529		sf.sf_siginfo.si_signo = sig;
530		sf.sf_siginfo.si_code = code;
531		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
532	}
533	else {
534		/* Old FreeBSD-style arguments. */
535		sf.sf_arg2 = code;
536		sf.sf_ahu.sf_handler = catcher;
537	}
538
539	sf.sf_addr = (char *) regs->tf_err;
540
541	/* save scratch registers */
542	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
543	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
544	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
545	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
546	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
547	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
548	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
549	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
550	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
551	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
552	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
553	sf.sf_siginfo.si_sc.sc_gs = rgs();
554	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
555
556	/* Build the signal context to be used by sigreturn. */
557	sf.sf_siginfo.si_sc.sc_onstack = oonstack;
558	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
559	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
560	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
561	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
562	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
563	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
564	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
565
566	/*
567	 * If we're a vm86 process, we want to save the segment registers.
568	 * We also change eflags to be our emulated eflags, not the actual
569	 * eflags.
570	 */
571	if (regs->tf_eflags & PSL_VM) {
572		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
573		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
574
575		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
576		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
577		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
578		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
579
580		if (vm86->vm86_has_vme == 0)
581			sf.sf_siginfo.si_sc.sc_ps =
582			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
583			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
584		/* see sendsig for comment */
585		tf->tf_eflags &= ~(PSL_VM|PSL_NT|PSL_T|PSL_VIF|PSL_VIP);
586	}
587
588	/* Copy the sigframe out to the user's stack. */
589	if (copyout(&sf, fp, sizeof(struct osigframe)) != 0) {
590		/*
591		 * Something is wrong with the stack pointer.
592		 * ...Kill the process.
593		 */
594		sigexit(p, SIGILL);
595	}
596
597	regs->tf_esp = (int)fp;
598	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
599	regs->tf_cs = _ucodesel;
600	regs->tf_ds = _udatasel;
601	regs->tf_es = _udatasel;
602	regs->tf_fs = _udatasel;
603	regs->tf_ss = _udatasel;
604}
605
606void
607sendsig(catcher, sig, mask, code)
608	sig_t catcher;
609	int sig;
610	sigset_t *mask;
611	u_long code;
612{
613	struct proc *p;
614	struct trapframe *regs;
615	struct sigacts *psp;
616	struct sigframe sf, *sfp;
617
618	p = curproc;
619
620	if ((p->p_flag & P_NEWSIGSET) == 0) {
621		osendsig(catcher, sig, mask, code);
622		return;
623	}
624
625	regs = p->p_md.md_regs;
626	psp = p->p_sigacts;
627
628	/* save user context */
629	bzero(&sf, sizeof(struct sigframe));
630	sf.sf_uc.uc_sigmask = *mask;
631	sf.sf_uc.uc_stack = psp->ps_sigstk;
632	sf.sf_uc.uc_mcontext.mc_tf = *regs;
633	sf.sf_uc.uc_mcontext.mc_gs = rgs();
634
635	/* Allocate and validate space for the signal handler context. */
636        if ((psp->ps_flags & SAS_ALTSTACK) != 0 &&
637	    (psp->ps_sigstk.ss_flags & SS_ONSTACK) == 0 &&
638	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
639		sfp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
640		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
641		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
642	}
643	else
644		sfp = (struct sigframe *)regs->tf_esp - 1;
645
646	/*
647	 * grow() will return FALSE if the sfp will not fit inside the stack
648	 * and the stack can not be grown. useracc will return FALSE if
649	 * access is denied.
650	 */
651	if (grow_stack(p, (int)sfp) == FALSE ||
652	    useracc((caddr_t)sfp, sizeof(struct sigframe), B_WRITE) == FALSE) {
653		/*
654		 * Process has trashed its stack; give it an illegal
655		 * instruction to halt it in its tracks.
656		 */
657#ifdef DEBUG
658		printf("process %d has trashed its stack\n", p->p_pid);
659#endif
660		SIGACTION(p, SIGILL) = SIG_DFL;
661		SIGDELSET(p->p_sigignore, SIGILL);
662		SIGDELSET(p->p_sigcatch, SIGILL);
663		SIGDELSET(p->p_sigmask, SIGILL);
664		psignal(p, SIGILL);
665		return;
666	}
667
668	/* Translate the signal is appropriate */
669	if (p->p_sysent->sv_sigtbl) {
670		if (sig <= p->p_sysent->sv_sigsize)
671			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
672	}
673
674	/* Build the argument list for the signal handler. */
675	sf.sf_signum = sig;
676	sf.sf_ucontext = (register_t)&sfp->sf_uc;
677	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
678		/* Signal handler installed with SA_SIGINFO. */
679		sf.sf_siginfo = (register_t)&sfp->sf_si;
680		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
681
682		/* fill siginfo structure */
683		sf.sf_si.si_signo = sig;
684		sf.sf_si.si_code = code;
685	}
686	else {
687		/* Old FreeBSD-style arguments. */
688		sf.sf_siginfo = code;
689		sf.sf_ahu.sf_handler = catcher;
690	}
691
692	/*
693	 * If we're a vm86 process, we want to save the segment registers.
694	 * We also change eflags to be our emulated eflags, not the actual
695	 * eflags.
696	 */
697	if (regs->tf_eflags & PSL_VM) {
698		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
699		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
700
701		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
702		sf.sf_uc.uc_mcontext.mc_tf.tf_fs = tf->tf_vm86_fs;
703		sf.sf_uc.uc_mcontext.mc_tf.tf_es = tf->tf_vm86_es;
704		sf.sf_uc.uc_mcontext.mc_tf.tf_ds = tf->tf_vm86_ds;
705
706		if (vm86->vm86_has_vme == 0)
707			sf.sf_uc.uc_mcontext.mc_tf.tf_eflags =
708			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
709			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
710
711		/*
712		 * We should never have PSL_T set when returning from vm86
713		 * mode.  It may be set here if we deliver a signal before
714		 * getting to vm86 mode, so turn it off.
715		 *
716		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
717		 * syscalls made by the signal handler.  This just avoids
718		 * wasting time for our lazy fixup of such faults.  PSL_NT
719		 * does nothing in vm86 mode, but vm86 programs can set it
720		 * almost legitimately in probes for old cpu types.
721		 */
722		tf->tf_eflags &= ~(PSL_VM|PSL_NT|PSL_T|PSL_VIF|PSL_VIP);
723	}
724
725	sf.sf_sigreturn = 0x0ABCDEF0;
726
727	/*
728	 * Copy the sigframe out to the user's stack.
729	 */
730	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
731		/*
732		 * Something is wrong with the stack pointer.
733		 * ...Kill the process.
734		 */
735		sigexit(p, SIGILL);
736	}
737
738	regs->tf_esp = (int)sfp;
739	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
740	regs->tf_cs = _ucodesel;
741	regs->tf_ds = _udatasel;
742	regs->tf_es = _udatasel;
743	regs->tf_fs = _udatasel;
744	regs->tf_ss = _udatasel;
745}
746
747/*
748 * System call to cleanup state after a signal
749 * has been taken.  Reset signal mask and
750 * stack state from context left by sendsig (above).
751 * Return to previous pc and psl as specified by
752 * context left by sendsig. Check carefully to
753 * make sure that the user has not modified the
754 * state to gain improper privileges.
755 */
756#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
757#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
758
759int
760osigreturn(p, uap)
761	struct proc *p;
762	struct osigreturn_args /* {
763		struct osigcontext *sigcntxp;
764	} */ *uap;
765{
766	register struct osigcontext *scp;
767	register struct osigframe *fp;
768	register struct trapframe *regs = p->p_md.md_regs;
769	int eflags;
770
771	/*
772	 * (XXX old comment) regs->tf_esp points to the return address.
773	 * The user scp pointer is above that.
774	 * The return address is faked in the signal trampoline code
775	 * for consistency.
776	 */
777	scp = uap->sigcntxp;
778	fp = (struct osigframe *)
779	     ((caddr_t)scp - offsetof(struct osigframe, sf_siginfo.si_sc));
780
781	if (useracc((caddr_t)fp, sizeof (struct osigframe), B_WRITE) == 0)
782		return(EFAULT);
783
784	eflags = scp->sc_ps;
785	if (eflags & PSL_VM) {
786		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
787		struct vm86_kernel *vm86;
788
789		/*
790		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
791		 * set up the vm86 area, and we can't enter vm86 mode.
792		 */
793		if (p->p_addr->u_pcb.pcb_ext == 0)
794			return (EINVAL);
795		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
796		if (vm86->vm86_inited == 0)
797			return (EINVAL);
798
799		/* go back to user mode if both flags are set */
800		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
801			trapsignal(p, SIGBUS, 0);
802
803		if (vm86->vm86_has_vme) {
804			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
805			    (eflags & VME_USERCHANGE) | PSL_VM;
806		} else {
807			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
808			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
809		}
810		tf->tf_vm86_ds = scp->sc_ds;
811		tf->tf_vm86_es = scp->sc_es;
812		tf->tf_vm86_fs = scp->sc_fs;
813		tf->tf_vm86_gs = scp->sc_gs;
814		tf->tf_ds = _udatasel;
815		tf->tf_es = _udatasel;
816		tf->tf_fs = _udatasel;
817	} else {
818		/*
819		 * Don't allow users to change privileged or reserved flags.
820		 */
821		/*
822		 * XXX do allow users to change the privileged flag PSL_RF.
823		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
824		 * should sometimes set it there too.  tf_eflags is kept in
825		 * the signal context during signal handling and there is no
826		 * other place to remember it, so the PSL_RF bit may be
827		 * corrupted by the signal handler without us knowing.
828		 * Corruption of the PSL_RF bit at worst causes one more or
829		 * one less debugger trap, so allowing it is fairly harmless.
830		 */
831		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
832	    		return(EINVAL);
833		}
834
835		/*
836		 * Don't allow users to load a valid privileged %cs.  Let the
837		 * hardware check for invalid selectors, excess privilege in
838		 * other selectors, invalid %eip's and invalid %esp's.
839		 */
840		if (!CS_SECURE(scp->sc_cs)) {
841			trapsignal(p, SIGBUS, T_PROTFLT);
842			return(EINVAL);
843		}
844		regs->tf_ds = scp->sc_ds;
845		regs->tf_es = scp->sc_es;
846		regs->tf_fs = scp->sc_fs;
847	}
848
849	/* restore scratch registers */
850	regs->tf_eax = scp->sc_eax;
851	regs->tf_ebx = scp->sc_ebx;
852	regs->tf_ecx = scp->sc_ecx;
853	regs->tf_edx = scp->sc_edx;
854	regs->tf_esi = scp->sc_esi;
855	regs->tf_edi = scp->sc_edi;
856	regs->tf_cs = scp->sc_cs;
857	regs->tf_ss = scp->sc_ss;
858	regs->tf_isp = scp->sc_isp;
859
860	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
861		return(EINVAL);
862
863	if (scp->sc_onstack & 01)
864		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
865	else
866		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
867
868	OSIG2SIG(scp->sc_mask, p->p_sigmask);
869	SIG_CANTMASK(p->p_sigmask);
870	regs->tf_ebp = scp->sc_fp;
871	regs->tf_esp = scp->sc_sp;
872	regs->tf_eip = scp->sc_pc;
873	regs->tf_eflags = eflags;
874	return(EJUSTRETURN);
875}
876
877int
878sigreturn(p, uap)
879	struct proc *p;
880	struct sigreturn_args /* {
881		ucontext_t *sigcntxp;
882	} */ *uap;
883{
884	struct trapframe *regs;
885	ucontext_t *ucp;
886	struct sigframe *sfp;
887	int eflags;
888
889	regs = p->p_md.md_regs;
890	ucp = uap->sigcntxp;
891	sfp = (struct sigframe *)
892	    ((caddr_t)ucp - offsetof(struct sigframe, sf_uc));
893	eflags = ucp->uc_mcontext.mc_tf.tf_eflags;
894
895	if (useracc((caddr_t)sfp, sizeof(struct sigframe), B_WRITE) == 0)
896		return(EFAULT);
897
898	if (eflags & PSL_VM) {
899		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
900		struct vm86_kernel *vm86;
901
902		/*
903		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
904		 * set up the vm86 area, and we can't enter vm86 mode.
905		 */
906		if (p->p_addr->u_pcb.pcb_ext == 0)
907			return (EINVAL);
908		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
909		if (vm86->vm86_inited == 0)
910			return (EINVAL);
911
912		/* go back to user mode if both flags are set */
913		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
914			trapsignal(p, SIGBUS, 0);
915
916		if (vm86->vm86_has_vme) {
917			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
918			    (eflags & VME_USERCHANGE) | PSL_VM;
919		} else {
920			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
921			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
922		}
923		*regs = ucp->uc_mcontext.mc_tf;
924		tf->tf_vm86_ds = tf->tf_ds;
925		tf->tf_vm86_es = tf->tf_es;
926		tf->tf_vm86_fs = tf->tf_fs;
927		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
928		tf->tf_ds = _udatasel;
929		tf->tf_es = _udatasel;
930		tf->tf_fs = _udatasel;
931	} else {
932		/*
933		 * Don't allow users to change privileged or reserved flags.
934		 */
935		/*
936		 * XXX do allow users to change the privileged flag PSL_RF.
937		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
938		 * should sometimes set it there too.  tf_eflags is kept in
939		 * the signal context during signal handling and there is no
940		 * other place to remember it, so the PSL_RF bit may be
941		 * corrupted by the signal handler without us knowing.
942		 * Corruption of the PSL_RF bit at worst causes one more or
943		 * one less debugger trap, so allowing it is fairly harmless.
944		 */
945		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
946			printf("sigreturn: eflags = 0x%x\n", eflags);
947	    		return(EINVAL);
948		}
949
950		*regs = ucp->uc_mcontext.mc_tf;
951
952		/*
953		 * Don't allow users to load a valid privileged %cs.  Let the
954		 * hardware check for invalid selectors, excess privilege in
955		 * other selectors, invalid %eip's and invalid %esp's.
956		 */
957		if (!CS_SECURE(regs->tf_cs)) {
958			printf("sigreturn: cs = 0x%x\n", regs->tf_cs);
959			trapsignal(p, SIGBUS, T_PROTFLT);
960			return(EINVAL);
961		}
962	}
963
964	p->p_sigacts->ps_sigstk = ucp->uc_stack;
965	p->p_sigmask = ucp->uc_sigmask;
966	SIG_CANTMASK(p->p_sigmask);
967	return(EJUSTRETURN);
968}
969
970/*
971 * Machine dependent boot() routine
972 *
973 * I haven't seen anything to put here yet
974 * Possibly some stuff might be grafted back here from boot()
975 */
976void
977cpu_boot(int howto)
978{
979}
980
981/*
982 * Shutdown the CPU as much as possible
983 */
984void
985cpu_halt(void)
986{
987	for (;;)
988		__asm__ ("hlt");
989}
990
991/*
992 * Clear registers on exec
993 */
994void
995setregs(p, entry, stack, ps_strings)
996	struct proc *p;
997	u_long entry;
998	u_long stack;
999	u_long ps_strings;
1000{
1001	struct trapframe *regs = p->p_md.md_regs;
1002	struct pcb *pcb = &p->p_addr->u_pcb;
1003
1004#ifdef USER_LDT
1005	/* was i386_user_cleanup() in NetBSD */
1006	if (pcb->pcb_ldt) {
1007		if (pcb == curpcb) {
1008			lldt(_default_ldt);
1009			currentldt = _default_ldt;
1010		}
1011		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
1012			pcb->pcb_ldt_len * sizeof(union descriptor));
1013		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
1014 	}
1015#endif
1016
1017	bzero((char *)regs, sizeof(struct trapframe));
1018	regs->tf_eip = entry;
1019	regs->tf_esp = stack;
1020	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1021	regs->tf_ss = _udatasel;
1022	regs->tf_ds = _udatasel;
1023	regs->tf_es = _udatasel;
1024	regs->tf_fs = _udatasel;
1025	regs->tf_cs = _ucodesel;
1026
1027	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1028	regs->tf_ebx = ps_strings;
1029
1030	/* reset %gs as well */
1031	pcb->pcb_gs = _udatasel;
1032	if (pcb == curpcb) {
1033		load_gs(_udatasel);
1034	}
1035
1036	/*
1037	 * Initialize the math emulator (if any) for the current process.
1038	 * Actually, just clear the bit that says that the emulator has
1039	 * been initialized.  Initialization is delayed until the process
1040	 * traps to the emulator (if it is done at all) mainly because
1041	 * emulators don't provide an entry point for initialization.
1042	 */
1043	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
1044
1045	/*
1046	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
1047	 * for why fwait must be trapped at least if there is an npx or an
1048	 * emulator).  This is mainly to handle the case where npx0 is not
1049	 * configured, since the npx routines normally set up the trap
1050	 * otherwise.  It should be done only at boot time, but doing it
1051	 * here allows modifying `npx_exists' for testing the emulator on
1052	 * systems with an npx.
1053	 */
1054	load_cr0(rcr0() | CR0_MP | CR0_TS);
1055
1056#if NNPX > 0
1057	/* Initialize the npx (if any) for the current process. */
1058	npxinit(__INITIAL_NPXCW__);
1059#endif
1060
1061      /*
1062       * XXX - Linux emulator
1063       * Make sure sure edx is 0x0 on entry. Linux binaries depend
1064       * on it.
1065       */
1066      p->p_retval[1] = 0;
1067}
1068
1069static int
1070sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
1071{
1072	int error;
1073	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1074		req);
1075	if (!error && req->newptr)
1076		resettodr();
1077	return (error);
1078}
1079
1080SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1081	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1082
1083SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1084	CTLFLAG_RW, &disable_rtc_set, 0, "");
1085
1086SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1087	CTLFLAG_RD, &bootinfo, bootinfo, "");
1088
1089SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1090	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1091
1092/*
1093 * Initialize 386 and configure to run kernel
1094 */
1095
1096/*
1097 * Initialize segments & interrupt table
1098 */
1099
1100int _default_ldt;
1101#ifdef SMP
1102union descriptor gdt[NGDT * NCPU];	/* global descriptor table */
1103#else
1104union descriptor gdt[NGDT];		/* global descriptor table */
1105#endif
1106static struct gate_descriptor idt0[NIDT];
1107struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1108union descriptor ldt[NLDT];		/* local descriptor table */
1109#ifdef SMP
1110/* table descriptors - used to load tables by microp */
1111struct region_descriptor r_gdt, r_idt;
1112#endif
1113
1114#ifndef SMP
1115extern struct segment_descriptor common_tssd, *tss_gdt;
1116#endif
1117int private_tss;			/* flag indicating private tss */
1118
1119#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1120extern int has_f00f_bug;
1121#endif
1122
1123static struct i386tss dblfault_tss;
1124static char dblfault_stack[PAGE_SIZE];
1125
1126extern  struct user *proc0paddr;
1127
1128
1129/* software prototypes -- in more palatable form */
1130struct soft_segment_descriptor gdt_segs[] = {
1131/* GNULL_SEL	0 Null Descriptor */
1132{	0x0,			/* segment base address  */
1133	0x0,			/* length */
1134	0,			/* segment type */
1135	0,			/* segment descriptor priority level */
1136	0,			/* segment descriptor present */
1137	0, 0,
1138	0,			/* default 32 vs 16 bit size */
1139	0  			/* limit granularity (byte/page units)*/ },
1140/* GCODE_SEL	1 Code Descriptor for kernel */
1141{	0x0,			/* segment base address  */
1142	0xfffff,		/* length - all address space */
1143	SDT_MEMERA,		/* segment type */
1144	0,			/* segment descriptor priority level */
1145	1,			/* segment descriptor present */
1146	0, 0,
1147	1,			/* default 32 vs 16 bit size */
1148	1  			/* limit granularity (byte/page units)*/ },
1149/* GDATA_SEL	2 Data Descriptor for kernel */
1150{	0x0,			/* segment base address  */
1151	0xfffff,		/* length - all address space */
1152	SDT_MEMRWA,		/* segment type */
1153	0,			/* segment descriptor priority level */
1154	1,			/* segment descriptor present */
1155	0, 0,
1156	1,			/* default 32 vs 16 bit size */
1157	1  			/* limit granularity (byte/page units)*/ },
1158/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1159{	0x0,			/* segment base address  */
1160	0xfffff,		/* length - all address space */
1161	SDT_MEMRWA,		/* segment type */
1162	0,			/* segment descriptor priority level */
1163	1,			/* segment descriptor present */
1164	0, 0,
1165	1,			/* default 32 vs 16 bit size */
1166	1  			/* limit granularity (byte/page units)*/ },
1167/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1168{
1169	0x0,			/* segment base address */
1170	sizeof(struct i386tss)-1,/* length - all address space */
1171	SDT_SYS386TSS,		/* segment type */
1172	0,			/* segment descriptor priority level */
1173	1,			/* segment descriptor present */
1174	0, 0,
1175	0,			/* unused - default 32 vs 16 bit size */
1176	0  			/* limit granularity (byte/page units)*/ },
1177/* GLDT_SEL	5 LDT Descriptor */
1178{	(int) ldt,		/* segment base address  */
1179	sizeof(ldt)-1,		/* length - all address space */
1180	SDT_SYSLDT,		/* segment type */
1181	SEL_UPL,		/* segment descriptor priority level */
1182	1,			/* segment descriptor present */
1183	0, 0,
1184	0,			/* unused - default 32 vs 16 bit size */
1185	0  			/* limit granularity (byte/page units)*/ },
1186/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1187{	(int) ldt,		/* segment base address  */
1188	(512 * sizeof(union descriptor)-1),		/* length */
1189	SDT_SYSLDT,		/* segment type */
1190	0,			/* segment descriptor priority level */
1191	1,			/* segment descriptor present */
1192	0, 0,
1193	0,			/* unused - default 32 vs 16 bit size */
1194	0  			/* limit granularity (byte/page units)*/ },
1195/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1196{	0x0,			/* segment base address  */
1197	0x0,			/* length - all address space */
1198	0,			/* segment type */
1199	0,			/* segment descriptor priority level */
1200	0,			/* segment descriptor present */
1201	0, 0,
1202	0,			/* default 32 vs 16 bit size */
1203	0  			/* limit granularity (byte/page units)*/ },
1204/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1205{	0x400,			/* segment base address */
1206	0xfffff,		/* length */
1207	SDT_MEMRWA,		/* segment type */
1208	0,			/* segment descriptor priority level */
1209	1,			/* segment descriptor present */
1210	0, 0,
1211	1,			/* default 32 vs 16 bit size */
1212	1  			/* limit granularity (byte/page units)*/ },
1213/* GPANIC_SEL	9 Panic Tss Descriptor */
1214{	(int) &dblfault_tss,	/* segment base address  */
1215	sizeof(struct i386tss)-1,/* length - all address space */
1216	SDT_SYS386TSS,		/* segment type */
1217	0,			/* segment descriptor priority level */
1218	1,			/* segment descriptor present */
1219	0, 0,
1220	0,			/* unused - default 32 vs 16 bit size */
1221	0  			/* limit granularity (byte/page units)*/ },
1222/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1223{	0,			/* segment base address (overwritten)  */
1224	0xfffff,		/* length */
1225	SDT_MEMERA,		/* segment type */
1226	0,			/* segment descriptor priority level */
1227	1,			/* segment descriptor present */
1228	0, 0,
1229	0,			/* default 32 vs 16 bit size */
1230	1  			/* limit granularity (byte/page units)*/ },
1231/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1232{	0,			/* segment base address (overwritten)  */
1233	0xfffff,		/* length */
1234	SDT_MEMERA,		/* segment type */
1235	0,			/* segment descriptor priority level */
1236	1,			/* segment descriptor present */
1237	0, 0,
1238	0,			/* default 32 vs 16 bit size */
1239	1  			/* limit granularity (byte/page units)*/ },
1240/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1241{	0,			/* segment base address (overwritten) */
1242	0xfffff,		/* length */
1243	SDT_MEMRWA,		/* segment type */
1244	0,			/* segment descriptor priority level */
1245	1,			/* segment descriptor present */
1246	0, 0,
1247	1,			/* default 32 vs 16 bit size */
1248	1  			/* limit granularity (byte/page units)*/ },
1249/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1250{	0,			/* segment base address (overwritten) */
1251	0xfffff,		/* length */
1252	SDT_MEMRWA,		/* segment type */
1253	0,			/* segment descriptor priority level */
1254	1,			/* segment descriptor present */
1255	0, 0,
1256	0,			/* default 32 vs 16 bit size */
1257	1  			/* limit granularity (byte/page units)*/ },
1258/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1259{	0,			/* segment base address (overwritten) */
1260	0xfffff,		/* length */
1261	SDT_MEMRWA,		/* segment type */
1262	0,			/* segment descriptor priority level */
1263	1,			/* segment descriptor present */
1264	0, 0,
1265	0,			/* default 32 vs 16 bit size */
1266	1  			/* limit granularity (byte/page units)*/ },
1267};
1268
1269static struct soft_segment_descriptor ldt_segs[] = {
1270	/* Null Descriptor - overwritten by call gate */
1271{	0x0,			/* segment base address  */
1272	0x0,			/* length - all address space */
1273	0,			/* segment type */
1274	0,			/* segment descriptor priority level */
1275	0,			/* segment descriptor present */
1276	0, 0,
1277	0,			/* default 32 vs 16 bit size */
1278	0  			/* limit granularity (byte/page units)*/ },
1279	/* Null Descriptor - overwritten by call gate */
1280{	0x0,			/* segment base address  */
1281	0x0,			/* length - all address space */
1282	0,			/* segment type */
1283	0,			/* segment descriptor priority level */
1284	0,			/* segment descriptor present */
1285	0, 0,
1286	0,			/* default 32 vs 16 bit size */
1287	0  			/* limit granularity (byte/page units)*/ },
1288	/* Null Descriptor - overwritten by call gate */
1289{	0x0,			/* segment base address  */
1290	0x0,			/* length - all address space */
1291	0,			/* segment type */
1292	0,			/* segment descriptor priority level */
1293	0,			/* segment descriptor present */
1294	0, 0,
1295	0,			/* default 32 vs 16 bit size */
1296	0  			/* limit granularity (byte/page units)*/ },
1297	/* Code Descriptor for user */
1298{	0x0,			/* segment base address  */
1299	0xfffff,		/* length - all address space */
1300	SDT_MEMERA,		/* segment type */
1301	SEL_UPL,		/* segment descriptor priority level */
1302	1,			/* segment descriptor present */
1303	0, 0,
1304	1,			/* default 32 vs 16 bit size */
1305	1  			/* limit granularity (byte/page units)*/ },
1306	/* Null Descriptor - overwritten by call gate */
1307{	0x0,			/* segment base address  */
1308	0x0,			/* length - all address space */
1309	0,			/* segment type */
1310	0,			/* segment descriptor priority level */
1311	0,			/* segment descriptor present */
1312	0, 0,
1313	0,			/* default 32 vs 16 bit size */
1314	0  			/* limit granularity (byte/page units)*/ },
1315	/* Data Descriptor for user */
1316{	0x0,			/* segment base address  */
1317	0xfffff,		/* length - all address space */
1318	SDT_MEMRWA,		/* segment type */
1319	SEL_UPL,		/* segment descriptor priority level */
1320	1,			/* segment descriptor present */
1321	0, 0,
1322	1,			/* default 32 vs 16 bit size */
1323	1  			/* limit granularity (byte/page units)*/ },
1324};
1325
1326void
1327setidt(idx, func, typ, dpl, selec)
1328	int idx;
1329	inthand_t *func;
1330	int typ;
1331	int dpl;
1332	int selec;
1333{
1334	struct gate_descriptor *ip;
1335
1336	ip = idt + idx;
1337	ip->gd_looffset = (int)func;
1338	ip->gd_selector = selec;
1339	ip->gd_stkcpy = 0;
1340	ip->gd_xx = 0;
1341	ip->gd_type = typ;
1342	ip->gd_dpl = dpl;
1343	ip->gd_p = 1;
1344	ip->gd_hioffset = ((int)func)>>16 ;
1345}
1346
1347#define	IDTVEC(name)	__CONCAT(X,name)
1348
1349extern inthand_t
1350	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1351	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1352	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1353	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1354	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1355
1356void
1357sdtossd(sd, ssd)
1358	struct segment_descriptor *sd;
1359	struct soft_segment_descriptor *ssd;
1360{
1361	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1362	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1363	ssd->ssd_type  = sd->sd_type;
1364	ssd->ssd_dpl   = sd->sd_dpl;
1365	ssd->ssd_p     = sd->sd_p;
1366	ssd->ssd_def32 = sd->sd_def32;
1367	ssd->ssd_gran  = sd->sd_gran;
1368}
1369
1370#define PHYSMAP_SIZE	(2 * 8)
1371
1372/*
1373 * Populate the (physmap) array with base/bound pairs describing the
1374 * available physical memory in the system, then test this memory and
1375 * build the phys_avail array describing the actually-available memory.
1376 *
1377 * If we cannot accurately determine the physical memory map, then use
1378 * value from the 0xE801 call, and failing that, the RTC.
1379 *
1380 * Total memory size may be set by the kernel environment variable
1381 * hw.physmem or the compile-time define MAXMEM.
1382 */
1383static void
1384getmemsize(int first)
1385{
1386	int i, physmap_idx, pa_indx;
1387	u_int basemem, extmem;
1388	struct vm86frame vmf;
1389	struct vm86context vmc;
1390	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1391	pt_entry_t pte;
1392	const char *cp;
1393	struct {
1394		u_int64_t base;
1395		u_int64_t length;
1396		u_int32_t type;
1397	} *smap;
1398
1399	bzero(&vmf, sizeof(struct vm86frame));
1400	bzero(physmap, sizeof(physmap));
1401
1402	/*
1403	 * Perform "base memory" related probes & setup
1404	 */
1405	vm86_intcall(0x12, &vmf);
1406	basemem = vmf.vmf_ax;
1407	if (basemem > 640) {
1408		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1409			basemem);
1410		basemem = 640;
1411	}
1412
1413	/*
1414	 * XXX if biosbasemem is now < 640, there is a `hole'
1415	 * between the end of base memory and the start of
1416	 * ISA memory.  The hole may be empty or it may
1417	 * contain BIOS code or data.  Map it read/write so
1418	 * that the BIOS can write to it.  (Memory from 0 to
1419	 * the physical end of the kernel is mapped read-only
1420	 * to begin with and then parts of it are remapped.
1421	 * The parts that aren't remapped form holes that
1422	 * remain read-only and are unused by the kernel.
1423	 * The base memory area is below the physical end of
1424	 * the kernel and right now forms a read-only hole.
1425	 * The part of it from PAGE_SIZE to
1426	 * (trunc_page(biosbasemem * 1024) - 1) will be
1427	 * remapped and used by the kernel later.)
1428	 *
1429	 * This code is similar to the code used in
1430	 * pmap_mapdev, but since no memory needs to be
1431	 * allocated we simply change the mapping.
1432	 */
1433	for (pa = trunc_page(basemem * 1024);
1434	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1435		pte = (pt_entry_t)vtopte(pa + KERNBASE);
1436		*pte = pa | PG_RW | PG_V;
1437	}
1438
1439	/*
1440	 * if basemem != 640, map pages r/w into vm86 page table so
1441	 * that the bios can scribble on it.
1442	 */
1443	pte = (pt_entry_t)vm86paddr;
1444	for (i = basemem / 4; i < 160; i++)
1445		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1446
1447	/*
1448	 * map page 1 R/W into the kernel page table so we can use it
1449	 * as a buffer.  The kernel will unmap this page later.
1450	 */
1451	pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
1452	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1453
1454	/*
1455	 * get memory map with INT 15:E820
1456	 */
1457#define SMAPSIZ 	sizeof(*smap)
1458#define SMAP_SIG	0x534D4150			/* 'SMAP' */
1459
1460	vmc.npages = 0;
1461	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1462	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1463
1464	physmap_idx = 0;
1465	vmf.vmf_ebx = 0;
1466	do {
1467		vmf.vmf_eax = 0xE820;
1468		vmf.vmf_edx = SMAP_SIG;
1469		vmf.vmf_ecx = SMAPSIZ;
1470		i = vm86_datacall(0x15, &vmf, &vmc);
1471		if (i || vmf.vmf_eax != SMAP_SIG)
1472			break;
1473		if (boothowto & RB_VERBOSE)
1474			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1475				smap->type,
1476				*(u_int32_t *)((char *)&smap->base + 4),
1477				(u_int32_t)smap->base,
1478				*(u_int32_t *)((char *)&smap->length + 4),
1479				(u_int32_t)smap->length);
1480
1481		if (smap->type != 0x01)
1482			goto next_run;
1483
1484		if (smap->length == 0)
1485			goto next_run;
1486
1487		if (smap->base >= 0xffffffff) {
1488			printf("%uK of memory above 4GB ignored\n",
1489			    (u_int)(smap->length / 1024));
1490			goto next_run;
1491		}
1492
1493		for (i = 0; i <= physmap_idx; i += 2) {
1494			if (smap->base < physmap[i + 1]) {
1495				if (boothowto & RB_VERBOSE)
1496					printf(
1497	"Overlapping or non-montonic memory region, ignoring second region\n");
1498				goto next_run;
1499			}
1500		}
1501
1502		if (smap->base == physmap[physmap_idx + 1]) {
1503			physmap[physmap_idx + 1] += smap->length;
1504			goto next_run;
1505		}
1506
1507		physmap_idx += 2;
1508		if (physmap_idx == PHYSMAP_SIZE) {
1509			printf(
1510		"Too many segments in the physical address map, giving up\n");
1511			break;
1512		}
1513		physmap[physmap_idx] = smap->base;
1514		physmap[physmap_idx + 1] = smap->base + smap->length;
1515next_run:
1516	} while (vmf.vmf_ebx != 0);
1517
1518	if (physmap[1] != 0)
1519		goto physmap_done;
1520
1521	/*
1522	 * If we failed above, try memory map with INT 15:E801
1523	 */
1524	vmf.vmf_ax = 0xE801;
1525	if (vm86_intcall(0x15, &vmf) == 0) {
1526		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1527	} else {
1528#if 0
1529		vmf.vmf_ah = 0x88;
1530		vm86_intcall(0x15, &vmf);
1531		extmem = vmf.vmf_ax;
1532#else
1533		/*
1534		 * Prefer the RTC value for extended memory.
1535		 */
1536		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1537#endif
1538	}
1539
1540	/*
1541	 * Special hack for chipsets that still remap the 384k hole when
1542	 * there's 16MB of memory - this really confuses people that
1543	 * are trying to use bus mastering ISA controllers with the
1544	 * "16MB limit"; they only have 16MB, but the remapping puts
1545	 * them beyond the limit.
1546	 *
1547	 * If extended memory is between 15-16MB (16-17MB phys address range),
1548	 *	chop it to 15MB.
1549	 */
1550	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1551		extmem = 15 * 1024;
1552
1553	physmap[0] = 0;
1554	physmap[1] = basemem * 1024;
1555	physmap_idx = 2;
1556	physmap[physmap_idx] = 0x100000;
1557	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1558
1559physmap_done:
1560	/*
1561	 * Now, physmap contains a map of physical memory.
1562	 */
1563
1564#ifdef SMP
1565	/* make hole for AP bootstrap code */
1566	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1567
1568	/* look for the MP hardware - needed for apic addresses */
1569	mp_probe();
1570#endif
1571
1572	/*
1573	 * Maxmem isn't the "maximum memory", it's one larger than the
1574	 * highest page of the physical address space.  It should be
1575	 * called something like "Maxphyspage".  We may adjust this
1576	 * based on ``hw.physmem'' and the results of the memory test.
1577	 */
1578	Maxmem = atop(physmap[physmap_idx + 1]);
1579
1580#ifdef MAXMEM
1581	Maxmem = MAXMEM / 4;
1582#endif
1583
1584	/*
1585	 * hw.maxmem is a size in bytes; we also allow k, m, and g suffixes
1586	 * for the appropriate modifiers.  This overrides MAXMEM.
1587	 */
1588	if ((cp = getenv("hw.physmem")) != NULL) {
1589		u_int64_t AllowMem, sanity;
1590		const char *ep;
1591
1592		sanity = AllowMem = strtouq(cp, &ep, 0);
1593		if ((ep != cp) && (*ep != 0)) {
1594			switch(*ep) {
1595			case 'g':
1596			case 'G':
1597				AllowMem <<= 10;
1598			case 'm':
1599			case 'M':
1600				AllowMem <<= 10;
1601			case 'k':
1602			case 'K':
1603				AllowMem <<= 10;
1604				break;
1605			default:
1606				AllowMem = sanity = 0;
1607			}
1608			if (AllowMem < sanity)
1609				AllowMem = 0;
1610		}
1611		if (AllowMem == 0)
1612			printf("Ignoring invalid memory size of '%s'\n", cp);
1613		else
1614			Maxmem = atop(AllowMem);
1615	}
1616
1617	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1618	    (boothowto & RB_VERBOSE))
1619		printf("Physical memory use set to %uK\n", Maxmem * 4);
1620
1621	/*
1622	 * If Maxmem has been increased beyond what the system has detected,
1623	 * extend the last memory segment to the new limit.
1624	 */
1625	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1626		physmap[physmap_idx + 1] = ptoa(Maxmem);
1627
1628	/* call pmap initialization to make new kernel address space */
1629	pmap_bootstrap(first, 0);
1630
1631	/*
1632	 * Size up each available chunk of physical memory.
1633	 */
1634	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1635	pa_indx = 0;
1636	phys_avail[pa_indx++] = physmap[0];
1637	phys_avail[pa_indx] = physmap[0];
1638#if 0
1639	pte = (pt_entry_t)vtopte(KERNBASE);
1640#else
1641	pte = (pt_entry_t)CMAP1;
1642#endif
1643
1644	/*
1645	 * physmap is in bytes, so when converting to page boundaries,
1646	 * round up the start address and round down the end address.
1647	 */
1648	for (i = 0; i <= physmap_idx; i += 2) {
1649		vm_offset_t end;
1650
1651		end = ptoa(Maxmem);
1652		if (physmap[i + 1] < end)
1653			end = trunc_page(physmap[i + 1]);
1654		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1655			int tmp, page_bad;
1656#if 0
1657			int *ptr = 0;
1658#else
1659			int *ptr = (int *)CADDR1;
1660#endif
1661
1662			/*
1663			 * block out kernel memory as not available.
1664			 */
1665			if (pa >= 0x100000 && pa < first)
1666				continue;
1667
1668			page_bad = FALSE;
1669
1670			/*
1671			 * map page into kernel: valid, read/write,non-cacheable
1672			 */
1673			*pte = pa | PG_V | PG_RW | PG_N;
1674			invltlb();
1675
1676			tmp = *(int *)ptr;
1677			/*
1678			 * Test for alternating 1's and 0's
1679			 */
1680			*(volatile int *)ptr = 0xaaaaaaaa;
1681			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1682				page_bad = TRUE;
1683			}
1684			/*
1685			 * Test for alternating 0's and 1's
1686			 */
1687			*(volatile int *)ptr = 0x55555555;
1688			if (*(volatile int *)ptr != 0x55555555) {
1689			page_bad = TRUE;
1690			}
1691			/*
1692			 * Test for all 1's
1693			 */
1694			*(volatile int *)ptr = 0xffffffff;
1695			if (*(volatile int *)ptr != 0xffffffff) {
1696				page_bad = TRUE;
1697			}
1698			/*
1699			 * Test for all 0's
1700			 */
1701			*(volatile int *)ptr = 0x0;
1702			if (*(volatile int *)ptr != 0x0) {
1703				page_bad = TRUE;
1704			}
1705			/*
1706			 * Restore original value.
1707			 */
1708			*(int *)ptr = tmp;
1709
1710			/*
1711			 * Adjust array of valid/good pages.
1712			 */
1713			if (page_bad == TRUE) {
1714				continue;
1715			}
1716			/*
1717			 * If this good page is a continuation of the
1718			 * previous set of good pages, then just increase
1719			 * the end pointer. Otherwise start a new chunk.
1720			 * Note that "end" points one higher than end,
1721			 * making the range >= start and < end.
1722			 * If we're also doing a speculative memory
1723			 * test and we at or past the end, bump up Maxmem
1724			 * so that we keep going. The first bad page
1725			 * will terminate the loop.
1726			 */
1727			if (phys_avail[pa_indx] == pa) {
1728				phys_avail[pa_indx] += PAGE_SIZE;
1729			} else {
1730				pa_indx++;
1731				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1732					printf("Too many holes in the physical address space, giving up\n");
1733					pa_indx--;
1734					break;
1735				}
1736				phys_avail[pa_indx++] = pa;	/* start */
1737				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1738			}
1739			physmem++;
1740		}
1741	}
1742	*pte = 0;
1743	invltlb();
1744
1745	/*
1746	 * XXX
1747	 * The last chunk must contain at least one page plus the message
1748	 * buffer to avoid complicating other code (message buffer address
1749	 * calculation, etc.).
1750	 */
1751	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1752	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1753		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1754		phys_avail[pa_indx--] = 0;
1755		phys_avail[pa_indx--] = 0;
1756	}
1757
1758	Maxmem = atop(phys_avail[pa_indx]);
1759
1760	/* Trim off space for the message buffer. */
1761	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1762
1763	avail_end = phys_avail[pa_indx];
1764}
1765
1766void
1767init386(first)
1768	int first;
1769{
1770	int x;
1771	struct gate_descriptor *gdp;
1772	int gsel_tss;
1773#ifndef SMP
1774	/* table descriptors - used to load tables by microp */
1775	struct region_descriptor r_gdt, r_idt;
1776#endif
1777	int off;
1778
1779	/*
1780	 * Prevent lowering of the ipl if we call tsleep() early.
1781	 */
1782	safepri = cpl;
1783
1784	proc0.p_addr = proc0paddr;
1785
1786	atdevbase = ISA_HOLE_START + KERNBASE;
1787
1788	if (bootinfo.bi_modulep) {
1789		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1790		preload_bootstrap_relocate(KERNBASE);
1791	}
1792	if (bootinfo.bi_envp)
1793		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1794
1795	/*
1796	 * make gdt memory segments, the code segment goes up to end of the
1797	 * page with etext in it, the data segment goes to the end of
1798	 * the address space
1799	 */
1800	/*
1801	 * XXX text protection is temporarily (?) disabled.  The limit was
1802	 * i386_btop(round_page(etext)) - 1.
1803	 */
1804	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1805	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1806#ifdef SMP
1807	gdt_segs[GPRIV_SEL].ssd_limit =
1808		i386_btop(sizeof(struct privatespace)) - 1;
1809	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
1810	gdt_segs[GPROC0_SEL].ssd_base =
1811		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
1812	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0];
1813#else
1814	gdt_segs[GPRIV_SEL].ssd_limit = i386_btop(0) - 1;
1815	gdt_segs[GPROC0_SEL].ssd_base = (int) &common_tss;
1816#endif
1817
1818	for (x = 0; x < NGDT; x++) {
1819#ifdef BDE_DEBUGGER
1820		/* avoid overwriting db entries with APM ones */
1821		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1822			continue;
1823#endif
1824		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1825	}
1826
1827	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1828	r_gdt.rd_base =  (int) gdt;
1829	lgdt(&r_gdt);
1830
1831	/* make ldt memory segments */
1832	/*
1833	 * The data segment limit must not cover the user area because we
1834	 * don't want the user area to be writable in copyout() etc. (page
1835	 * level protection is lost in kernel mode on 386's).  Also, we
1836	 * don't want the user area to be writable directly (page level
1837	 * protection of the user area is not available on 486's with
1838	 * CR0_WP set, because there is no user-read/kernel-write mode).
1839	 *
1840	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1841	 * should be spelled ...MAX_USER...
1842	 */
1843#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1844	/*
1845	 * The code segment limit has to cover the user area until we move
1846	 * the signal trampoline out of the user area.  This is safe because
1847	 * the code segment cannot be written to directly.
1848	 */
1849#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1850	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1851	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1852	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1853		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1854
1855	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1856	lldt(_default_ldt);
1857#ifdef USER_LDT
1858	currentldt = _default_ldt;
1859#endif
1860
1861	/* exceptions */
1862	for (x = 0; x < NIDT; x++)
1863		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1864	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1865	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1866	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1867 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1868	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1869	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1870	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1871	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1872	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1873	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1874	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1875	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1876	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1877	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1878	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1879	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1880	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1881	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1882	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1883 	setidt(0x80, &IDTVEC(int0x80_syscall),
1884			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1885
1886	r_idt.rd_limit = sizeof(idt0) - 1;
1887	r_idt.rd_base = (int) idt;
1888	lidt(&r_idt);
1889
1890	/*
1891	 * Initialize the console before we print anything out.
1892	 */
1893	cninit();
1894
1895#include	"isa.h"
1896#if	NISA >0
1897	isa_defaultirq();
1898#endif
1899	rand_initialize();
1900
1901#ifdef DDB
1902	kdb_init();
1903	if (boothowto & RB_KDB)
1904		Debugger("Boot flags requested debugger");
1905#endif
1906
1907	finishidentcpu();	/* Final stage of CPU initialization */
1908	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1909	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1910	initializecpu();	/* Initialize CPU registers */
1911
1912	/* make an initial tss so cpu can get interrupt stack on syscall! */
1913	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
1914	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1915	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1916	private_tss = 0;
1917	tss_gdt = &gdt[GPROC0_SEL].sd;
1918	common_tssd = *tss_gdt;
1919	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1920	ltr(gsel_tss);
1921
1922	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1923	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1924	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1925	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1926	dblfault_tss.tss_cr3 = (int)IdlePTD;
1927	dblfault_tss.tss_eip = (int) dblfault_handler;
1928	dblfault_tss.tss_eflags = PSL_KERNEL;
1929	dblfault_tss.tss_ds = dblfault_tss.tss_es =
1930	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1931	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1932	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1933	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1934
1935	vm86_initialize();
1936	getmemsize(first);
1937
1938	/* now running on new page tables, configured,and u/iom is accessible */
1939
1940	/* Map the message buffer. */
1941	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1942		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1943
1944	msgbufinit(msgbufp, MSGBUF_SIZE);
1945
1946	/* make a call gate to reenter kernel with */
1947	gdp = &ldt[LSYS5CALLS_SEL].gd;
1948
1949	x = (int) &IDTVEC(syscall);
1950	gdp->gd_looffset = x++;
1951	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1952	gdp->gd_stkcpy = 1;
1953	gdp->gd_type = SDT_SYS386CGT;
1954	gdp->gd_dpl = SEL_UPL;
1955	gdp->gd_p = 1;
1956	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1957
1958	/* XXX does this work? */
1959	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1960	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
1961
1962	/* transfer to user mode */
1963
1964	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1965	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1966
1967	/* setup proc 0's pcb */
1968	proc0.p_addr->u_pcb.pcb_flags = 0;
1969	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1970#ifdef SMP
1971	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1972#endif
1973	proc0.p_addr->u_pcb.pcb_ext = 0;
1974}
1975
1976#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1977static void f00f_hack(void *unused);
1978SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1979
1980static void
1981f00f_hack(void *unused) {
1982	struct gate_descriptor *new_idt;
1983#ifndef SMP
1984	struct region_descriptor r_idt;
1985#endif
1986	vm_offset_t tmp;
1987
1988	if (!has_f00f_bug)
1989		return;
1990
1991	printf("Intel Pentium detected, installing workaround for F00F bug\n");
1992
1993	r_idt.rd_limit = sizeof(idt0) - 1;
1994
1995	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
1996	if (tmp == 0)
1997		panic("kmem_alloc returned 0");
1998	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1999		panic("kmem_alloc returned non-page-aligned memory");
2000	/* Put the first seven entries in the lower page */
2001	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2002	bcopy(idt, new_idt, sizeof(idt0));
2003	r_idt.rd_base = (int)new_idt;
2004	lidt(&r_idt);
2005	idt = new_idt;
2006	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2007			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2008		panic("vm_map_protect failed");
2009	return;
2010}
2011#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2012
2013int
2014ptrace_set_pc(p, addr)
2015	struct proc *p;
2016	unsigned long addr;
2017{
2018	p->p_md.md_regs->tf_eip = addr;
2019	return (0);
2020}
2021
2022int
2023ptrace_single_step(p)
2024	struct proc *p;
2025{
2026	p->p_md.md_regs->tf_eflags |= PSL_T;
2027	return (0);
2028}
2029
2030int ptrace_read_u_check(p, addr, len)
2031	struct proc *p;
2032	vm_offset_t addr;
2033	size_t len;
2034{
2035	vm_offset_t gap;
2036
2037	if ((vm_offset_t) (addr + len) < addr)
2038		return EPERM;
2039	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
2040		return 0;
2041
2042	gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
2043
2044	if ((vm_offset_t) addr < gap)
2045		return EPERM;
2046	if ((vm_offset_t) (addr + len) <=
2047	    (vm_offset_t) (gap + sizeof(struct trapframe)))
2048		return 0;
2049	return EPERM;
2050}
2051
2052int ptrace_write_u(p, off, data)
2053	struct proc *p;
2054	vm_offset_t off;
2055	long data;
2056{
2057	struct trapframe frame_copy;
2058	vm_offset_t min;
2059	struct trapframe *tp;
2060
2061	/*
2062	 * Privileged kernel state is scattered all over the user area.
2063	 * Only allow write access to parts of regs and to fpregs.
2064	 */
2065	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
2066	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
2067		tp = p->p_md.md_regs;
2068		frame_copy = *tp;
2069		*(int *)((char *)&frame_copy + (off - min)) = data;
2070		if (!EFL_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
2071		    !CS_SECURE(frame_copy.tf_cs))
2072			return (EINVAL);
2073		*(int*)((char *)p->p_addr + off) = data;
2074		return (0);
2075	}
2076	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
2077	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
2078		*(int*)((char *)p->p_addr + off) = data;
2079		return (0);
2080	}
2081	return (EFAULT);
2082}
2083
2084int
2085fill_regs(p, regs)
2086	struct proc *p;
2087	struct reg *regs;
2088{
2089	struct pcb *pcb;
2090	struct trapframe *tp;
2091
2092	tp = p->p_md.md_regs;
2093	regs->r_fs = tp->tf_fs;
2094	regs->r_es = tp->tf_es;
2095	regs->r_ds = tp->tf_ds;
2096	regs->r_edi = tp->tf_edi;
2097	regs->r_esi = tp->tf_esi;
2098	regs->r_ebp = tp->tf_ebp;
2099	regs->r_ebx = tp->tf_ebx;
2100	regs->r_edx = tp->tf_edx;
2101	regs->r_ecx = tp->tf_ecx;
2102	regs->r_eax = tp->tf_eax;
2103	regs->r_eip = tp->tf_eip;
2104	regs->r_cs = tp->tf_cs;
2105	regs->r_eflags = tp->tf_eflags;
2106	regs->r_esp = tp->tf_esp;
2107	regs->r_ss = tp->tf_ss;
2108	pcb = &p->p_addr->u_pcb;
2109	regs->r_gs = pcb->pcb_gs;
2110	return (0);
2111}
2112
2113int
2114set_regs(p, regs)
2115	struct proc *p;
2116	struct reg *regs;
2117{
2118	struct pcb *pcb;
2119	struct trapframe *tp;
2120
2121	tp = p->p_md.md_regs;
2122	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2123	    !CS_SECURE(regs->r_cs))
2124		return (EINVAL);
2125	tp->tf_fs = regs->r_fs;
2126	tp->tf_es = regs->r_es;
2127	tp->tf_ds = regs->r_ds;
2128	tp->tf_edi = regs->r_edi;
2129	tp->tf_esi = regs->r_esi;
2130	tp->tf_ebp = regs->r_ebp;
2131	tp->tf_ebx = regs->r_ebx;
2132	tp->tf_edx = regs->r_edx;
2133	tp->tf_ecx = regs->r_ecx;
2134	tp->tf_eax = regs->r_eax;
2135	tp->tf_eip = regs->r_eip;
2136	tp->tf_cs = regs->r_cs;
2137	tp->tf_eflags = regs->r_eflags;
2138	tp->tf_esp = regs->r_esp;
2139	tp->tf_ss = regs->r_ss;
2140	pcb = &p->p_addr->u_pcb;
2141	pcb->pcb_gs = regs->r_gs;
2142	return (0);
2143}
2144
2145int
2146fill_fpregs(p, fpregs)
2147	struct proc *p;
2148	struct fpreg *fpregs;
2149{
2150	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
2151	return (0);
2152}
2153
2154int
2155set_fpregs(p, fpregs)
2156	struct proc *p;
2157	struct fpreg *fpregs;
2158{
2159	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
2160	return (0);
2161}
2162
2163int
2164fill_dbregs(p, dbregs)
2165	struct proc *p;
2166	struct dbreg *dbregs;
2167{
2168	struct pcb *pcb;
2169
2170	pcb = &p->p_addr->u_pcb;
2171	dbregs->dr0 = pcb->pcb_dr0;
2172	dbregs->dr1 = pcb->pcb_dr1;
2173	dbregs->dr2 = pcb->pcb_dr2;
2174	dbregs->dr3 = pcb->pcb_dr3;
2175	dbregs->dr4 = 0;
2176	dbregs->dr5 = 0;
2177	dbregs->dr6 = pcb->pcb_dr6;
2178	dbregs->dr7 = pcb->pcb_dr7;
2179	return (0);
2180}
2181
2182int
2183set_dbregs(p, dbregs)
2184	struct proc *p;
2185	struct dbreg *dbregs;
2186{
2187	struct pcb *pcb;
2188
2189	pcb = &p->p_addr->u_pcb;
2190
2191	/*
2192	 * Don't let a process set a breakpoint that is not within the
2193	 * process's address space.  If a process could do this, it
2194	 * could halt the system by setting a breakpoint in the kernel
2195	 * (if ddb was enabled).  Thus, we need to check to make sure
2196	 * that no breakpoints are being enabled for addresses outside
2197	 * process's address space, unless, perhaps, we were called by
2198	 * uid 0.
2199	 *
2200	 * XXX - what about when the watched area of the user's
2201	 * address space is written into from within the kernel
2202	 * ... wouldn't that still cause a breakpoint to be generated
2203	 * from within kernel mode?
2204	 */
2205
2206	if (p->p_cred->pc_ucred->cr_uid != 0) {
2207		if (dbregs->dr7 & 0x3) {
2208			/* dr0 is enabled */
2209			if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2210				return (EINVAL);
2211		}
2212
2213		if (dbregs->dr7 & (0x3<<2)) {
2214			/* dr1 is enabled */
2215			if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2216				return (EINVAL);
2217		}
2218
2219		if (dbregs->dr7 & (0x3<<4)) {
2220			/* dr2 is enabled */
2221			if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2222       				return (EINVAL);
2223		}
2224
2225		if (dbregs->dr7 & (0x3<<6)) {
2226			/* dr3 is enabled */
2227			if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2228				return (EINVAL);
2229		}
2230	}
2231
2232	pcb->pcb_dr0 = dbregs->dr0;
2233	pcb->pcb_dr1 = dbregs->dr1;
2234	pcb->pcb_dr2 = dbregs->dr2;
2235	pcb->pcb_dr3 = dbregs->dr3;
2236	pcb->pcb_dr6 = dbregs->dr6;
2237	pcb->pcb_dr7 = dbregs->dr7;
2238
2239	pcb->pcb_flags |= PCB_DBREGS;
2240
2241	return (0);
2242}
2243
2244#ifndef DDB
2245void
2246Debugger(const char *msg)
2247{
2248	printf("Debugger(\"%s\") called.\n", msg);
2249}
2250#endif /* no DDB */
2251
2252#include <sys/disklabel.h>
2253
2254/*
2255 * Determine the size of the transfer, and make sure it is
2256 * within the boundaries of the partition. Adjust transfer
2257 * if needed, and signal errors or early completion.
2258 */
2259int
2260bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
2261{
2262        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
2263        int labelsect = lp->d_partitions[0].p_offset;
2264        int maxsz = p->p_size,
2265                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2266
2267        /* overwriting disk label ? */
2268        /* XXX should also protect bootstrap in first 8K */
2269        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
2270#if LABELSECTOR != 0
2271            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2272#endif
2273            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
2274                bp->b_error = EROFS;
2275                goto bad;
2276        }
2277
2278#if     defined(DOSBBSECTOR) && defined(notyet)
2279        /* overwriting master boot record? */
2280        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
2281            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
2282                bp->b_error = EROFS;
2283                goto bad;
2284        }
2285#endif
2286
2287        /* beyond partition? */
2288        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
2289                /* if exactly at end of disk, return an EOF */
2290                if (bp->b_blkno == maxsz) {
2291                        bp->b_resid = bp->b_bcount;
2292                        return(0);
2293                }
2294                /* or truncate if part of it fits */
2295                sz = maxsz - bp->b_blkno;
2296                if (sz <= 0) {
2297                        bp->b_error = EINVAL;
2298                        goto bad;
2299                }
2300                bp->b_bcount = sz << DEV_BSHIFT;
2301        }
2302
2303        bp->b_pblkno = bp->b_blkno + p->p_offset;
2304        return(1);
2305
2306bad:
2307        bp->b_flags |= B_ERROR;
2308        return(-1);
2309}
2310
2311#ifdef DDB
2312
2313/*
2314 * Provide inb() and outb() as functions.  They are normally only
2315 * available as macros calling inlined functions, thus cannot be
2316 * called inside DDB.
2317 *
2318 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2319 */
2320
2321#undef inb
2322#undef outb
2323
2324/* silence compiler warnings */
2325u_char inb(u_int);
2326void outb(u_int, u_char);
2327
2328u_char
2329inb(u_int port)
2330{
2331	u_char	data;
2332	/*
2333	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2334	 * %edx, while gcc generates inferior code (movw instead of movl)
2335	 * if we tell it to load (u_short) port.
2336	 */
2337	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2338	return (data);
2339}
2340
2341void
2342outb(u_int port, u_char data)
2343{
2344	u_char	al;
2345	/*
2346	 * Use an unnecessary assignment to help gcc's register allocator.
2347	 * This make a large difference for gcc-1.40 and a tiny difference
2348	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2349	 * best results.  gcc-2.6.0 can't handle this.
2350	 */
2351	al = data;
2352	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2353}
2354
2355#endif /* DDB */
2356