machdep.c revision 47892
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 *	$Id: machdep.c,v 1.340 1999/06/10 02:48:51 jlemon Exp $
39 */
40
41#include "apm.h"
42#include "ether.h"
43#include "npx.h"
44#include "opt_atalk.h"
45#include "opt_cpu.h"
46#include "opt_ddb.h"
47#include "opt_inet.h"
48#include "opt_ipx.h"
49#include "opt_maxmem.h"
50#include "opt_msgbuf.h"
51#include "opt_perfmon.h"
52#include "opt_smp.h"
53#include "opt_sysvipc.h"
54#include "opt_user_ldt.h"
55#include "opt_userconfig.h"
56
57#include <sys/param.h>
58#include <sys/systm.h>
59#include <sys/sysproto.h>
60#include <sys/signalvar.h>
61#include <sys/kernel.h>
62#include <sys/linker.h>
63#include <sys/proc.h>
64#include <sys/buf.h>
65#include <sys/reboot.h>
66#include <sys/callout.h>
67#include <sys/malloc.h>
68#include <sys/mbuf.h>
69#include <sys/msgbuf.h>
70#include <sys/sysent.h>
71#include <sys/sysctl.h>
72#include <sys/vmmeter.h>
73#include <sys/bus.h>
74
75#ifdef SYSVSHM
76#include <sys/shm.h>
77#endif
78
79#ifdef SYSVMSG
80#include <sys/msg.h>
81#endif
82
83#ifdef SYSVSEM
84#include <sys/sem.h>
85#endif
86
87#include <vm/vm.h>
88#include <vm/vm_param.h>
89#include <vm/vm_prot.h>
90#include <sys/lock.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_object.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_pager.h>
96#include <vm/vm_extern.h>
97
98#include <sys/user.h>
99#include <sys/exec.h>
100
101#include <ddb/ddb.h>
102
103#include <net/netisr.h>
104
105#include <machine/cpu.h>
106#include <machine/reg.h>
107#include <machine/clock.h>
108#include <machine/specialreg.h>
109#include <machine/cons.h>
110#include <machine/bootinfo.h>
111#include <machine/ipl.h>
112#include <machine/md_var.h>
113#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
114#ifdef SMP
115#include <machine/smp.h>
116#include <machine/globaldata.h>
117#endif
118#ifdef PERFMON
119#include <machine/perfmon.h>
120#endif
121
122#ifdef OLD_BUS_ARCH
123#include <i386/isa/isa_device.h>
124#endif
125#include <i386/isa/intr_machdep.h>
126#include <isa/rtc.h>
127#include <machine/vm86.h>
128#include <machine/random.h>
129#include <sys/ptrace.h>
130
131extern void init386 __P((int first));
132extern void dblfault_handler __P((void));
133
134extern void printcpuinfo(void);	/* XXX header file */
135extern void earlysetcpuclass(void);	/* same header file */
136extern void finishidentcpu(void);
137extern void panicifcpuunsupported(void);
138extern void initializecpu(void);
139
140static void cpu_startup __P((void *));
141SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
142
143static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
144
145int	_udatasel, _ucodesel;
146u_int	atdevbase;
147
148#if defined(SWTCH_OPTIM_STATS)
149extern int swtch_optim_stats;
150SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
151	CTLFLAG_RD, &swtch_optim_stats, 0, "");
152SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
153	CTLFLAG_RD, &tlb_flush_count, 0, "");
154#endif
155
156#ifdef PC98
157static int	ispc98 = 1;
158#else
159static int	ispc98 = 0;
160#endif
161SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
162
163int physmem = 0;
164int cold = 1;
165
166static int
167sysctl_hw_physmem SYSCTL_HANDLER_ARGS
168{
169	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
170	return (error);
171}
172
173SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
174	0, 0, sysctl_hw_physmem, "I", "");
175
176static int
177sysctl_hw_usermem SYSCTL_HANDLER_ARGS
178{
179	int error = sysctl_handle_int(oidp, 0,
180		ctob(physmem - cnt.v_wire_count), req);
181	return (error);
182}
183
184SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
185	0, 0, sysctl_hw_usermem, "I", "");
186
187static int
188sysctl_hw_availpages SYSCTL_HANDLER_ARGS
189{
190	int error = sysctl_handle_int(oidp, 0,
191		i386_btop(avail_end - avail_start), req);
192	return (error);
193}
194
195SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
196	0, 0, sysctl_hw_availpages, "I", "");
197
198static int
199sysctl_machdep_msgbuf SYSCTL_HANDLER_ARGS
200{
201	int error;
202
203	/* Unwind the buffer, so that it's linear (possibly starting with
204	 * some initial nulls).
205	 */
206	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
207		msgbufp->msg_size-msgbufp->msg_bufr,req);
208	if(error) return(error);
209	if(msgbufp->msg_bufr>0) {
210		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
211			msgbufp->msg_bufr,req);
212	}
213	return(error);
214}
215
216SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
217	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
218
219static int msgbuf_clear;
220
221static int
222sysctl_machdep_msgbuf_clear SYSCTL_HANDLER_ARGS
223{
224	int error;
225	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
226		req);
227	if (!error && req->newptr) {
228		/* Clear the buffer and reset write pointer */
229		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
230		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
231		msgbuf_clear=0;
232	}
233	return (error);
234}
235
236SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
237	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
238	"Clear kernel message buffer");
239
240int bootverbose = 0, Maxmem = 0;
241long dumplo;
242
243vm_offset_t phys_avail[10];
244
245/* must be 2 less so 0 0 can signal end of chunks */
246#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
247
248static vm_offset_t buffer_sva, buffer_eva;
249vm_offset_t clean_sva, clean_eva;
250static vm_offset_t pager_sva, pager_eva;
251#if NNPX > 0
252extern struct isa_driver npxdriver;
253#endif
254
255#define offsetof(type, member)	((size_t)(&((type *)0)->member))
256
257static void
258cpu_startup(dummy)
259	void *dummy;
260{
261	register unsigned i;
262	register caddr_t v;
263	vm_offset_t maxaddr;
264	vm_size_t size = 0;
265	int firstaddr;
266	vm_offset_t minaddr;
267
268	if (boothowto & RB_VERBOSE)
269		bootverbose++;
270
271	/*
272	 * Good {morning,afternoon,evening,night}.
273	 */
274	printf(version);
275	earlysetcpuclass();
276	startrtclock();
277	printcpuinfo();
278	panicifcpuunsupported();
279#ifdef PERFMON
280	perfmon_init();
281#endif
282	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
283	/*
284	 * Display any holes after the first chunk of extended memory.
285	 */
286	if (bootverbose) {
287		int indx;
288
289		printf("Physical memory chunk(s):\n");
290		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
291			int size1 = phys_avail[indx + 1] - phys_avail[indx];
292
293			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
294			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
295			    size1 / PAGE_SIZE);
296		}
297	}
298
299	/*
300	 * Calculate callout wheel size
301	 */
302	for (callwheelsize = 1, callwheelbits = 0;
303	     callwheelsize < ncallout;
304	     callwheelsize <<= 1, ++callwheelbits)
305		;
306	callwheelmask = callwheelsize - 1;
307
308	/*
309	 * Allocate space for system data structures.
310	 * The first available kernel virtual address is in "v".
311	 * As pages of kernel virtual memory are allocated, "v" is incremented.
312	 * As pages of memory are allocated and cleared,
313	 * "firstaddr" is incremented.
314	 * An index into the kernel page table corresponding to the
315	 * virtual memory address maintained in "v" is kept in "mapaddr".
316	 */
317
318	/*
319	 * Make two passes.  The first pass calculates how much memory is
320	 * needed and allocates it.  The second pass assigns virtual
321	 * addresses to the various data structures.
322	 */
323	firstaddr = 0;
324again:
325	v = (caddr_t)firstaddr;
326
327#define	valloc(name, type, num) \
328	    (name) = (type *)v; v = (caddr_t)((name)+(num))
329#define	valloclim(name, type, num, lim) \
330	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
331
332	valloc(callout, struct callout, ncallout);
333	valloc(callwheel, struct callout_tailq, callwheelsize);
334#ifdef SYSVSHM
335	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
336#endif
337#ifdef SYSVSEM
338	valloc(sema, struct semid_ds, seminfo.semmni);
339	valloc(sem, struct sem, seminfo.semmns);
340	/* This is pretty disgusting! */
341	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
342#endif
343#ifdef SYSVMSG
344	valloc(msgpool, char, msginfo.msgmax);
345	valloc(msgmaps, struct msgmap, msginfo.msgseg);
346	valloc(msghdrs, struct msg, msginfo.msgtql);
347	valloc(msqids, struct msqid_ds, msginfo.msgmni);
348#endif
349
350	if (nbuf == 0) {
351		nbuf = 30;
352		if( physmem > 1024)
353			nbuf += min((physmem - 1024) / 8, 2048);
354	}
355	nswbuf = max(min(nbuf/4, 64), 16);
356
357	valloc(swbuf, struct buf, nswbuf);
358	valloc(buf, struct buf, nbuf);
359
360
361	/*
362	 * End of first pass, size has been calculated so allocate memory
363	 */
364	if (firstaddr == 0) {
365		size = (vm_size_t)(v - firstaddr);
366		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
367		if (firstaddr == 0)
368			panic("startup: no room for tables");
369		goto again;
370	}
371
372	/*
373	 * End of second pass, addresses have been assigned
374	 */
375	if ((vm_size_t)(v - firstaddr) != size)
376		panic("startup: table size inconsistency");
377
378	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
379			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
380	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
381				(nbuf*BKVASIZE));
382	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
383				(nswbuf*MAXPHYS) + pager_map_size);
384	pager_map->system_map = 1;
385	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
386				(16*(ARG_MAX+(PAGE_SIZE*3))));
387
388	/*
389	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
390	 * we use the more space efficient malloc in place of kmem_alloc.
391	 */
392	{
393		vm_offset_t mb_map_size;
394		int xclusters;
395
396		/* Allow override of NMBCLUSTERS from the kernel environment */
397		if (getenv_int("kern.ipc.nmbclusters", &xclusters) &&
398		    xclusters > nmbclusters)
399		    nmbclusters = xclusters;
400
401		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
402		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
403		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
404		bzero(mclrefcnt, mb_map_size / MCLBYTES);
405		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
406			mb_map_size);
407		mb_map->system_map = 1;
408	}
409
410	/*
411	 * Initialize callouts
412	 */
413	SLIST_INIT(&callfree);
414	for (i = 0; i < ncallout; i++) {
415		callout_init(&callout[i]);
416		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
417		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
418	}
419
420	for (i = 0; i < callwheelsize; i++) {
421		TAILQ_INIT(&callwheel[i]);
422	}
423
424#if defined(USERCONFIG)
425	userconfig();
426	cninit();		/* the preferred console may have changed */
427#endif
428
429	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
430	    ptoa(cnt.v_free_count) / 1024);
431
432	/*
433	 * Set up buffers, so they can be used to read disk labels.
434	 */
435	bufinit();
436	vm_pager_bufferinit();
437
438#ifdef SMP
439	/*
440	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
441	 */
442	mp_start();			/* fire up the APs and APICs */
443	mp_announce();
444#endif  /* SMP */
445}
446
447int
448register_netisr(num, handler)
449	int num;
450	netisr_t *handler;
451{
452
453	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
454		printf("register_netisr: bad isr number: %d\n", num);
455		return (EINVAL);
456	}
457	netisrs[num] = handler;
458	return (0);
459}
460
461void
462netisr_sysinit(data)
463	void *data;
464{
465	const struct netisrtab *nit;
466
467	nit = (const struct netisrtab *)data;
468	register_netisr(nit->nit_num, nit->nit_isr);
469}
470
471/*
472 * Send an interrupt to process.
473 *
474 * Stack is set up to allow sigcode stored
475 * at top to call routine, followed by kcall
476 * to sigreturn routine below.  After sigreturn
477 * resets the signal mask, the stack, and the
478 * frame pointer, it returns to the user
479 * specified pc, psl.
480 */
481void
482sendsig(catcher, sig, mask, code)
483	sig_t catcher;
484	int sig, mask;
485	u_long code;
486{
487	register struct proc *p = curproc;
488	register struct trapframe *regs;
489	register struct sigframe *fp;
490	struct sigframe sf;
491	struct sigacts *psp = p->p_sigacts;
492	int oonstack;
493
494	regs = p->p_md.md_regs;
495        oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
496	/*
497	 * Allocate and validate space for the signal handler context.
498	 */
499        if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
500	    (psp->ps_sigonstack & sigmask(sig))) {
501		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
502		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
503		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
504	} else {
505		fp = (struct sigframe *)regs->tf_esp - 1;
506	}
507
508	/*
509	 * grow() will return FALSE if the fp will not fit inside the stack
510	 *	and the stack can not be grown. useracc will return FALSE
511	 *	if access is denied.
512	 */
513	if ((grow_stack (p, (int)fp) == FALSE) ||
514	    (useracc((caddr_t)fp, sizeof(struct sigframe), B_WRITE) == FALSE)) {
515		/*
516		 * Process has trashed its stack; give it an illegal
517		 * instruction to halt it in its tracks.
518		 */
519		SIGACTION(p, SIGILL) = SIG_DFL;
520		sig = sigmask(SIGILL);
521		p->p_sigignore &= ~sig;
522		p->p_sigcatch &= ~sig;
523		p->p_sigmask &= ~sig;
524		psignal(p, SIGILL);
525		return;
526	}
527
528	/*
529	 * Build the argument list for the signal handler.
530	 */
531	if (p->p_sysent->sv_sigtbl) {
532		if (sig < p->p_sysent->sv_sigsize)
533			sig = p->p_sysent->sv_sigtbl[sig];
534		else
535			sig = p->p_sysent->sv_sigsize + 1;
536	}
537	sf.sf_signum = sig;
538	sf.sf_code = code;
539	sf.sf_scp = &fp->sf_sc;
540	sf.sf_addr = (char *) regs->tf_err;
541	sf.sf_handler = catcher;
542
543	/* save scratch registers */
544	sf.sf_sc.sc_eax = regs->tf_eax;
545	sf.sf_sc.sc_ebx = regs->tf_ebx;
546	sf.sf_sc.sc_ecx = regs->tf_ecx;
547	sf.sf_sc.sc_edx = regs->tf_edx;
548	sf.sf_sc.sc_esi = regs->tf_esi;
549	sf.sf_sc.sc_edi = regs->tf_edi;
550	sf.sf_sc.sc_cs = regs->tf_cs;
551	sf.sf_sc.sc_ds = regs->tf_ds;
552	sf.sf_sc.sc_ss = regs->tf_ss;
553	sf.sf_sc.sc_es = regs->tf_es;
554	sf.sf_sc.sc_fs = regs->tf_fs;
555	sf.sf_sc.sc_isp = regs->tf_isp;
556
557	/*
558	 * Build the signal context to be used by sigreturn.
559	 */
560	sf.sf_sc.sc_onstack = oonstack;
561	sf.sf_sc.sc_mask = mask;
562	sf.sf_sc.sc_sp = regs->tf_esp;
563	sf.sf_sc.sc_fp = regs->tf_ebp;
564	sf.sf_sc.sc_pc = regs->tf_eip;
565	sf.sf_sc.sc_ps = regs->tf_eflags;
566	sf.sf_sc.sc_trapno = regs->tf_trapno;
567	sf.sf_sc.sc_err = regs->tf_err;
568
569	/*
570	 * If we're a vm86 process, we want to save the segment registers.
571	 * We also change eflags to be our emulated eflags, not the actual
572	 * eflags.
573	 */
574	if (regs->tf_eflags & PSL_VM) {
575		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
576		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
577
578		sf.sf_sc.sc_gs = tf->tf_vm86_gs;
579		sf.sf_sc.sc_fs = tf->tf_vm86_fs;
580		sf.sf_sc.sc_es = tf->tf_vm86_es;
581		sf.sf_sc.sc_ds = tf->tf_vm86_ds;
582
583		if (vm86->vm86_has_vme == 0)
584			sf.sf_sc.sc_ps = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
585			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
586
587		/*
588		 * We should never have PSL_T set when returning from vm86
589		 * mode.  It may be set here if we deliver a signal before
590		 * getting to vm86 mode, so turn it off.
591		 *
592		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
593		 * syscalls made by the signal handler.  This just avoids
594		 * wasting time for our lazy fixup of such faults.  PSL_NT
595		 * does nothing in vm86 mode, but vm86 programs can set it
596		 * almost legitimately in probes for old cpu types.
597		 */
598		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
599	}
600
601	/*
602	 * Copy the sigframe out to the user's stack.
603	 */
604	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
605		/*
606		 * Something is wrong with the stack pointer.
607		 * ...Kill the process.
608		 */
609		sigexit(p, SIGILL);
610	}
611
612	regs->tf_esp = (int)fp;
613	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
614	regs->tf_cs = _ucodesel;
615	regs->tf_ds = _udatasel;
616	regs->tf_es = _udatasel;
617	regs->tf_fs = _udatasel;
618	regs->tf_ss = _udatasel;
619}
620
621/*
622 * System call to cleanup state after a signal
623 * has been taken.  Reset signal mask and
624 * stack state from context left by sendsig (above).
625 * Return to previous pc and psl as specified by
626 * context left by sendsig. Check carefully to
627 * make sure that the user has not modified the
628 * state to gain improper privileges.
629 */
630int
631sigreturn(p, uap)
632	struct proc *p;
633	struct sigreturn_args /* {
634		struct sigcontext *sigcntxp;
635	} */ *uap;
636{
637	register struct sigcontext *scp;
638	register struct sigframe *fp;
639	register struct trapframe *regs = p->p_md.md_regs;
640	int eflags;
641
642	/*
643	 * (XXX old comment) regs->tf_esp points to the return address.
644	 * The user scp pointer is above that.
645	 * The return address is faked in the signal trampoline code
646	 * for consistency.
647	 */
648	scp = uap->sigcntxp;
649	fp = (struct sigframe *)
650	     ((caddr_t)scp - offsetof(struct sigframe, sf_sc));
651
652	if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
653		return(EFAULT);
654
655	eflags = scp->sc_ps;
656	if (eflags & PSL_VM) {
657		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
658		struct vm86_kernel *vm86;
659
660		/*
661		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
662		 * set up the vm86 area, and we can't enter vm86 mode.
663		 */
664		if (p->p_addr->u_pcb.pcb_ext == 0)
665			return (EINVAL);
666		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
667		if (vm86->vm86_inited == 0)
668			return (EINVAL);
669
670		/* go back to user mode if both flags are set */
671		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
672			trapsignal(p, SIGBUS, 0);
673
674		if (vm86->vm86_has_vme) {
675			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
676			    (eflags & VME_USERCHANGE) | PSL_VM;
677		} else {
678			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
679			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
680		}
681		tf->tf_vm86_ds = scp->sc_ds;
682		tf->tf_vm86_es = scp->sc_es;
683		tf->tf_vm86_fs = scp->sc_fs;
684		tf->tf_vm86_gs = scp->sc_gs;
685		tf->tf_ds = _udatasel;
686		tf->tf_es = _udatasel;
687		tf->tf_fs = _udatasel;
688	} else {
689		/*
690		 * Don't allow users to change privileged or reserved flags.
691		 */
692#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
693		/*
694		 * XXX do allow users to change the privileged flag PSL_RF.
695		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
696		 * should sometimes set it there too.  tf_eflags is kept in
697		 * the signal context during signal handling and there is no
698		 * other place to remember it, so the PSL_RF bit may be
699		 * corrupted by the signal handler without us knowing.
700		 * Corruption of the PSL_RF bit at worst causes one more or
701		 * one less debugger trap, so allowing it is fairly harmless.
702		 */
703		if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
704#ifdef DEBUG
705	    		printf("sigreturn: eflags = 0x%x\n", eflags);
706#endif
707	    		return(EINVAL);
708		}
709
710		/*
711		 * Don't allow users to load a valid privileged %cs.  Let the
712		 * hardware check for invalid selectors, excess privilege in
713		 * other selectors, invalid %eip's and invalid %esp's.
714		 */
715#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
716		if (!CS_SECURE(scp->sc_cs)) {
717#ifdef DEBUG
718    			printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
719#endif
720			trapsignal(p, SIGBUS, T_PROTFLT);
721			return(EINVAL);
722		}
723		regs->tf_ds = scp->sc_ds;
724		regs->tf_es = scp->sc_es;
725		regs->tf_fs = scp->sc_fs;
726	}
727
728	/* restore scratch registers */
729	regs->tf_eax = scp->sc_eax;
730	regs->tf_ebx = scp->sc_ebx;
731	regs->tf_ecx = scp->sc_ecx;
732	regs->tf_edx = scp->sc_edx;
733	regs->tf_esi = scp->sc_esi;
734	regs->tf_edi = scp->sc_edi;
735	regs->tf_cs = scp->sc_cs;
736	regs->tf_ss = scp->sc_ss;
737	regs->tf_isp = scp->sc_isp;
738
739	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
740		return(EINVAL);
741
742	if (scp->sc_onstack & 01)
743		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
744	else
745		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
746	p->p_sigmask = scp->sc_mask & ~sigcantmask;
747	regs->tf_ebp = scp->sc_fp;
748	regs->tf_esp = scp->sc_sp;
749	regs->tf_eip = scp->sc_pc;
750	regs->tf_eflags = eflags;
751	return(EJUSTRETURN);
752}
753
754/*
755 * Machine dependent boot() routine
756 *
757 * I haven't seen anything to put here yet
758 * Possibly some stuff might be grafted back here from boot()
759 */
760void
761cpu_boot(int howto)
762{
763}
764
765/*
766 * Shutdown the CPU as much as possible
767 */
768void
769cpu_halt(void)
770{
771	for (;;)
772		__asm__ ("hlt");
773}
774
775/*
776 * Clear registers on exec
777 */
778void
779setregs(p, entry, stack, ps_strings)
780	struct proc *p;
781	u_long entry;
782	u_long stack;
783	u_long ps_strings;
784{
785	struct trapframe *regs = p->p_md.md_regs;
786	struct pcb *pcb = &p->p_addr->u_pcb;
787
788#ifdef USER_LDT
789	/* was i386_user_cleanup() in NetBSD */
790	if (pcb->pcb_ldt) {
791		if (pcb == curpcb) {
792			lldt(_default_ldt);
793			currentldt = _default_ldt;
794		}
795		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
796			pcb->pcb_ldt_len * sizeof(union descriptor));
797		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
798 	}
799#endif
800
801	bzero((char *)regs, sizeof(struct trapframe));
802	regs->tf_eip = entry;
803	regs->tf_esp = stack;
804	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
805	regs->tf_ss = _udatasel;
806	regs->tf_ds = _udatasel;
807	regs->tf_es = _udatasel;
808	regs->tf_fs = _udatasel;
809	regs->tf_cs = _ucodesel;
810
811	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
812	regs->tf_ebx = ps_strings;
813
814	/* reset %gs as well */
815	pcb->pcb_gs = _udatasel;
816	if (pcb == curpcb) {
817		load_gs(_udatasel);
818	}
819
820	/*
821	 * Initialize the math emulator (if any) for the current process.
822	 * Actually, just clear the bit that says that the emulator has
823	 * been initialized.  Initialization is delayed until the process
824	 * traps to the emulator (if it is done at all) mainly because
825	 * emulators don't provide an entry point for initialization.
826	 */
827	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
828
829	/*
830	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
831	 * for why fwait must be trapped at least if there is an npx or an
832	 * emulator).  This is mainly to handle the case where npx0 is not
833	 * configured, since the npx routines normally set up the trap
834	 * otherwise.  It should be done only at boot time, but doing it
835	 * here allows modifying `npx_exists' for testing the emulator on
836	 * systems with an npx.
837	 */
838	load_cr0(rcr0() | CR0_MP | CR0_TS);
839
840#if NNPX > 0
841	/* Initialize the npx (if any) for the current process. */
842	npxinit(__INITIAL_NPXCW__);
843#endif
844
845      /*
846       * XXX - Linux emulator
847       * Make sure sure edx is 0x0 on entry. Linux binaries depend
848       * on it.
849       */
850      p->p_retval[1] = 0;
851}
852
853static int
854sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
855{
856	int error;
857	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
858		req);
859	if (!error && req->newptr)
860		resettodr();
861	return (error);
862}
863
864SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
865	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
866
867SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
868	CTLFLAG_RW, &disable_rtc_set, 0, "");
869
870SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
871	CTLFLAG_RD, &bootinfo, bootinfo, "");
872
873SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
874	CTLFLAG_RW, &wall_cmos_clock, 0, "");
875
876/*
877 * Initialize 386 and configure to run kernel
878 */
879
880/*
881 * Initialize segments & interrupt table
882 */
883
884int _default_ldt;
885#ifdef SMP
886union descriptor gdt[NGDT * NCPU];	/* global descriptor table */
887#else
888union descriptor gdt[NGDT];		/* global descriptor table */
889#endif
890struct gate_descriptor idt[NIDT];	/* interrupt descriptor table */
891union descriptor ldt[NLDT];		/* local descriptor table */
892#ifdef SMP
893/* table descriptors - used to load tables by microp */
894struct region_descriptor r_gdt, r_idt;
895#endif
896
897#ifndef SMP
898extern struct segment_descriptor common_tssd, *tss_gdt;
899#endif
900int private_tss;			/* flag indicating private tss */
901
902#if defined(I586_CPU) && !defined(NO_F00F_HACK)
903struct gate_descriptor *t_idt;
904extern int has_f00f_bug;
905#endif
906
907static struct i386tss dblfault_tss;
908static char dblfault_stack[PAGE_SIZE];
909
910extern  struct user *proc0paddr;
911
912
913/* software prototypes -- in more palatable form */
914struct soft_segment_descriptor gdt_segs[] = {
915/* GNULL_SEL	0 Null Descriptor */
916{	0x0,			/* segment base address  */
917	0x0,			/* length */
918	0,			/* segment type */
919	0,			/* segment descriptor priority level */
920	0,			/* segment descriptor present */
921	0, 0,
922	0,			/* default 32 vs 16 bit size */
923	0  			/* limit granularity (byte/page units)*/ },
924/* GCODE_SEL	1 Code Descriptor for kernel */
925{	0x0,			/* segment base address  */
926	0xfffff,		/* length - all address space */
927	SDT_MEMERA,		/* segment type */
928	0,			/* segment descriptor priority level */
929	1,			/* segment descriptor present */
930	0, 0,
931	1,			/* default 32 vs 16 bit size */
932	1  			/* limit granularity (byte/page units)*/ },
933/* GDATA_SEL	2 Data Descriptor for kernel */
934{	0x0,			/* segment base address  */
935	0xfffff,		/* length - all address space */
936	SDT_MEMRWA,		/* segment type */
937	0,			/* segment descriptor priority level */
938	1,			/* segment descriptor present */
939	0, 0,
940	1,			/* default 32 vs 16 bit size */
941	1  			/* limit granularity (byte/page units)*/ },
942/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
943{	0x0,			/* segment base address  */
944	0xfffff,		/* length - all address space */
945	SDT_MEMRWA,		/* segment type */
946	0,			/* segment descriptor priority level */
947	1,			/* segment descriptor present */
948	0, 0,
949	1,			/* default 32 vs 16 bit size */
950	1  			/* limit granularity (byte/page units)*/ },
951/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
952{
953	0x0,			/* segment base address */
954	sizeof(struct i386tss)-1,/* length - all address space */
955	SDT_SYS386TSS,		/* segment type */
956	0,			/* segment descriptor priority level */
957	1,			/* segment descriptor present */
958	0, 0,
959	0,			/* unused - default 32 vs 16 bit size */
960	0  			/* limit granularity (byte/page units)*/ },
961/* GLDT_SEL	5 LDT Descriptor */
962{	(int) ldt,		/* segment base address  */
963	sizeof(ldt)-1,		/* length - all address space */
964	SDT_SYSLDT,		/* segment type */
965	SEL_UPL,		/* segment descriptor priority level */
966	1,			/* segment descriptor present */
967	0, 0,
968	0,			/* unused - default 32 vs 16 bit size */
969	0  			/* limit granularity (byte/page units)*/ },
970/* GUSERLDT_SEL	6 User LDT Descriptor per process */
971{	(int) ldt,		/* segment base address  */
972	(512 * sizeof(union descriptor)-1),		/* length */
973	SDT_SYSLDT,		/* segment type */
974	0,			/* segment descriptor priority level */
975	1,			/* segment descriptor present */
976	0, 0,
977	0,			/* unused - default 32 vs 16 bit size */
978	0  			/* limit granularity (byte/page units)*/ },
979/* GTGATE_SEL	7 Null Descriptor - Placeholder */
980{	0x0,			/* segment base address  */
981	0x0,			/* length - all address space */
982	0,			/* segment type */
983	0,			/* segment descriptor priority level */
984	0,			/* segment descriptor present */
985	0, 0,
986	0,			/* default 32 vs 16 bit size */
987	0  			/* limit granularity (byte/page units)*/ },
988/* GPANIC_SEL	8 Panic Tss Descriptor */
989{	(int) &dblfault_tss,	/* segment base address  */
990	sizeof(struct i386tss)-1,/* length - all address space */
991	SDT_SYS386TSS,		/* segment type */
992	0,			/* segment descriptor priority level */
993	1,			/* segment descriptor present */
994	0, 0,
995	0,			/* unused - default 32 vs 16 bit size */
996	0  			/* limit granularity (byte/page units)*/ },
997/* GAPMCODE32_SEL 9 APM BIOS 32-bit interface (32bit Code) */
998{	0,			/* segment base address (overwritten by APM)  */
999	0xfffff,		/* length */
1000	SDT_MEMERA,		/* segment type */
1001	0,			/* segment descriptor priority level */
1002	1,			/* segment descriptor present */
1003	0, 0,
1004	1,			/* default 32 vs 16 bit size */
1005	1  			/* limit granularity (byte/page units)*/ },
1006/* GAPMCODE16_SEL 10 APM BIOS 32-bit interface (16bit Code) */
1007{	0,			/* segment base address (overwritten by APM)  */
1008	0xfffff,		/* length */
1009	SDT_MEMERA,		/* segment type */
1010	0,			/* segment descriptor priority level */
1011	1,			/* segment descriptor present */
1012	0, 0,
1013	0,			/* default 32 vs 16 bit size */
1014	1  			/* limit granularity (byte/page units)*/ },
1015/* GAPMDATA_SEL	11 APM BIOS 32-bit interface (Data) */
1016{	0,			/* segment base address (overwritten by APM) */
1017	0xfffff,		/* length */
1018	SDT_MEMRWA,		/* segment type */
1019	0,			/* segment descriptor priority level */
1020	1,			/* segment descriptor present */
1021	0, 0,
1022	1,			/* default 32 vs 16 bit size */
1023	1  			/* limit granularity (byte/page units)*/ },
1024};
1025
1026static struct soft_segment_descriptor ldt_segs[] = {
1027	/* Null Descriptor - overwritten by call gate */
1028{	0x0,			/* segment base address  */
1029	0x0,			/* length - all address space */
1030	0,			/* segment type */
1031	0,			/* segment descriptor priority level */
1032	0,			/* segment descriptor present */
1033	0, 0,
1034	0,			/* default 32 vs 16 bit size */
1035	0  			/* limit granularity (byte/page units)*/ },
1036	/* Null Descriptor - overwritten by call gate */
1037{	0x0,			/* segment base address  */
1038	0x0,			/* length - all address space */
1039	0,			/* segment type */
1040	0,			/* segment descriptor priority level */
1041	0,			/* segment descriptor present */
1042	0, 0,
1043	0,			/* default 32 vs 16 bit size */
1044	0  			/* limit granularity (byte/page units)*/ },
1045	/* Null Descriptor - overwritten by call gate */
1046{	0x0,			/* segment base address  */
1047	0x0,			/* length - all address space */
1048	0,			/* segment type */
1049	0,			/* segment descriptor priority level */
1050	0,			/* segment descriptor present */
1051	0, 0,
1052	0,			/* default 32 vs 16 bit size */
1053	0  			/* limit granularity (byte/page units)*/ },
1054	/* Code Descriptor for user */
1055{	0x0,			/* segment base address  */
1056	0xfffff,		/* length - all address space */
1057	SDT_MEMERA,		/* segment type */
1058	SEL_UPL,		/* segment descriptor priority level */
1059	1,			/* segment descriptor present */
1060	0, 0,
1061	1,			/* default 32 vs 16 bit size */
1062	1  			/* limit granularity (byte/page units)*/ },
1063	/* Null Descriptor - overwritten by call gate */
1064{	0x0,			/* segment base address  */
1065	0x0,			/* length - all address space */
1066	0,			/* segment type */
1067	0,			/* segment descriptor priority level */
1068	0,			/* segment descriptor present */
1069	0, 0,
1070	0,			/* default 32 vs 16 bit size */
1071	0  			/* limit granularity (byte/page units)*/ },
1072	/* Data Descriptor for user */
1073{	0x0,			/* segment base address  */
1074	0xfffff,		/* length - all address space */
1075	SDT_MEMRWA,		/* segment type */
1076	SEL_UPL,		/* segment descriptor priority level */
1077	1,			/* segment descriptor present */
1078	0, 0,
1079	1,			/* default 32 vs 16 bit size */
1080	1  			/* limit granularity (byte/page units)*/ },
1081};
1082
1083void
1084setidt(idx, func, typ, dpl, selec)
1085	int idx;
1086	inthand_t *func;
1087	int typ;
1088	int dpl;
1089	int selec;
1090{
1091	struct gate_descriptor *ip;
1092
1093#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1094	ip = (t_idt != NULL ? t_idt : idt) + idx;
1095#else
1096	ip = idt + idx;
1097#endif
1098	ip->gd_looffset = (int)func;
1099	ip->gd_selector = selec;
1100	ip->gd_stkcpy = 0;
1101	ip->gd_xx = 0;
1102	ip->gd_type = typ;
1103	ip->gd_dpl = dpl;
1104	ip->gd_p = 1;
1105	ip->gd_hioffset = ((int)func)>>16 ;
1106}
1107
1108#define	IDTVEC(name)	__CONCAT(X,name)
1109
1110extern inthand_t
1111	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1112	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1113	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1114	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1115	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1116
1117void
1118sdtossd(sd, ssd)
1119	struct segment_descriptor *sd;
1120	struct soft_segment_descriptor *ssd;
1121{
1122	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1123	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1124	ssd->ssd_type  = sd->sd_type;
1125	ssd->ssd_dpl   = sd->sd_dpl;
1126	ssd->ssd_p     = sd->sd_p;
1127	ssd->ssd_def32 = sd->sd_def32;
1128	ssd->ssd_gran  = sd->sd_gran;
1129}
1130
1131#define PHYSMAP_SIZE	(2 * 8)
1132
1133static void
1134getmemsize(int first)
1135{
1136	int i, physmap_idx, pa_indx;
1137	u_int basemem, extmem;
1138	int speculative_mprobe = FALSE;
1139	struct vm86frame vmf;
1140	struct vm86context vmc;
1141	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1142	pt_entry_t pte;
1143	struct {
1144		u_int64_t base;
1145		u_int64_t length;
1146		u_int32_t type;
1147	} *smap;
1148#if NNPX > 0
1149	int msize;
1150#endif
1151
1152	bzero(&vmf, sizeof(struct vm86frame));
1153	bzero(physmap, sizeof(physmap));
1154
1155	vm86_intcall(0x12, &vmf);
1156	basemem = vmf.vmf_ax;
1157	if (basemem > 640) {
1158		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1159			basemem);
1160		basemem = 640;
1161	}
1162
1163	/*
1164	 * XXX if biosbasemem is now < 640, there is `hole'
1165	 * between the end of base memory and the start of
1166	 * ISA memory.  The hole may be empty or it may
1167	 * contain BIOS code or data.  Map it read/write so
1168	 * that the BIOS can write to it.  (Memory from 0 to
1169	 * the physical end of the kernel is mapped read-only
1170	 * to begin with and then parts of it are remapped.
1171	 * The parts that aren't remapped form holes that
1172	 * remain read-only and are unused by the kernel.
1173	 * The base memory area is below the physical end of
1174	 * the kernel and right now forms a read-only hole.
1175	 * The part of it from PAGE_SIZE to
1176	 * (trunc_page(biosbasemem * 1024) - 1) will be
1177	 * remapped and used by the kernel later.)
1178	 *
1179	 * This code is similar to the code used in
1180	 * pmap_mapdev, but since no memory needs to be
1181	 * allocated we simply change the mapping.
1182	 */
1183	for (pa = trunc_page(basemem * 1024);
1184	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1185		pte = (pt_entry_t)vtopte(pa + KERNBASE);
1186		*pte = pa | PG_RW | PG_V;
1187	}
1188
1189	/*
1190	 * if basemem != 640, map pages r/w into vm86 page table so
1191	 * that the bios can scribble on it.
1192	 */
1193	pte = (pt_entry_t)vm86paddr;
1194	for (i = basemem / 4; i < 160; i++)
1195		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1196
1197	/*
1198	 * map page 1 R/W into the kernel page table so we can use it
1199	 * as a buffer.  The kernel will unmap this page later.
1200	 */
1201	pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
1202	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1203
1204	/*
1205	 * get memory map with INT 15:E820
1206	 */
1207#define SMAPSIZ 	sizeof(*smap)
1208#define SMAP_SIG	0x534D4150			/* 'SMAP' */
1209
1210	vmc.npages = 0;
1211	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1212	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1213
1214	physmap_idx = 0;
1215	vmf.vmf_ebx = 0;
1216	do {
1217		vmf.vmf_eax = 0xE820;
1218		vmf.vmf_edx = SMAP_SIG;
1219		vmf.vmf_ecx = SMAPSIZ;
1220		i = vm86_datacall(0x15, &vmf, &vmc);
1221		if (i || vmf.vmf_eax != SMAP_SIG)
1222			break;
1223		if (boothowto & RB_VERBOSE)
1224			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1225				smap->type,
1226				*(u_int32_t *)((char *)&smap->base + 4),
1227				(u_int32_t)smap->base,
1228				*(u_int32_t *)((char *)&smap->length + 4),
1229				(u_int32_t)smap->length);
1230
1231		if (smap->type != 0x01)
1232			goto next_run;
1233
1234		if (smap->length == 0)
1235			goto next_run;
1236
1237		for (i = 0; i <= physmap_idx; i += 2) {
1238			if (smap->base < physmap[i + 1]) {
1239				if (boothowto & RB_VERBOSE)
1240					printf(
1241	"Overlapping or non-montonic memory region, ignoring second region\n");
1242				goto next_run;
1243			}
1244		}
1245
1246		if (smap->base == physmap[physmap_idx + 1]) {
1247			physmap[physmap_idx + 1] += smap->length;
1248			goto next_run;
1249		}
1250
1251		physmap_idx += 2;
1252		if (physmap_idx == PHYSMAP_SIZE) {
1253			printf(
1254		"Too many segments in the physical address map, giving up\n");
1255			break;
1256		}
1257		physmap[physmap_idx] = smap->base;
1258		physmap[physmap_idx + 1] = smap->base + smap->length;
1259next_run:
1260	} while (vmf.vmf_ebx != 0);
1261
1262	if (physmap[1] != 0)
1263		goto physmap_done;
1264
1265	/*
1266	 * try memory map with INT 15:E801
1267	 */
1268	vmf.vmf_ax = 0xE801;
1269	if (vm86_intcall(0x15, &vmf) == 0) {
1270		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1271	} else {
1272#if 0
1273		vmf.vmf_ah = 0x88;
1274		vm86_intcall(0x15, &vmf);
1275		extmem = vmf.vmf_ax;
1276#else
1277		/*
1278	 	 * Prefer the RTC value for extended memory.
1279		 */
1280		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1281#endif
1282	}
1283
1284	/*
1285	 * Only perform calculations in this section if there is no system
1286	 * map; any system new enough that supports SMAP probably does not
1287	 * need these workarounds.
1288	 */
1289	/*
1290	 * Special hack for chipsets that still remap the 384k hole when
1291	 *	there's 16MB of memory - this really confuses people that
1292	 *	are trying to use bus mastering ISA controllers with the
1293	 *	"16MB limit"; they only have 16MB, but the remapping puts
1294	 *	them beyond the limit.
1295	 */
1296	/*
1297	 * If extended memory is between 15-16MB (16-17MB phys address range),
1298	 *	chop it to 15MB.
1299	 */
1300	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1301		extmem = 15 * 1024;
1302
1303	physmap[0] = 0;
1304	physmap[1] = basemem * 1024;
1305	physmap_idx = 2;
1306	physmap[physmap_idx] = 0x100000;
1307	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1308
1309	/*
1310	 * Indicate that we wish to do a speculative search for memory
1311	 * beyond the end of the reported size if the indicated amount
1312	 * is 64M (or more).
1313	 *
1314	 * XXX we should only do this in the RTC / 0x88 case
1315	 */
1316	if (extmem >= 16 * 1024)
1317		speculative_mprobe = TRUE;
1318
1319physmap_done:
1320	/*
1321	 * Now, physmap contains a map of physical memory.
1322	 */
1323
1324#ifdef SMP
1325	/* make hole for AP bootstrap code */
1326	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1327#endif
1328
1329	/*
1330	 * Maxmem isn't the "maximum memory", it's one larger than the
1331	 * highest page of the physical address space.  It should be
1332	 * called something like "Maxphyspage".
1333	 */
1334	Maxmem = physmap[physmap_idx + 1] / PAGE_SIZE;
1335
1336        /*
1337         * If a specific amount of memory is indicated via the MAXMEM
1338	 * option or the npx0 "msize", then don't do the speculative
1339         * memory probe.
1340         */
1341#ifdef MAXMEM
1342	Maxmem = MAXMEM / 4;
1343	speculative_mprobe = FALSE;
1344#endif
1345
1346#if NNPX > 0
1347	if (resource_int_value("npx", 0, "msize", &msize) == 0) {
1348		if (msize != 0) {
1349			Maxmem = msize / 4;
1350			speculative_mprobe = FALSE;
1351		}
1352	}
1353#endif
1354
1355#ifdef SMP
1356	/* look for the MP hardware - needed for apic addresses */
1357	mp_probe();
1358#endif
1359	/* call pmap initialization to make new kernel address space */
1360	pmap_bootstrap(first, 0);
1361
1362	/*
1363	 * Size up each available chunk of physical memory.
1364	 */
1365	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1366	pa_indx = 0;
1367	phys_avail[pa_indx++] = physmap[0];
1368	phys_avail[pa_indx] = physmap[0];
1369#if 0
1370	pte = (pt_entry_t)vtopte(KERNBASE);
1371#else
1372	pte = (pt_entry_t)CMAP1;
1373#endif
1374
1375	/*
1376	 * physmap is in bytes, so when converting to page boundaries,
1377	 * round up the start address and round down the end address.
1378	 */
1379	for (i = 0; i <= physmap_idx; i += 2) {
1380		vm_offset_t end;
1381
1382		end = ptoa(Maxmem);
1383		if (physmap[i + 1] < end)
1384			end = trunc_page(physmap[i + 1]);
1385		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1386			int tmp, page_bad;
1387#if 0
1388			int *ptr = 0;
1389#else
1390			int *ptr = (int *)CADDR1;
1391#endif
1392
1393			/*
1394			 * block out kernel memory as not available.
1395			 */
1396			if (pa >= 0x100000 && pa < first)
1397				continue;
1398
1399			page_bad = FALSE;
1400
1401			/*
1402			 * map page into kernel: valid, read/write,non-cacheable
1403			 */
1404			*pte = pa | PG_V | PG_RW | PG_N;
1405			invltlb();
1406
1407			tmp = *(int *)ptr;
1408			/*
1409			 * Test for alternating 1's and 0's
1410			 */
1411			*(volatile int *)ptr = 0xaaaaaaaa;
1412			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1413				page_bad = TRUE;
1414			}
1415			/*
1416			 * Test for alternating 0's and 1's
1417			 */
1418			*(volatile int *)ptr = 0x55555555;
1419			if (*(volatile int *)ptr != 0x55555555) {
1420			page_bad = TRUE;
1421			}
1422			/*
1423			 * Test for all 1's
1424			 */
1425			*(volatile int *)ptr = 0xffffffff;
1426			if (*(volatile int *)ptr != 0xffffffff) {
1427				page_bad = TRUE;
1428			}
1429			/*
1430			 * Test for all 0's
1431			 */
1432			*(volatile int *)ptr = 0x0;
1433			if (*(volatile int *)ptr != 0x0) {
1434				page_bad = TRUE;
1435			}
1436			/*
1437			 * Restore original value.
1438			 */
1439			*(int *)ptr = tmp;
1440
1441			/*
1442			 * Adjust array of valid/good pages.
1443			 */
1444			if (page_bad == TRUE) {
1445				continue;
1446			}
1447			/*
1448			 * If this good page is a continuation of the
1449			 * previous set of good pages, then just increase
1450			 * the end pointer. Otherwise start a new chunk.
1451			 * Note that "end" points one higher than end,
1452			 * making the range >= start and < end.
1453			 * If we're also doing a speculative memory
1454			 * test and we at or past the end, bump up Maxmem
1455			 * so that we keep going. The first bad page
1456			 * will terminate the loop.
1457			 */
1458			if (phys_avail[pa_indx] == pa) {
1459				phys_avail[pa_indx] += PAGE_SIZE;
1460				if (speculative_mprobe == TRUE &&
1461				    phys_avail[pa_indx] >= (64*1024*1024))
1462					end += PAGE_SIZE;
1463			} else {
1464				pa_indx++;
1465				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1466					printf("Too many holes in the physical address space, giving up\n");
1467					pa_indx--;
1468					break;
1469				}
1470				phys_avail[pa_indx++] = pa;	/* start */
1471				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1472			}
1473			physmem++;
1474		}
1475	}
1476	*pte = 0;
1477	invltlb();
1478
1479	/*
1480	 * XXX
1481	 * The last chunk must contain at least one page plus the message
1482	 * buffer to avoid complicating other code (message buffer address
1483	 * calculation, etc.).
1484	 */
1485	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1486	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1487		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1488		phys_avail[pa_indx--] = 0;
1489		phys_avail[pa_indx--] = 0;
1490	}
1491
1492	Maxmem = atop(phys_avail[pa_indx]);
1493
1494	/* Trim off space for the message buffer. */
1495	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1496
1497	avail_end = phys_avail[pa_indx];
1498}
1499
1500void
1501init386(first)
1502	int first;
1503{
1504	int x;
1505	struct gate_descriptor *gdp;
1506	int gsel_tss;
1507#ifndef SMP
1508	/* table descriptors - used to load tables by microp */
1509	struct region_descriptor r_gdt, r_idt;
1510#endif
1511	int off;
1512
1513	/*
1514	 * Prevent lowering of the ipl if we call tsleep() early.
1515	 */
1516	safepri = cpl;
1517
1518	proc0.p_addr = proc0paddr;
1519
1520	atdevbase = ISA_HOLE_START + KERNBASE;
1521
1522	/*
1523	 * make gdt memory segments, the code segment goes up to end of the
1524	 * page with etext in it, the data segment goes to the end of
1525	 * the address space
1526	 */
1527	/*
1528	 * XXX text protection is temporarily (?) disabled.  The limit was
1529	 * i386_btop(round_page(etext)) - 1.
1530	 */
1531	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1532	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1533#ifdef SMP
1534	gdt_segs[GPRIV_SEL].ssd_limit =
1535		i386_btop(sizeof(struct privatespace)) - 1;
1536	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
1537	gdt_segs[GPROC0_SEL].ssd_base =
1538		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
1539	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0];
1540#else
1541	gdt_segs[GPRIV_SEL].ssd_limit = i386_btop(0) - 1;
1542	gdt_segs[GPROC0_SEL].ssd_base = (int) &common_tss;
1543#endif
1544
1545	for (x = 0; x < NGDT; x++) {
1546#ifdef BDE_DEBUGGER
1547		/* avoid overwriting db entries with APM ones */
1548		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1549			continue;
1550#endif
1551		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1552	}
1553
1554	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1555	r_gdt.rd_base =  (int) gdt;
1556	lgdt(&r_gdt);
1557
1558	/* make ldt memory segments */
1559	/*
1560	 * The data segment limit must not cover the user area because we
1561	 * don't want the user area to be writable in copyout() etc. (page
1562	 * level protection is lost in kernel mode on 386's).  Also, we
1563	 * don't want the user area to be writable directly (page level
1564	 * protection of the user area is not available on 486's with
1565	 * CR0_WP set, because there is no user-read/kernel-write mode).
1566	 *
1567	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1568	 * should be spelled ...MAX_USER...
1569	 */
1570#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1571	/*
1572	 * The code segment limit has to cover the user area until we move
1573	 * the signal trampoline out of the user area.  This is safe because
1574	 * the code segment cannot be written to directly.
1575	 */
1576#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1577	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1578	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1579	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1580		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1581
1582	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1583	lldt(_default_ldt);
1584#ifdef USER_LDT
1585	currentldt = _default_ldt;
1586#endif
1587
1588	/* exceptions */
1589	for (x = 0; x < NIDT; x++)
1590		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1591	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1592	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1593	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1594 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1595	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1596	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1597	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1598	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1599	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1600	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1601	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1602	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1603	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1604	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1605	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1606	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1607	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1608	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1609	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1610 	setidt(0x80, &IDTVEC(int0x80_syscall),
1611			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1612
1613	r_idt.rd_limit = sizeof(idt) - 1;
1614	r_idt.rd_base = (int) idt;
1615	lidt(&r_idt);
1616
1617	/*
1618	 * Initialize the console before we print anything out.
1619	 */
1620	cninit();
1621
1622#include	"isa.h"
1623#if	NISA >0
1624	isa_defaultirq();
1625#endif
1626	rand_initialize();
1627
1628#ifdef DDB
1629	kdb_init();
1630	if (boothowto & RB_KDB)
1631		Debugger("Boot flags requested debugger");
1632#endif
1633
1634	finishidentcpu();	/* Final stage of CPU initialization */
1635	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1636	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1637	initializecpu();	/* Initialize CPU registers */
1638
1639	/* make an initial tss so cpu can get interrupt stack on syscall! */
1640	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
1641	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1642	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1643	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1644	ltr(gsel_tss);
1645	private_tss = 0;
1646	tss_gdt = &gdt[GPROC0_SEL].sd;
1647	common_tssd = *tss_gdt;
1648
1649	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1650	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1651	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1652	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1653	dblfault_tss.tss_cr3 = (int)IdlePTD;
1654	dblfault_tss.tss_eip = (int) dblfault_handler;
1655	dblfault_tss.tss_eflags = PSL_KERNEL;
1656	dblfault_tss.tss_ds = dblfault_tss.tss_es =
1657	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1658	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1659	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1660	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1661
1662	vm86_initialize();
1663	getmemsize(first);
1664
1665	/* now running on new page tables, configured,and u/iom is accessible */
1666
1667	/* Map the message buffer. */
1668	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1669		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1670
1671	msgbufinit(msgbufp, MSGBUF_SIZE);
1672
1673	/* make a call gate to reenter kernel with */
1674	gdp = &ldt[LSYS5CALLS_SEL].gd;
1675
1676	x = (int) &IDTVEC(syscall);
1677	gdp->gd_looffset = x++;
1678	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1679	gdp->gd_stkcpy = 1;
1680	gdp->gd_type = SDT_SYS386CGT;
1681	gdp->gd_dpl = SEL_UPL;
1682	gdp->gd_p = 1;
1683	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1684
1685	/* XXX does this work? */
1686	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1687	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
1688
1689	/* transfer to user mode */
1690
1691	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1692	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1693
1694	/* setup proc 0's pcb */
1695	proc0.p_addr->u_pcb.pcb_flags = 0;
1696	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1697#ifdef SMP
1698	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1699#endif
1700	proc0.p_addr->u_pcb.pcb_ext = 0;
1701
1702	/* Sigh, relocate physical addresses left from bootstrap */
1703	if (bootinfo.bi_modulep) {
1704		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1705		preload_bootstrap_relocate(KERNBASE);
1706	}
1707	if (bootinfo.bi_envp)
1708		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1709}
1710
1711#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1712static void f00f_hack(void *unused);
1713SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1714
1715static void
1716f00f_hack(void *unused) {
1717#ifndef SMP
1718	struct region_descriptor r_idt;
1719#endif
1720	vm_offset_t tmp;
1721
1722	if (!has_f00f_bug)
1723		return;
1724
1725	printf("Intel Pentium detected, installing workaround for F00F bug\n");
1726
1727	r_idt.rd_limit = sizeof(idt) - 1;
1728
1729	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
1730	if (tmp == 0)
1731		panic("kmem_alloc returned 0");
1732	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1733		panic("kmem_alloc returned non-page-aligned memory");
1734	/* Put the first seven entries in the lower page */
1735	t_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1736	bcopy(idt, t_idt, sizeof(idt));
1737	r_idt.rd_base = (int)t_idt;
1738	lidt(&r_idt);
1739	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
1740			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
1741		panic("vm_map_protect failed");
1742	return;
1743}
1744#endif /* defined(I586_CPU) && !NO_F00F_HACK */
1745
1746int
1747ptrace_set_pc(p, addr)
1748	struct proc *p;
1749	unsigned long addr;
1750{
1751	p->p_md.md_regs->tf_eip = addr;
1752	return (0);
1753}
1754
1755int
1756ptrace_single_step(p)
1757	struct proc *p;
1758{
1759	p->p_md.md_regs->tf_eflags |= PSL_T;
1760	return (0);
1761}
1762
1763int ptrace_read_u_check(p, addr, len)
1764	struct proc *p;
1765	vm_offset_t addr;
1766	size_t len;
1767{
1768	vm_offset_t gap;
1769
1770	if ((vm_offset_t) (addr + len) < addr)
1771		return EPERM;
1772	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
1773		return 0;
1774
1775	gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
1776
1777	if ((vm_offset_t) addr < gap)
1778		return EPERM;
1779	if ((vm_offset_t) (addr + len) <=
1780	    (vm_offset_t) (gap + sizeof(struct trapframe)))
1781		return 0;
1782	return EPERM;
1783}
1784
1785int ptrace_write_u(p, off, data)
1786	struct proc *p;
1787	vm_offset_t off;
1788	long data;
1789{
1790	struct trapframe frame_copy;
1791	vm_offset_t min;
1792	struct trapframe *tp;
1793
1794	/*
1795	 * Privileged kernel state is scattered all over the user area.
1796	 * Only allow write access to parts of regs and to fpregs.
1797	 */
1798	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
1799	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
1800		tp = p->p_md.md_regs;
1801		frame_copy = *tp;
1802		*(int *)((char *)&frame_copy + (off - min)) = data;
1803		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
1804		    !CS_SECURE(frame_copy.tf_cs))
1805			return (EINVAL);
1806		*(int*)((char *)p->p_addr + off) = data;
1807		return (0);
1808	}
1809	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
1810	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
1811		*(int*)((char *)p->p_addr + off) = data;
1812		return (0);
1813	}
1814	return (EFAULT);
1815}
1816
1817int
1818fill_regs(p, regs)
1819	struct proc *p;
1820	struct reg *regs;
1821{
1822	struct pcb *pcb;
1823	struct trapframe *tp;
1824
1825	tp = p->p_md.md_regs;
1826	regs->r_fs = tp->tf_fs;
1827	regs->r_es = tp->tf_es;
1828	regs->r_ds = tp->tf_ds;
1829	regs->r_edi = tp->tf_edi;
1830	regs->r_esi = tp->tf_esi;
1831	regs->r_ebp = tp->tf_ebp;
1832	regs->r_ebx = tp->tf_ebx;
1833	regs->r_edx = tp->tf_edx;
1834	regs->r_ecx = tp->tf_ecx;
1835	regs->r_eax = tp->tf_eax;
1836	regs->r_eip = tp->tf_eip;
1837	regs->r_cs = tp->tf_cs;
1838	regs->r_eflags = tp->tf_eflags;
1839	regs->r_esp = tp->tf_esp;
1840	regs->r_ss = tp->tf_ss;
1841	pcb = &p->p_addr->u_pcb;
1842	regs->r_gs = pcb->pcb_gs;
1843	return (0);
1844}
1845
1846int
1847set_regs(p, regs)
1848	struct proc *p;
1849	struct reg *regs;
1850{
1851	struct pcb *pcb;
1852	struct trapframe *tp;
1853
1854	tp = p->p_md.md_regs;
1855	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
1856	    !CS_SECURE(regs->r_cs))
1857		return (EINVAL);
1858	tp->tf_fs = regs->r_fs;
1859	tp->tf_es = regs->r_es;
1860	tp->tf_ds = regs->r_ds;
1861	tp->tf_edi = regs->r_edi;
1862	tp->tf_esi = regs->r_esi;
1863	tp->tf_ebp = regs->r_ebp;
1864	tp->tf_ebx = regs->r_ebx;
1865	tp->tf_edx = regs->r_edx;
1866	tp->tf_ecx = regs->r_ecx;
1867	tp->tf_eax = regs->r_eax;
1868	tp->tf_eip = regs->r_eip;
1869	tp->tf_cs = regs->r_cs;
1870	tp->tf_eflags = regs->r_eflags;
1871	tp->tf_esp = regs->r_esp;
1872	tp->tf_ss = regs->r_ss;
1873	pcb = &p->p_addr->u_pcb;
1874	pcb->pcb_gs = regs->r_gs;
1875	return (0);
1876}
1877
1878int
1879fill_fpregs(p, fpregs)
1880	struct proc *p;
1881	struct fpreg *fpregs;
1882{
1883	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
1884	return (0);
1885}
1886
1887int
1888set_fpregs(p, fpregs)
1889	struct proc *p;
1890	struct fpreg *fpregs;
1891{
1892	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
1893	return (0);
1894}
1895
1896#ifndef DDB
1897void
1898Debugger(const char *msg)
1899{
1900	printf("Debugger(\"%s\") called.\n", msg);
1901}
1902#endif /* no DDB */
1903
1904#include <sys/disklabel.h>
1905
1906/*
1907 * Determine the size of the transfer, and make sure it is
1908 * within the boundaries of the partition. Adjust transfer
1909 * if needed, and signal errors or early completion.
1910 */
1911int
1912bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
1913{
1914        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
1915        int labelsect = lp->d_partitions[0].p_offset;
1916        int maxsz = p->p_size,
1917                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
1918
1919        /* overwriting disk label ? */
1920        /* XXX should also protect bootstrap in first 8K */
1921        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
1922#if LABELSECTOR != 0
1923            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
1924#endif
1925            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1926                bp->b_error = EROFS;
1927                goto bad;
1928        }
1929
1930#if     defined(DOSBBSECTOR) && defined(notyet)
1931        /* overwriting master boot record? */
1932        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
1933            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1934                bp->b_error = EROFS;
1935                goto bad;
1936        }
1937#endif
1938
1939        /* beyond partition? */
1940        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
1941                /* if exactly at end of disk, return an EOF */
1942                if (bp->b_blkno == maxsz) {
1943                        bp->b_resid = bp->b_bcount;
1944                        return(0);
1945                }
1946                /* or truncate if part of it fits */
1947                sz = maxsz - bp->b_blkno;
1948                if (sz <= 0) {
1949                        bp->b_error = EINVAL;
1950                        goto bad;
1951                }
1952                bp->b_bcount = sz << DEV_BSHIFT;
1953        }
1954
1955        bp->b_pblkno = bp->b_blkno + p->p_offset;
1956        return(1);
1957
1958bad:
1959        bp->b_flags |= B_ERROR;
1960        return(-1);
1961}
1962
1963#ifdef DDB
1964
1965/*
1966 * Provide inb() and outb() as functions.  They are normally only
1967 * available as macros calling inlined functions, thus cannot be
1968 * called inside DDB.
1969 *
1970 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1971 */
1972
1973#undef inb
1974#undef outb
1975
1976/* silence compiler warnings */
1977u_char inb(u_int);
1978void outb(u_int, u_char);
1979
1980u_char
1981inb(u_int port)
1982{
1983	u_char	data;
1984	/*
1985	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1986	 * %edx, while gcc generates inferior code (movw instead of movl)
1987	 * if we tell it to load (u_short) port.
1988	 */
1989	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1990	return (data);
1991}
1992
1993void
1994outb(u_int port, u_char data)
1995{
1996	u_char	al;
1997	/*
1998	 * Use an unnecessary assignment to help gcc's register allocator.
1999	 * This make a large difference for gcc-1.40 and a tiny difference
2000	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2001	 * best results.  gcc-2.6.0 can't handle this.
2002	 */
2003	al = data;
2004	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2005}
2006
2007#endif /* DDB */
2008