machdep.c revision 43970
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 *	$Id: machdep.c,v 1.325 1999/02/11 07:53:28 msmith Exp $
39 */
40
41#include "apm.h"
42#include "ether.h"
43#include "npx.h"
44#include "opt_atalk.h"
45#include "opt_cpu.h"
46#include "opt_ddb.h"
47#include "opt_inet.h"
48#include "opt_ipx.h"
49#include "opt_maxmem.h"
50#include "opt_msgbuf.h"
51#include "opt_perfmon.h"
52#include "opt_smp.h"
53#include "opt_sysvipc.h"
54#include "opt_user_ldt.h"
55#include "opt_userconfig.h"
56#include "opt_vm86.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/sysproto.h>
61#include <sys/signalvar.h>
62#include <sys/kernel.h>
63#include <sys/linker.h>
64#include <sys/proc.h>
65#include <sys/buf.h>
66#include <sys/reboot.h>
67#include <sys/callout.h>
68#include <sys/malloc.h>
69#include <sys/mbuf.h>
70#include <sys/msgbuf.h>
71#include <sys/sysent.h>
72#include <sys/sysctl.h>
73#include <sys/vmmeter.h>
74
75#ifdef SYSVSHM
76#include <sys/shm.h>
77#endif
78
79#ifdef SYSVMSG
80#include <sys/msg.h>
81#endif
82
83#ifdef SYSVSEM
84#include <sys/sem.h>
85#endif
86
87#include <vm/vm.h>
88#include <vm/vm_param.h>
89#include <vm/vm_prot.h>
90#include <sys/lock.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_object.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_pager.h>
96#include <vm/vm_extern.h>
97
98#include <sys/user.h>
99#include <sys/exec.h>
100
101#include <ddb/ddb.h>
102
103#if defined(INET) || defined(IPX) || defined(NATM) || defined(NETATALK) \
104    || NETHER > 0 || defined(NS)
105#define NETISR
106#endif
107
108#ifdef NETISR
109#include <net/netisr.h>
110#endif
111
112#include <machine/cpu.h>
113#include <machine/reg.h>
114#include <machine/clock.h>
115#include <machine/specialreg.h>
116#include <machine/cons.h>
117#include <machine/bootinfo.h>
118#include <machine/ipl.h>
119#include <machine/md_var.h>
120#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
121#ifdef SMP
122#include <machine/smp.h>
123#endif
124#ifdef PERFMON
125#include <machine/perfmon.h>
126#endif
127
128#include <i386/isa/isa_device.h>
129#include <i386/isa/intr_machdep.h>
130#ifndef VM86
131#include <i386/isa/rtc.h>
132#endif
133#include <machine/random.h>
134#include <sys/ptrace.h>
135
136extern void init386 __P((int first));
137extern void dblfault_handler __P((void));
138
139extern void printcpuinfo(void);	/* XXX header file */
140extern void earlysetcpuclass(void);	/* same header file */
141extern void finishidentcpu(void);
142extern void panicifcpuunsupported(void);
143extern void initializecpu(void);
144
145static void cpu_startup __P((void *));
146SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
147
148static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
149
150int	_udatasel, _ucodesel;
151u_int	atdevbase;
152
153#if defined(SWTCH_OPTIM_STATS)
154extern int swtch_optim_stats;
155SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
156	CTLFLAG_RD, &swtch_optim_stats, 0, "");
157SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
158	CTLFLAG_RD, &tlb_flush_count, 0, "");
159#endif
160
161#ifdef PC98
162static int	ispc98 = 1;
163#else
164static int	ispc98 = 0;
165#endif
166SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
167
168int physmem = 0;
169int cold = 1;
170
171static int
172sysctl_hw_physmem SYSCTL_HANDLER_ARGS
173{
174	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
175	return (error);
176}
177
178SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
179	0, 0, sysctl_hw_physmem, "I", "");
180
181static int
182sysctl_hw_usermem SYSCTL_HANDLER_ARGS
183{
184	int error = sysctl_handle_int(oidp, 0,
185		ctob(physmem - cnt.v_wire_count), req);
186	return (error);
187}
188
189SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
190	0, 0, sysctl_hw_usermem, "I", "");
191
192static int
193sysctl_hw_availpages SYSCTL_HANDLER_ARGS
194{
195	int error = sysctl_handle_int(oidp, 0,
196		i386_btop(avail_end - avail_start), req);
197	return (error);
198}
199
200SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
201	0, 0, sysctl_hw_availpages, "I", "");
202
203static int
204sysctl_machdep_msgbuf SYSCTL_HANDLER_ARGS
205{
206	int error;
207
208	/* Unwind the buffer, so that it's linear (possibly starting with
209	 * some initial nulls).
210	 */
211	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
212		msgbufp->msg_size-msgbufp->msg_bufr,req);
213	if(error) return(error);
214	if(msgbufp->msg_bufr>0) {
215		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
216			msgbufp->msg_bufr,req);
217	}
218	return(error);
219}
220
221SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
222	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
223
224static int msgbuf_clear;
225
226static int
227sysctl_machdep_msgbuf_clear SYSCTL_HANDLER_ARGS
228{
229	int error;
230	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
231		req);
232	if (!error && req->newptr) {
233		/* Clear the buffer and reset write pointer */
234		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
235		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
236		msgbuf_clear=0;
237	}
238	return (error);
239}
240
241SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
242	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
243	"Clear kernel message buffer");
244
245int bootverbose = 0, Maxmem = 0;
246long dumplo;
247
248vm_offset_t phys_avail[10];
249
250/* must be 2 less so 0 0 can signal end of chunks */
251#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
252
253#ifdef NETISR
254static void setup_netisrs __P((struct linker_set *));
255#endif
256
257static vm_offset_t buffer_sva, buffer_eva;
258vm_offset_t clean_sva, clean_eva;
259static vm_offset_t pager_sva, pager_eva;
260#ifdef NETISR
261extern struct linker_set netisr_set;
262#endif
263#if NNPX > 0
264extern struct isa_driver npxdriver;
265#endif
266
267#define offsetof(type, member)	((size_t)(&((type *)0)->member))
268
269static void
270cpu_startup(dummy)
271	void *dummy;
272{
273	register unsigned i;
274	register caddr_t v;
275	vm_offset_t maxaddr;
276	vm_size_t size = 0;
277	int firstaddr;
278	vm_offset_t minaddr;
279
280	if (boothowto & RB_VERBOSE)
281		bootverbose++;
282
283	/*
284	 * Good {morning,afternoon,evening,night}.
285	 */
286	printf(version);
287	earlysetcpuclass();
288	startrtclock();
289	printcpuinfo();
290	panicifcpuunsupported();
291#ifdef PERFMON
292	perfmon_init();
293#endif
294	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
295	/*
296	 * Display any holes after the first chunk of extended memory.
297	 */
298	if (bootverbose) {
299		int indx;
300
301		printf("Physical memory chunk(s):\n");
302		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
303			int size1 = phys_avail[indx + 1] - phys_avail[indx];
304
305			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
306			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
307			    size1 / PAGE_SIZE);
308		}
309	}
310
311#ifdef NETISR
312	/*
313	 * Quickly wire in netisrs.
314	 */
315	setup_netisrs(&netisr_set);
316#endif
317
318	/*
319	 * Calculate callout wheel size
320	 */
321	for (callwheelsize = 1, callwheelbits = 0;
322	     callwheelsize < ncallout;
323	     callwheelsize <<= 1, ++callwheelbits)
324		;
325	callwheelmask = callwheelsize - 1;
326
327	/*
328	 * Allocate space for system data structures.
329	 * The first available kernel virtual address is in "v".
330	 * As pages of kernel virtual memory are allocated, "v" is incremented.
331	 * As pages of memory are allocated and cleared,
332	 * "firstaddr" is incremented.
333	 * An index into the kernel page table corresponding to the
334	 * virtual memory address maintained in "v" is kept in "mapaddr".
335	 */
336
337	/*
338	 * Make two passes.  The first pass calculates how much memory is
339	 * needed and allocates it.  The second pass assigns virtual
340	 * addresses to the various data structures.
341	 */
342	firstaddr = 0;
343again:
344	v = (caddr_t)firstaddr;
345
346#define	valloc(name, type, num) \
347	    (name) = (type *)v; v = (caddr_t)((name)+(num))
348#define	valloclim(name, type, num, lim) \
349	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
350
351	valloc(callout, struct callout, ncallout);
352	valloc(callwheel, struct callout_tailq, callwheelsize);
353#ifdef SYSVSHM
354	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
355#endif
356#ifdef SYSVSEM
357	valloc(sema, struct semid_ds, seminfo.semmni);
358	valloc(sem, struct sem, seminfo.semmns);
359	/* This is pretty disgusting! */
360	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
361#endif
362#ifdef SYSVMSG
363	valloc(msgpool, char, msginfo.msgmax);
364	valloc(msgmaps, struct msgmap, msginfo.msgseg);
365	valloc(msghdrs, struct msg, msginfo.msgtql);
366	valloc(msqids, struct msqid_ds, msginfo.msgmni);
367#endif
368
369	if (nbuf == 0) {
370		nbuf = 30;
371		if( physmem > 1024)
372			nbuf += min((physmem - 1024) / 8, 2048);
373	}
374	nswbuf = max(min(nbuf/4, 64), 16);
375
376	valloc(swbuf, struct buf, nswbuf);
377	valloc(buf, struct buf, nbuf);
378
379
380	/*
381	 * End of first pass, size has been calculated so allocate memory
382	 */
383	if (firstaddr == 0) {
384		size = (vm_size_t)(v - firstaddr);
385		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
386		if (firstaddr == 0)
387			panic("startup: no room for tables");
388		goto again;
389	}
390
391	/*
392	 * End of second pass, addresses have been assigned
393	 */
394	if ((vm_size_t)(v - firstaddr) != size)
395		panic("startup: table size inconsistency");
396
397	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
398			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
399	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
400				(nbuf*BKVASIZE));
401	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
402				(nswbuf*MAXPHYS) + pager_map_size);
403	pager_map->system_map = 1;
404	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
405				(16*(ARG_MAX+(PAGE_SIZE*3))));
406
407	/*
408	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
409	 * we use the more space efficient malloc in place of kmem_alloc.
410	 */
411	{
412		vm_offset_t mb_map_size;
413		int xclusters;
414
415		/* Allow override of NMBCLUSTERS from the kernel environment */
416		if (getenv_int("kern.ipc.nmbclusters", &xclusters) &&
417		    xclusters > nmbclusters)
418		    nmbclusters = xclusters;
419
420		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
421		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
422		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
423		bzero(mclrefcnt, mb_map_size / MCLBYTES);
424		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
425			mb_map_size);
426		mb_map->system_map = 1;
427	}
428
429	/*
430	 * Initialize callouts
431	 */
432	SLIST_INIT(&callfree);
433	for (i = 0; i < ncallout; i++) {
434		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
435	}
436
437	for (i = 0; i < callwheelsize; i++) {
438		TAILQ_INIT(&callwheel[i]);
439	}
440
441#if defined(USERCONFIG)
442	userconfig();
443	cninit();		/* the preferred console may have changed */
444#endif
445
446	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
447	    ptoa(cnt.v_free_count) / 1024);
448
449	/*
450	 * Set up buffers, so they can be used to read disk labels.
451	 */
452	bufinit();
453	vm_pager_bufferinit();
454
455#ifdef SMP
456	/*
457	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
458	 */
459	mp_start();			/* fire up the APs and APICs */
460	mp_announce();
461#endif  /* SMP */
462}
463
464#ifdef NETISR
465int
466register_netisr(num, handler)
467	int num;
468	netisr_t *handler;
469{
470
471	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
472		printf("register_netisr: bad isr number: %d\n", num);
473		return (EINVAL);
474	}
475	netisrs[num] = handler;
476	return (0);
477}
478
479static void
480setup_netisrs(ls)
481	struct linker_set *ls;
482{
483	int i;
484	const struct netisrtab *nit;
485
486	for(i = 0; ls->ls_items[i]; i++) {
487		nit = (const struct netisrtab *)ls->ls_items[i];
488		register_netisr(nit->nit_num, nit->nit_isr);
489	}
490}
491#endif /* NETISR */
492
493/*
494 * Send an interrupt to process.
495 *
496 * Stack is set up to allow sigcode stored
497 * at top to call routine, followed by kcall
498 * to sigreturn routine below.  After sigreturn
499 * resets the signal mask, the stack, and the
500 * frame pointer, it returns to the user
501 * specified pc, psl.
502 */
503void
504sendsig(catcher, sig, mask, code)
505	sig_t catcher;
506	int sig, mask;
507	u_long code;
508{
509	register struct proc *p = curproc;
510	register struct trapframe *regs;
511	register struct sigframe *fp;
512	struct sigframe sf;
513	struct sigacts *psp = p->p_sigacts;
514	int oonstack;
515
516	regs = p->p_md.md_regs;
517        oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
518	/*
519	 * Allocate and validate space for the signal handler context.
520	 */
521        if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
522	    (psp->ps_sigonstack & sigmask(sig))) {
523		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
524		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
525		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
526	} else {
527		fp = (struct sigframe *)regs->tf_esp - 1;
528	}
529
530	/*
531	 * grow() will return FALSE if the fp will not fit inside the stack
532	 *	and the stack can not be grown. useracc will return FALSE
533	 *	if access is denied.
534	 */
535#ifdef VM_STACK
536	if ((grow_stack (p, (int)fp) == FALSE) ||
537#else
538	if ((grow(p, (int)fp) == FALSE) ||
539#endif
540	    (useracc((caddr_t)fp, sizeof(struct sigframe), B_WRITE) == FALSE)) {
541		/*
542		 * Process has trashed its stack; give it an illegal
543		 * instruction to halt it in its tracks.
544		 */
545		SIGACTION(p, SIGILL) = SIG_DFL;
546		sig = sigmask(SIGILL);
547		p->p_sigignore &= ~sig;
548		p->p_sigcatch &= ~sig;
549		p->p_sigmask &= ~sig;
550		psignal(p, SIGILL);
551		return;
552	}
553
554	/*
555	 * Build the argument list for the signal handler.
556	 */
557	if (p->p_sysent->sv_sigtbl) {
558		if (sig < p->p_sysent->sv_sigsize)
559			sig = p->p_sysent->sv_sigtbl[sig];
560		else
561			sig = p->p_sysent->sv_sigsize + 1;
562	}
563	sf.sf_signum = sig;
564	sf.sf_code = code;
565	sf.sf_scp = &fp->sf_sc;
566	sf.sf_addr = (char *) regs->tf_err;
567	sf.sf_handler = catcher;
568
569	/* save scratch registers */
570	sf.sf_sc.sc_eax = regs->tf_eax;
571	sf.sf_sc.sc_ebx = regs->tf_ebx;
572	sf.sf_sc.sc_ecx = regs->tf_ecx;
573	sf.sf_sc.sc_edx = regs->tf_edx;
574	sf.sf_sc.sc_esi = regs->tf_esi;
575	sf.sf_sc.sc_edi = regs->tf_edi;
576	sf.sf_sc.sc_cs = regs->tf_cs;
577	sf.sf_sc.sc_ds = regs->tf_ds;
578	sf.sf_sc.sc_ss = regs->tf_ss;
579	sf.sf_sc.sc_es = regs->tf_es;
580	sf.sf_sc.sc_isp = regs->tf_isp;
581
582	/*
583	 * Build the signal context to be used by sigreturn.
584	 */
585	sf.sf_sc.sc_onstack = oonstack;
586	sf.sf_sc.sc_mask = mask;
587	sf.sf_sc.sc_sp = regs->tf_esp;
588	sf.sf_sc.sc_fp = regs->tf_ebp;
589	sf.sf_sc.sc_pc = regs->tf_eip;
590	sf.sf_sc.sc_ps = regs->tf_eflags;
591	sf.sf_sc.sc_trapno = regs->tf_trapno;
592	sf.sf_sc.sc_err = regs->tf_err;
593
594#ifdef VM86
595	/*
596	 * If we're a vm86 process, we want to save the segment registers.
597	 * We also change eflags to be our emulated eflags, not the actual
598	 * eflags.
599	 */
600	if (regs->tf_eflags & PSL_VM) {
601		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
602		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
603
604		sf.sf_sc.sc_gs = tf->tf_vm86_gs;
605		sf.sf_sc.sc_fs = tf->tf_vm86_fs;
606		sf.sf_sc.sc_es = tf->tf_vm86_es;
607		sf.sf_sc.sc_ds = tf->tf_vm86_ds;
608
609		if (vm86->vm86_has_vme == 0)
610			sf.sf_sc.sc_ps = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
611			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
612
613		/*
614		 * We should never have PSL_T set when returning from vm86
615		 * mode.  It may be set here if we deliver a signal before
616		 * getting to vm86 mode, so turn it off.
617		 *
618		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
619		 * syscalls made by the signal handler.  This just avoids
620		 * wasting time for our lazy fixup of such faults.  PSL_NT
621		 * does nothing in vm86 mode, but vm86 programs can set it
622		 * almost legitimately in probes for old cpu types.
623		 */
624		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
625	}
626#endif /* VM86 */
627
628	/*
629	 * Copy the sigframe out to the user's stack.
630	 */
631	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
632		/*
633		 * Something is wrong with the stack pointer.
634		 * ...Kill the process.
635		 */
636		sigexit(p, SIGILL);
637	}
638
639	regs->tf_esp = (int)fp;
640	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
641	regs->tf_cs = _ucodesel;
642	regs->tf_ds = _udatasel;
643	regs->tf_es = _udatasel;
644	regs->tf_ss = _udatasel;
645}
646
647/*
648 * System call to cleanup state after a signal
649 * has been taken.  Reset signal mask and
650 * stack state from context left by sendsig (above).
651 * Return to previous pc and psl as specified by
652 * context left by sendsig. Check carefully to
653 * make sure that the user has not modified the
654 * state to gain improper privileges.
655 */
656int
657sigreturn(p, uap)
658	struct proc *p;
659	struct sigreturn_args /* {
660		struct sigcontext *sigcntxp;
661	} */ *uap;
662{
663	register struct sigcontext *scp;
664	register struct sigframe *fp;
665	register struct trapframe *regs = p->p_md.md_regs;
666	int eflags;
667
668	/*
669	 * (XXX old comment) regs->tf_esp points to the return address.
670	 * The user scp pointer is above that.
671	 * The return address is faked in the signal trampoline code
672	 * for consistency.
673	 */
674	scp = uap->sigcntxp;
675	fp = (struct sigframe *)
676	     ((caddr_t)scp - offsetof(struct sigframe, sf_sc));
677
678	if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
679		return(EFAULT);
680
681	eflags = scp->sc_ps;
682#ifdef VM86
683	if (eflags & PSL_VM) {
684		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
685		struct vm86_kernel *vm86;
686
687		/*
688		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
689		 * set up the vm86 area, and we can't enter vm86 mode.
690		 */
691		if (p->p_addr->u_pcb.pcb_ext == 0)
692			return (EINVAL);
693		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
694		if (vm86->vm86_inited == 0)
695			return (EINVAL);
696
697		/* go back to user mode if both flags are set */
698		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
699			trapsignal(p, SIGBUS, 0);
700
701		if (vm86->vm86_has_vme) {
702			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
703			    (eflags & VME_USERCHANGE) | PSL_VM;
704		} else {
705			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
706			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
707		}
708		tf->tf_vm86_ds = scp->sc_ds;
709		tf->tf_vm86_es = scp->sc_es;
710		tf->tf_vm86_fs = scp->sc_fs;
711		tf->tf_vm86_gs = scp->sc_gs;
712		tf->tf_ds = _udatasel;
713		tf->tf_es = _udatasel;
714	} else {
715#endif /* VM86 */
716		/*
717		 * Don't allow users to change privileged or reserved flags.
718		 */
719#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
720		/*
721		 * XXX do allow users to change the privileged flag PSL_RF.
722		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
723		 * should sometimes set it there too.  tf_eflags is kept in
724		 * the signal context during signal handling and there is no
725		 * other place to remember it, so the PSL_RF bit may be
726		 * corrupted by the signal handler without us knowing.
727		 * Corruption of the PSL_RF bit at worst causes one more or
728		 * one less debugger trap, so allowing it is fairly harmless.
729		 */
730		if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
731#ifdef DEBUG
732	    		printf("sigreturn: eflags = 0x%x\n", eflags);
733#endif
734	    		return(EINVAL);
735		}
736
737		/*
738		 * Don't allow users to load a valid privileged %cs.  Let the
739		 * hardware check for invalid selectors, excess privilege in
740		 * other selectors, invalid %eip's and invalid %esp's.
741		 */
742#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
743		if (!CS_SECURE(scp->sc_cs)) {
744#ifdef DEBUG
745    			printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
746#endif
747			trapsignal(p, SIGBUS, T_PROTFLT);
748			return(EINVAL);
749		}
750		regs->tf_ds = scp->sc_ds;
751		regs->tf_es = scp->sc_es;
752#ifdef VM86
753	}
754#endif
755
756	/* restore scratch registers */
757	regs->tf_eax = scp->sc_eax;
758	regs->tf_ebx = scp->sc_ebx;
759	regs->tf_ecx = scp->sc_ecx;
760	regs->tf_edx = scp->sc_edx;
761	regs->tf_esi = scp->sc_esi;
762	regs->tf_edi = scp->sc_edi;
763	regs->tf_cs = scp->sc_cs;
764	regs->tf_ss = scp->sc_ss;
765	regs->tf_isp = scp->sc_isp;
766
767	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
768		return(EINVAL);
769
770	if (scp->sc_onstack & 01)
771		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
772	else
773		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
774	p->p_sigmask = scp->sc_mask & ~sigcantmask;
775	regs->tf_ebp = scp->sc_fp;
776	regs->tf_esp = scp->sc_sp;
777	regs->tf_eip = scp->sc_pc;
778	regs->tf_eflags = eflags;
779	return(EJUSTRETURN);
780}
781
782/*
783 * Machine dependent boot() routine
784 *
785 * I haven't seen anything to put here yet
786 * Possibly some stuff might be grafted back here from boot()
787 */
788void
789cpu_boot(int howto)
790{
791}
792
793/*
794 * Shutdown the CPU as much as possible
795 */
796void
797cpu_halt(void)
798{
799	for (;;)
800		__asm__ ("hlt");
801}
802
803/*
804 * Clear registers on exec
805 */
806void
807setregs(p, entry, stack)
808	struct proc *p;
809	u_long entry;
810	u_long stack;
811{
812	struct trapframe *regs = p->p_md.md_regs;
813	struct pcb *pcb = &p->p_addr->u_pcb;
814
815#ifdef USER_LDT
816	/* was i386_user_cleanup() in NetBSD */
817	if (pcb->pcb_ldt) {
818		if (pcb == curpcb) {
819			lldt(_default_ldt);
820			currentldt = _default_ldt;
821		}
822		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
823			pcb->pcb_ldt_len * sizeof(union descriptor));
824		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
825 	}
826#endif
827
828	bzero((char *)regs, sizeof(struct trapframe));
829	regs->tf_eip = entry;
830	regs->tf_esp = stack;
831	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
832	regs->tf_ss = _udatasel;
833	regs->tf_ds = _udatasel;
834	regs->tf_es = _udatasel;
835	regs->tf_cs = _ucodesel;
836
837	/* reset %fs and %gs as well */
838	pcb->pcb_fs = _udatasel;
839	pcb->pcb_gs = _udatasel;
840	if (pcb == curpcb) {
841		__asm("movw %w0,%%fs" : : "r" (_udatasel));
842		__asm("movw %w0,%%gs" : : "r" (_udatasel));
843	}
844
845	/*
846	 * Initialize the math emulator (if any) for the current process.
847	 * Actually, just clear the bit that says that the emulator has
848	 * been initialized.  Initialization is delayed until the process
849	 * traps to the emulator (if it is done at all) mainly because
850	 * emulators don't provide an entry point for initialization.
851	 */
852	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
853
854	/*
855	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
856	 * for why fwait must be trapped at least if there is an npx or an
857	 * emulator).  This is mainly to handle the case where npx0 is not
858	 * configured, since the npx routines normally set up the trap
859	 * otherwise.  It should be done only at boot time, but doing it
860	 * here allows modifying `npx_exists' for testing the emulator on
861	 * systems with an npx.
862	 */
863	load_cr0(rcr0() | CR0_MP | CR0_TS);
864
865#if NNPX > 0
866	/* Initialize the npx (if any) for the current process. */
867	npxinit(__INITIAL_NPXCW__);
868#endif
869
870      /*
871       * XXX - Linux emulator
872       * Make sure sure edx is 0x0 on entry. Linux binaries depend
873       * on it.
874       */
875      p->p_retval[1] = 0;
876}
877
878static int
879sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
880{
881	int error;
882	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
883		req);
884	if (!error && req->newptr)
885		resettodr();
886	return (error);
887}
888
889SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
890	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
891
892SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
893	CTLFLAG_RW, &disable_rtc_set, 0, "");
894
895SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
896	CTLFLAG_RD, &bootinfo, bootinfo, "");
897
898SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
899	CTLFLAG_RW, &wall_cmos_clock, 0, "");
900
901/*
902 * Initialize 386 and configure to run kernel
903 */
904
905/*
906 * Initialize segments & interrupt table
907 */
908
909int _default_ldt;
910#ifdef SMP
911union descriptor gdt[NGDT + NCPU];	/* global descriptor table */
912#else
913union descriptor gdt[NGDT];		/* global descriptor table */
914#endif
915struct gate_descriptor idt[NIDT];	/* interrupt descriptor table */
916union descriptor ldt[NLDT];		/* local descriptor table */
917#ifdef SMP
918/* table descriptors - used to load tables by microp */
919struct region_descriptor r_gdt, r_idt;
920#endif
921
922extern struct i386tss common_tss;	/* One tss per cpu */
923#ifdef VM86
924extern struct segment_descriptor common_tssd;
925extern int private_tss;			/* flag indicating private tss */
926extern u_int my_tr;			/* which task register setting */
927#endif /* VM86 */
928
929#if defined(I586_CPU) && !defined(NO_F00F_HACK)
930struct gate_descriptor *t_idt;
931extern int has_f00f_bug;
932#endif
933
934static struct i386tss dblfault_tss;
935static char dblfault_stack[PAGE_SIZE];
936
937extern  struct user *proc0paddr;
938
939
940/* software prototypes -- in more palatable form */
941struct soft_segment_descriptor gdt_segs[
942#ifdef SMP
943					NGDT + NCPU
944#endif
945						   ] = {
946/* GNULL_SEL	0 Null Descriptor */
947{	0x0,			/* segment base address  */
948	0x0,			/* length */
949	0,			/* segment type */
950	0,			/* segment descriptor priority level */
951	0,			/* segment descriptor present */
952	0, 0,
953	0,			/* default 32 vs 16 bit size */
954	0  			/* limit granularity (byte/page units)*/ },
955/* GCODE_SEL	1 Code Descriptor for kernel */
956{	0x0,			/* segment base address  */
957	0xfffff,		/* length - all address space */
958	SDT_MEMERA,		/* segment type */
959	0,			/* segment descriptor priority level */
960	1,			/* segment descriptor present */
961	0, 0,
962	1,			/* default 32 vs 16 bit size */
963	1  			/* limit granularity (byte/page units)*/ },
964/* GDATA_SEL	2 Data Descriptor for kernel */
965{	0x0,			/* segment base address  */
966	0xfffff,		/* length - all address space */
967	SDT_MEMRWA,		/* segment type */
968	0,			/* segment descriptor priority level */
969	1,			/* segment descriptor present */
970	0, 0,
971	1,			/* default 32 vs 16 bit size */
972	1  			/* limit granularity (byte/page units)*/ },
973/* GLDT_SEL	3 LDT Descriptor */
974{	(int) ldt,		/* segment base address  */
975	sizeof(ldt)-1,		/* length - all address space */
976	SDT_SYSLDT,		/* segment type */
977	SEL_UPL,		/* segment descriptor priority level */
978	1,			/* segment descriptor present */
979	0, 0,
980	0,			/* unused - default 32 vs 16 bit size */
981	0  			/* limit granularity (byte/page units)*/ },
982/* GTGATE_SEL	4 Null Descriptor - Placeholder */
983{	0x0,			/* segment base address  */
984	0x0,			/* length - all address space */
985	0,			/* segment type */
986	0,			/* segment descriptor priority level */
987	0,			/* segment descriptor present */
988	0, 0,
989	0,			/* default 32 vs 16 bit size */
990	0  			/* limit granularity (byte/page units)*/ },
991/* GPANIC_SEL	5 Panic Tss Descriptor */
992{	(int) &dblfault_tss,	/* segment base address  */
993	sizeof(struct i386tss)-1,/* length - all address space */
994	SDT_SYS386TSS,		/* segment type */
995	0,			/* segment descriptor priority level */
996	1,			/* segment descriptor present */
997	0, 0,
998	0,			/* unused - default 32 vs 16 bit size */
999	0  			/* limit granularity (byte/page units)*/ },
1000/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1001{
1002	(int) &common_tss,	/* segment base address */
1003	sizeof(struct i386tss)-1,/* length - all address space */
1004	SDT_SYS386TSS,		/* segment type */
1005	0,			/* segment descriptor priority level */
1006	1,			/* segment descriptor present */
1007	0, 0,
1008	0,			/* unused - default 32 vs 16 bit size */
1009	0  			/* limit granularity (byte/page units)*/ },
1010/* GUSERLDT_SEL	7 User LDT Descriptor per process */
1011{	(int) ldt,		/* segment base address  */
1012	(512 * sizeof(union descriptor)-1),		/* length */
1013	SDT_SYSLDT,		/* segment type */
1014	0,			/* segment descriptor priority level */
1015	1,			/* segment descriptor present */
1016	0, 0,
1017	0,			/* unused - default 32 vs 16 bit size */
1018	0  			/* limit granularity (byte/page units)*/ },
1019/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
1020{	0,			/* segment base address (overwritten by APM)  */
1021	0xfffff,		/* length */
1022	SDT_MEMERA,		/* segment type */
1023	0,			/* segment descriptor priority level */
1024	1,			/* segment descriptor present */
1025	0, 0,
1026	1,			/* default 32 vs 16 bit size */
1027	1  			/* limit granularity (byte/page units)*/ },
1028/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
1029{	0,			/* segment base address (overwritten by APM)  */
1030	0xfffff,		/* length */
1031	SDT_MEMERA,		/* segment type */
1032	0,			/* segment descriptor priority level */
1033	1,			/* segment descriptor present */
1034	0, 0,
1035	0,			/* default 32 vs 16 bit size */
1036	1  			/* limit granularity (byte/page units)*/ },
1037/* GAPMDATA_SEL	10 APM BIOS 32-bit interface (Data) */
1038{	0,			/* segment base address (overwritten by APM) */
1039	0xfffff,		/* length */
1040	SDT_MEMRWA,		/* segment type */
1041	0,			/* segment descriptor priority level */
1042	1,			/* segment descriptor present */
1043	0, 0,
1044	1,			/* default 32 vs 16 bit size */
1045	1  			/* limit granularity (byte/page units)*/ },
1046};
1047
1048static struct soft_segment_descriptor ldt_segs[] = {
1049	/* Null Descriptor - overwritten by call gate */
1050{	0x0,			/* segment base address  */
1051	0x0,			/* length - all address space */
1052	0,			/* segment type */
1053	0,			/* segment descriptor priority level */
1054	0,			/* segment descriptor present */
1055	0, 0,
1056	0,			/* default 32 vs 16 bit size */
1057	0  			/* limit granularity (byte/page units)*/ },
1058	/* Null Descriptor - overwritten by call gate */
1059{	0x0,			/* segment base address  */
1060	0x0,			/* length - all address space */
1061	0,			/* segment type */
1062	0,			/* segment descriptor priority level */
1063	0,			/* segment descriptor present */
1064	0, 0,
1065	0,			/* default 32 vs 16 bit size */
1066	0  			/* limit granularity (byte/page units)*/ },
1067	/* Null Descriptor - overwritten by call gate */
1068{	0x0,			/* segment base address  */
1069	0x0,			/* length - all address space */
1070	0,			/* segment type */
1071	0,			/* segment descriptor priority level */
1072	0,			/* segment descriptor present */
1073	0, 0,
1074	0,			/* default 32 vs 16 bit size */
1075	0  			/* limit granularity (byte/page units)*/ },
1076	/* Code Descriptor for user */
1077{	0x0,			/* segment base address  */
1078	0xfffff,		/* length - all address space */
1079	SDT_MEMERA,		/* segment type */
1080	SEL_UPL,		/* segment descriptor priority level */
1081	1,			/* segment descriptor present */
1082	0, 0,
1083	1,			/* default 32 vs 16 bit size */
1084	1  			/* limit granularity (byte/page units)*/ },
1085	/* Null Descriptor - overwritten by call gate */
1086{	0x0,			/* segment base address  */
1087	0x0,			/* length - all address space */
1088	0,			/* segment type */
1089	0,			/* segment descriptor priority level */
1090	0,			/* segment descriptor present */
1091	0, 0,
1092	0,			/* default 32 vs 16 bit size */
1093	0  			/* limit granularity (byte/page units)*/ },
1094	/* Data Descriptor for user */
1095{	0x0,			/* segment base address  */
1096	0xfffff,		/* length - all address space */
1097	SDT_MEMRWA,		/* segment type */
1098	SEL_UPL,		/* segment descriptor priority level */
1099	1,			/* segment descriptor present */
1100	0, 0,
1101	1,			/* default 32 vs 16 bit size */
1102	1  			/* limit granularity (byte/page units)*/ },
1103};
1104
1105void
1106setidt(idx, func, typ, dpl, selec)
1107	int idx;
1108	inthand_t *func;
1109	int typ;
1110	int dpl;
1111	int selec;
1112{
1113	struct gate_descriptor *ip;
1114
1115#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1116	ip = (t_idt != NULL ? t_idt : idt) + idx;
1117#else
1118	ip = idt + idx;
1119#endif
1120	ip->gd_looffset = (int)func;
1121	ip->gd_selector = selec;
1122	ip->gd_stkcpy = 0;
1123	ip->gd_xx = 0;
1124	ip->gd_type = typ;
1125	ip->gd_dpl = dpl;
1126	ip->gd_p = 1;
1127	ip->gd_hioffset = ((int)func)>>16 ;
1128}
1129
1130#define	IDTVEC(name)	__CONCAT(X,name)
1131
1132extern inthand_t
1133	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1134	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1135	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1136	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1137	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1138
1139void
1140sdtossd(sd, ssd)
1141	struct segment_descriptor *sd;
1142	struct soft_segment_descriptor *ssd;
1143{
1144	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1145	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1146	ssd->ssd_type  = sd->sd_type;
1147	ssd->ssd_dpl   = sd->sd_dpl;
1148	ssd->ssd_p     = sd->sd_p;
1149	ssd->ssd_def32 = sd->sd_def32;
1150	ssd->ssd_gran  = sd->sd_gran;
1151}
1152
1153void
1154init386(first)
1155	int first;
1156{
1157	int x;
1158	unsigned biosbasemem, biosextmem;
1159	struct gate_descriptor *gdp;
1160	int gsel_tss;
1161
1162	struct isa_device *idp;
1163#ifndef SMP
1164	/* table descriptors - used to load tables by microp */
1165	struct region_descriptor r_gdt, r_idt;
1166#endif
1167	int pagesinbase, pagesinext;
1168	vm_offset_t target_page;
1169	int pa_indx, off;
1170	int speculative_mprobe;
1171
1172	/*
1173	 * Prevent lowering of the ipl if we call tsleep() early.
1174	 */
1175	safepri = cpl;
1176
1177	proc0.p_addr = proc0paddr;
1178
1179	atdevbase = ISA_HOLE_START + KERNBASE;
1180
1181	/*
1182	 * Initialize the console before we print anything out.
1183	 */
1184	cninit();
1185
1186	/*
1187	 * make gdt memory segments, the code segment goes up to end of the
1188	 * page with etext in it, the data segment goes to the end of
1189	 * the address space
1190	 */
1191	/*
1192	 * XXX text protection is temporarily (?) disabled.  The limit was
1193	 * i386_btop(round_page(etext)) - 1.
1194	 */
1195	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1196	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1197#ifdef BDE_DEBUGGER
1198#define	NGDT1	8		/* avoid overwriting db entries with APM ones */
1199#else
1200#define	NGDT1	(sizeof gdt_segs / sizeof gdt_segs[0])
1201#endif
1202	for (x = 0; x < NGDT1; x++)
1203		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1204#ifdef VM86
1205	common_tssd = gdt[GPROC0_SEL].sd;
1206#endif /* VM86 */
1207
1208#ifdef SMP
1209	/*
1210	 * Spin these up now.  init_secondary() grabs them.  We could use
1211	 * #for(x,y,z) / #endfor cpp directives if they existed.
1212	 */
1213	for (x = 0; x < NCPU; x++) {
1214		gdt_segs[NGDT + x] = gdt_segs[GPROC0_SEL];
1215		ssdtosd(&gdt_segs[NGDT + x], &gdt[NGDT + x].sd);
1216	}
1217#endif
1218
1219	/* make ldt memory segments */
1220	/*
1221	 * The data segment limit must not cover the user area because we
1222	 * don't want the user area to be writable in copyout() etc. (page
1223	 * level protection is lost in kernel mode on 386's).  Also, we
1224	 * don't want the user area to be writable directly (page level
1225	 * protection of the user area is not available on 486's with
1226	 * CR0_WP set, because there is no user-read/kernel-write mode).
1227	 *
1228	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1229	 * should be spelled ...MAX_USER...
1230	 */
1231#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1232	/*
1233	 * The code segment limit has to cover the user area until we move
1234	 * the signal trampoline out of the user area.  This is safe because
1235	 * the code segment cannot be written to directly.
1236	 */
1237#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1238	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1239	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1240	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1241		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1242
1243	/* exceptions */
1244	for (x = 0; x < NIDT; x++)
1245		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1246	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1247	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1248	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1249 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1250	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1251	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1252	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1253	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1254	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1255	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1256	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1257	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1258	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1259	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1260	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1261	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1262	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1263	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1264	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1265 	setidt(0x80, &IDTVEC(int0x80_syscall),
1266			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1267
1268#include	"isa.h"
1269#if	NISA >0
1270	isa_defaultirq();
1271#endif
1272	rand_initialize();
1273
1274	r_gdt.rd_limit = sizeof(gdt) - 1;
1275	r_gdt.rd_base =  (int) gdt;
1276	lgdt(&r_gdt);
1277
1278	r_idt.rd_limit = sizeof(idt) - 1;
1279	r_idt.rd_base = (int) idt;
1280	lidt(&r_idt);
1281
1282	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1283	lldt(_default_ldt);
1284#ifdef USER_LDT
1285	currentldt = _default_ldt;
1286#endif
1287
1288#ifdef DDB
1289	kdb_init();
1290	if (boothowto & RB_KDB)
1291		Debugger("Boot flags requested debugger");
1292#endif
1293
1294	finishidentcpu();	/* Final stage of CPU initialization */
1295	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1296	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1297	initializecpu();	/* Initialize CPU registers */
1298
1299	/* make an initial tss so cpu can get interrupt stack on syscall! */
1300#ifdef VM86
1301	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
1302#else
1303	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE;
1304#endif /* VM86 */
1305	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1306	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1307	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1308	ltr(gsel_tss);
1309#ifdef VM86
1310	private_tss = 0;
1311	my_tr = GPROC0_SEL;
1312#endif
1313
1314	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1315	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1316	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1317	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1318	dblfault_tss.tss_cr3 = (int)IdlePTD;
1319	dblfault_tss.tss_eip = (int) dblfault_handler;
1320	dblfault_tss.tss_eflags = PSL_KERNEL;
1321	dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs =
1322	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1323	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1324	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1325
1326#ifdef VM86
1327	initial_bioscalls(&biosbasemem, &biosextmem);
1328#else
1329
1330	/* Use BIOS values stored in RTC CMOS RAM, since probing
1331	 * breaks certain 386 AT relics.
1332	 */
1333	biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
1334	biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
1335#endif
1336
1337	/*
1338	 * If BIOS tells us that it has more than 640k in the basemem,
1339	 *	don't believe it - set it to 640k.
1340	 */
1341	if (biosbasemem > 640) {
1342		printf("Preposterous RTC basemem of %uK, truncating to 640K\n",
1343		       biosbasemem);
1344		biosbasemem = 640;
1345	}
1346	if (bootinfo.bi_memsizes_valid && bootinfo.bi_basemem > 640) {
1347		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1348		       bootinfo.bi_basemem);
1349		bootinfo.bi_basemem = 640;
1350	}
1351
1352	/*
1353	 * Warn if the official BIOS interface disagrees with the RTC
1354	 * interface used above about the amount of base memory or the
1355	 * amount of extended memory.  Prefer the BIOS value for the base
1356	 * memory.  This is necessary for machines that `steal' base
1357	 * memory for use as BIOS memory, at least if we are going to use
1358	 * the BIOS for apm.  Prefer the RTC value for extended memory.
1359	 * Eventually the hackish interface shouldn't even be looked at.
1360	 */
1361	if (bootinfo.bi_memsizes_valid) {
1362		if (bootinfo.bi_basemem != biosbasemem) {
1363			vm_offset_t pa;
1364
1365			printf(
1366	"BIOS basemem (%uK) != RTC basemem (%uK), setting to BIOS value\n",
1367			       bootinfo.bi_basemem, biosbasemem);
1368			biosbasemem = bootinfo.bi_basemem;
1369
1370			/*
1371			 * XXX if biosbasemem is now < 640, there is `hole'
1372			 * between the end of base memory and the start of
1373			 * ISA memory.  The hole may be empty or it may
1374			 * contain BIOS code or data.  Map it read/write so
1375			 * that the BIOS can write to it.  (Memory from 0 to
1376			 * the physical end of the kernel is mapped read-only
1377			 * to begin with and then parts of it are remapped.
1378			 * The parts that aren't remapped form holes that
1379			 * remain read-only and are unused by the kernel.
1380			 * The base memory area is below the physical end of
1381			 * the kernel and right now forms a read-only hole.
1382			 * The part of it from PAGE_SIZE to
1383			 * (trunc_page(biosbasemem * 1024) - 1) will be
1384			 * remapped and used by the kernel later.)
1385			 *
1386			 * This code is similar to the code used in
1387			 * pmap_mapdev, but since no memory needs to be
1388			 * allocated we simply change the mapping.
1389			 */
1390			for (pa = trunc_page(biosbasemem * 1024);
1391			     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1392				unsigned *pte;
1393
1394				pte = (unsigned *)vtopte(pa + KERNBASE);
1395				*pte = pa | PG_RW | PG_V;
1396			}
1397		}
1398		if (bootinfo.bi_extmem != biosextmem)
1399			printf("BIOS extmem (%uK) != RTC extmem (%uK)\n",
1400			       bootinfo.bi_extmem, biosextmem);
1401	}
1402
1403#ifdef SMP
1404	/* make hole for AP bootstrap code */
1405	pagesinbase = mp_bootaddress(biosbasemem) / PAGE_SIZE;
1406#else
1407	pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
1408#endif
1409
1410	pagesinext = biosextmem * 1024 / PAGE_SIZE;
1411
1412	/*
1413	 * Special hack for chipsets that still remap the 384k hole when
1414	 *	there's 16MB of memory - this really confuses people that
1415	 *	are trying to use bus mastering ISA controllers with the
1416	 *	"16MB limit"; they only have 16MB, but the remapping puts
1417	 *	them beyond the limit.
1418	 */
1419	/*
1420	 * If extended memory is between 15-16MB (16-17MB phys address range),
1421	 *	chop it to 15MB.
1422	 */
1423	if ((pagesinext > 3840) && (pagesinext < 4096))
1424		pagesinext = 3840;
1425
1426	/*
1427	 * Maxmem isn't the "maximum memory", it's one larger than the
1428	 * highest page of the physical address space.  It should be
1429	 * called something like "Maxphyspage".
1430	 */
1431	Maxmem = pagesinext + 0x100000/PAGE_SIZE;
1432	/*
1433	 * Indicate that we wish to do a speculative search for memory beyond
1434	 * the end of the reported size if the indicated amount is 64MB (0x4000
1435	 * pages) - which is the largest amount that the BIOS/bootblocks can
1436	 * currently report. If a specific amount of memory is indicated via
1437	 * the MAXMEM option or the npx0 "msize", then don't do the speculative
1438	 * memory probe.
1439	 */
1440	if (Maxmem >= 0x4000)
1441		speculative_mprobe = TRUE;
1442	else
1443		speculative_mprobe = FALSE;
1444
1445#ifdef MAXMEM
1446	Maxmem = MAXMEM/4;
1447	speculative_mprobe = FALSE;
1448#endif
1449
1450#if NNPX > 0
1451	idp = find_isadev(isa_devtab_null, &npxdriver, 0);
1452	if (idp != NULL && idp->id_msize != 0) {
1453		Maxmem = idp->id_msize / 4;
1454		speculative_mprobe = FALSE;
1455	}
1456#endif
1457
1458#ifdef SMP
1459	/* look for the MP hardware - needed for apic addresses */
1460	mp_probe();
1461#endif
1462
1463	/* call pmap initialization to make new kernel address space */
1464	pmap_bootstrap (first, 0);
1465
1466	/*
1467	 * Size up each available chunk of physical memory.
1468	 */
1469
1470	/*
1471	 * We currently don't bother testing base memory.
1472	 * XXX  ...but we probably should.
1473	 */
1474	pa_indx = 0;
1475	if (pagesinbase > 1) {
1476		phys_avail[pa_indx++] = PAGE_SIZE;	/* skip first page of memory */
1477		phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
1478		physmem = pagesinbase - 1;
1479	} else {
1480		/* point at first chunk end */
1481		pa_indx++;
1482	}
1483
1484	for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
1485		int tmp, page_bad;
1486
1487		page_bad = FALSE;
1488
1489		/*
1490		 * map page into kernel: valid, read/write, non-cacheable
1491		 */
1492		*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
1493		invltlb();
1494
1495		tmp = *(int *)CADDR1;
1496		/*
1497		 * Test for alternating 1's and 0's
1498		 */
1499		*(volatile int *)CADDR1 = 0xaaaaaaaa;
1500		if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
1501			page_bad = TRUE;
1502		}
1503		/*
1504		 * Test for alternating 0's and 1's
1505		 */
1506		*(volatile int *)CADDR1 = 0x55555555;
1507		if (*(volatile int *)CADDR1 != 0x55555555) {
1508			page_bad = TRUE;
1509		}
1510		/*
1511		 * Test for all 1's
1512		 */
1513		*(volatile int *)CADDR1 = 0xffffffff;
1514		if (*(volatile int *)CADDR1 != 0xffffffff) {
1515			page_bad = TRUE;
1516		}
1517		/*
1518		 * Test for all 0's
1519		 */
1520		*(volatile int *)CADDR1 = 0x0;
1521		if (*(volatile int *)CADDR1 != 0x0) {
1522			/*
1523			 * test of page failed
1524			 */
1525			page_bad = TRUE;
1526		}
1527		/*
1528		 * Restore original value.
1529		 */
1530		*(int *)CADDR1 = tmp;
1531
1532		/*
1533		 * Adjust array of valid/good pages.
1534		 */
1535		if (page_bad == FALSE) {
1536			/*
1537			 * If this good page is a continuation of the
1538			 * previous set of good pages, then just increase
1539			 * the end pointer. Otherwise start a new chunk.
1540			 * Note that "end" points one higher than end,
1541			 * making the range >= start and < end.
1542			 * If we're also doing a speculative memory
1543			 * test and we at or past the end, bump up Maxmem
1544			 * so that we keep going. The first bad page
1545			 * will terminate the loop.
1546			 */
1547			if (phys_avail[pa_indx] == target_page) {
1548				phys_avail[pa_indx] += PAGE_SIZE;
1549				if (speculative_mprobe == TRUE &&
1550				    phys_avail[pa_indx] >= (64*1024*1024))
1551					Maxmem++;
1552			} else {
1553				pa_indx++;
1554				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1555					printf("Too many holes in the physical address space, giving up\n");
1556					pa_indx--;
1557					break;
1558				}
1559				phys_avail[pa_indx++] = target_page;	/* start */
1560				phys_avail[pa_indx] = target_page + PAGE_SIZE;	/* end */
1561			}
1562			physmem++;
1563		}
1564	}
1565
1566	*(int *)CMAP1 = 0;
1567	invltlb();
1568
1569	/*
1570	 * XXX
1571	 * The last chunk must contain at least one page plus the message
1572	 * buffer to avoid complicating other code (message buffer address
1573	 * calculation, etc.).
1574	 */
1575	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1576	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1577		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1578		phys_avail[pa_indx--] = 0;
1579		phys_avail[pa_indx--] = 0;
1580	}
1581
1582	Maxmem = atop(phys_avail[pa_indx]);
1583
1584	/* Trim off space for the message buffer. */
1585	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1586
1587	avail_end = phys_avail[pa_indx];
1588
1589	/* now running on new page tables, configured,and u/iom is accessible */
1590
1591	/* Map the message buffer. */
1592	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1593		pmap_enter(kernel_pmap, (vm_offset_t)msgbufp + off,
1594			   avail_end + off, VM_PROT_ALL, TRUE);
1595
1596	msgbufinit(msgbufp, MSGBUF_SIZE);
1597
1598	/* make a call gate to reenter kernel with */
1599	gdp = &ldt[LSYS5CALLS_SEL].gd;
1600
1601	x = (int) &IDTVEC(syscall);
1602	gdp->gd_looffset = x++;
1603	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1604	gdp->gd_stkcpy = 1;
1605	gdp->gd_type = SDT_SYS386CGT;
1606	gdp->gd_dpl = SEL_UPL;
1607	gdp->gd_p = 1;
1608	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1609
1610	/* XXX does this work? */
1611	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1612	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
1613
1614	/* transfer to user mode */
1615
1616	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1617	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1618
1619	/* setup proc 0's pcb */
1620	proc0.p_addr->u_pcb.pcb_flags = 0;
1621	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1622#ifdef SMP
1623	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1624#endif
1625#ifdef VM86
1626	proc0.p_addr->u_pcb.pcb_ext = 0;
1627#endif
1628
1629	/* Sigh, relocate physical addresses left from bootstrap */
1630	if (bootinfo.bi_modulep) {
1631		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1632		preload_bootstrap_relocate(KERNBASE);
1633	}
1634	if (bootinfo.bi_envp)
1635		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1636}
1637
1638#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1639static void f00f_hack(void *unused);
1640SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1641
1642static void
1643f00f_hack(void *unused) {
1644#ifndef SMP
1645	struct region_descriptor r_idt;
1646#endif
1647	vm_offset_t tmp;
1648
1649	if (!has_f00f_bug)
1650		return;
1651
1652	printf("Intel Pentium detected, installing workaround for F00F bug\n");
1653
1654	r_idt.rd_limit = sizeof(idt) - 1;
1655
1656	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
1657	if (tmp == 0)
1658		panic("kmem_alloc returned 0");
1659	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1660		panic("kmem_alloc returned non-page-aligned memory");
1661	/* Put the first seven entries in the lower page */
1662	t_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1663	bcopy(idt, t_idt, sizeof(idt));
1664	r_idt.rd_base = (int)t_idt;
1665	lidt(&r_idt);
1666	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
1667			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
1668		panic("vm_map_protect failed");
1669	return;
1670}
1671#endif /* defined(I586_CPU) && !NO_F00F_HACK */
1672
1673int
1674ptrace_set_pc(p, addr)
1675	struct proc *p;
1676	unsigned long addr;
1677{
1678	p->p_md.md_regs->tf_eip = addr;
1679	return (0);
1680}
1681
1682int
1683ptrace_single_step(p)
1684	struct proc *p;
1685{
1686	p->p_md.md_regs->tf_eflags |= PSL_T;
1687	return (0);
1688}
1689
1690int ptrace_read_u_check(p, addr, len)
1691	struct proc *p;
1692	vm_offset_t addr;
1693	size_t len;
1694{
1695	vm_offset_t gap;
1696
1697	if ((vm_offset_t) (addr + len) < addr)
1698		return EPERM;
1699	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
1700		return 0;
1701
1702	gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
1703
1704	if ((vm_offset_t) addr < gap)
1705		return EPERM;
1706	if ((vm_offset_t) (addr + len) <=
1707	    (vm_offset_t) (gap + sizeof(struct trapframe)))
1708		return 0;
1709	return EPERM;
1710}
1711
1712int ptrace_write_u(p, off, data)
1713	struct proc *p;
1714	vm_offset_t off;
1715	long data;
1716{
1717	struct trapframe frame_copy;
1718	vm_offset_t min;
1719	struct trapframe *tp;
1720
1721	/*
1722	 * Privileged kernel state is scattered all over the user area.
1723	 * Only allow write access to parts of regs and to fpregs.
1724	 */
1725	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
1726	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
1727		tp = p->p_md.md_regs;
1728		frame_copy = *tp;
1729		*(int *)((char *)&frame_copy + (off - min)) = data;
1730		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
1731		    !CS_SECURE(frame_copy.tf_cs))
1732			return (EINVAL);
1733		*(int*)((char *)p->p_addr + off) = data;
1734		return (0);
1735	}
1736	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
1737	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
1738		*(int*)((char *)p->p_addr + off) = data;
1739		return (0);
1740	}
1741	return (EFAULT);
1742}
1743
1744int
1745fill_regs(p, regs)
1746	struct proc *p;
1747	struct reg *regs;
1748{
1749	struct pcb *pcb;
1750	struct trapframe *tp;
1751
1752	tp = p->p_md.md_regs;
1753	regs->r_es = tp->tf_es;
1754	regs->r_ds = tp->tf_ds;
1755	regs->r_edi = tp->tf_edi;
1756	regs->r_esi = tp->tf_esi;
1757	regs->r_ebp = tp->tf_ebp;
1758	regs->r_ebx = tp->tf_ebx;
1759	regs->r_edx = tp->tf_edx;
1760	regs->r_ecx = tp->tf_ecx;
1761	regs->r_eax = tp->tf_eax;
1762	regs->r_eip = tp->tf_eip;
1763	regs->r_cs = tp->tf_cs;
1764	regs->r_eflags = tp->tf_eflags;
1765	regs->r_esp = tp->tf_esp;
1766	regs->r_ss = tp->tf_ss;
1767	pcb = &p->p_addr->u_pcb;
1768	regs->r_fs = pcb->pcb_fs;
1769	regs->r_gs = pcb->pcb_gs;
1770	return (0);
1771}
1772
1773int
1774set_regs(p, regs)
1775	struct proc *p;
1776	struct reg *regs;
1777{
1778	struct pcb *pcb;
1779	struct trapframe *tp;
1780
1781	tp = p->p_md.md_regs;
1782	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
1783	    !CS_SECURE(regs->r_cs))
1784		return (EINVAL);
1785	tp->tf_es = regs->r_es;
1786	tp->tf_ds = regs->r_ds;
1787	tp->tf_edi = regs->r_edi;
1788	tp->tf_esi = regs->r_esi;
1789	tp->tf_ebp = regs->r_ebp;
1790	tp->tf_ebx = regs->r_ebx;
1791	tp->tf_edx = regs->r_edx;
1792	tp->tf_ecx = regs->r_ecx;
1793	tp->tf_eax = regs->r_eax;
1794	tp->tf_eip = regs->r_eip;
1795	tp->tf_cs = regs->r_cs;
1796	tp->tf_eflags = regs->r_eflags;
1797	tp->tf_esp = regs->r_esp;
1798	tp->tf_ss = regs->r_ss;
1799	pcb = &p->p_addr->u_pcb;
1800	pcb->pcb_fs = regs->r_fs;
1801	pcb->pcb_gs = regs->r_gs;
1802	return (0);
1803}
1804
1805int
1806fill_fpregs(p, fpregs)
1807	struct proc *p;
1808	struct fpreg *fpregs;
1809{
1810	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
1811	return (0);
1812}
1813
1814int
1815set_fpregs(p, fpregs)
1816	struct proc *p;
1817	struct fpreg *fpregs;
1818{
1819	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
1820	return (0);
1821}
1822
1823#ifndef DDB
1824void
1825Debugger(const char *msg)
1826{
1827	printf("Debugger(\"%s\") called.\n", msg);
1828}
1829#endif /* no DDB */
1830
1831#include <sys/disklabel.h>
1832
1833/*
1834 * Determine the size of the transfer, and make sure it is
1835 * within the boundaries of the partition. Adjust transfer
1836 * if needed, and signal errors or early completion.
1837 */
1838int
1839bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
1840{
1841        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
1842        int labelsect = lp->d_partitions[0].p_offset;
1843        int maxsz = p->p_size,
1844                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
1845
1846        /* overwriting disk label ? */
1847        /* XXX should also protect bootstrap in first 8K */
1848        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
1849#if LABELSECTOR != 0
1850            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
1851#endif
1852            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1853                bp->b_error = EROFS;
1854                goto bad;
1855        }
1856
1857#if     defined(DOSBBSECTOR) && defined(notyet)
1858        /* overwriting master boot record? */
1859        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
1860            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1861                bp->b_error = EROFS;
1862                goto bad;
1863        }
1864#endif
1865
1866        /* beyond partition? */
1867        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
1868                /* if exactly at end of disk, return an EOF */
1869                if (bp->b_blkno == maxsz) {
1870                        bp->b_resid = bp->b_bcount;
1871                        return(0);
1872                }
1873                /* or truncate if part of it fits */
1874                sz = maxsz - bp->b_blkno;
1875                if (sz <= 0) {
1876                        bp->b_error = EINVAL;
1877                        goto bad;
1878                }
1879                bp->b_bcount = sz << DEV_BSHIFT;
1880        }
1881
1882        bp->b_pblkno = bp->b_blkno + p->p_offset;
1883        return(1);
1884
1885bad:
1886        bp->b_flags |= B_ERROR;
1887        return(-1);
1888}
1889
1890#ifdef DDB
1891
1892/*
1893 * Provide inb() and outb() as functions.  They are normally only
1894 * available as macros calling inlined functions, thus cannot be
1895 * called inside DDB.
1896 *
1897 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1898 */
1899
1900#undef inb
1901#undef outb
1902
1903/* silence compiler warnings */
1904u_char inb(u_int);
1905void outb(u_int, u_char);
1906
1907u_char
1908inb(u_int port)
1909{
1910	u_char	data;
1911	/*
1912	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1913	 * %edx, while gcc generates inferior code (movw instead of movl)
1914	 * if we tell it to load (u_short) port.
1915	 */
1916	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1917	return (data);
1918}
1919
1920void
1921outb(u_int port, u_char data)
1922{
1923	u_char	al;
1924	/*
1925	 * Use an unnecessary assignment to help gcc's register allocator.
1926	 * This make a large difference for gcc-1.40 and a tiny difference
1927	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1928	 * best results.  gcc-2.6.0 can't handle this.
1929	 */
1930	al = data;
1931	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1932}
1933
1934#endif /* DDB */
1935