machdep.c revision 43564
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 *	$Id: machdep.c,v 1.323 1999/01/28 11:45:29 newton Exp $
39 */
40
41#include "apm.h"
42#include "ether.h"
43#include "npx.h"
44#include "opt_atalk.h"
45#include "opt_cpu.h"
46#include "opt_ddb.h"
47#include "opt_inet.h"
48#include "opt_ipx.h"
49#include "opt_maxmem.h"
50#include "opt_msgbuf.h"
51#include "opt_perfmon.h"
52#include "opt_smp.h"
53#include "opt_sysvipc.h"
54#include "opt_user_ldt.h"
55#include "opt_userconfig.h"
56#include "opt_vm86.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/sysproto.h>
61#include <sys/signalvar.h>
62#include <sys/kernel.h>
63#include <sys/linker.h>
64#include <sys/proc.h>
65#include <sys/buf.h>
66#include <sys/reboot.h>
67#include <sys/callout.h>
68#include <sys/malloc.h>
69#include <sys/mbuf.h>
70#include <sys/msgbuf.h>
71#include <sys/sysent.h>
72#include <sys/sysctl.h>
73#include <sys/vmmeter.h>
74
75#ifdef SYSVSHM
76#include <sys/shm.h>
77#endif
78
79#ifdef SYSVMSG
80#include <sys/msg.h>
81#endif
82
83#ifdef SYSVSEM
84#include <sys/sem.h>
85#endif
86
87#include <vm/vm.h>
88#include <vm/vm_param.h>
89#include <vm/vm_prot.h>
90#include <sys/lock.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_object.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_pager.h>
96#include <vm/vm_extern.h>
97
98#include <sys/user.h>
99#include <sys/exec.h>
100
101#include <ddb/ddb.h>
102
103#if defined(INET) || defined(IPX) || defined(NATM) || defined(NETATALK) \
104    || NETHER > 0 || defined(NS)
105#define NETISR
106#endif
107
108#ifdef NETISR
109#include <net/netisr.h>
110#endif
111
112#include <machine/cpu.h>
113#include <machine/reg.h>
114#include <machine/clock.h>
115#include <machine/specialreg.h>
116#include <machine/cons.h>
117#include <machine/bootinfo.h>
118#include <machine/ipl.h>
119#include <machine/md_var.h>
120#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
121#ifdef SMP
122#include <machine/smp.h>
123#endif
124#ifdef PERFMON
125#include <machine/perfmon.h>
126#endif
127
128#include <i386/isa/isa_device.h>
129#include <i386/isa/intr_machdep.h>
130#ifndef VM86
131#include <i386/isa/rtc.h>
132#endif
133#include <machine/random.h>
134#include <sys/ptrace.h>
135
136extern void init386 __P((int first));
137extern void dblfault_handler __P((void));
138
139extern void printcpuinfo(void);	/* XXX header file */
140extern void earlysetcpuclass(void);	/* same header file */
141extern void finishidentcpu(void);
142extern void panicifcpuunsupported(void);
143extern void initializecpu(void);
144
145static void cpu_startup __P((void *));
146SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
147
148static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
149
150int	_udatasel, _ucodesel;
151u_int	atdevbase;
152
153#if defined(SWTCH_OPTIM_STATS)
154extern int swtch_optim_stats;
155SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
156	CTLFLAG_RD, &swtch_optim_stats, 0, "");
157SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
158	CTLFLAG_RD, &tlb_flush_count, 0, "");
159#endif
160
161#ifdef PC98
162static int	ispc98 = 1;
163#else
164static int	ispc98 = 0;
165#endif
166SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
167
168int physmem = 0;
169int cold = 1;
170
171static int
172sysctl_hw_physmem SYSCTL_HANDLER_ARGS
173{
174	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
175	return (error);
176}
177
178SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
179	0, 0, sysctl_hw_physmem, "I", "");
180
181static int
182sysctl_hw_usermem SYSCTL_HANDLER_ARGS
183{
184	int error = sysctl_handle_int(oidp, 0,
185		ctob(physmem - cnt.v_wire_count), req);
186	return (error);
187}
188
189SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
190	0, 0, sysctl_hw_usermem, "I", "");
191
192static int
193sysctl_hw_availpages SYSCTL_HANDLER_ARGS
194{
195	int error = sysctl_handle_int(oidp, 0,
196		i386_btop(avail_end - avail_start), req);
197	return (error);
198}
199
200SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
201	0, 0, sysctl_hw_availpages, "I", "");
202
203static int
204sysctl_machdep_msgbuf SYSCTL_HANDLER_ARGS
205{
206	int error;
207
208	/* Unwind the buffer, so that it's linear (possibly starting with
209	 * some initial nulls).
210	 */
211	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
212		msgbufp->msg_size-msgbufp->msg_bufr,req);
213	if(error) return(error);
214	if(msgbufp->msg_bufr>0) {
215		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
216			msgbufp->msg_bufr,req);
217	}
218	return(error);
219}
220
221SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
222	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
223
224static int msgbuf_clear;
225
226static int
227sysctl_machdep_msgbuf_clear SYSCTL_HANDLER_ARGS
228{
229	int error;
230	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
231		req);
232	if (!error && req->newptr) {
233		/* Clear the buffer and reset write pointer */
234		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
235		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
236		msgbuf_clear=0;
237	}
238	return (error);
239}
240
241SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
242	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
243	"Clear kernel message buffer");
244
245int bootverbose = 0, Maxmem = 0;
246long dumplo;
247
248vm_offset_t phys_avail[10];
249
250/* must be 2 less so 0 0 can signal end of chunks */
251#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
252
253#ifdef NETISR
254static void setup_netisrs __P((struct linker_set *));
255#endif
256
257static vm_offset_t buffer_sva, buffer_eva;
258vm_offset_t clean_sva, clean_eva;
259static vm_offset_t pager_sva, pager_eva;
260#ifdef NETISR
261extern struct linker_set netisr_set;
262#endif
263#if NNPX > 0
264extern struct isa_driver npxdriver;
265#endif
266
267#define offsetof(type, member)	((size_t)(&((type *)0)->member))
268
269static void
270cpu_startup(dummy)
271	void *dummy;
272{
273	register unsigned i;
274	register caddr_t v;
275	vm_offset_t maxaddr;
276	vm_size_t size = 0;
277	int firstaddr;
278	vm_offset_t minaddr;
279
280	if (boothowto & RB_VERBOSE)
281		bootverbose++;
282
283	/*
284	 * Good {morning,afternoon,evening,night}.
285	 */
286	printf(version);
287	earlysetcpuclass();
288	startrtclock();
289	printcpuinfo();
290	panicifcpuunsupported();
291#ifdef PERFMON
292	perfmon_init();
293#endif
294	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
295	/*
296	 * Display any holes after the first chunk of extended memory.
297	 */
298	if (bootverbose) {
299		int indx;
300
301		printf("Physical memory chunk(s):\n");
302		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
303			int size1 = phys_avail[indx + 1] - phys_avail[indx];
304
305			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
306			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
307			    size1 / PAGE_SIZE);
308		}
309	}
310
311#ifdef NETISR
312	/*
313	 * Quickly wire in netisrs.
314	 */
315	setup_netisrs(&netisr_set);
316#endif
317
318	/*
319	 * Calculate callout wheel size
320	 */
321	for (callwheelsize = 1, callwheelbits = 0;
322	     callwheelsize < ncallout;
323	     callwheelsize <<= 1, ++callwheelbits)
324		;
325	callwheelmask = callwheelsize - 1;
326
327	/*
328	 * Allocate space for system data structures.
329	 * The first available kernel virtual address is in "v".
330	 * As pages of kernel virtual memory are allocated, "v" is incremented.
331	 * As pages of memory are allocated and cleared,
332	 * "firstaddr" is incremented.
333	 * An index into the kernel page table corresponding to the
334	 * virtual memory address maintained in "v" is kept in "mapaddr".
335	 */
336
337	/*
338	 * Make two passes.  The first pass calculates how much memory is
339	 * needed and allocates it.  The second pass assigns virtual
340	 * addresses to the various data structures.
341	 */
342	firstaddr = 0;
343again:
344	v = (caddr_t)firstaddr;
345
346#define	valloc(name, type, num) \
347	    (name) = (type *)v; v = (caddr_t)((name)+(num))
348#define	valloclim(name, type, num, lim) \
349	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
350
351	valloc(callout, struct callout, ncallout);
352	valloc(callwheel, struct callout_tailq, callwheelsize);
353#ifdef SYSVSHM
354	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
355#endif
356#ifdef SYSVSEM
357	valloc(sema, struct semid_ds, seminfo.semmni);
358	valloc(sem, struct sem, seminfo.semmns);
359	/* This is pretty disgusting! */
360	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
361#endif
362#ifdef SYSVMSG
363	valloc(msgpool, char, msginfo.msgmax);
364	valloc(msgmaps, struct msgmap, msginfo.msgseg);
365	valloc(msghdrs, struct msg, msginfo.msgtql);
366	valloc(msqids, struct msqid_ds, msginfo.msgmni);
367#endif
368
369	if (nbuf == 0) {
370		nbuf = 30;
371		if( physmem > 1024)
372			nbuf += min((physmem - 1024) / 8, 2048);
373	}
374	nswbuf = max(min(nbuf/4, 64), 16);
375
376	valloc(swbuf, struct buf, nswbuf);
377	valloc(buf, struct buf, nbuf);
378
379
380	/*
381	 * End of first pass, size has been calculated so allocate memory
382	 */
383	if (firstaddr == 0) {
384		size = (vm_size_t)(v - firstaddr);
385		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
386		if (firstaddr == 0)
387			panic("startup: no room for tables");
388		goto again;
389	}
390
391	/*
392	 * End of second pass, addresses have been assigned
393	 */
394	if ((vm_size_t)(v - firstaddr) != size)
395		panic("startup: table size inconsistency");
396
397	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
398			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
399	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
400				(nbuf*BKVASIZE));
401	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
402				(nswbuf*MAXPHYS) + pager_map_size);
403	pager_map->system_map = 1;
404	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
405				(16*(ARG_MAX+(PAGE_SIZE*3))));
406
407	/*
408	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
409	 * we use the more space efficient malloc in place of kmem_alloc.
410	 */
411	{
412		vm_offset_t mb_map_size;
413		int xclusters;
414
415		/* Allow override of NMBCLUSTERS from the kernel environment */
416		if (getenv_int("kern.ipc.nmbclusters", &xclusters) &&
417		    xclusters > nmbclusters)
418		    nmbclusters = xclusters;
419
420		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
421		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
422		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
423		bzero(mclrefcnt, mb_map_size / MCLBYTES);
424		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
425			mb_map_size);
426		mb_map->system_map = 1;
427	}
428
429	/*
430	 * Initialize callouts
431	 */
432	SLIST_INIT(&callfree);
433	for (i = 0; i < ncallout; i++) {
434		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
435	}
436
437	for (i = 0; i < callwheelsize; i++) {
438		TAILQ_INIT(&callwheel[i]);
439	}
440
441#if defined(USERCONFIG)
442	userconfig();
443	cninit();		/* the preferred console may have changed */
444#endif
445
446	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
447	    ptoa(cnt.v_free_count) / 1024);
448
449	/*
450	 * Set up buffers, so they can be used to read disk labels.
451	 */
452	bufinit();
453	vm_pager_bufferinit();
454
455#ifdef SMP
456	/*
457	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
458	 */
459	mp_start();			/* fire up the APs and APICs */
460	mp_announce();
461#endif  /* SMP */
462}
463
464#ifdef NETISR
465int
466register_netisr(num, handler)
467	int num;
468	netisr_t *handler;
469{
470
471	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
472		printf("register_netisr: bad isr number: %d\n", num);
473		return (EINVAL);
474	}
475	netisrs[num] = handler;
476	return (0);
477}
478
479static void
480setup_netisrs(ls)
481	struct linker_set *ls;
482{
483	int i;
484	const struct netisrtab *nit;
485
486	for(i = 0; ls->ls_items[i]; i++) {
487		nit = (const struct netisrtab *)ls->ls_items[i];
488		register_netisr(nit->nit_num, nit->nit_isr);
489	}
490}
491#endif /* NETISR */
492
493/*
494 * Send an interrupt to process.
495 *
496 * Stack is set up to allow sigcode stored
497 * at top to call routine, followed by kcall
498 * to sigreturn routine below.  After sigreturn
499 * resets the signal mask, the stack, and the
500 * frame pointer, it returns to the user
501 * specified pc, psl.
502 */
503void
504sendsig(catcher, sig, mask, code)
505	sig_t catcher;
506	int sig, mask;
507	u_long code;
508{
509	register struct proc *p = curproc;
510	register struct trapframe *regs;
511	register struct sigframe *fp;
512	struct sigframe sf;
513	struct sigacts *psp = p->p_sigacts;
514	int oonstack;
515
516	regs = p->p_md.md_regs;
517        oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
518	/*
519	 * Allocate and validate space for the signal handler context.
520	 */
521        if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
522	    (psp->ps_sigonstack & sigmask(sig))) {
523		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
524		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
525		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
526	} else {
527		fp = (struct sigframe *)regs->tf_esp - 1;
528	}
529
530	/*
531	 * grow() will return FALSE if the fp will not fit inside the stack
532	 *	and the stack can not be grown. useracc will return FALSE
533	 *	if access is denied.
534	 */
535#ifdef VM_STACK
536	if ((grow_stack (p, (int)fp) == FALSE) ||
537#else
538	if ((grow(p, (int)fp) == FALSE) ||
539#endif
540	    (useracc((caddr_t)fp, sizeof(struct sigframe), B_WRITE) == FALSE)) {
541		/*
542		 * Process has trashed its stack; give it an illegal
543		 * instruction to halt it in its tracks.
544		 */
545		SIGACTION(p, SIGILL) = SIG_DFL;
546		sig = sigmask(SIGILL);
547		p->p_sigignore &= ~sig;
548		p->p_sigcatch &= ~sig;
549		p->p_sigmask &= ~sig;
550		psignal(p, SIGILL);
551		return;
552	}
553
554	/*
555	 * Build the argument list for the signal handler.
556	 */
557	if (p->p_sysent->sv_sigtbl) {
558		if (sig < p->p_sysent->sv_sigsize)
559			sig = p->p_sysent->sv_sigtbl[sig];
560		else
561			sig = p->p_sysent->sv_sigsize + 1;
562	}
563	sf.sf_signum = sig;
564	sf.sf_code = code;
565	sf.sf_scp = &fp->sf_sc;
566	sf.sf_addr = (char *) regs->tf_err;
567	sf.sf_handler = catcher;
568
569	/* save scratch registers */
570	sf.sf_sc.sc_eax = regs->tf_eax;
571	sf.sf_sc.sc_ebx = regs->tf_ebx;
572	sf.sf_sc.sc_ecx = regs->tf_ecx;
573	sf.sf_sc.sc_edx = regs->tf_edx;
574	sf.sf_sc.sc_esi = regs->tf_esi;
575	sf.sf_sc.sc_edi = regs->tf_edi;
576	sf.sf_sc.sc_cs = regs->tf_cs;
577	sf.sf_sc.sc_ds = regs->tf_ds;
578	sf.sf_sc.sc_ss = regs->tf_ss;
579	sf.sf_sc.sc_es = regs->tf_es;
580	sf.sf_sc.sc_isp = regs->tf_isp;
581
582	/*
583	 * Build the signal context to be used by sigreturn.
584	 */
585	sf.sf_sc.sc_onstack = oonstack;
586	sf.sf_sc.sc_mask = mask;
587	sf.sf_sc.sc_sp = regs->tf_esp;
588	sf.sf_sc.sc_fp = regs->tf_ebp;
589	sf.sf_sc.sc_pc = regs->tf_eip;
590	sf.sf_sc.sc_ps = regs->tf_eflags;
591	sf.sf_sc.sc_trapno = regs->tf_trapno;
592	sf.sf_sc.sc_err = regs->tf_err;
593
594#ifdef VM86
595	/*
596	 * If we're a vm86 process, we want to save the segment registers.
597	 * We also change eflags to be our emulated eflags, not the actual
598	 * eflags.
599	 */
600	if (regs->tf_eflags & PSL_VM) {
601		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
602		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
603
604		sf.sf_sc.sc_gs = tf->tf_vm86_gs;
605		sf.sf_sc.sc_fs = tf->tf_vm86_fs;
606		sf.sf_sc.sc_es = tf->tf_vm86_es;
607		sf.sf_sc.sc_ds = tf->tf_vm86_ds;
608
609		if (vm86->vm86_has_vme == 0)
610			sf.sf_sc.sc_ps = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
611			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
612
613		/*
614		 * We should never have PSL_T set when returning from vm86
615		 * mode.  It may be set here if we deliver a signal before
616		 * getting to vm86 mode, so turn it off.
617		 */
618		tf->tf_eflags &= ~(PSL_VM | PSL_T | PSL_VIF | PSL_VIP);
619	}
620#endif /* VM86 */
621
622	/*
623	 * Copy the sigframe out to the user's stack.
624	 */
625	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
626		/*
627		 * Something is wrong with the stack pointer.
628		 * ...Kill the process.
629		 */
630		sigexit(p, SIGILL);
631	}
632
633	regs->tf_esp = (int)fp;
634	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
635	regs->tf_cs = _ucodesel;
636	regs->tf_ds = _udatasel;
637	regs->tf_es = _udatasel;
638	regs->tf_ss = _udatasel;
639}
640
641/*
642 * System call to cleanup state after a signal
643 * has been taken.  Reset signal mask and
644 * stack state from context left by sendsig (above).
645 * Return to previous pc and psl as specified by
646 * context left by sendsig. Check carefully to
647 * make sure that the user has not modified the
648 * state to gain improper privileges.
649 */
650int
651sigreturn(p, uap)
652	struct proc *p;
653	struct sigreturn_args /* {
654		struct sigcontext *sigcntxp;
655	} */ *uap;
656{
657	register struct sigcontext *scp;
658	register struct sigframe *fp;
659	register struct trapframe *regs = p->p_md.md_regs;
660	int eflags;
661
662	/*
663	 * (XXX old comment) regs->tf_esp points to the return address.
664	 * The user scp pointer is above that.
665	 * The return address is faked in the signal trampoline code
666	 * for consistency.
667	 */
668	scp = uap->sigcntxp;
669	fp = (struct sigframe *)
670	     ((caddr_t)scp - offsetof(struct sigframe, sf_sc));
671
672	if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
673		return(EFAULT);
674
675	eflags = scp->sc_ps;
676#ifdef VM86
677	if (eflags & PSL_VM) {
678		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
679		struct vm86_kernel *vm86;
680
681		/*
682		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
683		 * set up the vm86 area, and we can't enter vm86 mode.
684		 */
685		if (p->p_addr->u_pcb.pcb_ext == 0)
686			return (EINVAL);
687		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
688		if (vm86->vm86_inited == 0)
689			return (EINVAL);
690
691		/* go back to user mode if both flags are set */
692		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
693			trapsignal(p, SIGBUS, 0);
694
695		if (vm86->vm86_has_vme) {
696			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
697			    (eflags & VME_USERCHANGE) | PSL_VM;
698		} else {
699			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
700			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
701		}
702		tf->tf_vm86_ds = scp->sc_ds;
703		tf->tf_vm86_es = scp->sc_es;
704		tf->tf_vm86_fs = scp->sc_fs;
705		tf->tf_vm86_gs = scp->sc_gs;
706		tf->tf_ds = _udatasel;
707		tf->tf_es = _udatasel;
708	} else {
709#endif /* VM86 */
710		/*
711		 * Don't allow users to change privileged or reserved flags.
712		 */
713#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
714		/*
715		 * XXX do allow users to change the privileged flag PSL_RF.
716		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
717		 * should sometimes set it there too.  tf_eflags is kept in
718		 * the signal context during signal handling and there is no
719		 * other place to remember it, so the PSL_RF bit may be
720		 * corrupted by the signal handler without us knowing.
721		 * Corruption of the PSL_RF bit at worst causes one more or
722		 * one less debugger trap, so allowing it is fairly harmless.
723		 */
724		if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
725#ifdef DEBUG
726	    		printf("sigreturn: eflags = 0x%x\n", eflags);
727#endif
728	    		return(EINVAL);
729		}
730
731		/*
732		 * Don't allow users to load a valid privileged %cs.  Let the
733		 * hardware check for invalid selectors, excess privilege in
734		 * other selectors, invalid %eip's and invalid %esp's.
735		 */
736#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
737		if (!CS_SECURE(scp->sc_cs)) {
738#ifdef DEBUG
739    			printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
740#endif
741			trapsignal(p, SIGBUS, T_PROTFLT);
742			return(EINVAL);
743		}
744		regs->tf_ds = scp->sc_ds;
745		regs->tf_es = scp->sc_es;
746#ifdef VM86
747	}
748#endif
749
750	/* restore scratch registers */
751	regs->tf_eax = scp->sc_eax;
752	regs->tf_ebx = scp->sc_ebx;
753	regs->tf_ecx = scp->sc_ecx;
754	regs->tf_edx = scp->sc_edx;
755	regs->tf_esi = scp->sc_esi;
756	regs->tf_edi = scp->sc_edi;
757	regs->tf_cs = scp->sc_cs;
758	regs->tf_ss = scp->sc_ss;
759	regs->tf_isp = scp->sc_isp;
760
761	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
762		return(EINVAL);
763
764	if (scp->sc_onstack & 01)
765		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
766	else
767		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
768	p->p_sigmask = scp->sc_mask & ~sigcantmask;
769	regs->tf_ebp = scp->sc_fp;
770	regs->tf_esp = scp->sc_sp;
771	regs->tf_eip = scp->sc_pc;
772	regs->tf_eflags = eflags;
773	return(EJUSTRETURN);
774}
775
776/*
777 * Machine dependent boot() routine
778 *
779 * I haven't seen anything to put here yet
780 * Possibly some stuff might be grafted back here from boot()
781 */
782void
783cpu_boot(int howto)
784{
785}
786
787/*
788 * Shutdown the CPU as much as possible
789 */
790void
791cpu_halt(void)
792{
793	for (;;)
794		__asm__ ("hlt");
795}
796
797/*
798 * Clear registers on exec
799 */
800void
801setregs(p, entry, stack)
802	struct proc *p;
803	u_long entry;
804	u_long stack;
805{
806	struct trapframe *regs = p->p_md.md_regs;
807	struct pcb *pcb = &p->p_addr->u_pcb;
808
809#ifdef USER_LDT
810	/* was i386_user_cleanup() in NetBSD */
811	if (pcb->pcb_ldt) {
812		if (pcb == curpcb) {
813			lldt(_default_ldt);
814			currentldt = _default_ldt;
815		}
816		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
817			pcb->pcb_ldt_len * sizeof(union descriptor));
818		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
819 	}
820#endif
821
822	bzero((char *)regs, sizeof(struct trapframe));
823	regs->tf_eip = entry;
824	regs->tf_esp = stack;
825	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
826	regs->tf_ss = _udatasel;
827	regs->tf_ds = _udatasel;
828	regs->tf_es = _udatasel;
829	regs->tf_cs = _ucodesel;
830
831	/* reset %fs and %gs as well */
832	pcb->pcb_fs = _udatasel;
833	pcb->pcb_gs = _udatasel;
834	if (pcb == curpcb) {
835		__asm("movw %w0,%%fs" : : "r" (_udatasel));
836		__asm("movw %w0,%%gs" : : "r" (_udatasel));
837	}
838
839	/*
840	 * Initialize the math emulator (if any) for the current process.
841	 * Actually, just clear the bit that says that the emulator has
842	 * been initialized.  Initialization is delayed until the process
843	 * traps to the emulator (if it is done at all) mainly because
844	 * emulators don't provide an entry point for initialization.
845	 */
846	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
847
848	/*
849	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
850	 * for why fwait must be trapped at least if there is an npx or an
851	 * emulator).  This is mainly to handle the case where npx0 is not
852	 * configured, since the npx routines normally set up the trap
853	 * otherwise.  It should be done only at boot time, but doing it
854	 * here allows modifying `npx_exists' for testing the emulator on
855	 * systems with an npx.
856	 */
857	load_cr0(rcr0() | CR0_MP | CR0_TS);
858
859#if NNPX > 0
860	/* Initialize the npx (if any) for the current process. */
861	npxinit(__INITIAL_NPXCW__);
862#endif
863}
864
865static int
866sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
867{
868	int error;
869	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
870		req);
871	if (!error && req->newptr)
872		resettodr();
873	return (error);
874}
875
876SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
877	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
878
879SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
880	CTLFLAG_RW, &disable_rtc_set, 0, "");
881
882SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
883	CTLFLAG_RD, &bootinfo, bootinfo, "");
884
885SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
886	CTLFLAG_RW, &wall_cmos_clock, 0, "");
887
888/*
889 * Initialize 386 and configure to run kernel
890 */
891
892/*
893 * Initialize segments & interrupt table
894 */
895
896int _default_ldt;
897#ifdef SMP
898union descriptor gdt[NGDT + NCPU];	/* global descriptor table */
899#else
900union descriptor gdt[NGDT];		/* global descriptor table */
901#endif
902struct gate_descriptor idt[NIDT];	/* interrupt descriptor table */
903union descriptor ldt[NLDT];		/* local descriptor table */
904#ifdef SMP
905/* table descriptors - used to load tables by microp */
906struct region_descriptor r_gdt, r_idt;
907#endif
908
909extern struct i386tss common_tss;	/* One tss per cpu */
910#ifdef VM86
911extern struct segment_descriptor common_tssd;
912extern int private_tss;			/* flag indicating private tss */
913extern u_int my_tr;			/* which task register setting */
914#endif /* VM86 */
915
916#if defined(I586_CPU) && !defined(NO_F00F_HACK)
917struct gate_descriptor *t_idt;
918extern int has_f00f_bug;
919#endif
920
921static struct i386tss dblfault_tss;
922static char dblfault_stack[PAGE_SIZE];
923
924extern  struct user *proc0paddr;
925
926
927/* software prototypes -- in more palatable form */
928struct soft_segment_descriptor gdt_segs[
929#ifdef SMP
930					NGDT + NCPU
931#endif
932						   ] = {
933/* GNULL_SEL	0 Null Descriptor */
934{	0x0,			/* segment base address  */
935	0x0,			/* length */
936	0,			/* segment type */
937	0,			/* segment descriptor priority level */
938	0,			/* segment descriptor present */
939	0, 0,
940	0,			/* default 32 vs 16 bit size */
941	0  			/* limit granularity (byte/page units)*/ },
942/* GCODE_SEL	1 Code Descriptor for kernel */
943{	0x0,			/* segment base address  */
944	0xfffff,		/* length - all address space */
945	SDT_MEMERA,		/* segment type */
946	0,			/* segment descriptor priority level */
947	1,			/* segment descriptor present */
948	0, 0,
949	1,			/* default 32 vs 16 bit size */
950	1  			/* limit granularity (byte/page units)*/ },
951/* GDATA_SEL	2 Data Descriptor for kernel */
952{	0x0,			/* segment base address  */
953	0xfffff,		/* length - all address space */
954	SDT_MEMRWA,		/* segment type */
955	0,			/* segment descriptor priority level */
956	1,			/* segment descriptor present */
957	0, 0,
958	1,			/* default 32 vs 16 bit size */
959	1  			/* limit granularity (byte/page units)*/ },
960/* GLDT_SEL	3 LDT Descriptor */
961{	(int) ldt,		/* segment base address  */
962	sizeof(ldt)-1,		/* length - all address space */
963	SDT_SYSLDT,		/* segment type */
964	SEL_UPL,		/* segment descriptor priority level */
965	1,			/* segment descriptor present */
966	0, 0,
967	0,			/* unused - default 32 vs 16 bit size */
968	0  			/* limit granularity (byte/page units)*/ },
969/* GTGATE_SEL	4 Null Descriptor - Placeholder */
970{	0x0,			/* segment base address  */
971	0x0,			/* length - all address space */
972	0,			/* segment type */
973	0,			/* segment descriptor priority level */
974	0,			/* segment descriptor present */
975	0, 0,
976	0,			/* default 32 vs 16 bit size */
977	0  			/* limit granularity (byte/page units)*/ },
978/* GPANIC_SEL	5 Panic Tss Descriptor */
979{	(int) &dblfault_tss,	/* segment base address  */
980	sizeof(struct i386tss)-1,/* length - all address space */
981	SDT_SYS386TSS,		/* segment type */
982	0,			/* segment descriptor priority level */
983	1,			/* segment descriptor present */
984	0, 0,
985	0,			/* unused - default 32 vs 16 bit size */
986	0  			/* limit granularity (byte/page units)*/ },
987/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
988{
989	(int) &common_tss,	/* segment base address */
990	sizeof(struct i386tss)-1,/* length - all address space */
991	SDT_SYS386TSS,		/* segment type */
992	0,			/* segment descriptor priority level */
993	1,			/* segment descriptor present */
994	0, 0,
995	0,			/* unused - default 32 vs 16 bit size */
996	0  			/* limit granularity (byte/page units)*/ },
997/* GUSERLDT_SEL	7 User LDT Descriptor per process */
998{	(int) ldt,		/* segment base address  */
999	(512 * sizeof(union descriptor)-1),		/* length */
1000	SDT_SYSLDT,		/* segment type */
1001	0,			/* segment descriptor priority level */
1002	1,			/* segment descriptor present */
1003	0, 0,
1004	0,			/* unused - default 32 vs 16 bit size */
1005	0  			/* limit granularity (byte/page units)*/ },
1006/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
1007{	0,			/* segment base address (overwritten by APM)  */
1008	0xfffff,		/* length */
1009	SDT_MEMERA,		/* segment type */
1010	0,			/* segment descriptor priority level */
1011	1,			/* segment descriptor present */
1012	0, 0,
1013	1,			/* default 32 vs 16 bit size */
1014	1  			/* limit granularity (byte/page units)*/ },
1015/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
1016{	0,			/* segment base address (overwritten by APM)  */
1017	0xfffff,		/* length */
1018	SDT_MEMERA,		/* segment type */
1019	0,			/* segment descriptor priority level */
1020	1,			/* segment descriptor present */
1021	0, 0,
1022	0,			/* default 32 vs 16 bit size */
1023	1  			/* limit granularity (byte/page units)*/ },
1024/* GAPMDATA_SEL	10 APM BIOS 32-bit interface (Data) */
1025{	0,			/* segment base address (overwritten by APM) */
1026	0xfffff,		/* length */
1027	SDT_MEMRWA,		/* segment type */
1028	0,			/* segment descriptor priority level */
1029	1,			/* segment descriptor present */
1030	0, 0,
1031	1,			/* default 32 vs 16 bit size */
1032	1  			/* limit granularity (byte/page units)*/ },
1033};
1034
1035static struct soft_segment_descriptor ldt_segs[] = {
1036	/* Null Descriptor - overwritten by call gate */
1037{	0x0,			/* segment base address  */
1038	0x0,			/* length - all address space */
1039	0,			/* segment type */
1040	0,			/* segment descriptor priority level */
1041	0,			/* segment descriptor present */
1042	0, 0,
1043	0,			/* default 32 vs 16 bit size */
1044	0  			/* limit granularity (byte/page units)*/ },
1045	/* Null Descriptor - overwritten by call gate */
1046{	0x0,			/* segment base address  */
1047	0x0,			/* length - all address space */
1048	0,			/* segment type */
1049	0,			/* segment descriptor priority level */
1050	0,			/* segment descriptor present */
1051	0, 0,
1052	0,			/* default 32 vs 16 bit size */
1053	0  			/* limit granularity (byte/page units)*/ },
1054	/* Null Descriptor - overwritten by call gate */
1055{	0x0,			/* segment base address  */
1056	0x0,			/* length - all address space */
1057	0,			/* segment type */
1058	0,			/* segment descriptor priority level */
1059	0,			/* segment descriptor present */
1060	0, 0,
1061	0,			/* default 32 vs 16 bit size */
1062	0  			/* limit granularity (byte/page units)*/ },
1063	/* Code Descriptor for user */
1064{	0x0,			/* segment base address  */
1065	0xfffff,		/* length - all address space */
1066	SDT_MEMERA,		/* segment type */
1067	SEL_UPL,		/* segment descriptor priority level */
1068	1,			/* segment descriptor present */
1069	0, 0,
1070	1,			/* default 32 vs 16 bit size */
1071	1  			/* limit granularity (byte/page units)*/ },
1072	/* Null Descriptor - overwritten by call gate */
1073{	0x0,			/* segment base address  */
1074	0x0,			/* length - all address space */
1075	0,			/* segment type */
1076	0,			/* segment descriptor priority level */
1077	0,			/* segment descriptor present */
1078	0, 0,
1079	0,			/* default 32 vs 16 bit size */
1080	0  			/* limit granularity (byte/page units)*/ },
1081	/* Data Descriptor for user */
1082{	0x0,			/* segment base address  */
1083	0xfffff,		/* length - all address space */
1084	SDT_MEMRWA,		/* segment type */
1085	SEL_UPL,		/* segment descriptor priority level */
1086	1,			/* segment descriptor present */
1087	0, 0,
1088	1,			/* default 32 vs 16 bit size */
1089	1  			/* limit granularity (byte/page units)*/ },
1090};
1091
1092void
1093setidt(idx, func, typ, dpl, selec)
1094	int idx;
1095	inthand_t *func;
1096	int typ;
1097	int dpl;
1098	int selec;
1099{
1100	struct gate_descriptor *ip;
1101
1102#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1103	ip = (t_idt != NULL ? t_idt : idt) + idx;
1104#else
1105	ip = idt + idx;
1106#endif
1107	ip->gd_looffset = (int)func;
1108	ip->gd_selector = selec;
1109	ip->gd_stkcpy = 0;
1110	ip->gd_xx = 0;
1111	ip->gd_type = typ;
1112	ip->gd_dpl = dpl;
1113	ip->gd_p = 1;
1114	ip->gd_hioffset = ((int)func)>>16 ;
1115}
1116
1117#define	IDTVEC(name)	__CONCAT(X,name)
1118
1119extern inthand_t
1120	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1121	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1122	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1123	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1124	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1125
1126void
1127sdtossd(sd, ssd)
1128	struct segment_descriptor *sd;
1129	struct soft_segment_descriptor *ssd;
1130{
1131	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1132	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1133	ssd->ssd_type  = sd->sd_type;
1134	ssd->ssd_dpl   = sd->sd_dpl;
1135	ssd->ssd_p     = sd->sd_p;
1136	ssd->ssd_def32 = sd->sd_def32;
1137	ssd->ssd_gran  = sd->sd_gran;
1138}
1139
1140void
1141init386(first)
1142	int first;
1143{
1144	int x;
1145	unsigned biosbasemem, biosextmem;
1146	struct gate_descriptor *gdp;
1147	int gsel_tss;
1148
1149	struct isa_device *idp;
1150#ifndef SMP
1151	/* table descriptors - used to load tables by microp */
1152	struct region_descriptor r_gdt, r_idt;
1153#endif
1154	int pagesinbase, pagesinext;
1155	vm_offset_t target_page;
1156	int pa_indx, off;
1157	int speculative_mprobe;
1158
1159	/*
1160	 * Prevent lowering of the ipl if we call tsleep() early.
1161	 */
1162	safepri = cpl;
1163
1164	proc0.p_addr = proc0paddr;
1165
1166	atdevbase = ISA_HOLE_START + KERNBASE;
1167
1168	/*
1169	 * Initialize the console before we print anything out.
1170	 */
1171	cninit();
1172
1173	/*
1174	 * make gdt memory segments, the code segment goes up to end of the
1175	 * page with etext in it, the data segment goes to the end of
1176	 * the address space
1177	 */
1178	/*
1179	 * XXX text protection is temporarily (?) disabled.  The limit was
1180	 * i386_btop(round_page(etext)) - 1.
1181	 */
1182	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1183	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1184#ifdef BDE_DEBUGGER
1185#define	NGDT1	8		/* avoid overwriting db entries with APM ones */
1186#else
1187#define	NGDT1	(sizeof gdt_segs / sizeof gdt_segs[0])
1188#endif
1189	for (x = 0; x < NGDT1; x++)
1190		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1191#ifdef VM86
1192	common_tssd = gdt[GPROC0_SEL].sd;
1193#endif /* VM86 */
1194
1195#ifdef SMP
1196	/*
1197	 * Spin these up now.  init_secondary() grabs them.  We could use
1198	 * #for(x,y,z) / #endfor cpp directives if they existed.
1199	 */
1200	for (x = 0; x < NCPU; x++) {
1201		gdt_segs[NGDT + x] = gdt_segs[GPROC0_SEL];
1202		ssdtosd(&gdt_segs[NGDT + x], &gdt[NGDT + x].sd);
1203	}
1204#endif
1205
1206	/* make ldt memory segments */
1207	/*
1208	 * The data segment limit must not cover the user area because we
1209	 * don't want the user area to be writable in copyout() etc. (page
1210	 * level protection is lost in kernel mode on 386's).  Also, we
1211	 * don't want the user area to be writable directly (page level
1212	 * protection of the user area is not available on 486's with
1213	 * CR0_WP set, because there is no user-read/kernel-write mode).
1214	 *
1215	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1216	 * should be spelled ...MAX_USER...
1217	 */
1218#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1219	/*
1220	 * The code segment limit has to cover the user area until we move
1221	 * the signal trampoline out of the user area.  This is safe because
1222	 * the code segment cannot be written to directly.
1223	 */
1224#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1225	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1226	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1227	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1228		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1229
1230	/* exceptions */
1231	for (x = 0; x < NIDT; x++)
1232		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1233	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1234	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1235	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1236 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1237	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1238	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1239	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1240	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1241	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1242	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1243	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1244	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1245	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1246	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1247	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1248	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1249	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1250	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1251	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1252 	setidt(0x80, &IDTVEC(int0x80_syscall),
1253			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1254
1255#include	"isa.h"
1256#if	NISA >0
1257	isa_defaultirq();
1258#endif
1259	rand_initialize();
1260
1261	r_gdt.rd_limit = sizeof(gdt) - 1;
1262	r_gdt.rd_base =  (int) gdt;
1263	lgdt(&r_gdt);
1264
1265	r_idt.rd_limit = sizeof(idt) - 1;
1266	r_idt.rd_base = (int) idt;
1267	lidt(&r_idt);
1268
1269	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1270	lldt(_default_ldt);
1271#ifdef USER_LDT
1272	currentldt = _default_ldt;
1273#endif
1274
1275#ifdef DDB
1276	kdb_init();
1277	if (boothowto & RB_KDB)
1278		Debugger("Boot flags requested debugger");
1279#endif
1280
1281	finishidentcpu();	/* Final stage of CPU initialization */
1282	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1283	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1284	initializecpu();	/* Initialize CPU registers */
1285
1286	/* make an initial tss so cpu can get interrupt stack on syscall! */
1287#ifdef VM86
1288	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
1289#else
1290	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE;
1291#endif /* VM86 */
1292	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1293	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1294	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1295	ltr(gsel_tss);
1296#ifdef VM86
1297	private_tss = 0;
1298	my_tr = GPROC0_SEL;
1299#endif
1300
1301	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1302	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1303	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1304	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1305	dblfault_tss.tss_cr3 = (int)IdlePTD;
1306	dblfault_tss.tss_eip = (int) dblfault_handler;
1307	dblfault_tss.tss_eflags = PSL_KERNEL;
1308	dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs =
1309	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1310	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1311	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1312
1313#ifdef VM86
1314	initial_bioscalls(&biosbasemem, &biosextmem);
1315#else
1316
1317	/* Use BIOS values stored in RTC CMOS RAM, since probing
1318	 * breaks certain 386 AT relics.
1319	 */
1320	biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
1321	biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
1322#endif
1323
1324	/*
1325	 * If BIOS tells us that it has more than 640k in the basemem,
1326	 *	don't believe it - set it to 640k.
1327	 */
1328	if (biosbasemem > 640) {
1329		printf("Preposterous RTC basemem of %uK, truncating to 640K\n",
1330		       biosbasemem);
1331		biosbasemem = 640;
1332	}
1333	if (bootinfo.bi_memsizes_valid && bootinfo.bi_basemem > 640) {
1334		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1335		       bootinfo.bi_basemem);
1336		bootinfo.bi_basemem = 640;
1337	}
1338
1339	/*
1340	 * Warn if the official BIOS interface disagrees with the RTC
1341	 * interface used above about the amount of base memory or the
1342	 * amount of extended memory.  Prefer the BIOS value for the base
1343	 * memory.  This is necessary for machines that `steal' base
1344	 * memory for use as BIOS memory, at least if we are going to use
1345	 * the BIOS for apm.  Prefer the RTC value for extended memory.
1346	 * Eventually the hackish interface shouldn't even be looked at.
1347	 */
1348	if (bootinfo.bi_memsizes_valid) {
1349		if (bootinfo.bi_basemem != biosbasemem) {
1350			vm_offset_t pa;
1351
1352			printf(
1353	"BIOS basemem (%uK) != RTC basemem (%uK), setting to BIOS value\n",
1354			       bootinfo.bi_basemem, biosbasemem);
1355			biosbasemem = bootinfo.bi_basemem;
1356
1357			/*
1358			 * XXX if biosbasemem is now < 640, there is `hole'
1359			 * between the end of base memory and the start of
1360			 * ISA memory.  The hole may be empty or it may
1361			 * contain BIOS code or data.  Map it read/write so
1362			 * that the BIOS can write to it.  (Memory from 0 to
1363			 * the physical end of the kernel is mapped read-only
1364			 * to begin with and then parts of it are remapped.
1365			 * The parts that aren't remapped form holes that
1366			 * remain read-only and are unused by the kernel.
1367			 * The base memory area is below the physical end of
1368			 * the kernel and right now forms a read-only hole.
1369			 * The part of it from PAGE_SIZE to
1370			 * (trunc_page(biosbasemem * 1024) - 1) will be
1371			 * remapped and used by the kernel later.)
1372			 *
1373			 * This code is similar to the code used in
1374			 * pmap_mapdev, but since no memory needs to be
1375			 * allocated we simply change the mapping.
1376			 */
1377			for (pa = trunc_page(biosbasemem * 1024);
1378			     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1379				unsigned *pte;
1380
1381				pte = (unsigned *)vtopte(pa + KERNBASE);
1382				*pte = pa | PG_RW | PG_V;
1383			}
1384		}
1385		if (bootinfo.bi_extmem != biosextmem)
1386			printf("BIOS extmem (%uK) != RTC extmem (%uK)\n",
1387			       bootinfo.bi_extmem, biosextmem);
1388	}
1389
1390#ifdef SMP
1391	/* make hole for AP bootstrap code */
1392	pagesinbase = mp_bootaddress(biosbasemem) / PAGE_SIZE;
1393#else
1394	pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
1395#endif
1396
1397	pagesinext = biosextmem * 1024 / PAGE_SIZE;
1398
1399	/*
1400	 * Special hack for chipsets that still remap the 384k hole when
1401	 *	there's 16MB of memory - this really confuses people that
1402	 *	are trying to use bus mastering ISA controllers with the
1403	 *	"16MB limit"; they only have 16MB, but the remapping puts
1404	 *	them beyond the limit.
1405	 */
1406	/*
1407	 * If extended memory is between 15-16MB (16-17MB phys address range),
1408	 *	chop it to 15MB.
1409	 */
1410	if ((pagesinext > 3840) && (pagesinext < 4096))
1411		pagesinext = 3840;
1412
1413	/*
1414	 * Maxmem isn't the "maximum memory", it's one larger than the
1415	 * highest page of the physical address space.  It should be
1416	 * called something like "Maxphyspage".
1417	 */
1418	Maxmem = pagesinext + 0x100000/PAGE_SIZE;
1419	/*
1420	 * Indicate that we wish to do a speculative search for memory beyond
1421	 * the end of the reported size if the indicated amount is 64MB (0x4000
1422	 * pages) - which is the largest amount that the BIOS/bootblocks can
1423	 * currently report. If a specific amount of memory is indicated via
1424	 * the MAXMEM option or the npx0 "msize", then don't do the speculative
1425	 * memory probe.
1426	 */
1427	if (Maxmem >= 0x4000)
1428		speculative_mprobe = TRUE;
1429	else
1430		speculative_mprobe = FALSE;
1431
1432#ifdef MAXMEM
1433	Maxmem = MAXMEM/4;
1434	speculative_mprobe = FALSE;
1435#endif
1436
1437#if NNPX > 0
1438	idp = find_isadev(isa_devtab_null, &npxdriver, 0);
1439	if (idp != NULL && idp->id_msize != 0) {
1440		Maxmem = idp->id_msize / 4;
1441		speculative_mprobe = FALSE;
1442	}
1443#endif
1444
1445#ifdef SMP
1446	/* look for the MP hardware - needed for apic addresses */
1447	mp_probe();
1448#endif
1449
1450	/* call pmap initialization to make new kernel address space */
1451	pmap_bootstrap (first, 0);
1452
1453	/*
1454	 * Size up each available chunk of physical memory.
1455	 */
1456
1457	/*
1458	 * We currently don't bother testing base memory.
1459	 * XXX  ...but we probably should.
1460	 */
1461	pa_indx = 0;
1462	if (pagesinbase > 1) {
1463		phys_avail[pa_indx++] = PAGE_SIZE;	/* skip first page of memory */
1464		phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
1465		physmem = pagesinbase - 1;
1466	} else {
1467		/* point at first chunk end */
1468		pa_indx++;
1469	}
1470
1471	for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
1472		int tmp, page_bad;
1473
1474		page_bad = FALSE;
1475
1476		/*
1477		 * map page into kernel: valid, read/write, non-cacheable
1478		 */
1479		*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
1480		invltlb();
1481
1482		tmp = *(int *)CADDR1;
1483		/*
1484		 * Test for alternating 1's and 0's
1485		 */
1486		*(volatile int *)CADDR1 = 0xaaaaaaaa;
1487		if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
1488			page_bad = TRUE;
1489		}
1490		/*
1491		 * Test for alternating 0's and 1's
1492		 */
1493		*(volatile int *)CADDR1 = 0x55555555;
1494		if (*(volatile int *)CADDR1 != 0x55555555) {
1495			page_bad = TRUE;
1496		}
1497		/*
1498		 * Test for all 1's
1499		 */
1500		*(volatile int *)CADDR1 = 0xffffffff;
1501		if (*(volatile int *)CADDR1 != 0xffffffff) {
1502			page_bad = TRUE;
1503		}
1504		/*
1505		 * Test for all 0's
1506		 */
1507		*(volatile int *)CADDR1 = 0x0;
1508		if (*(volatile int *)CADDR1 != 0x0) {
1509			/*
1510			 * test of page failed
1511			 */
1512			page_bad = TRUE;
1513		}
1514		/*
1515		 * Restore original value.
1516		 */
1517		*(int *)CADDR1 = tmp;
1518
1519		/*
1520		 * Adjust array of valid/good pages.
1521		 */
1522		if (page_bad == FALSE) {
1523			/*
1524			 * If this good page is a continuation of the
1525			 * previous set of good pages, then just increase
1526			 * the end pointer. Otherwise start a new chunk.
1527			 * Note that "end" points one higher than end,
1528			 * making the range >= start and < end.
1529			 * If we're also doing a speculative memory
1530			 * test and we at or past the end, bump up Maxmem
1531			 * so that we keep going. The first bad page
1532			 * will terminate the loop.
1533			 */
1534			if (phys_avail[pa_indx] == target_page) {
1535				phys_avail[pa_indx] += PAGE_SIZE;
1536				if (speculative_mprobe == TRUE &&
1537				    phys_avail[pa_indx] >= (64*1024*1024))
1538					Maxmem++;
1539			} else {
1540				pa_indx++;
1541				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1542					printf("Too many holes in the physical address space, giving up\n");
1543					pa_indx--;
1544					break;
1545				}
1546				phys_avail[pa_indx++] = target_page;	/* start */
1547				phys_avail[pa_indx] = target_page + PAGE_SIZE;	/* end */
1548			}
1549			physmem++;
1550		}
1551	}
1552
1553	*(int *)CMAP1 = 0;
1554	invltlb();
1555
1556	/*
1557	 * XXX
1558	 * The last chunk must contain at least one page plus the message
1559	 * buffer to avoid complicating other code (message buffer address
1560	 * calculation, etc.).
1561	 */
1562	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1563	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1564		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1565		phys_avail[pa_indx--] = 0;
1566		phys_avail[pa_indx--] = 0;
1567	}
1568
1569	Maxmem = atop(phys_avail[pa_indx]);
1570
1571	/* Trim off space for the message buffer. */
1572	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1573
1574	avail_end = phys_avail[pa_indx];
1575
1576	/* now running on new page tables, configured,and u/iom is accessible */
1577
1578	/* Map the message buffer. */
1579	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1580		pmap_enter(kernel_pmap, (vm_offset_t)msgbufp + off,
1581			   avail_end + off, VM_PROT_ALL, TRUE);
1582
1583	msgbufinit(msgbufp, MSGBUF_SIZE);
1584
1585	/* make a call gate to reenter kernel with */
1586	gdp = &ldt[LSYS5CALLS_SEL].gd;
1587
1588	x = (int) &IDTVEC(syscall);
1589	gdp->gd_looffset = x++;
1590	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1591	gdp->gd_stkcpy = 1;
1592	gdp->gd_type = SDT_SYS386CGT;
1593	gdp->gd_dpl = SEL_UPL;
1594	gdp->gd_p = 1;
1595	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1596
1597	/* XXX does this work? */
1598	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1599	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
1600
1601	/* transfer to user mode */
1602
1603	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1604	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1605
1606	/* setup proc 0's pcb */
1607	proc0.p_addr->u_pcb.pcb_flags = 0;
1608	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1609#ifdef SMP
1610	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1611#endif
1612#ifdef VM86
1613	proc0.p_addr->u_pcb.pcb_ext = 0;
1614#endif
1615
1616	/* Sigh, relocate physical addresses left from bootstrap */
1617	if (bootinfo.bi_modulep) {
1618		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1619		preload_bootstrap_relocate(KERNBASE);
1620	}
1621	if (bootinfo.bi_envp)
1622		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1623}
1624
1625#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1626static void f00f_hack(void *unused);
1627SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1628
1629static void
1630f00f_hack(void *unused) {
1631#ifndef SMP
1632	struct region_descriptor r_idt;
1633#endif
1634	vm_offset_t tmp;
1635
1636	if (!has_f00f_bug)
1637		return;
1638
1639	printf("Intel Pentium detected, installing workaround for F00F bug\n");
1640
1641	r_idt.rd_limit = sizeof(idt) - 1;
1642
1643	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
1644	if (tmp == 0)
1645		panic("kmem_alloc returned 0");
1646	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1647		panic("kmem_alloc returned non-page-aligned memory");
1648	/* Put the first seven entries in the lower page */
1649	t_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1650	bcopy(idt, t_idt, sizeof(idt));
1651	r_idt.rd_base = (int)t_idt;
1652	lidt(&r_idt);
1653	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
1654			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
1655		panic("vm_map_protect failed");
1656	return;
1657}
1658#endif /* defined(I586_CPU) && !NO_F00F_HACK */
1659
1660int
1661ptrace_set_pc(p, addr)
1662	struct proc *p;
1663	unsigned long addr;
1664{
1665	p->p_md.md_regs->tf_eip = addr;
1666	return (0);
1667}
1668
1669int
1670ptrace_single_step(p)
1671	struct proc *p;
1672{
1673	p->p_md.md_regs->tf_eflags |= PSL_T;
1674	return (0);
1675}
1676
1677int ptrace_read_u_check(p, addr, len)
1678	struct proc *p;
1679	vm_offset_t addr;
1680	size_t len;
1681{
1682	vm_offset_t gap;
1683
1684	if ((vm_offset_t) (addr + len) < addr)
1685		return EPERM;
1686	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
1687		return 0;
1688
1689	gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
1690
1691	if ((vm_offset_t) addr < gap)
1692		return EPERM;
1693	if ((vm_offset_t) (addr + len) <=
1694	    (vm_offset_t) (gap + sizeof(struct trapframe)))
1695		return 0;
1696	return EPERM;
1697}
1698
1699int ptrace_write_u(p, off, data)
1700	struct proc *p;
1701	vm_offset_t off;
1702	long data;
1703{
1704	struct trapframe frame_copy;
1705	vm_offset_t min;
1706	struct trapframe *tp;
1707
1708	/*
1709	 * Privileged kernel state is scattered all over the user area.
1710	 * Only allow write access to parts of regs and to fpregs.
1711	 */
1712	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
1713	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
1714		tp = p->p_md.md_regs;
1715		frame_copy = *tp;
1716		*(int *)((char *)&frame_copy + (off - min)) = data;
1717		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
1718		    !CS_SECURE(frame_copy.tf_cs))
1719			return (EINVAL);
1720		*(int*)((char *)p->p_addr + off) = data;
1721		return (0);
1722	}
1723	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
1724	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
1725		*(int*)((char *)p->p_addr + off) = data;
1726		return (0);
1727	}
1728	return (EFAULT);
1729}
1730
1731int
1732fill_regs(p, regs)
1733	struct proc *p;
1734	struct reg *regs;
1735{
1736	struct pcb *pcb;
1737	struct trapframe *tp;
1738
1739	tp = p->p_md.md_regs;
1740	regs->r_es = tp->tf_es;
1741	regs->r_ds = tp->tf_ds;
1742	regs->r_edi = tp->tf_edi;
1743	regs->r_esi = tp->tf_esi;
1744	regs->r_ebp = tp->tf_ebp;
1745	regs->r_ebx = tp->tf_ebx;
1746	regs->r_edx = tp->tf_edx;
1747	regs->r_ecx = tp->tf_ecx;
1748	regs->r_eax = tp->tf_eax;
1749	regs->r_eip = tp->tf_eip;
1750	regs->r_cs = tp->tf_cs;
1751	regs->r_eflags = tp->tf_eflags;
1752	regs->r_esp = tp->tf_esp;
1753	regs->r_ss = tp->tf_ss;
1754	pcb = &p->p_addr->u_pcb;
1755	regs->r_fs = pcb->pcb_fs;
1756	regs->r_gs = pcb->pcb_gs;
1757	return (0);
1758}
1759
1760int
1761set_regs(p, regs)
1762	struct proc *p;
1763	struct reg *regs;
1764{
1765	struct pcb *pcb;
1766	struct trapframe *tp;
1767
1768	tp = p->p_md.md_regs;
1769	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
1770	    !CS_SECURE(regs->r_cs))
1771		return (EINVAL);
1772	tp->tf_es = regs->r_es;
1773	tp->tf_ds = regs->r_ds;
1774	tp->tf_edi = regs->r_edi;
1775	tp->tf_esi = regs->r_esi;
1776	tp->tf_ebp = regs->r_ebp;
1777	tp->tf_ebx = regs->r_ebx;
1778	tp->tf_edx = regs->r_edx;
1779	tp->tf_ecx = regs->r_ecx;
1780	tp->tf_eax = regs->r_eax;
1781	tp->tf_eip = regs->r_eip;
1782	tp->tf_cs = regs->r_cs;
1783	tp->tf_eflags = regs->r_eflags;
1784	tp->tf_esp = regs->r_esp;
1785	tp->tf_ss = regs->r_ss;
1786	pcb = &p->p_addr->u_pcb;
1787	pcb->pcb_fs = regs->r_fs;
1788	pcb->pcb_gs = regs->r_gs;
1789	return (0);
1790}
1791
1792int
1793fill_fpregs(p, fpregs)
1794	struct proc *p;
1795	struct fpreg *fpregs;
1796{
1797	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
1798	return (0);
1799}
1800
1801int
1802set_fpregs(p, fpregs)
1803	struct proc *p;
1804	struct fpreg *fpregs;
1805{
1806	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
1807	return (0);
1808}
1809
1810#ifndef DDB
1811void
1812Debugger(const char *msg)
1813{
1814	printf("Debugger(\"%s\") called.\n", msg);
1815}
1816#endif /* no DDB */
1817
1818#include <sys/disklabel.h>
1819
1820/*
1821 * Determine the size of the transfer, and make sure it is
1822 * within the boundaries of the partition. Adjust transfer
1823 * if needed, and signal errors or early completion.
1824 */
1825int
1826bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
1827{
1828        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
1829        int labelsect = lp->d_partitions[0].p_offset;
1830        int maxsz = p->p_size,
1831                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
1832
1833        /* overwriting disk label ? */
1834        /* XXX should also protect bootstrap in first 8K */
1835        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
1836#if LABELSECTOR != 0
1837            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
1838#endif
1839            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1840                bp->b_error = EROFS;
1841                goto bad;
1842        }
1843
1844#if     defined(DOSBBSECTOR) && defined(notyet)
1845        /* overwriting master boot record? */
1846        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
1847            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1848                bp->b_error = EROFS;
1849                goto bad;
1850        }
1851#endif
1852
1853        /* beyond partition? */
1854        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
1855                /* if exactly at end of disk, return an EOF */
1856                if (bp->b_blkno == maxsz) {
1857                        bp->b_resid = bp->b_bcount;
1858                        return(0);
1859                }
1860                /* or truncate if part of it fits */
1861                sz = maxsz - bp->b_blkno;
1862                if (sz <= 0) {
1863                        bp->b_error = EINVAL;
1864                        goto bad;
1865                }
1866                bp->b_bcount = sz << DEV_BSHIFT;
1867        }
1868
1869        bp->b_pblkno = bp->b_blkno + p->p_offset;
1870        return(1);
1871
1872bad:
1873        bp->b_flags |= B_ERROR;
1874        return(-1);
1875}
1876
1877#ifdef DDB
1878
1879/*
1880 * Provide inb() and outb() as functions.  They are normally only
1881 * available as macros calling inlined functions, thus cannot be
1882 * called inside DDB.
1883 *
1884 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1885 */
1886
1887#undef inb
1888#undef outb
1889
1890/* silence compiler warnings */
1891u_char inb(u_int);
1892void outb(u_int, u_char);
1893
1894u_char
1895inb(u_int port)
1896{
1897	u_char	data;
1898	/*
1899	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1900	 * %edx, while gcc generates inferior code (movw instead of movl)
1901	 * if we tell it to load (u_short) port.
1902	 */
1903	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1904	return (data);
1905}
1906
1907void
1908outb(u_int port, u_char data)
1909{
1910	u_char	al;
1911	/*
1912	 * Use an unnecessary assignment to help gcc's register allocator.
1913	 * This make a large difference for gcc-1.40 and a tiny difference
1914	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1915	 * best results.  gcc-2.6.0 can't handle this.
1916	 */
1917	al = data;
1918	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1919}
1920
1921#endif /* DDB */
1922