machdep.c revision 44510
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 *	$Id: machdep.c,v 1.326 1999/02/13 17:45:15 bde Exp $
39 */
40
41#include "apm.h"
42#include "ether.h"
43#include "npx.h"
44#include "opt_atalk.h"
45#include "opt_cpu.h"
46#include "opt_ddb.h"
47#include "opt_inet.h"
48#include "opt_ipx.h"
49#include "opt_maxmem.h"
50#include "opt_msgbuf.h"
51#include "opt_perfmon.h"
52#include "opt_smp.h"
53#include "opt_sysvipc.h"
54#include "opt_user_ldt.h"
55#include "opt_userconfig.h"
56#include "opt_vm86.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/sysproto.h>
61#include <sys/signalvar.h>
62#include <sys/kernel.h>
63#include <sys/linker.h>
64#include <sys/proc.h>
65#include <sys/buf.h>
66#include <sys/reboot.h>
67#include <sys/callout.h>
68#include <sys/malloc.h>
69#include <sys/mbuf.h>
70#include <sys/msgbuf.h>
71#include <sys/sysent.h>
72#include <sys/sysctl.h>
73#include <sys/vmmeter.h>
74
75#ifdef SYSVSHM
76#include <sys/shm.h>
77#endif
78
79#ifdef SYSVMSG
80#include <sys/msg.h>
81#endif
82
83#ifdef SYSVSEM
84#include <sys/sem.h>
85#endif
86
87#include <vm/vm.h>
88#include <vm/vm_param.h>
89#include <vm/vm_prot.h>
90#include <sys/lock.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_object.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_pager.h>
96#include <vm/vm_extern.h>
97
98#include <sys/user.h>
99#include <sys/exec.h>
100
101#include <ddb/ddb.h>
102
103#if defined(INET) || defined(IPX) || defined(NATM) || defined(NETATALK) \
104    || NETHER > 0 || defined(NS)
105#define NETISR
106#endif
107
108#ifdef NETISR
109#include <net/netisr.h>
110#endif
111
112#include <machine/cpu.h>
113#include <machine/reg.h>
114#include <machine/clock.h>
115#include <machine/specialreg.h>
116#include <machine/cons.h>
117#include <machine/bootinfo.h>
118#include <machine/ipl.h>
119#include <machine/md_var.h>
120#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
121#ifdef SMP
122#include <machine/smp.h>
123#endif
124#ifdef PERFMON
125#include <machine/perfmon.h>
126#endif
127
128#include <i386/isa/isa_device.h>
129#include <i386/isa/intr_machdep.h>
130#ifndef VM86
131#include <i386/isa/rtc.h>
132#endif
133#include <machine/random.h>
134#include <sys/ptrace.h>
135
136extern void init386 __P((int first));
137extern void dblfault_handler __P((void));
138
139extern void printcpuinfo(void);	/* XXX header file */
140extern void earlysetcpuclass(void);	/* same header file */
141extern void finishidentcpu(void);
142extern void panicifcpuunsupported(void);
143extern void initializecpu(void);
144
145static void cpu_startup __P((void *));
146SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
147
148static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
149
150int	_udatasel, _ucodesel;
151u_int	atdevbase;
152
153#if defined(SWTCH_OPTIM_STATS)
154extern int swtch_optim_stats;
155SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
156	CTLFLAG_RD, &swtch_optim_stats, 0, "");
157SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
158	CTLFLAG_RD, &tlb_flush_count, 0, "");
159#endif
160
161#ifdef PC98
162static int	ispc98 = 1;
163#else
164static int	ispc98 = 0;
165#endif
166SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
167
168int physmem = 0;
169int cold = 1;
170
171static int
172sysctl_hw_physmem SYSCTL_HANDLER_ARGS
173{
174	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
175	return (error);
176}
177
178SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
179	0, 0, sysctl_hw_physmem, "I", "");
180
181static int
182sysctl_hw_usermem SYSCTL_HANDLER_ARGS
183{
184	int error = sysctl_handle_int(oidp, 0,
185		ctob(physmem - cnt.v_wire_count), req);
186	return (error);
187}
188
189SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
190	0, 0, sysctl_hw_usermem, "I", "");
191
192static int
193sysctl_hw_availpages SYSCTL_HANDLER_ARGS
194{
195	int error = sysctl_handle_int(oidp, 0,
196		i386_btop(avail_end - avail_start), req);
197	return (error);
198}
199
200SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
201	0, 0, sysctl_hw_availpages, "I", "");
202
203static int
204sysctl_machdep_msgbuf SYSCTL_HANDLER_ARGS
205{
206	int error;
207
208	/* Unwind the buffer, so that it's linear (possibly starting with
209	 * some initial nulls).
210	 */
211	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
212		msgbufp->msg_size-msgbufp->msg_bufr,req);
213	if(error) return(error);
214	if(msgbufp->msg_bufr>0) {
215		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
216			msgbufp->msg_bufr,req);
217	}
218	return(error);
219}
220
221SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
222	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
223
224static int msgbuf_clear;
225
226static int
227sysctl_machdep_msgbuf_clear SYSCTL_HANDLER_ARGS
228{
229	int error;
230	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
231		req);
232	if (!error && req->newptr) {
233		/* Clear the buffer and reset write pointer */
234		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
235		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
236		msgbuf_clear=0;
237	}
238	return (error);
239}
240
241SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
242	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
243	"Clear kernel message buffer");
244
245int bootverbose = 0, Maxmem = 0;
246long dumplo;
247
248vm_offset_t phys_avail[10];
249
250/* must be 2 less so 0 0 can signal end of chunks */
251#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
252
253#ifdef NETISR
254static void setup_netisrs __P((struct linker_set *));
255#endif
256
257static vm_offset_t buffer_sva, buffer_eva;
258vm_offset_t clean_sva, clean_eva;
259static vm_offset_t pager_sva, pager_eva;
260#ifdef NETISR
261extern struct linker_set netisr_set;
262#endif
263#if NNPX > 0
264extern struct isa_driver npxdriver;
265#endif
266
267#define offsetof(type, member)	((size_t)(&((type *)0)->member))
268
269static void
270cpu_startup(dummy)
271	void *dummy;
272{
273	register unsigned i;
274	register caddr_t v;
275	vm_offset_t maxaddr;
276	vm_size_t size = 0;
277	int firstaddr;
278	vm_offset_t minaddr;
279
280	if (boothowto & RB_VERBOSE)
281		bootverbose++;
282
283	/*
284	 * Good {morning,afternoon,evening,night}.
285	 */
286	printf(version);
287	earlysetcpuclass();
288	startrtclock();
289	printcpuinfo();
290	panicifcpuunsupported();
291#ifdef PERFMON
292	perfmon_init();
293#endif
294	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
295	/*
296	 * Display any holes after the first chunk of extended memory.
297	 */
298	if (bootverbose) {
299		int indx;
300
301		printf("Physical memory chunk(s):\n");
302		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
303			int size1 = phys_avail[indx + 1] - phys_avail[indx];
304
305			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
306			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
307			    size1 / PAGE_SIZE);
308		}
309	}
310
311#ifdef NETISR
312	/*
313	 * Quickly wire in netisrs.
314	 */
315	setup_netisrs(&netisr_set);
316#endif
317
318	/*
319	 * Calculate callout wheel size
320	 */
321	for (callwheelsize = 1, callwheelbits = 0;
322	     callwheelsize < ncallout;
323	     callwheelsize <<= 1, ++callwheelbits)
324		;
325	callwheelmask = callwheelsize - 1;
326
327	/*
328	 * Allocate space for system data structures.
329	 * The first available kernel virtual address is in "v".
330	 * As pages of kernel virtual memory are allocated, "v" is incremented.
331	 * As pages of memory are allocated and cleared,
332	 * "firstaddr" is incremented.
333	 * An index into the kernel page table corresponding to the
334	 * virtual memory address maintained in "v" is kept in "mapaddr".
335	 */
336
337	/*
338	 * Make two passes.  The first pass calculates how much memory is
339	 * needed and allocates it.  The second pass assigns virtual
340	 * addresses to the various data structures.
341	 */
342	firstaddr = 0;
343again:
344	v = (caddr_t)firstaddr;
345
346#define	valloc(name, type, num) \
347	    (name) = (type *)v; v = (caddr_t)((name)+(num))
348#define	valloclim(name, type, num, lim) \
349	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
350
351	valloc(callout, struct callout, ncallout);
352	valloc(callwheel, struct callout_tailq, callwheelsize);
353#ifdef SYSVSHM
354	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
355#endif
356#ifdef SYSVSEM
357	valloc(sema, struct semid_ds, seminfo.semmni);
358	valloc(sem, struct sem, seminfo.semmns);
359	/* This is pretty disgusting! */
360	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
361#endif
362#ifdef SYSVMSG
363	valloc(msgpool, char, msginfo.msgmax);
364	valloc(msgmaps, struct msgmap, msginfo.msgseg);
365	valloc(msghdrs, struct msg, msginfo.msgtql);
366	valloc(msqids, struct msqid_ds, msginfo.msgmni);
367#endif
368
369	if (nbuf == 0) {
370		nbuf = 30;
371		if( physmem > 1024)
372			nbuf += min((physmem - 1024) / 8, 2048);
373	}
374	nswbuf = max(min(nbuf/4, 64), 16);
375
376	valloc(swbuf, struct buf, nswbuf);
377	valloc(buf, struct buf, nbuf);
378
379
380	/*
381	 * End of first pass, size has been calculated so allocate memory
382	 */
383	if (firstaddr == 0) {
384		size = (vm_size_t)(v - firstaddr);
385		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
386		if (firstaddr == 0)
387			panic("startup: no room for tables");
388		goto again;
389	}
390
391	/*
392	 * End of second pass, addresses have been assigned
393	 */
394	if ((vm_size_t)(v - firstaddr) != size)
395		panic("startup: table size inconsistency");
396
397	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
398			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
399	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
400				(nbuf*BKVASIZE));
401	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
402				(nswbuf*MAXPHYS) + pager_map_size);
403	pager_map->system_map = 1;
404	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
405				(16*(ARG_MAX+(PAGE_SIZE*3))));
406
407	/*
408	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
409	 * we use the more space efficient malloc in place of kmem_alloc.
410	 */
411	{
412		vm_offset_t mb_map_size;
413		int xclusters;
414
415		/* Allow override of NMBCLUSTERS from the kernel environment */
416		if (getenv_int("kern.ipc.nmbclusters", &xclusters) &&
417		    xclusters > nmbclusters)
418		    nmbclusters = xclusters;
419
420		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
421		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
422		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
423		bzero(mclrefcnt, mb_map_size / MCLBYTES);
424		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
425			mb_map_size);
426		mb_map->system_map = 1;
427	}
428
429	/*
430	 * Initialize callouts
431	 */
432	SLIST_INIT(&callfree);
433	for (i = 0; i < ncallout; i++) {
434		callout_init(&callout[i]);
435		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
436		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
437	}
438
439	for (i = 0; i < callwheelsize; i++) {
440		TAILQ_INIT(&callwheel[i]);
441	}
442
443#if defined(USERCONFIG)
444	userconfig();
445	cninit();		/* the preferred console may have changed */
446#endif
447
448	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
449	    ptoa(cnt.v_free_count) / 1024);
450
451	/*
452	 * Set up buffers, so they can be used to read disk labels.
453	 */
454	bufinit();
455	vm_pager_bufferinit();
456
457#ifdef SMP
458	/*
459	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
460	 */
461	mp_start();			/* fire up the APs and APICs */
462	mp_announce();
463#endif  /* SMP */
464}
465
466#ifdef NETISR
467int
468register_netisr(num, handler)
469	int num;
470	netisr_t *handler;
471{
472
473	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
474		printf("register_netisr: bad isr number: %d\n", num);
475		return (EINVAL);
476	}
477	netisrs[num] = handler;
478	return (0);
479}
480
481static void
482setup_netisrs(ls)
483	struct linker_set *ls;
484{
485	int i;
486	const struct netisrtab *nit;
487
488	for(i = 0; ls->ls_items[i]; i++) {
489		nit = (const struct netisrtab *)ls->ls_items[i];
490		register_netisr(nit->nit_num, nit->nit_isr);
491	}
492}
493#endif /* NETISR */
494
495/*
496 * Send an interrupt to process.
497 *
498 * Stack is set up to allow sigcode stored
499 * at top to call routine, followed by kcall
500 * to sigreturn routine below.  After sigreturn
501 * resets the signal mask, the stack, and the
502 * frame pointer, it returns to the user
503 * specified pc, psl.
504 */
505void
506sendsig(catcher, sig, mask, code)
507	sig_t catcher;
508	int sig, mask;
509	u_long code;
510{
511	register struct proc *p = curproc;
512	register struct trapframe *regs;
513	register struct sigframe *fp;
514	struct sigframe sf;
515	struct sigacts *psp = p->p_sigacts;
516	int oonstack;
517
518	regs = p->p_md.md_regs;
519        oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
520	/*
521	 * Allocate and validate space for the signal handler context.
522	 */
523        if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
524	    (psp->ps_sigonstack & sigmask(sig))) {
525		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
526		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
527		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
528	} else {
529		fp = (struct sigframe *)regs->tf_esp - 1;
530	}
531
532	/*
533	 * grow() will return FALSE if the fp will not fit inside the stack
534	 *	and the stack can not be grown. useracc will return FALSE
535	 *	if access is denied.
536	 */
537#ifdef VM_STACK
538	if ((grow_stack (p, (int)fp) == FALSE) ||
539#else
540	if ((grow(p, (int)fp) == FALSE) ||
541#endif
542	    (useracc((caddr_t)fp, sizeof(struct sigframe), B_WRITE) == FALSE)) {
543		/*
544		 * Process has trashed its stack; give it an illegal
545		 * instruction to halt it in its tracks.
546		 */
547		SIGACTION(p, SIGILL) = SIG_DFL;
548		sig = sigmask(SIGILL);
549		p->p_sigignore &= ~sig;
550		p->p_sigcatch &= ~sig;
551		p->p_sigmask &= ~sig;
552		psignal(p, SIGILL);
553		return;
554	}
555
556	/*
557	 * Build the argument list for the signal handler.
558	 */
559	if (p->p_sysent->sv_sigtbl) {
560		if (sig < p->p_sysent->sv_sigsize)
561			sig = p->p_sysent->sv_sigtbl[sig];
562		else
563			sig = p->p_sysent->sv_sigsize + 1;
564	}
565	sf.sf_signum = sig;
566	sf.sf_code = code;
567	sf.sf_scp = &fp->sf_sc;
568	sf.sf_addr = (char *) regs->tf_err;
569	sf.sf_handler = catcher;
570
571	/* save scratch registers */
572	sf.sf_sc.sc_eax = regs->tf_eax;
573	sf.sf_sc.sc_ebx = regs->tf_ebx;
574	sf.sf_sc.sc_ecx = regs->tf_ecx;
575	sf.sf_sc.sc_edx = regs->tf_edx;
576	sf.sf_sc.sc_esi = regs->tf_esi;
577	sf.sf_sc.sc_edi = regs->tf_edi;
578	sf.sf_sc.sc_cs = regs->tf_cs;
579	sf.sf_sc.sc_ds = regs->tf_ds;
580	sf.sf_sc.sc_ss = regs->tf_ss;
581	sf.sf_sc.sc_es = regs->tf_es;
582	sf.sf_sc.sc_isp = regs->tf_isp;
583
584	/*
585	 * Build the signal context to be used by sigreturn.
586	 */
587	sf.sf_sc.sc_onstack = oonstack;
588	sf.sf_sc.sc_mask = mask;
589	sf.sf_sc.sc_sp = regs->tf_esp;
590	sf.sf_sc.sc_fp = regs->tf_ebp;
591	sf.sf_sc.sc_pc = regs->tf_eip;
592	sf.sf_sc.sc_ps = regs->tf_eflags;
593	sf.sf_sc.sc_trapno = regs->tf_trapno;
594	sf.sf_sc.sc_err = regs->tf_err;
595
596#ifdef VM86
597	/*
598	 * If we're a vm86 process, we want to save the segment registers.
599	 * We also change eflags to be our emulated eflags, not the actual
600	 * eflags.
601	 */
602	if (regs->tf_eflags & PSL_VM) {
603		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
604		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
605
606		sf.sf_sc.sc_gs = tf->tf_vm86_gs;
607		sf.sf_sc.sc_fs = tf->tf_vm86_fs;
608		sf.sf_sc.sc_es = tf->tf_vm86_es;
609		sf.sf_sc.sc_ds = tf->tf_vm86_ds;
610
611		if (vm86->vm86_has_vme == 0)
612			sf.sf_sc.sc_ps = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
613			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
614
615		/*
616		 * We should never have PSL_T set when returning from vm86
617		 * mode.  It may be set here if we deliver a signal before
618		 * getting to vm86 mode, so turn it off.
619		 *
620		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
621		 * syscalls made by the signal handler.  This just avoids
622		 * wasting time for our lazy fixup of such faults.  PSL_NT
623		 * does nothing in vm86 mode, but vm86 programs can set it
624		 * almost legitimately in probes for old cpu types.
625		 */
626		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
627	}
628#endif /* VM86 */
629
630	/*
631	 * Copy the sigframe out to the user's stack.
632	 */
633	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
634		/*
635		 * Something is wrong with the stack pointer.
636		 * ...Kill the process.
637		 */
638		sigexit(p, SIGILL);
639	}
640
641	regs->tf_esp = (int)fp;
642	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
643	regs->tf_cs = _ucodesel;
644	regs->tf_ds = _udatasel;
645	regs->tf_es = _udatasel;
646	regs->tf_ss = _udatasel;
647}
648
649/*
650 * System call to cleanup state after a signal
651 * has been taken.  Reset signal mask and
652 * stack state from context left by sendsig (above).
653 * Return to previous pc and psl as specified by
654 * context left by sendsig. Check carefully to
655 * make sure that the user has not modified the
656 * state to gain improper privileges.
657 */
658int
659sigreturn(p, uap)
660	struct proc *p;
661	struct sigreturn_args /* {
662		struct sigcontext *sigcntxp;
663	} */ *uap;
664{
665	register struct sigcontext *scp;
666	register struct sigframe *fp;
667	register struct trapframe *regs = p->p_md.md_regs;
668	int eflags;
669
670	/*
671	 * (XXX old comment) regs->tf_esp points to the return address.
672	 * The user scp pointer is above that.
673	 * The return address is faked in the signal trampoline code
674	 * for consistency.
675	 */
676	scp = uap->sigcntxp;
677	fp = (struct sigframe *)
678	     ((caddr_t)scp - offsetof(struct sigframe, sf_sc));
679
680	if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
681		return(EFAULT);
682
683	eflags = scp->sc_ps;
684#ifdef VM86
685	if (eflags & PSL_VM) {
686		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
687		struct vm86_kernel *vm86;
688
689		/*
690		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
691		 * set up the vm86 area, and we can't enter vm86 mode.
692		 */
693		if (p->p_addr->u_pcb.pcb_ext == 0)
694			return (EINVAL);
695		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
696		if (vm86->vm86_inited == 0)
697			return (EINVAL);
698
699		/* go back to user mode if both flags are set */
700		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
701			trapsignal(p, SIGBUS, 0);
702
703		if (vm86->vm86_has_vme) {
704			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
705			    (eflags & VME_USERCHANGE) | PSL_VM;
706		} else {
707			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
708			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
709		}
710		tf->tf_vm86_ds = scp->sc_ds;
711		tf->tf_vm86_es = scp->sc_es;
712		tf->tf_vm86_fs = scp->sc_fs;
713		tf->tf_vm86_gs = scp->sc_gs;
714		tf->tf_ds = _udatasel;
715		tf->tf_es = _udatasel;
716	} else {
717#endif /* VM86 */
718		/*
719		 * Don't allow users to change privileged or reserved flags.
720		 */
721#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
722		/*
723		 * XXX do allow users to change the privileged flag PSL_RF.
724		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
725		 * should sometimes set it there too.  tf_eflags is kept in
726		 * the signal context during signal handling and there is no
727		 * other place to remember it, so the PSL_RF bit may be
728		 * corrupted by the signal handler without us knowing.
729		 * Corruption of the PSL_RF bit at worst causes one more or
730		 * one less debugger trap, so allowing it is fairly harmless.
731		 */
732		if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
733#ifdef DEBUG
734	    		printf("sigreturn: eflags = 0x%x\n", eflags);
735#endif
736	    		return(EINVAL);
737		}
738
739		/*
740		 * Don't allow users to load a valid privileged %cs.  Let the
741		 * hardware check for invalid selectors, excess privilege in
742		 * other selectors, invalid %eip's and invalid %esp's.
743		 */
744#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
745		if (!CS_SECURE(scp->sc_cs)) {
746#ifdef DEBUG
747    			printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
748#endif
749			trapsignal(p, SIGBUS, T_PROTFLT);
750			return(EINVAL);
751		}
752		regs->tf_ds = scp->sc_ds;
753		regs->tf_es = scp->sc_es;
754#ifdef VM86
755	}
756#endif
757
758	/* restore scratch registers */
759	regs->tf_eax = scp->sc_eax;
760	regs->tf_ebx = scp->sc_ebx;
761	regs->tf_ecx = scp->sc_ecx;
762	regs->tf_edx = scp->sc_edx;
763	regs->tf_esi = scp->sc_esi;
764	regs->tf_edi = scp->sc_edi;
765	regs->tf_cs = scp->sc_cs;
766	regs->tf_ss = scp->sc_ss;
767	regs->tf_isp = scp->sc_isp;
768
769	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
770		return(EINVAL);
771
772	if (scp->sc_onstack & 01)
773		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
774	else
775		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
776	p->p_sigmask = scp->sc_mask & ~sigcantmask;
777	regs->tf_ebp = scp->sc_fp;
778	regs->tf_esp = scp->sc_sp;
779	regs->tf_eip = scp->sc_pc;
780	regs->tf_eflags = eflags;
781	return(EJUSTRETURN);
782}
783
784/*
785 * Machine dependent boot() routine
786 *
787 * I haven't seen anything to put here yet
788 * Possibly some stuff might be grafted back here from boot()
789 */
790void
791cpu_boot(int howto)
792{
793}
794
795/*
796 * Shutdown the CPU as much as possible
797 */
798void
799cpu_halt(void)
800{
801	for (;;)
802		__asm__ ("hlt");
803}
804
805/*
806 * Clear registers on exec
807 */
808void
809setregs(p, entry, stack)
810	struct proc *p;
811	u_long entry;
812	u_long stack;
813{
814	struct trapframe *regs = p->p_md.md_regs;
815	struct pcb *pcb = &p->p_addr->u_pcb;
816
817#ifdef USER_LDT
818	/* was i386_user_cleanup() in NetBSD */
819	if (pcb->pcb_ldt) {
820		if (pcb == curpcb) {
821			lldt(_default_ldt);
822			currentldt = _default_ldt;
823		}
824		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
825			pcb->pcb_ldt_len * sizeof(union descriptor));
826		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
827 	}
828#endif
829
830	bzero((char *)regs, sizeof(struct trapframe));
831	regs->tf_eip = entry;
832	regs->tf_esp = stack;
833	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
834	regs->tf_ss = _udatasel;
835	regs->tf_ds = _udatasel;
836	regs->tf_es = _udatasel;
837	regs->tf_cs = _ucodesel;
838
839	/* reset %fs and %gs as well */
840	pcb->pcb_fs = _udatasel;
841	pcb->pcb_gs = _udatasel;
842	if (pcb == curpcb) {
843		__asm("movw %w0,%%fs" : : "r" (_udatasel));
844		__asm("movw %w0,%%gs" : : "r" (_udatasel));
845	}
846
847	/*
848	 * Initialize the math emulator (if any) for the current process.
849	 * Actually, just clear the bit that says that the emulator has
850	 * been initialized.  Initialization is delayed until the process
851	 * traps to the emulator (if it is done at all) mainly because
852	 * emulators don't provide an entry point for initialization.
853	 */
854	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
855
856	/*
857	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
858	 * for why fwait must be trapped at least if there is an npx or an
859	 * emulator).  This is mainly to handle the case where npx0 is not
860	 * configured, since the npx routines normally set up the trap
861	 * otherwise.  It should be done only at boot time, but doing it
862	 * here allows modifying `npx_exists' for testing the emulator on
863	 * systems with an npx.
864	 */
865	load_cr0(rcr0() | CR0_MP | CR0_TS);
866
867#if NNPX > 0
868	/* Initialize the npx (if any) for the current process. */
869	npxinit(__INITIAL_NPXCW__);
870#endif
871
872      /*
873       * XXX - Linux emulator
874       * Make sure sure edx is 0x0 on entry. Linux binaries depend
875       * on it.
876       */
877      p->p_retval[1] = 0;
878}
879
880static int
881sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
882{
883	int error;
884	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
885		req);
886	if (!error && req->newptr)
887		resettodr();
888	return (error);
889}
890
891SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
892	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
893
894SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
895	CTLFLAG_RW, &disable_rtc_set, 0, "");
896
897SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
898	CTLFLAG_RD, &bootinfo, bootinfo, "");
899
900SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
901	CTLFLAG_RW, &wall_cmos_clock, 0, "");
902
903/*
904 * Initialize 386 and configure to run kernel
905 */
906
907/*
908 * Initialize segments & interrupt table
909 */
910
911int _default_ldt;
912#ifdef SMP
913union descriptor gdt[NGDT + NCPU];	/* global descriptor table */
914#else
915union descriptor gdt[NGDT];		/* global descriptor table */
916#endif
917struct gate_descriptor idt[NIDT];	/* interrupt descriptor table */
918union descriptor ldt[NLDT];		/* local descriptor table */
919#ifdef SMP
920/* table descriptors - used to load tables by microp */
921struct region_descriptor r_gdt, r_idt;
922#endif
923
924extern struct i386tss common_tss;	/* One tss per cpu */
925#ifdef VM86
926extern struct segment_descriptor common_tssd;
927extern int private_tss;			/* flag indicating private tss */
928extern u_int my_tr;			/* which task register setting */
929#endif /* VM86 */
930
931#if defined(I586_CPU) && !defined(NO_F00F_HACK)
932struct gate_descriptor *t_idt;
933extern int has_f00f_bug;
934#endif
935
936static struct i386tss dblfault_tss;
937static char dblfault_stack[PAGE_SIZE];
938
939extern  struct user *proc0paddr;
940
941
942/* software prototypes -- in more palatable form */
943struct soft_segment_descriptor gdt_segs[
944#ifdef SMP
945					NGDT + NCPU
946#endif
947						   ] = {
948/* GNULL_SEL	0 Null Descriptor */
949{	0x0,			/* segment base address  */
950	0x0,			/* length */
951	0,			/* segment type */
952	0,			/* segment descriptor priority level */
953	0,			/* segment descriptor present */
954	0, 0,
955	0,			/* default 32 vs 16 bit size */
956	0  			/* limit granularity (byte/page units)*/ },
957/* GCODE_SEL	1 Code Descriptor for kernel */
958{	0x0,			/* segment base address  */
959	0xfffff,		/* length - all address space */
960	SDT_MEMERA,		/* segment type */
961	0,			/* segment descriptor priority level */
962	1,			/* segment descriptor present */
963	0, 0,
964	1,			/* default 32 vs 16 bit size */
965	1  			/* limit granularity (byte/page units)*/ },
966/* GDATA_SEL	2 Data Descriptor for kernel */
967{	0x0,			/* segment base address  */
968	0xfffff,		/* length - all address space */
969	SDT_MEMRWA,		/* segment type */
970	0,			/* segment descriptor priority level */
971	1,			/* segment descriptor present */
972	0, 0,
973	1,			/* default 32 vs 16 bit size */
974	1  			/* limit granularity (byte/page units)*/ },
975/* GLDT_SEL	3 LDT Descriptor */
976{	(int) ldt,		/* segment base address  */
977	sizeof(ldt)-1,		/* length - all address space */
978	SDT_SYSLDT,		/* segment type */
979	SEL_UPL,		/* segment descriptor priority level */
980	1,			/* segment descriptor present */
981	0, 0,
982	0,			/* unused - default 32 vs 16 bit size */
983	0  			/* limit granularity (byte/page units)*/ },
984/* GTGATE_SEL	4 Null Descriptor - Placeholder */
985{	0x0,			/* segment base address  */
986	0x0,			/* length - all address space */
987	0,			/* segment type */
988	0,			/* segment descriptor priority level */
989	0,			/* segment descriptor present */
990	0, 0,
991	0,			/* default 32 vs 16 bit size */
992	0  			/* limit granularity (byte/page units)*/ },
993/* GPANIC_SEL	5 Panic Tss Descriptor */
994{	(int) &dblfault_tss,	/* segment base address  */
995	sizeof(struct i386tss)-1,/* length - all address space */
996	SDT_SYS386TSS,		/* segment type */
997	0,			/* segment descriptor priority level */
998	1,			/* segment descriptor present */
999	0, 0,
1000	0,			/* unused - default 32 vs 16 bit size */
1001	0  			/* limit granularity (byte/page units)*/ },
1002/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1003{
1004	(int) &common_tss,	/* segment base address */
1005	sizeof(struct i386tss)-1,/* length - all address space */
1006	SDT_SYS386TSS,		/* segment type */
1007	0,			/* segment descriptor priority level */
1008	1,			/* segment descriptor present */
1009	0, 0,
1010	0,			/* unused - default 32 vs 16 bit size */
1011	0  			/* limit granularity (byte/page units)*/ },
1012/* GUSERLDT_SEL	7 User LDT Descriptor per process */
1013{	(int) ldt,		/* segment base address  */
1014	(512 * sizeof(union descriptor)-1),		/* length */
1015	SDT_SYSLDT,		/* segment type */
1016	0,			/* segment descriptor priority level */
1017	1,			/* segment descriptor present */
1018	0, 0,
1019	0,			/* unused - default 32 vs 16 bit size */
1020	0  			/* limit granularity (byte/page units)*/ },
1021/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
1022{	0,			/* segment base address (overwritten by APM)  */
1023	0xfffff,		/* length */
1024	SDT_MEMERA,		/* segment type */
1025	0,			/* segment descriptor priority level */
1026	1,			/* segment descriptor present */
1027	0, 0,
1028	1,			/* default 32 vs 16 bit size */
1029	1  			/* limit granularity (byte/page units)*/ },
1030/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
1031{	0,			/* segment base address (overwritten by APM)  */
1032	0xfffff,		/* length */
1033	SDT_MEMERA,		/* segment type */
1034	0,			/* segment descriptor priority level */
1035	1,			/* segment descriptor present */
1036	0, 0,
1037	0,			/* default 32 vs 16 bit size */
1038	1  			/* limit granularity (byte/page units)*/ },
1039/* GAPMDATA_SEL	10 APM BIOS 32-bit interface (Data) */
1040{	0,			/* segment base address (overwritten by APM) */
1041	0xfffff,		/* length */
1042	SDT_MEMRWA,		/* segment type */
1043	0,			/* segment descriptor priority level */
1044	1,			/* segment descriptor present */
1045	0, 0,
1046	1,			/* default 32 vs 16 bit size */
1047	1  			/* limit granularity (byte/page units)*/ },
1048};
1049
1050static struct soft_segment_descriptor ldt_segs[] = {
1051	/* Null Descriptor - overwritten by call gate */
1052{	0x0,			/* segment base address  */
1053	0x0,			/* length - all address space */
1054	0,			/* segment type */
1055	0,			/* segment descriptor priority level */
1056	0,			/* segment descriptor present */
1057	0, 0,
1058	0,			/* default 32 vs 16 bit size */
1059	0  			/* limit granularity (byte/page units)*/ },
1060	/* Null Descriptor - overwritten by call gate */
1061{	0x0,			/* segment base address  */
1062	0x0,			/* length - all address space */
1063	0,			/* segment type */
1064	0,			/* segment descriptor priority level */
1065	0,			/* segment descriptor present */
1066	0, 0,
1067	0,			/* default 32 vs 16 bit size */
1068	0  			/* limit granularity (byte/page units)*/ },
1069	/* Null Descriptor - overwritten by call gate */
1070{	0x0,			/* segment base address  */
1071	0x0,			/* length - all address space */
1072	0,			/* segment type */
1073	0,			/* segment descriptor priority level */
1074	0,			/* segment descriptor present */
1075	0, 0,
1076	0,			/* default 32 vs 16 bit size */
1077	0  			/* limit granularity (byte/page units)*/ },
1078	/* Code Descriptor for user */
1079{	0x0,			/* segment base address  */
1080	0xfffff,		/* length - all address space */
1081	SDT_MEMERA,		/* segment type */
1082	SEL_UPL,		/* segment descriptor priority level */
1083	1,			/* segment descriptor present */
1084	0, 0,
1085	1,			/* default 32 vs 16 bit size */
1086	1  			/* limit granularity (byte/page units)*/ },
1087	/* Null Descriptor - overwritten by call gate */
1088{	0x0,			/* segment base address  */
1089	0x0,			/* length - all address space */
1090	0,			/* segment type */
1091	0,			/* segment descriptor priority level */
1092	0,			/* segment descriptor present */
1093	0, 0,
1094	0,			/* default 32 vs 16 bit size */
1095	0  			/* limit granularity (byte/page units)*/ },
1096	/* Data Descriptor for user */
1097{	0x0,			/* segment base address  */
1098	0xfffff,		/* length - all address space */
1099	SDT_MEMRWA,		/* segment type */
1100	SEL_UPL,		/* segment descriptor priority level */
1101	1,			/* segment descriptor present */
1102	0, 0,
1103	1,			/* default 32 vs 16 bit size */
1104	1  			/* limit granularity (byte/page units)*/ },
1105};
1106
1107void
1108setidt(idx, func, typ, dpl, selec)
1109	int idx;
1110	inthand_t *func;
1111	int typ;
1112	int dpl;
1113	int selec;
1114{
1115	struct gate_descriptor *ip;
1116
1117#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1118	ip = (t_idt != NULL ? t_idt : idt) + idx;
1119#else
1120	ip = idt + idx;
1121#endif
1122	ip->gd_looffset = (int)func;
1123	ip->gd_selector = selec;
1124	ip->gd_stkcpy = 0;
1125	ip->gd_xx = 0;
1126	ip->gd_type = typ;
1127	ip->gd_dpl = dpl;
1128	ip->gd_p = 1;
1129	ip->gd_hioffset = ((int)func)>>16 ;
1130}
1131
1132#define	IDTVEC(name)	__CONCAT(X,name)
1133
1134extern inthand_t
1135	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1136	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1137	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1138	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1139	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1140
1141void
1142sdtossd(sd, ssd)
1143	struct segment_descriptor *sd;
1144	struct soft_segment_descriptor *ssd;
1145{
1146	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1147	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1148	ssd->ssd_type  = sd->sd_type;
1149	ssd->ssd_dpl   = sd->sd_dpl;
1150	ssd->ssd_p     = sd->sd_p;
1151	ssd->ssd_def32 = sd->sd_def32;
1152	ssd->ssd_gran  = sd->sd_gran;
1153}
1154
1155void
1156init386(first)
1157	int first;
1158{
1159	int x;
1160	unsigned biosbasemem, biosextmem;
1161	struct gate_descriptor *gdp;
1162	int gsel_tss;
1163
1164	struct isa_device *idp;
1165#ifndef SMP
1166	/* table descriptors - used to load tables by microp */
1167	struct region_descriptor r_gdt, r_idt;
1168#endif
1169	int pagesinbase, pagesinext;
1170	vm_offset_t target_page;
1171	int pa_indx, off;
1172	int speculative_mprobe;
1173
1174	/*
1175	 * Prevent lowering of the ipl if we call tsleep() early.
1176	 */
1177	safepri = cpl;
1178
1179	proc0.p_addr = proc0paddr;
1180
1181	atdevbase = ISA_HOLE_START + KERNBASE;
1182
1183	/*
1184	 * Initialize the console before we print anything out.
1185	 */
1186	cninit();
1187
1188	/*
1189	 * make gdt memory segments, the code segment goes up to end of the
1190	 * page with etext in it, the data segment goes to the end of
1191	 * the address space
1192	 */
1193	/*
1194	 * XXX text protection is temporarily (?) disabled.  The limit was
1195	 * i386_btop(round_page(etext)) - 1.
1196	 */
1197	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1198	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1199#ifdef BDE_DEBUGGER
1200#define	NGDT1	8		/* avoid overwriting db entries with APM ones */
1201#else
1202#define	NGDT1	(sizeof gdt_segs / sizeof gdt_segs[0])
1203#endif
1204	for (x = 0; x < NGDT1; x++)
1205		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1206#ifdef VM86
1207	common_tssd = gdt[GPROC0_SEL].sd;
1208#endif /* VM86 */
1209
1210#ifdef SMP
1211	/*
1212	 * Spin these up now.  init_secondary() grabs them.  We could use
1213	 * #for(x,y,z) / #endfor cpp directives if they existed.
1214	 */
1215	for (x = 0; x < NCPU; x++) {
1216		gdt_segs[NGDT + x] = gdt_segs[GPROC0_SEL];
1217		ssdtosd(&gdt_segs[NGDT + x], &gdt[NGDT + x].sd);
1218	}
1219#endif
1220
1221	/* make ldt memory segments */
1222	/*
1223	 * The data segment limit must not cover the user area because we
1224	 * don't want the user area to be writable in copyout() etc. (page
1225	 * level protection is lost in kernel mode on 386's).  Also, we
1226	 * don't want the user area to be writable directly (page level
1227	 * protection of the user area is not available on 486's with
1228	 * CR0_WP set, because there is no user-read/kernel-write mode).
1229	 *
1230	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1231	 * should be spelled ...MAX_USER...
1232	 */
1233#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1234	/*
1235	 * The code segment limit has to cover the user area until we move
1236	 * the signal trampoline out of the user area.  This is safe because
1237	 * the code segment cannot be written to directly.
1238	 */
1239#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1240	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1241	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1242	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1243		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1244
1245	/* exceptions */
1246	for (x = 0; x < NIDT; x++)
1247		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1248	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1249	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1250	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1251 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1252	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1253	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1254	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1255	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1256	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1257	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1258	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1259	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1260	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1261	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1262	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1263	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1264	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1265	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1266	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1267 	setidt(0x80, &IDTVEC(int0x80_syscall),
1268			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1269
1270#include	"isa.h"
1271#if	NISA >0
1272	isa_defaultirq();
1273#endif
1274	rand_initialize();
1275
1276	r_gdt.rd_limit = sizeof(gdt) - 1;
1277	r_gdt.rd_base =  (int) gdt;
1278	lgdt(&r_gdt);
1279
1280	r_idt.rd_limit = sizeof(idt) - 1;
1281	r_idt.rd_base = (int) idt;
1282	lidt(&r_idt);
1283
1284	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1285	lldt(_default_ldt);
1286#ifdef USER_LDT
1287	currentldt = _default_ldt;
1288#endif
1289
1290#ifdef DDB
1291	kdb_init();
1292	if (boothowto & RB_KDB)
1293		Debugger("Boot flags requested debugger");
1294#endif
1295
1296	finishidentcpu();	/* Final stage of CPU initialization */
1297	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1298	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1299	initializecpu();	/* Initialize CPU registers */
1300
1301	/* make an initial tss so cpu can get interrupt stack on syscall! */
1302#ifdef VM86
1303	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
1304#else
1305	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE;
1306#endif /* VM86 */
1307	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1308	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1309	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1310	ltr(gsel_tss);
1311#ifdef VM86
1312	private_tss = 0;
1313	my_tr = GPROC0_SEL;
1314#endif
1315
1316	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1317	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1318	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1319	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1320	dblfault_tss.tss_cr3 = (int)IdlePTD;
1321	dblfault_tss.tss_eip = (int) dblfault_handler;
1322	dblfault_tss.tss_eflags = PSL_KERNEL;
1323	dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs =
1324	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1325	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1326	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1327
1328#ifdef VM86
1329	initial_bioscalls(&biosbasemem, &biosextmem);
1330#else
1331
1332	/* Use BIOS values stored in RTC CMOS RAM, since probing
1333	 * breaks certain 386 AT relics.
1334	 */
1335	biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
1336	biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
1337#endif
1338
1339	/*
1340	 * If BIOS tells us that it has more than 640k in the basemem,
1341	 *	don't believe it - set it to 640k.
1342	 */
1343	if (biosbasemem > 640) {
1344		printf("Preposterous RTC basemem of %uK, truncating to 640K\n",
1345		       biosbasemem);
1346		biosbasemem = 640;
1347	}
1348	if (bootinfo.bi_memsizes_valid && bootinfo.bi_basemem > 640) {
1349		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1350		       bootinfo.bi_basemem);
1351		bootinfo.bi_basemem = 640;
1352	}
1353
1354	/*
1355	 * Warn if the official BIOS interface disagrees with the RTC
1356	 * interface used above about the amount of base memory or the
1357	 * amount of extended memory.  Prefer the BIOS value for the base
1358	 * memory.  This is necessary for machines that `steal' base
1359	 * memory for use as BIOS memory, at least if we are going to use
1360	 * the BIOS for apm.  Prefer the RTC value for extended memory.
1361	 * Eventually the hackish interface shouldn't even be looked at.
1362	 */
1363	if (bootinfo.bi_memsizes_valid) {
1364		if (bootinfo.bi_basemem != biosbasemem) {
1365			vm_offset_t pa;
1366
1367			printf(
1368	"BIOS basemem (%uK) != RTC basemem (%uK), setting to BIOS value\n",
1369			       bootinfo.bi_basemem, biosbasemem);
1370			biosbasemem = bootinfo.bi_basemem;
1371
1372			/*
1373			 * XXX if biosbasemem is now < 640, there is `hole'
1374			 * between the end of base memory and the start of
1375			 * ISA memory.  The hole may be empty or it may
1376			 * contain BIOS code or data.  Map it read/write so
1377			 * that the BIOS can write to it.  (Memory from 0 to
1378			 * the physical end of the kernel is mapped read-only
1379			 * to begin with and then parts of it are remapped.
1380			 * The parts that aren't remapped form holes that
1381			 * remain read-only and are unused by the kernel.
1382			 * The base memory area is below the physical end of
1383			 * the kernel and right now forms a read-only hole.
1384			 * The part of it from PAGE_SIZE to
1385			 * (trunc_page(biosbasemem * 1024) - 1) will be
1386			 * remapped and used by the kernel later.)
1387			 *
1388			 * This code is similar to the code used in
1389			 * pmap_mapdev, but since no memory needs to be
1390			 * allocated we simply change the mapping.
1391			 */
1392			for (pa = trunc_page(biosbasemem * 1024);
1393			     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1394				unsigned *pte;
1395
1396				pte = (unsigned *)vtopte(pa + KERNBASE);
1397				*pte = pa | PG_RW | PG_V;
1398			}
1399		}
1400		if (bootinfo.bi_extmem != biosextmem)
1401			printf("BIOS extmem (%uK) != RTC extmem (%uK)\n",
1402			       bootinfo.bi_extmem, biosextmem);
1403	}
1404
1405#ifdef SMP
1406	/* make hole for AP bootstrap code */
1407	pagesinbase = mp_bootaddress(biosbasemem) / PAGE_SIZE;
1408#else
1409	pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
1410#endif
1411
1412	pagesinext = biosextmem * 1024 / PAGE_SIZE;
1413
1414	/*
1415	 * Special hack for chipsets that still remap the 384k hole when
1416	 *	there's 16MB of memory - this really confuses people that
1417	 *	are trying to use bus mastering ISA controllers with the
1418	 *	"16MB limit"; they only have 16MB, but the remapping puts
1419	 *	them beyond the limit.
1420	 */
1421	/*
1422	 * If extended memory is between 15-16MB (16-17MB phys address range),
1423	 *	chop it to 15MB.
1424	 */
1425	if ((pagesinext > 3840) && (pagesinext < 4096))
1426		pagesinext = 3840;
1427
1428	/*
1429	 * Maxmem isn't the "maximum memory", it's one larger than the
1430	 * highest page of the physical address space.  It should be
1431	 * called something like "Maxphyspage".
1432	 */
1433	Maxmem = pagesinext + 0x100000/PAGE_SIZE;
1434	/*
1435	 * Indicate that we wish to do a speculative search for memory beyond
1436	 * the end of the reported size if the indicated amount is 64MB (0x4000
1437	 * pages) - which is the largest amount that the BIOS/bootblocks can
1438	 * currently report. If a specific amount of memory is indicated via
1439	 * the MAXMEM option or the npx0 "msize", then don't do the speculative
1440	 * memory probe.
1441	 */
1442	if (Maxmem >= 0x4000)
1443		speculative_mprobe = TRUE;
1444	else
1445		speculative_mprobe = FALSE;
1446
1447#ifdef MAXMEM
1448	Maxmem = MAXMEM/4;
1449	speculative_mprobe = FALSE;
1450#endif
1451
1452#if NNPX > 0
1453	idp = find_isadev(isa_devtab_null, &npxdriver, 0);
1454	if (idp != NULL && idp->id_msize != 0) {
1455		Maxmem = idp->id_msize / 4;
1456		speculative_mprobe = FALSE;
1457	}
1458#endif
1459
1460#ifdef SMP
1461	/* look for the MP hardware - needed for apic addresses */
1462	mp_probe();
1463#endif
1464
1465	/* call pmap initialization to make new kernel address space */
1466	pmap_bootstrap (first, 0);
1467
1468	/*
1469	 * Size up each available chunk of physical memory.
1470	 */
1471
1472	/*
1473	 * We currently don't bother testing base memory.
1474	 * XXX  ...but we probably should.
1475	 */
1476	pa_indx = 0;
1477	if (pagesinbase > 1) {
1478		phys_avail[pa_indx++] = PAGE_SIZE;	/* skip first page of memory */
1479		phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
1480		physmem = pagesinbase - 1;
1481	} else {
1482		/* point at first chunk end */
1483		pa_indx++;
1484	}
1485
1486	for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
1487		int tmp, page_bad;
1488
1489		page_bad = FALSE;
1490
1491		/*
1492		 * map page into kernel: valid, read/write, non-cacheable
1493		 */
1494		*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
1495		invltlb();
1496
1497		tmp = *(int *)CADDR1;
1498		/*
1499		 * Test for alternating 1's and 0's
1500		 */
1501		*(volatile int *)CADDR1 = 0xaaaaaaaa;
1502		if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
1503			page_bad = TRUE;
1504		}
1505		/*
1506		 * Test for alternating 0's and 1's
1507		 */
1508		*(volatile int *)CADDR1 = 0x55555555;
1509		if (*(volatile int *)CADDR1 != 0x55555555) {
1510			page_bad = TRUE;
1511		}
1512		/*
1513		 * Test for all 1's
1514		 */
1515		*(volatile int *)CADDR1 = 0xffffffff;
1516		if (*(volatile int *)CADDR1 != 0xffffffff) {
1517			page_bad = TRUE;
1518		}
1519		/*
1520		 * Test for all 0's
1521		 */
1522		*(volatile int *)CADDR1 = 0x0;
1523		if (*(volatile int *)CADDR1 != 0x0) {
1524			/*
1525			 * test of page failed
1526			 */
1527			page_bad = TRUE;
1528		}
1529		/*
1530		 * Restore original value.
1531		 */
1532		*(int *)CADDR1 = tmp;
1533
1534		/*
1535		 * Adjust array of valid/good pages.
1536		 */
1537		if (page_bad == FALSE) {
1538			/*
1539			 * If this good page is a continuation of the
1540			 * previous set of good pages, then just increase
1541			 * the end pointer. Otherwise start a new chunk.
1542			 * Note that "end" points one higher than end,
1543			 * making the range >= start and < end.
1544			 * If we're also doing a speculative memory
1545			 * test and we at or past the end, bump up Maxmem
1546			 * so that we keep going. The first bad page
1547			 * will terminate the loop.
1548			 */
1549			if (phys_avail[pa_indx] == target_page) {
1550				phys_avail[pa_indx] += PAGE_SIZE;
1551				if (speculative_mprobe == TRUE &&
1552				    phys_avail[pa_indx] >= (64*1024*1024))
1553					Maxmem++;
1554			} else {
1555				pa_indx++;
1556				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1557					printf("Too many holes in the physical address space, giving up\n");
1558					pa_indx--;
1559					break;
1560				}
1561				phys_avail[pa_indx++] = target_page;	/* start */
1562				phys_avail[pa_indx] = target_page + PAGE_SIZE;	/* end */
1563			}
1564			physmem++;
1565		}
1566	}
1567
1568	*(int *)CMAP1 = 0;
1569	invltlb();
1570
1571	/*
1572	 * XXX
1573	 * The last chunk must contain at least one page plus the message
1574	 * buffer to avoid complicating other code (message buffer address
1575	 * calculation, etc.).
1576	 */
1577	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1578	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1579		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1580		phys_avail[pa_indx--] = 0;
1581		phys_avail[pa_indx--] = 0;
1582	}
1583
1584	Maxmem = atop(phys_avail[pa_indx]);
1585
1586	/* Trim off space for the message buffer. */
1587	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1588
1589	avail_end = phys_avail[pa_indx];
1590
1591	/* now running on new page tables, configured,and u/iom is accessible */
1592
1593	/* Map the message buffer. */
1594	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1595		pmap_enter(kernel_pmap, (vm_offset_t)msgbufp + off,
1596			   avail_end + off, VM_PROT_ALL, TRUE);
1597
1598	msgbufinit(msgbufp, MSGBUF_SIZE);
1599
1600	/* make a call gate to reenter kernel with */
1601	gdp = &ldt[LSYS5CALLS_SEL].gd;
1602
1603	x = (int) &IDTVEC(syscall);
1604	gdp->gd_looffset = x++;
1605	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1606	gdp->gd_stkcpy = 1;
1607	gdp->gd_type = SDT_SYS386CGT;
1608	gdp->gd_dpl = SEL_UPL;
1609	gdp->gd_p = 1;
1610	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1611
1612	/* XXX does this work? */
1613	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1614	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
1615
1616	/* transfer to user mode */
1617
1618	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1619	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1620
1621	/* setup proc 0's pcb */
1622	proc0.p_addr->u_pcb.pcb_flags = 0;
1623	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1624#ifdef SMP
1625	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1626#endif
1627#ifdef VM86
1628	proc0.p_addr->u_pcb.pcb_ext = 0;
1629#endif
1630
1631	/* Sigh, relocate physical addresses left from bootstrap */
1632	if (bootinfo.bi_modulep) {
1633		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1634		preload_bootstrap_relocate(KERNBASE);
1635	}
1636	if (bootinfo.bi_envp)
1637		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1638}
1639
1640#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1641static void f00f_hack(void *unused);
1642SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1643
1644static void
1645f00f_hack(void *unused) {
1646#ifndef SMP
1647	struct region_descriptor r_idt;
1648#endif
1649	vm_offset_t tmp;
1650
1651	if (!has_f00f_bug)
1652		return;
1653
1654	printf("Intel Pentium detected, installing workaround for F00F bug\n");
1655
1656	r_idt.rd_limit = sizeof(idt) - 1;
1657
1658	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
1659	if (tmp == 0)
1660		panic("kmem_alloc returned 0");
1661	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1662		panic("kmem_alloc returned non-page-aligned memory");
1663	/* Put the first seven entries in the lower page */
1664	t_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1665	bcopy(idt, t_idt, sizeof(idt));
1666	r_idt.rd_base = (int)t_idt;
1667	lidt(&r_idt);
1668	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
1669			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
1670		panic("vm_map_protect failed");
1671	return;
1672}
1673#endif /* defined(I586_CPU) && !NO_F00F_HACK */
1674
1675int
1676ptrace_set_pc(p, addr)
1677	struct proc *p;
1678	unsigned long addr;
1679{
1680	p->p_md.md_regs->tf_eip = addr;
1681	return (0);
1682}
1683
1684int
1685ptrace_single_step(p)
1686	struct proc *p;
1687{
1688	p->p_md.md_regs->tf_eflags |= PSL_T;
1689	return (0);
1690}
1691
1692int ptrace_read_u_check(p, addr, len)
1693	struct proc *p;
1694	vm_offset_t addr;
1695	size_t len;
1696{
1697	vm_offset_t gap;
1698
1699	if ((vm_offset_t) (addr + len) < addr)
1700		return EPERM;
1701	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
1702		return 0;
1703
1704	gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
1705
1706	if ((vm_offset_t) addr < gap)
1707		return EPERM;
1708	if ((vm_offset_t) (addr + len) <=
1709	    (vm_offset_t) (gap + sizeof(struct trapframe)))
1710		return 0;
1711	return EPERM;
1712}
1713
1714int ptrace_write_u(p, off, data)
1715	struct proc *p;
1716	vm_offset_t off;
1717	long data;
1718{
1719	struct trapframe frame_copy;
1720	vm_offset_t min;
1721	struct trapframe *tp;
1722
1723	/*
1724	 * Privileged kernel state is scattered all over the user area.
1725	 * Only allow write access to parts of regs and to fpregs.
1726	 */
1727	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
1728	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
1729		tp = p->p_md.md_regs;
1730		frame_copy = *tp;
1731		*(int *)((char *)&frame_copy + (off - min)) = data;
1732		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
1733		    !CS_SECURE(frame_copy.tf_cs))
1734			return (EINVAL);
1735		*(int*)((char *)p->p_addr + off) = data;
1736		return (0);
1737	}
1738	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
1739	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
1740		*(int*)((char *)p->p_addr + off) = data;
1741		return (0);
1742	}
1743	return (EFAULT);
1744}
1745
1746int
1747fill_regs(p, regs)
1748	struct proc *p;
1749	struct reg *regs;
1750{
1751	struct pcb *pcb;
1752	struct trapframe *tp;
1753
1754	tp = p->p_md.md_regs;
1755	regs->r_es = tp->tf_es;
1756	regs->r_ds = tp->tf_ds;
1757	regs->r_edi = tp->tf_edi;
1758	regs->r_esi = tp->tf_esi;
1759	regs->r_ebp = tp->tf_ebp;
1760	regs->r_ebx = tp->tf_ebx;
1761	regs->r_edx = tp->tf_edx;
1762	regs->r_ecx = tp->tf_ecx;
1763	regs->r_eax = tp->tf_eax;
1764	regs->r_eip = tp->tf_eip;
1765	regs->r_cs = tp->tf_cs;
1766	regs->r_eflags = tp->tf_eflags;
1767	regs->r_esp = tp->tf_esp;
1768	regs->r_ss = tp->tf_ss;
1769	pcb = &p->p_addr->u_pcb;
1770	regs->r_fs = pcb->pcb_fs;
1771	regs->r_gs = pcb->pcb_gs;
1772	return (0);
1773}
1774
1775int
1776set_regs(p, regs)
1777	struct proc *p;
1778	struct reg *regs;
1779{
1780	struct pcb *pcb;
1781	struct trapframe *tp;
1782
1783	tp = p->p_md.md_regs;
1784	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
1785	    !CS_SECURE(regs->r_cs))
1786		return (EINVAL);
1787	tp->tf_es = regs->r_es;
1788	tp->tf_ds = regs->r_ds;
1789	tp->tf_edi = regs->r_edi;
1790	tp->tf_esi = regs->r_esi;
1791	tp->tf_ebp = regs->r_ebp;
1792	tp->tf_ebx = regs->r_ebx;
1793	tp->tf_edx = regs->r_edx;
1794	tp->tf_ecx = regs->r_ecx;
1795	tp->tf_eax = regs->r_eax;
1796	tp->tf_eip = regs->r_eip;
1797	tp->tf_cs = regs->r_cs;
1798	tp->tf_eflags = regs->r_eflags;
1799	tp->tf_esp = regs->r_esp;
1800	tp->tf_ss = regs->r_ss;
1801	pcb = &p->p_addr->u_pcb;
1802	pcb->pcb_fs = regs->r_fs;
1803	pcb->pcb_gs = regs->r_gs;
1804	return (0);
1805}
1806
1807int
1808fill_fpregs(p, fpregs)
1809	struct proc *p;
1810	struct fpreg *fpregs;
1811{
1812	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
1813	return (0);
1814}
1815
1816int
1817set_fpregs(p, fpregs)
1818	struct proc *p;
1819	struct fpreg *fpregs;
1820{
1821	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
1822	return (0);
1823}
1824
1825#ifndef DDB
1826void
1827Debugger(const char *msg)
1828{
1829	printf("Debugger(\"%s\") called.\n", msg);
1830}
1831#endif /* no DDB */
1832
1833#include <sys/disklabel.h>
1834
1835/*
1836 * Determine the size of the transfer, and make sure it is
1837 * within the boundaries of the partition. Adjust transfer
1838 * if needed, and signal errors or early completion.
1839 */
1840int
1841bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
1842{
1843        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
1844        int labelsect = lp->d_partitions[0].p_offset;
1845        int maxsz = p->p_size,
1846                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
1847
1848        /* overwriting disk label ? */
1849        /* XXX should also protect bootstrap in first 8K */
1850        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
1851#if LABELSECTOR != 0
1852            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
1853#endif
1854            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1855                bp->b_error = EROFS;
1856                goto bad;
1857        }
1858
1859#if     defined(DOSBBSECTOR) && defined(notyet)
1860        /* overwriting master boot record? */
1861        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
1862            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1863                bp->b_error = EROFS;
1864                goto bad;
1865        }
1866#endif
1867
1868        /* beyond partition? */
1869        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
1870                /* if exactly at end of disk, return an EOF */
1871                if (bp->b_blkno == maxsz) {
1872                        bp->b_resid = bp->b_bcount;
1873                        return(0);
1874                }
1875                /* or truncate if part of it fits */
1876                sz = maxsz - bp->b_blkno;
1877                if (sz <= 0) {
1878                        bp->b_error = EINVAL;
1879                        goto bad;
1880                }
1881                bp->b_bcount = sz << DEV_BSHIFT;
1882        }
1883
1884        bp->b_pblkno = bp->b_blkno + p->p_offset;
1885        return(1);
1886
1887bad:
1888        bp->b_flags |= B_ERROR;
1889        return(-1);
1890}
1891
1892#ifdef DDB
1893
1894/*
1895 * Provide inb() and outb() as functions.  They are normally only
1896 * available as macros calling inlined functions, thus cannot be
1897 * called inside DDB.
1898 *
1899 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1900 */
1901
1902#undef inb
1903#undef outb
1904
1905/* silence compiler warnings */
1906u_char inb(u_int);
1907void outb(u_int, u_char);
1908
1909u_char
1910inb(u_int port)
1911{
1912	u_char	data;
1913	/*
1914	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1915	 * %edx, while gcc generates inferior code (movw instead of movl)
1916	 * if we tell it to load (u_short) port.
1917	 */
1918	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1919	return (data);
1920}
1921
1922void
1923outb(u_int port, u_char data)
1924{
1925	u_char	al;
1926	/*
1927	 * Use an unnecessary assignment to help gcc's register allocator.
1928	 * This make a large difference for gcc-1.40 and a tiny difference
1929	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1930	 * best results.  gcc-2.6.0 can't handle this.
1931	 */
1932	al = data;
1933	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1934}
1935
1936#endif /* DDB */
1937