machdep.c revision 42437
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 *	$Id: machdep.c,v 1.320 1999/01/06 23:05:36 julian Exp $
39 */
40
41#include "apm.h"
42#include "ether.h"
43#include "npx.h"
44#include "opt_atalk.h"
45#include "opt_cpu.h"
46#include "opt_ddb.h"
47#include "opt_inet.h"
48#include "opt_ipx.h"
49#include "opt_maxmem.h"
50#include "opt_msgbuf.h"
51#include "opt_perfmon.h"
52#include "opt_smp.h"
53#include "opt_sysvipc.h"
54#include "opt_user_ldt.h"
55#include "opt_userconfig.h"
56#include "opt_vm86.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/sysproto.h>
61#include <sys/signalvar.h>
62#include <sys/kernel.h>
63#include <sys/linker.h>
64#include <sys/proc.h>
65#include <sys/buf.h>
66#include <sys/reboot.h>
67#include <sys/callout.h>
68#include <sys/malloc.h>
69#include <sys/mbuf.h>
70#include <sys/msgbuf.h>
71#include <sys/sysent.h>
72#include <sys/sysctl.h>
73#include <sys/vmmeter.h>
74
75#ifdef SYSVSHM
76#include <sys/shm.h>
77#endif
78
79#ifdef SYSVMSG
80#include <sys/msg.h>
81#endif
82
83#ifdef SYSVSEM
84#include <sys/sem.h>
85#endif
86
87#include <vm/vm.h>
88#include <vm/vm_param.h>
89#include <vm/vm_prot.h>
90#include <sys/lock.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_object.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_pager.h>
96#include <vm/vm_extern.h>
97
98#include <sys/user.h>
99#include <sys/exec.h>
100
101#include <ddb/ddb.h>
102
103#if defined(INET) || defined(IPX) || defined(NATM) || defined(NETATALK) \
104    || NETHER > 0 || defined(NS)
105#define NETISR
106#endif
107
108#ifdef NETISR
109#include <net/netisr.h>
110#endif
111
112#include <machine/cpu.h>
113#include <machine/reg.h>
114#include <machine/clock.h>
115#include <machine/specialreg.h>
116#include <machine/cons.h>
117#include <machine/bootinfo.h>
118#include <machine/ipl.h>
119#include <machine/md_var.h>
120#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
121#ifdef SMP
122#include <machine/smp.h>
123#endif
124#ifdef PERFMON
125#include <machine/perfmon.h>
126#endif
127
128#include <i386/isa/isa_device.h>
129#include <i386/isa/intr_machdep.h>
130#ifndef VM86
131#include <i386/isa/rtc.h>
132#endif
133#include <machine/random.h>
134#include <sys/ptrace.h>
135
136extern void init386 __P((int first));
137extern void dblfault_handler __P((void));
138
139extern void printcpuinfo(void);	/* XXX header file */
140extern void earlysetcpuclass(void);	/* same header file */
141extern void finishidentcpu(void);
142extern void panicifcpuunsupported(void);
143extern void initializecpu(void);
144
145static void cpu_startup __P((void *));
146SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
147
148static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
149
150int	_udatasel, _ucodesel;
151u_int	atdevbase;
152
153#if defined(SWTCH_OPTIM_STATS)
154extern int swtch_optim_stats;
155SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
156	CTLFLAG_RD, &swtch_optim_stats, 0, "");
157SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
158	CTLFLAG_RD, &tlb_flush_count, 0, "");
159#endif
160
161#ifdef PC98
162static int	ispc98 = 1;
163#else
164static int	ispc98 = 0;
165#endif
166SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
167
168int physmem = 0;
169int cold = 1;
170
171static int
172sysctl_hw_physmem SYSCTL_HANDLER_ARGS
173{
174	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
175	return (error);
176}
177
178SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
179	0, 0, sysctl_hw_physmem, "I", "");
180
181static int
182sysctl_hw_usermem SYSCTL_HANDLER_ARGS
183{
184	int error = sysctl_handle_int(oidp, 0,
185		ctob(physmem - cnt.v_wire_count), req);
186	return (error);
187}
188
189SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
190	0, 0, sysctl_hw_usermem, "I", "");
191
192static int
193sysctl_hw_availpages SYSCTL_HANDLER_ARGS
194{
195	int error = sysctl_handle_int(oidp, 0,
196		i386_btop(avail_end - avail_start), req);
197	return (error);
198}
199
200SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
201	0, 0, sysctl_hw_availpages, "I", "");
202
203static int
204sysctl_machdep_msgbuf SYSCTL_HANDLER_ARGS
205{
206	int error;
207
208	/* Unwind the buffer, so that it's linear (possibly starting with
209	 * some initial nulls).
210	 */
211	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
212		msgbufp->msg_size-msgbufp->msg_bufr,req);
213	if(error) return(error);
214	if(msgbufp->msg_bufr>0) {
215		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
216			msgbufp->msg_bufr,req);
217	}
218	return(error);
219}
220
221SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
222	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
223
224static int msgbuf_clear;
225
226static int
227sysctl_machdep_msgbuf_clear SYSCTL_HANDLER_ARGS
228{
229	int error;
230	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
231		req);
232	if (!error && req->newptr) {
233		/* Clear the buffer and reset write pointer */
234		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
235		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
236		msgbuf_clear=0;
237	}
238	return (error);
239}
240
241SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
242	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
243	"Clear kernel message buffer");
244
245int bootverbose = 0, Maxmem = 0;
246long dumplo;
247
248vm_offset_t phys_avail[10];
249
250/* must be 2 less so 0 0 can signal end of chunks */
251#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
252
253#ifdef NETISR
254static void setup_netisrs __P((struct linker_set *));
255#endif
256
257static vm_offset_t buffer_sva, buffer_eva;
258vm_offset_t clean_sva, clean_eva;
259static vm_offset_t pager_sva, pager_eva;
260#ifdef NETISR
261extern struct linker_set netisr_set;
262#endif
263#if NNPX > 0
264extern struct isa_driver npxdriver;
265#endif
266
267#define offsetof(type, member)	((size_t)(&((type *)0)->member))
268
269static void
270cpu_startup(dummy)
271	void *dummy;
272{
273	register unsigned i;
274	register caddr_t v;
275	vm_offset_t maxaddr;
276	vm_size_t size = 0;
277	int firstaddr;
278	vm_offset_t minaddr;
279
280	if (boothowto & RB_VERBOSE)
281		bootverbose++;
282
283	/*
284	 * Good {morning,afternoon,evening,night}.
285	 */
286	printf(version);
287	earlysetcpuclass();
288	startrtclock();
289	printcpuinfo();
290	panicifcpuunsupported();
291#ifdef PERFMON
292	perfmon_init();
293#endif
294	printf("real memory  = %d (%dK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
295	/*
296	 * Display any holes after the first chunk of extended memory.
297	 */
298	if (bootverbose) {
299		int indx;
300
301		printf("Physical memory chunk(s):\n");
302		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
303			int size1 = phys_avail[indx + 1] - phys_avail[indx];
304
305			printf("0x%08x - 0x%08x, %d bytes (%d pages)\n",
306			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
307			    size1 / PAGE_SIZE);
308		}
309	}
310
311#ifdef NETISR
312	/*
313	 * Quickly wire in netisrs.
314	 */
315	setup_netisrs(&netisr_set);
316#endif
317
318	/*
319	 * Calculate callout wheel size
320	 */
321	for (callwheelsize = 1, callwheelbits = 0;
322	     callwheelsize < ncallout;
323	     callwheelsize <<= 1, ++callwheelbits)
324		;
325	callwheelmask = callwheelsize - 1;
326
327	/*
328	 * Allocate space for system data structures.
329	 * The first available kernel virtual address is in "v".
330	 * As pages of kernel virtual memory are allocated, "v" is incremented.
331	 * As pages of memory are allocated and cleared,
332	 * "firstaddr" is incremented.
333	 * An index into the kernel page table corresponding to the
334	 * virtual memory address maintained in "v" is kept in "mapaddr".
335	 */
336
337	/*
338	 * Make two passes.  The first pass calculates how much memory is
339	 * needed and allocates it.  The second pass assigns virtual
340	 * addresses to the various data structures.
341	 */
342	firstaddr = 0;
343again:
344	v = (caddr_t)firstaddr;
345
346#define	valloc(name, type, num) \
347	    (name) = (type *)v; v = (caddr_t)((name)+(num))
348#define	valloclim(name, type, num, lim) \
349	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
350
351	valloc(callout, struct callout, ncallout);
352	valloc(callwheel, struct callout_tailq, callwheelsize);
353#ifdef SYSVSHM
354	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
355#endif
356#ifdef SYSVSEM
357	valloc(sema, struct semid_ds, seminfo.semmni);
358	valloc(sem, struct sem, seminfo.semmns);
359	/* This is pretty disgusting! */
360	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
361#endif
362#ifdef SYSVMSG
363	valloc(msgpool, char, msginfo.msgmax);
364	valloc(msgmaps, struct msgmap, msginfo.msgseg);
365	valloc(msghdrs, struct msg, msginfo.msgtql);
366	valloc(msqids, struct msqid_ds, msginfo.msgmni);
367#endif
368
369	if (nbuf == 0) {
370		nbuf = 30;
371		if( physmem > 1024)
372			nbuf += min((physmem - 1024) / 8, 2048);
373	}
374	nswbuf = max(min(nbuf/4, 64), 16);
375
376	valloc(swbuf, struct buf, nswbuf);
377	valloc(buf, struct buf, nbuf);
378
379
380	/*
381	 * End of first pass, size has been calculated so allocate memory
382	 */
383	if (firstaddr == 0) {
384		size = (vm_size_t)(v - firstaddr);
385		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
386		if (firstaddr == 0)
387			panic("startup: no room for tables");
388		goto again;
389	}
390
391	/*
392	 * End of second pass, addresses have been assigned
393	 */
394	if ((vm_size_t)(v - firstaddr) != size)
395		panic("startup: table size inconsistency");
396
397	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
398			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
399	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
400				(nbuf*BKVASIZE));
401	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
402				(nswbuf*MAXPHYS) + pager_map_size);
403	pager_map->system_map = 1;
404	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
405				(16*(ARG_MAX+(PAGE_SIZE*3))));
406
407	/*
408	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
409	 * we use the more space efficient malloc in place of kmem_alloc.
410	 */
411	{
412		vm_offset_t mb_map_size;
413
414		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
415		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
416		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
417		bzero(mclrefcnt, mb_map_size / MCLBYTES);
418		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
419			mb_map_size);
420		mb_map->system_map = 1;
421	}
422
423	/*
424	 * Initialize callouts
425	 */
426	SLIST_INIT(&callfree);
427	for (i = 0; i < ncallout; i++) {
428		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
429	}
430
431	for (i = 0; i < callwheelsize; i++) {
432		TAILQ_INIT(&callwheel[i]);
433	}
434
435#if defined(USERCONFIG)
436	userconfig();
437	cninit();		/* the preferred console may have changed */
438#endif
439
440	printf("avail memory = %d (%dK bytes)\n", ptoa(cnt.v_free_count),
441	    ptoa(cnt.v_free_count) / 1024);
442
443	/*
444	 * Set up buffers, so they can be used to read disk labels.
445	 */
446	bufinit();
447	vm_pager_bufferinit();
448
449#ifdef SMP
450	/*
451	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
452	 */
453	mp_start();			/* fire up the APs and APICs */
454	mp_announce();
455#endif  /* SMP */
456}
457
458#ifdef NETISR
459int
460register_netisr(num, handler)
461	int num;
462	netisr_t *handler;
463{
464
465	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
466		printf("register_netisr: bad isr number: %d\n", num);
467		return (EINVAL);
468	}
469	netisrs[num] = handler;
470	return (0);
471}
472
473static void
474setup_netisrs(ls)
475	struct linker_set *ls;
476{
477	int i;
478	const struct netisrtab *nit;
479
480	for(i = 0; ls->ls_items[i]; i++) {
481		nit = (const struct netisrtab *)ls->ls_items[i];
482		register_netisr(nit->nit_num, nit->nit_isr);
483	}
484}
485#endif /* NETISR */
486
487/*
488 * Send an interrupt to process.
489 *
490 * Stack is set up to allow sigcode stored
491 * at top to call routine, followed by kcall
492 * to sigreturn routine below.  After sigreturn
493 * resets the signal mask, the stack, and the
494 * frame pointer, it returns to the user
495 * specified pc, psl.
496 */
497void
498sendsig(catcher, sig, mask, code)
499	sig_t catcher;
500	int sig, mask;
501	u_long code;
502{
503	register struct proc *p = curproc;
504	register struct trapframe *regs;
505	register struct sigframe *fp;
506	struct sigframe sf;
507	struct sigacts *psp = p->p_sigacts;
508	int oonstack;
509
510	regs = p->p_md.md_regs;
511        oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
512	/*
513	 * Allocate and validate space for the signal handler context.
514	 */
515        if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
516	    (psp->ps_sigonstack & sigmask(sig))) {
517		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
518		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
519		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
520	} else {
521		fp = (struct sigframe *)regs->tf_esp - 1;
522	}
523
524	/*
525	 * grow() will return FALSE if the fp will not fit inside the stack
526	 *	and the stack can not be grown. useracc will return FALSE
527	 *	if access is denied.
528	 */
529#ifdef VM_STACK
530	if ((grow_stack (p, (int)fp) == FALSE) ||
531#else
532	if ((grow(p, (int)fp) == FALSE) ||
533#endif
534	    (useracc((caddr_t)fp, sizeof(struct sigframe), B_WRITE) == FALSE)) {
535		/*
536		 * Process has trashed its stack; give it an illegal
537		 * instruction to halt it in its tracks.
538		 */
539		SIGACTION(p, SIGILL) = SIG_DFL;
540		sig = sigmask(SIGILL);
541		p->p_sigignore &= ~sig;
542		p->p_sigcatch &= ~sig;
543		p->p_sigmask &= ~sig;
544		psignal(p, SIGILL);
545		return;
546	}
547
548	/*
549	 * Build the argument list for the signal handler.
550	 */
551	if (p->p_sysent->sv_sigtbl) {
552		if (sig < p->p_sysent->sv_sigsize)
553			sig = p->p_sysent->sv_sigtbl[sig];
554		else
555			sig = p->p_sysent->sv_sigsize + 1;
556	}
557	sf.sf_signum = sig;
558	sf.sf_code = code;
559	sf.sf_scp = &fp->sf_sc;
560	sf.sf_addr = (char *) regs->tf_err;
561	sf.sf_handler = catcher;
562
563	/* save scratch registers */
564	sf.sf_sc.sc_eax = regs->tf_eax;
565	sf.sf_sc.sc_ebx = regs->tf_ebx;
566	sf.sf_sc.sc_ecx = regs->tf_ecx;
567	sf.sf_sc.sc_edx = regs->tf_edx;
568	sf.sf_sc.sc_esi = regs->tf_esi;
569	sf.sf_sc.sc_edi = regs->tf_edi;
570	sf.sf_sc.sc_cs = regs->tf_cs;
571	sf.sf_sc.sc_ds = regs->tf_ds;
572	sf.sf_sc.sc_ss = regs->tf_ss;
573	sf.sf_sc.sc_es = regs->tf_es;
574	sf.sf_sc.sc_isp = regs->tf_isp;
575
576	/*
577	 * Build the signal context to be used by sigreturn.
578	 */
579	sf.sf_sc.sc_onstack = oonstack;
580	sf.sf_sc.sc_mask = mask;
581	sf.sf_sc.sc_sp = regs->tf_esp;
582	sf.sf_sc.sc_fp = regs->tf_ebp;
583	sf.sf_sc.sc_pc = regs->tf_eip;
584	sf.sf_sc.sc_ps = regs->tf_eflags;
585	sf.sf_sc.sc_trapno = regs->tf_trapno;
586	sf.sf_sc.sc_err = regs->tf_err;
587
588#ifdef VM86
589	/*
590	 * If we're a vm86 process, we want to save the segment registers.
591	 * We also change eflags to be our emulated eflags, not the actual
592	 * eflags.
593	 */
594	if (regs->tf_eflags & PSL_VM) {
595		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
596		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
597
598		sf.sf_sc.sc_gs = tf->tf_vm86_gs;
599		sf.sf_sc.sc_fs = tf->tf_vm86_fs;
600		sf.sf_sc.sc_es = tf->tf_vm86_es;
601		sf.sf_sc.sc_ds = tf->tf_vm86_ds;
602
603		if (vm86->vm86_has_vme == 0)
604			sf.sf_sc.sc_ps = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
605			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
606
607		/*
608		 * We should never have PSL_T set when returning from vm86
609		 * mode.  It may be set here if we deliver a signal before
610		 * getting to vm86 mode, so turn it off.
611		 */
612		tf->tf_eflags &= ~(PSL_VM | PSL_T | PSL_VIF | PSL_VIP);
613	}
614#endif /* VM86 */
615
616	/*
617	 * Copy the sigframe out to the user's stack.
618	 */
619	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
620		/*
621		 * Something is wrong with the stack pointer.
622		 * ...Kill the process.
623		 */
624		sigexit(p, SIGILL);
625	}
626
627	regs->tf_esp = (int)fp;
628	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
629	regs->tf_cs = _ucodesel;
630	regs->tf_ds = _udatasel;
631	regs->tf_es = _udatasel;
632	regs->tf_ss = _udatasel;
633}
634
635/*
636 * System call to cleanup state after a signal
637 * has been taken.  Reset signal mask and
638 * stack state from context left by sendsig (above).
639 * Return to previous pc and psl as specified by
640 * context left by sendsig. Check carefully to
641 * make sure that the user has not modified the
642 * state to gain improper privileges.
643 */
644int
645sigreturn(p, uap)
646	struct proc *p;
647	struct sigreturn_args /* {
648		struct sigcontext *sigcntxp;
649	} */ *uap;
650{
651	register struct sigcontext *scp;
652	register struct sigframe *fp;
653	register struct trapframe *regs = p->p_md.md_regs;
654	int eflags;
655
656	/*
657	 * (XXX old comment) regs->tf_esp points to the return address.
658	 * The user scp pointer is above that.
659	 * The return address is faked in the signal trampoline code
660	 * for consistency.
661	 */
662	scp = uap->sigcntxp;
663	fp = (struct sigframe *)
664	     ((caddr_t)scp - offsetof(struct sigframe, sf_sc));
665
666	if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
667		return(EFAULT);
668
669	eflags = scp->sc_ps;
670#ifdef VM86
671	if (eflags & PSL_VM) {
672		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
673		struct vm86_kernel *vm86;
674
675		/*
676		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
677		 * set up the vm86 area, and we can't enter vm86 mode.
678		 */
679		if (p->p_addr->u_pcb.pcb_ext == 0)
680			return (EINVAL);
681		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
682		if (vm86->vm86_inited == 0)
683			return (EINVAL);
684
685		/* go back to user mode if both flags are set */
686		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
687			trapsignal(p, SIGBUS, 0);
688
689		if (vm86->vm86_has_vme) {
690			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
691			    (eflags & VME_USERCHANGE) | PSL_VM;
692		} else {
693			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
694			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
695		}
696		tf->tf_vm86_ds = scp->sc_ds;
697		tf->tf_vm86_es = scp->sc_es;
698		tf->tf_vm86_fs = scp->sc_fs;
699		tf->tf_vm86_gs = scp->sc_gs;
700		tf->tf_ds = _udatasel;
701		tf->tf_es = _udatasel;
702	} else {
703#endif /* VM86 */
704		/*
705		 * Don't allow users to change privileged or reserved flags.
706		 */
707#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
708		/*
709		 * XXX do allow users to change the privileged flag PSL_RF.
710		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
711		 * should sometimes set it there too.  tf_eflags is kept in
712		 * the signal context during signal handling and there is no
713		 * other place to remember it, so the PSL_RF bit may be
714		 * corrupted by the signal handler without us knowing.
715		 * Corruption of the PSL_RF bit at worst causes one more or
716		 * one less debugger trap, so allowing it is fairly harmless.
717		 */
718		if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
719#ifdef DEBUG
720	    		printf("sigreturn: eflags = 0x%x\n", eflags);
721#endif
722	    		return(EINVAL);
723		}
724
725		/*
726		 * Don't allow users to load a valid privileged %cs.  Let the
727		 * hardware check for invalid selectors, excess privilege in
728		 * other selectors, invalid %eip's and invalid %esp's.
729		 */
730#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
731		if (!CS_SECURE(scp->sc_cs)) {
732#ifdef DEBUG
733    			printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
734#endif
735			trapsignal(p, SIGBUS, T_PROTFLT);
736			return(EINVAL);
737		}
738		regs->tf_ds = scp->sc_ds;
739		regs->tf_es = scp->sc_es;
740#ifdef VM86
741	}
742#endif
743
744	/* restore scratch registers */
745	regs->tf_eax = scp->sc_eax;
746	regs->tf_ebx = scp->sc_ebx;
747	regs->tf_ecx = scp->sc_ecx;
748	regs->tf_edx = scp->sc_edx;
749	regs->tf_esi = scp->sc_esi;
750	regs->tf_edi = scp->sc_edi;
751	regs->tf_cs = scp->sc_cs;
752	regs->tf_ss = scp->sc_ss;
753	regs->tf_isp = scp->sc_isp;
754
755	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
756		return(EINVAL);
757
758	if (scp->sc_onstack & 01)
759		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
760	else
761		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
762	p->p_sigmask = scp->sc_mask & ~sigcantmask;
763	regs->tf_ebp = scp->sc_fp;
764	regs->tf_esp = scp->sc_sp;
765	regs->tf_eip = scp->sc_pc;
766	regs->tf_eflags = eflags;
767	return(EJUSTRETURN);
768}
769
770/*
771 * Machine dependent boot() routine
772 *
773 * I haven't seen anything to put here yet
774 * Possibly some stuff might be grafted back here from boot()
775 */
776void
777cpu_boot(int howto)
778{
779}
780
781/*
782 * Shutdown the CPU as much as possible
783 */
784void
785cpu_halt(void)
786{
787	for (;;)
788		__asm__ ("hlt");
789}
790
791/*
792 * Clear registers on exec
793 */
794void
795setregs(p, entry, stack)
796	struct proc *p;
797	u_long entry;
798	u_long stack;
799{
800	struct trapframe *regs = p->p_md.md_regs;
801	struct pcb *pcb = &p->p_addr->u_pcb;
802
803#ifdef USER_LDT
804	/* was i386_user_cleanup() in NetBSD */
805	if (pcb->pcb_ldt) {
806		if (pcb == curpcb) {
807			lldt(_default_ldt);
808			currentldt = _default_ldt;
809		}
810		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
811			pcb->pcb_ldt_len * sizeof(union descriptor));
812		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
813 	}
814#endif
815
816	bzero((char *)regs, sizeof(struct trapframe));
817	regs->tf_eip = entry;
818	regs->tf_esp = stack;
819	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
820	regs->tf_ss = _udatasel;
821	regs->tf_ds = _udatasel;
822	regs->tf_es = _udatasel;
823	regs->tf_cs = _ucodesel;
824
825	/* reset %fs and %gs as well */
826	pcb->pcb_fs = _udatasel;
827	pcb->pcb_gs = _udatasel;
828	if (pcb == curpcb) {
829		__asm("movw %w0,%%fs" : : "r" (_udatasel));
830		__asm("movw %w0,%%gs" : : "r" (_udatasel));
831	}
832
833	/*
834	 * Initialize the math emulator (if any) for the current process.
835	 * Actually, just clear the bit that says that the emulator has
836	 * been initialized.  Initialization is delayed until the process
837	 * traps to the emulator (if it is done at all) mainly because
838	 * emulators don't provide an entry point for initialization.
839	 */
840	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
841
842	/*
843	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
844	 * for why fwait must be trapped at least if there is an npx or an
845	 * emulator).  This is mainly to handle the case where npx0 is not
846	 * configured, since the npx routines normally set up the trap
847	 * otherwise.  It should be done only at boot time, but doing it
848	 * here allows modifying `npx_exists' for testing the emulator on
849	 * systems with an npx.
850	 */
851	load_cr0(rcr0() | CR0_MP | CR0_TS);
852
853#if NNPX > 0
854	/* Initialize the npx (if any) for the current process. */
855	npxinit(__INITIAL_NPXCW__);
856#endif
857}
858
859static int
860sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
861{
862	int error;
863	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
864		req);
865	if (!error && req->newptr)
866		resettodr();
867	return (error);
868}
869
870SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
871	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
872
873SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
874	CTLFLAG_RW, &disable_rtc_set, 0, "");
875
876SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
877	CTLFLAG_RD, &bootinfo, bootinfo, "");
878
879SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
880	CTLFLAG_RW, &wall_cmos_clock, 0, "");
881
882/*
883 * Initialize 386 and configure to run kernel
884 */
885
886/*
887 * Initialize segments & interrupt table
888 */
889
890int _default_ldt;
891#ifdef SMP
892union descriptor gdt[NGDT + NCPU];	/* global descriptor table */
893#else
894union descriptor gdt[NGDT];		/* global descriptor table */
895#endif
896struct gate_descriptor idt[NIDT];	/* interrupt descriptor table */
897union descriptor ldt[NLDT];		/* local descriptor table */
898#ifdef SMP
899/* table descriptors - used to load tables by microp */
900struct region_descriptor r_gdt, r_idt;
901#endif
902
903extern struct i386tss common_tss;	/* One tss per cpu */
904#ifdef VM86
905extern struct segment_descriptor common_tssd;
906extern int private_tss;			/* flag indicating private tss */
907extern u_int my_tr;			/* which task register setting */
908#endif /* VM86 */
909
910#if defined(I586_CPU) && !defined(NO_F00F_HACK)
911struct gate_descriptor *t_idt;
912extern int has_f00f_bug;
913#endif
914
915static struct i386tss dblfault_tss;
916static char dblfault_stack[PAGE_SIZE];
917
918extern  struct user *proc0paddr;
919
920
921/* software prototypes -- in more palatable form */
922struct soft_segment_descriptor gdt_segs[
923#ifdef SMP
924					NGDT + NCPU
925#endif
926						   ] = {
927/* GNULL_SEL	0 Null Descriptor */
928{	0x0,			/* segment base address  */
929	0x0,			/* length */
930	0,			/* segment type */
931	0,			/* segment descriptor priority level */
932	0,			/* segment descriptor present */
933	0, 0,
934	0,			/* default 32 vs 16 bit size */
935	0  			/* limit granularity (byte/page units)*/ },
936/* GCODE_SEL	1 Code Descriptor for kernel */
937{	0x0,			/* segment base address  */
938	0xfffff,		/* length - all address space */
939	SDT_MEMERA,		/* segment type */
940	0,			/* segment descriptor priority level */
941	1,			/* segment descriptor present */
942	0, 0,
943	1,			/* default 32 vs 16 bit size */
944	1  			/* limit granularity (byte/page units)*/ },
945/* GDATA_SEL	2 Data Descriptor for kernel */
946{	0x0,			/* segment base address  */
947	0xfffff,		/* length - all address space */
948	SDT_MEMRWA,		/* segment type */
949	0,			/* segment descriptor priority level */
950	1,			/* segment descriptor present */
951	0, 0,
952	1,			/* default 32 vs 16 bit size */
953	1  			/* limit granularity (byte/page units)*/ },
954/* GLDT_SEL	3 LDT Descriptor */
955{	(int) ldt,		/* segment base address  */
956	sizeof(ldt)-1,		/* length - all address space */
957	SDT_SYSLDT,		/* segment type */
958	SEL_UPL,		/* segment descriptor priority level */
959	1,			/* segment descriptor present */
960	0, 0,
961	0,			/* unused - default 32 vs 16 bit size */
962	0  			/* limit granularity (byte/page units)*/ },
963/* GTGATE_SEL	4 Null Descriptor - Placeholder */
964{	0x0,			/* segment base address  */
965	0x0,			/* length - all address space */
966	0,			/* segment type */
967	0,			/* segment descriptor priority level */
968	0,			/* segment descriptor present */
969	0, 0,
970	0,			/* default 32 vs 16 bit size */
971	0  			/* limit granularity (byte/page units)*/ },
972/* GPANIC_SEL	5 Panic Tss Descriptor */
973{	(int) &dblfault_tss,	/* segment base address  */
974	sizeof(struct i386tss)-1,/* length - all address space */
975	SDT_SYS386TSS,		/* segment type */
976	0,			/* segment descriptor priority level */
977	1,			/* segment descriptor present */
978	0, 0,
979	0,			/* unused - default 32 vs 16 bit size */
980	0  			/* limit granularity (byte/page units)*/ },
981/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
982{
983	(int) &common_tss,	/* segment base address */
984	sizeof(struct i386tss)-1,/* length - all address space */
985	SDT_SYS386TSS,		/* segment type */
986	0,			/* segment descriptor priority level */
987	1,			/* segment descriptor present */
988	0, 0,
989	0,			/* unused - default 32 vs 16 bit size */
990	0  			/* limit granularity (byte/page units)*/ },
991/* GUSERLDT_SEL	7 User LDT Descriptor per process */
992{	(int) ldt,		/* segment base address  */
993	(512 * sizeof(union descriptor)-1),		/* length */
994	SDT_SYSLDT,		/* segment type */
995	0,			/* segment descriptor priority level */
996	1,			/* segment descriptor present */
997	0, 0,
998	0,			/* unused - default 32 vs 16 bit size */
999	0  			/* limit granularity (byte/page units)*/ },
1000/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
1001{	0,			/* segment base address (overwritten by APM)  */
1002	0xfffff,		/* length */
1003	SDT_MEMERA,		/* segment type */
1004	0,			/* segment descriptor priority level */
1005	1,			/* segment descriptor present */
1006	0, 0,
1007	1,			/* default 32 vs 16 bit size */
1008	1  			/* limit granularity (byte/page units)*/ },
1009/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
1010{	0,			/* segment base address (overwritten by APM)  */
1011	0xfffff,		/* length */
1012	SDT_MEMERA,		/* segment type */
1013	0,			/* segment descriptor priority level */
1014	1,			/* segment descriptor present */
1015	0, 0,
1016	0,			/* default 32 vs 16 bit size */
1017	1  			/* limit granularity (byte/page units)*/ },
1018/* GAPMDATA_SEL	10 APM BIOS 32-bit interface (Data) */
1019{	0,			/* segment base address (overwritten by APM) */
1020	0xfffff,		/* length */
1021	SDT_MEMRWA,		/* segment type */
1022	0,			/* segment descriptor priority level */
1023	1,			/* segment descriptor present */
1024	0, 0,
1025	1,			/* default 32 vs 16 bit size */
1026	1  			/* limit granularity (byte/page units)*/ },
1027};
1028
1029static struct soft_segment_descriptor ldt_segs[] = {
1030	/* Null Descriptor - overwritten by call gate */
1031{	0x0,			/* segment base address  */
1032	0x0,			/* length - all address space */
1033	0,			/* segment type */
1034	0,			/* segment descriptor priority level */
1035	0,			/* segment descriptor present */
1036	0, 0,
1037	0,			/* default 32 vs 16 bit size */
1038	0  			/* limit granularity (byte/page units)*/ },
1039	/* Null Descriptor - overwritten by call gate */
1040{	0x0,			/* segment base address  */
1041	0x0,			/* length - all address space */
1042	0,			/* segment type */
1043	0,			/* segment descriptor priority level */
1044	0,			/* segment descriptor present */
1045	0, 0,
1046	0,			/* default 32 vs 16 bit size */
1047	0  			/* limit granularity (byte/page units)*/ },
1048	/* Null Descriptor - overwritten by call gate */
1049{	0x0,			/* segment base address  */
1050	0x0,			/* length - all address space */
1051	0,			/* segment type */
1052	0,			/* segment descriptor priority level */
1053	0,			/* segment descriptor present */
1054	0, 0,
1055	0,			/* default 32 vs 16 bit size */
1056	0  			/* limit granularity (byte/page units)*/ },
1057	/* Code Descriptor for user */
1058{	0x0,			/* segment base address  */
1059	0xfffff,		/* length - all address space */
1060	SDT_MEMERA,		/* segment type */
1061	SEL_UPL,		/* segment descriptor priority level */
1062	1,			/* segment descriptor present */
1063	0, 0,
1064	1,			/* default 32 vs 16 bit size */
1065	1  			/* limit granularity (byte/page units)*/ },
1066	/* Data Descriptor for user */
1067{	0x0,			/* segment base address  */
1068	0xfffff,		/* length - all address space */
1069	SDT_MEMRWA,		/* segment type */
1070	SEL_UPL,		/* segment descriptor priority level */
1071	1,			/* segment descriptor present */
1072	0, 0,
1073	1,			/* default 32 vs 16 bit size */
1074	1  			/* limit granularity (byte/page units)*/ },
1075};
1076
1077void
1078setidt(idx, func, typ, dpl, selec)
1079	int idx;
1080	inthand_t *func;
1081	int typ;
1082	int dpl;
1083	int selec;
1084{
1085	struct gate_descriptor *ip;
1086
1087#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1088	ip = (t_idt != NULL ? t_idt : idt) + idx;
1089#else
1090	ip = idt + idx;
1091#endif
1092	ip->gd_looffset = (int)func;
1093	ip->gd_selector = selec;
1094	ip->gd_stkcpy = 0;
1095	ip->gd_xx = 0;
1096	ip->gd_type = typ;
1097	ip->gd_dpl = dpl;
1098	ip->gd_p = 1;
1099	ip->gd_hioffset = ((int)func)>>16 ;
1100}
1101
1102#define	IDTVEC(name)	__CONCAT(X,name)
1103
1104extern inthand_t
1105	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1106	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1107	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1108	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1109	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1110
1111void
1112sdtossd(sd, ssd)
1113	struct segment_descriptor *sd;
1114	struct soft_segment_descriptor *ssd;
1115{
1116	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1117	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1118	ssd->ssd_type  = sd->sd_type;
1119	ssd->ssd_dpl   = sd->sd_dpl;
1120	ssd->ssd_p     = sd->sd_p;
1121	ssd->ssd_def32 = sd->sd_def32;
1122	ssd->ssd_gran  = sd->sd_gran;
1123}
1124
1125void
1126init386(first)
1127	int first;
1128{
1129	int x;
1130	unsigned biosbasemem, biosextmem;
1131	struct gate_descriptor *gdp;
1132	int gsel_tss;
1133
1134	struct isa_device *idp;
1135#ifndef SMP
1136	/* table descriptors - used to load tables by microp */
1137	struct region_descriptor r_gdt, r_idt;
1138#endif
1139	int pagesinbase, pagesinext;
1140	int target_page, pa_indx;
1141	int off;
1142	int speculative_mprobe;
1143
1144	/*
1145	 * Prevent lowering of the ipl if we call tsleep() early.
1146	 */
1147	safepri = cpl;
1148
1149	proc0.p_addr = proc0paddr;
1150
1151	atdevbase = ISA_HOLE_START + KERNBASE;
1152
1153	/*
1154	 * Initialize the console before we print anything out.
1155	 */
1156	cninit();
1157
1158	/*
1159	 * make gdt memory segments, the code segment goes up to end of the
1160	 * page with etext in it, the data segment goes to the end of
1161	 * the address space
1162	 */
1163	/*
1164	 * XXX text protection is temporarily (?) disabled.  The limit was
1165	 * i386_btop(round_page(etext)) - 1.
1166	 */
1167	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1168	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1169#ifdef BDE_DEBUGGER
1170#define	NGDT1	8		/* avoid overwriting db entries with APM ones */
1171#else
1172#define	NGDT1	(sizeof gdt_segs / sizeof gdt_segs[0])
1173#endif
1174	for (x = 0; x < NGDT1; x++)
1175		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1176#ifdef VM86
1177	common_tssd = gdt[GPROC0_SEL].sd;
1178#endif /* VM86 */
1179
1180#ifdef SMP
1181	/*
1182	 * Spin these up now.  init_secondary() grabs them.  We could use
1183	 * #for(x,y,z) / #endfor cpp directives if they existed.
1184	 */
1185	for (x = 0; x < NCPU; x++) {
1186		gdt_segs[NGDT + x] = gdt_segs[GPROC0_SEL];
1187		ssdtosd(&gdt_segs[NGDT + x], &gdt[NGDT + x].sd);
1188	}
1189#endif
1190
1191	/* make ldt memory segments */
1192	/*
1193	 * The data segment limit must not cover the user area because we
1194	 * don't want the user area to be writable in copyout() etc. (page
1195	 * level protection is lost in kernel mode on 386's).  Also, we
1196	 * don't want the user area to be writable directly (page level
1197	 * protection of the user area is not available on 486's with
1198	 * CR0_WP set, because there is no user-read/kernel-write mode).
1199	 *
1200	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1201	 * should be spelled ...MAX_USER...
1202	 */
1203#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1204	/*
1205	 * The code segment limit has to cover the user area until we move
1206	 * the signal trampoline out of the user area.  This is safe because
1207	 * the code segment cannot be written to directly.
1208	 */
1209#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1210	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1211	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1212	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1213		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1214
1215	/* exceptions */
1216	for (x = 0; x < NIDT; x++)
1217		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1218	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1219	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1220	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1221 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1222	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1223	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1224	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1225	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1226	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1227	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1228	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1229	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1230	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1231	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1232	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1233	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1234	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1235	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1236	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1237 	setidt(0x80, &IDTVEC(int0x80_syscall),
1238			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1239
1240#include	"isa.h"
1241#if	NISA >0
1242	isa_defaultirq();
1243#endif
1244	rand_initialize();
1245
1246	r_gdt.rd_limit = sizeof(gdt) - 1;
1247	r_gdt.rd_base =  (int) gdt;
1248	lgdt(&r_gdt);
1249
1250	r_idt.rd_limit = sizeof(idt) - 1;
1251	r_idt.rd_base = (int) idt;
1252	lidt(&r_idt);
1253
1254	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1255	lldt(_default_ldt);
1256#ifdef USER_LDT
1257	currentldt = _default_ldt;
1258#endif
1259
1260#ifdef DDB
1261	kdb_init();
1262	if (boothowto & RB_KDB)
1263		Debugger("Boot flags requested debugger");
1264#endif
1265
1266	finishidentcpu();	/* Final stage of CPU initialization */
1267	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1268	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1269	initializecpu();	/* Initialize CPU registers */
1270
1271	/* make an initial tss so cpu can get interrupt stack on syscall! */
1272#ifdef VM86
1273	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
1274#else
1275	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE;
1276#endif /* VM86 */
1277	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1278	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1279	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1280	ltr(gsel_tss);
1281#ifdef VM86
1282	private_tss = 0;
1283	my_tr = GPROC0_SEL;
1284#endif
1285
1286	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1287	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1288	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1289	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1290	dblfault_tss.tss_cr3 = (int)IdlePTD;
1291	dblfault_tss.tss_eip = (int) dblfault_handler;
1292	dblfault_tss.tss_eflags = PSL_KERNEL;
1293	dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs =
1294	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1295	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1296	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1297
1298#ifdef VM86
1299	initial_bioscalls(&biosbasemem, &biosextmem);
1300#else
1301
1302	/* Use BIOS values stored in RTC CMOS RAM, since probing
1303	 * breaks certain 386 AT relics.
1304	 */
1305	biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
1306	biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
1307#endif
1308
1309	/*
1310	 * If BIOS tells us that it has more than 640k in the basemem,
1311	 *	don't believe it - set it to 640k.
1312	 */
1313	if (biosbasemem > 640) {
1314		printf("Preposterous RTC basemem of %dK, truncating to 640K\n",
1315		       biosbasemem);
1316		biosbasemem = 640;
1317	}
1318	if (bootinfo.bi_memsizes_valid && bootinfo.bi_basemem > 640) {
1319		printf("Preposterous BIOS basemem of %dK, truncating to 640K\n",
1320		       bootinfo.bi_basemem);
1321		bootinfo.bi_basemem = 640;
1322	}
1323
1324	/*
1325	 * Warn if the official BIOS interface disagrees with the RTC
1326	 * interface used above about the amount of base memory or the
1327	 * amount of extended memory.  Prefer the BIOS value for the base
1328	 * memory.  This is necessary for machines that `steal' base
1329	 * memory for use as BIOS memory, at least if we are going to use
1330	 * the BIOS for apm.  Prefer the RTC value for extended memory.
1331	 * Eventually the hackish interface shouldn't even be looked at.
1332	 */
1333	if (bootinfo.bi_memsizes_valid) {
1334		if (bootinfo.bi_basemem != biosbasemem) {
1335			vm_offset_t pa;
1336
1337			printf(
1338	"BIOS basemem (%uK) != RTC basemem (%uK), setting to BIOS value\n",
1339			       bootinfo.bi_basemem, biosbasemem);
1340			biosbasemem = bootinfo.bi_basemem;
1341
1342			/*
1343			 * XXX if biosbasemem is now < 640, there is `hole'
1344			 * between the end of base memory and the start of
1345			 * ISA memory.  The hole may be empty or it may
1346			 * contain BIOS code or data.  Map it read/write so
1347			 * that the BIOS can write to it.  (Memory from 0 to
1348			 * the physical end of the kernel is mapped read-only
1349			 * to begin with and then parts of it are remapped.
1350			 * The parts that aren't remapped form holes that
1351			 * remain read-only and are unused by the kernel.
1352			 * The base memory area is below the physical end of
1353			 * the kernel and right now forms a read-only hole.
1354			 * The part of it from PAGE_SIZE to
1355			 * (trunc_page(biosbasemem * 1024) - 1) will be
1356			 * remapped and used by the kernel later.)
1357			 *
1358			 * This code is similar to the code used in
1359			 * pmap_mapdev, but since no memory needs to be
1360			 * allocated we simply change the mapping.
1361			 */
1362			for (pa = trunc_page(biosbasemem * 1024);
1363			     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1364				unsigned *pte;
1365
1366				pte = (unsigned *)vtopte(pa + KERNBASE);
1367				*pte = pa | PG_RW | PG_V;
1368			}
1369		}
1370		if (bootinfo.bi_extmem != biosextmem)
1371			printf("BIOS extmem (%uK) != RTC extmem (%uK)\n",
1372			       bootinfo.bi_extmem, biosextmem);
1373	}
1374
1375#ifdef SMP
1376	/* make hole for AP bootstrap code */
1377	pagesinbase = mp_bootaddress(biosbasemem) / PAGE_SIZE;
1378#else
1379	pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
1380#endif
1381
1382	pagesinext = biosextmem * 1024 / PAGE_SIZE;
1383
1384	/*
1385	 * Special hack for chipsets that still remap the 384k hole when
1386	 *	there's 16MB of memory - this really confuses people that
1387	 *	are trying to use bus mastering ISA controllers with the
1388	 *	"16MB limit"; they only have 16MB, but the remapping puts
1389	 *	them beyond the limit.
1390	 */
1391	/*
1392	 * If extended memory is between 15-16MB (16-17MB phys address range),
1393	 *	chop it to 15MB.
1394	 */
1395	if ((pagesinext > 3840) && (pagesinext < 4096))
1396		pagesinext = 3840;
1397
1398	/*
1399	 * Maxmem isn't the "maximum memory", it's one larger than the
1400	 * highest page of the physical address space.  It should be
1401	 * called something like "Maxphyspage".
1402	 */
1403	Maxmem = pagesinext + 0x100000/PAGE_SIZE;
1404	/*
1405	 * Indicate that we wish to do a speculative search for memory beyond
1406	 * the end of the reported size if the indicated amount is 64MB (0x4000
1407	 * pages) - which is the largest amount that the BIOS/bootblocks can
1408	 * currently report. If a specific amount of memory is indicated via
1409	 * the MAXMEM option or the npx0 "msize", then don't do the speculative
1410	 * memory probe.
1411	 */
1412	if (Maxmem >= 0x4000)
1413		speculative_mprobe = TRUE;
1414	else
1415		speculative_mprobe = FALSE;
1416
1417#ifdef MAXMEM
1418	Maxmem = MAXMEM/4;
1419	speculative_mprobe = FALSE;
1420#endif
1421
1422#if NNPX > 0
1423	idp = find_isadev(isa_devtab_null, &npxdriver, 0);
1424	if (idp != NULL && idp->id_msize != 0) {
1425		Maxmem = idp->id_msize / 4;
1426		speculative_mprobe = FALSE;
1427	}
1428#endif
1429
1430#ifdef SMP
1431	/* look for the MP hardware - needed for apic addresses */
1432	mp_probe();
1433#endif
1434
1435	/* call pmap initialization to make new kernel address space */
1436	pmap_bootstrap (first, 0);
1437
1438	/*
1439	 * Size up each available chunk of physical memory.
1440	 */
1441
1442	/*
1443	 * We currently don't bother testing base memory.
1444	 * XXX  ...but we probably should.
1445	 */
1446	pa_indx = 0;
1447	if (pagesinbase > 1) {
1448		phys_avail[pa_indx++] = PAGE_SIZE;	/* skip first page of memory */
1449		phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
1450		physmem = pagesinbase - 1;
1451	} else {
1452		/* point at first chunk end */
1453		pa_indx++;
1454	}
1455
1456	for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
1457		int tmp, page_bad;
1458
1459		page_bad = FALSE;
1460
1461		/*
1462		 * map page into kernel: valid, read/write, non-cacheable
1463		 */
1464		*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
1465		invltlb();
1466
1467		tmp = *(int *)CADDR1;
1468		/*
1469		 * Test for alternating 1's and 0's
1470		 */
1471		*(volatile int *)CADDR1 = 0xaaaaaaaa;
1472		if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
1473			page_bad = TRUE;
1474		}
1475		/*
1476		 * Test for alternating 0's and 1's
1477		 */
1478		*(volatile int *)CADDR1 = 0x55555555;
1479		if (*(volatile int *)CADDR1 != 0x55555555) {
1480			page_bad = TRUE;
1481		}
1482		/*
1483		 * Test for all 1's
1484		 */
1485		*(volatile int *)CADDR1 = 0xffffffff;
1486		if (*(volatile int *)CADDR1 != 0xffffffff) {
1487			page_bad = TRUE;
1488		}
1489		/*
1490		 * Test for all 0's
1491		 */
1492		*(volatile int *)CADDR1 = 0x0;
1493		if (*(volatile int *)CADDR1 != 0x0) {
1494			/*
1495			 * test of page failed
1496			 */
1497			page_bad = TRUE;
1498		}
1499		/*
1500		 * Restore original value.
1501		 */
1502		*(int *)CADDR1 = tmp;
1503
1504		/*
1505		 * Adjust array of valid/good pages.
1506		 */
1507		if (page_bad == FALSE) {
1508			/*
1509			 * If this good page is a continuation of the
1510			 * previous set of good pages, then just increase
1511			 * the end pointer. Otherwise start a new chunk.
1512			 * Note that "end" points one higher than end,
1513			 * making the range >= start and < end.
1514			 * If we're also doing a speculative memory
1515			 * test and we at or past the end, bump up Maxmem
1516			 * so that we keep going. The first bad page
1517			 * will terminate the loop.
1518			 */
1519			if (phys_avail[pa_indx] == target_page) {
1520				phys_avail[pa_indx] += PAGE_SIZE;
1521				if (speculative_mprobe == TRUE &&
1522				    phys_avail[pa_indx] >= (64*1024*1024))
1523					Maxmem++;
1524			} else {
1525				pa_indx++;
1526				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1527					printf("Too many holes in the physical address space, giving up\n");
1528					pa_indx--;
1529					break;
1530				}
1531				phys_avail[pa_indx++] = target_page;	/* start */
1532				phys_avail[pa_indx] = target_page + PAGE_SIZE;	/* end */
1533			}
1534			physmem++;
1535		}
1536	}
1537
1538	*(int *)CMAP1 = 0;
1539	invltlb();
1540
1541	/*
1542	 * XXX
1543	 * The last chunk must contain at least one page plus the message
1544	 * buffer to avoid complicating other code (message buffer address
1545	 * calculation, etc.).
1546	 */
1547	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1548	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1549		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1550		phys_avail[pa_indx--] = 0;
1551		phys_avail[pa_indx--] = 0;
1552	}
1553
1554	Maxmem = atop(phys_avail[pa_indx]);
1555
1556	/* Trim off space for the message buffer. */
1557	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1558
1559	avail_end = phys_avail[pa_indx];
1560
1561	/* now running on new page tables, configured,and u/iom is accessible */
1562
1563	/* Map the message buffer. */
1564	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1565		pmap_enter(kernel_pmap, (vm_offset_t)msgbufp + off,
1566			   avail_end + off, VM_PROT_ALL, TRUE);
1567
1568	msgbufinit(msgbufp, MSGBUF_SIZE);
1569
1570	/* make a call gate to reenter kernel with */
1571	gdp = &ldt[LSYS5CALLS_SEL].gd;
1572
1573	x = (int) &IDTVEC(syscall);
1574	gdp->gd_looffset = x++;
1575	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1576	gdp->gd_stkcpy = 1;
1577	gdp->gd_type = SDT_SYS386CGT;
1578	gdp->gd_dpl = SEL_UPL;
1579	gdp->gd_p = 1;
1580	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1581
1582	/* XXX does this work? */
1583	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1584
1585	/* transfer to user mode */
1586
1587	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1588	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1589
1590	/* setup proc 0's pcb */
1591	proc0.p_addr->u_pcb.pcb_flags = 0;
1592	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1593#ifdef SMP
1594	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1595#endif
1596#ifdef VM86
1597	proc0.p_addr->u_pcb.pcb_ext = 0;
1598#endif
1599
1600	/* Sigh, relocate physical addresses left from bootstrap */
1601	if (bootinfo.bi_modulep) {
1602		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1603		preload_bootstrap_relocate(KERNBASE);
1604	}
1605	if (bootinfo.bi_envp)
1606		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1607}
1608
1609#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1610static void f00f_hack(void *unused);
1611SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1612
1613static void
1614f00f_hack(void *unused) {
1615#ifndef SMP
1616	struct region_descriptor r_idt;
1617#endif
1618	vm_offset_t tmp;
1619
1620	if (!has_f00f_bug)
1621		return;
1622
1623	printf("Intel Pentium detected, installing workaround for F00F bug\n");
1624
1625	r_idt.rd_limit = sizeof(idt) - 1;
1626
1627	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
1628	if (tmp == 0)
1629		panic("kmem_alloc returned 0");
1630	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1631		panic("kmem_alloc returned non-page-aligned memory");
1632	/* Put the first seven entries in the lower page */
1633	t_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1634	bcopy(idt, t_idt, sizeof(idt));
1635	r_idt.rd_base = (int)t_idt;
1636	lidt(&r_idt);
1637	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
1638			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
1639		panic("vm_map_protect failed");
1640	return;
1641}
1642#endif /* defined(I586_CPU) && !NO_F00F_HACK */
1643
1644int
1645ptrace_set_pc(p, addr)
1646	struct proc *p;
1647	unsigned long addr;
1648{
1649	p->p_md.md_regs->tf_eip = addr;
1650	return (0);
1651}
1652
1653int
1654ptrace_single_step(p)
1655	struct proc *p;
1656{
1657	p->p_md.md_regs->tf_eflags |= PSL_T;
1658	return (0);
1659}
1660
1661int ptrace_read_u_check(p, addr, len)
1662	struct proc *p;
1663	vm_offset_t addr;
1664	size_t len;
1665{
1666	vm_offset_t gap;
1667
1668	if ((vm_offset_t) (addr + len) < addr)
1669		return EPERM;
1670	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
1671		return 0;
1672
1673	gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
1674
1675	if ((vm_offset_t) addr < gap)
1676		return EPERM;
1677	if ((vm_offset_t) (addr + len) <=
1678	    (vm_offset_t) (gap + sizeof(struct trapframe)))
1679		return 0;
1680	return EPERM;
1681}
1682
1683int ptrace_write_u(p, off, data)
1684	struct proc *p;
1685	vm_offset_t off;
1686	long data;
1687{
1688	struct trapframe frame_copy;
1689	vm_offset_t min;
1690	struct trapframe *tp;
1691
1692	/*
1693	 * Privileged kernel state is scattered all over the user area.
1694	 * Only allow write access to parts of regs and to fpregs.
1695	 */
1696	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
1697	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
1698		tp = p->p_md.md_regs;
1699		frame_copy = *tp;
1700		*(int *)((char *)&frame_copy + (off - min)) = data;
1701		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
1702		    !CS_SECURE(frame_copy.tf_cs))
1703			return (EINVAL);
1704		*(int*)((char *)p->p_addr + off) = data;
1705		return (0);
1706	}
1707	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
1708	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
1709		*(int*)((char *)p->p_addr + off) = data;
1710		return (0);
1711	}
1712	return (EFAULT);
1713}
1714
1715int
1716fill_regs(p, regs)
1717	struct proc *p;
1718	struct reg *regs;
1719{
1720	struct pcb *pcb;
1721	struct trapframe *tp;
1722
1723	tp = p->p_md.md_regs;
1724	regs->r_es = tp->tf_es;
1725	regs->r_ds = tp->tf_ds;
1726	regs->r_edi = tp->tf_edi;
1727	regs->r_esi = tp->tf_esi;
1728	regs->r_ebp = tp->tf_ebp;
1729	regs->r_ebx = tp->tf_ebx;
1730	regs->r_edx = tp->tf_edx;
1731	regs->r_ecx = tp->tf_ecx;
1732	regs->r_eax = tp->tf_eax;
1733	regs->r_eip = tp->tf_eip;
1734	regs->r_cs = tp->tf_cs;
1735	regs->r_eflags = tp->tf_eflags;
1736	regs->r_esp = tp->tf_esp;
1737	regs->r_ss = tp->tf_ss;
1738	pcb = &p->p_addr->u_pcb;
1739	regs->r_fs = pcb->pcb_fs;
1740	regs->r_gs = pcb->pcb_gs;
1741	return (0);
1742}
1743
1744int
1745set_regs(p, regs)
1746	struct proc *p;
1747	struct reg *regs;
1748{
1749	struct pcb *pcb;
1750	struct trapframe *tp;
1751
1752	tp = p->p_md.md_regs;
1753	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
1754	    !CS_SECURE(regs->r_cs))
1755		return (EINVAL);
1756	tp->tf_es = regs->r_es;
1757	tp->tf_ds = regs->r_ds;
1758	tp->tf_edi = regs->r_edi;
1759	tp->tf_esi = regs->r_esi;
1760	tp->tf_ebp = regs->r_ebp;
1761	tp->tf_ebx = regs->r_ebx;
1762	tp->tf_edx = regs->r_edx;
1763	tp->tf_ecx = regs->r_ecx;
1764	tp->tf_eax = regs->r_eax;
1765	tp->tf_eip = regs->r_eip;
1766	tp->tf_cs = regs->r_cs;
1767	tp->tf_eflags = regs->r_eflags;
1768	tp->tf_esp = regs->r_esp;
1769	tp->tf_ss = regs->r_ss;
1770	pcb = &p->p_addr->u_pcb;
1771	pcb->pcb_fs = regs->r_fs;
1772	pcb->pcb_gs = regs->r_gs;
1773	return (0);
1774}
1775
1776int
1777fill_fpregs(p, fpregs)
1778	struct proc *p;
1779	struct fpreg *fpregs;
1780{
1781	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
1782	return (0);
1783}
1784
1785int
1786set_fpregs(p, fpregs)
1787	struct proc *p;
1788	struct fpreg *fpregs;
1789{
1790	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
1791	return (0);
1792}
1793
1794#ifndef DDB
1795void
1796Debugger(const char *msg)
1797{
1798	printf("Debugger(\"%s\") called.\n", msg);
1799}
1800#endif /* no DDB */
1801
1802#include <sys/disklabel.h>
1803
1804/*
1805 * Determine the size of the transfer, and make sure it is
1806 * within the boundaries of the partition. Adjust transfer
1807 * if needed, and signal errors or early completion.
1808 */
1809int
1810bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
1811{
1812        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
1813        int labelsect = lp->d_partitions[0].p_offset;
1814        int maxsz = p->p_size,
1815                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
1816
1817        /* overwriting disk label ? */
1818        /* XXX should also protect bootstrap in first 8K */
1819        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
1820#if LABELSECTOR != 0
1821            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
1822#endif
1823            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1824                bp->b_error = EROFS;
1825                goto bad;
1826        }
1827
1828#if     defined(DOSBBSECTOR) && defined(notyet)
1829        /* overwriting master boot record? */
1830        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
1831            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1832                bp->b_error = EROFS;
1833                goto bad;
1834        }
1835#endif
1836
1837        /* beyond partition? */
1838        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
1839                /* if exactly at end of disk, return an EOF */
1840                if (bp->b_blkno == maxsz) {
1841                        bp->b_resid = bp->b_bcount;
1842                        return(0);
1843                }
1844                /* or truncate if part of it fits */
1845                sz = maxsz - bp->b_blkno;
1846                if (sz <= 0) {
1847                        bp->b_error = EINVAL;
1848                        goto bad;
1849                }
1850                bp->b_bcount = sz << DEV_BSHIFT;
1851        }
1852
1853        bp->b_pblkno = bp->b_blkno + p->p_offset;
1854        return(1);
1855
1856bad:
1857        bp->b_flags |= B_ERROR;
1858        return(-1);
1859}
1860
1861#ifdef DDB
1862
1863/*
1864 * Provide inb() and outb() as functions.  They are normally only
1865 * available as macros calling inlined functions, thus cannot be
1866 * called inside DDB.
1867 *
1868 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1869 */
1870
1871#undef inb
1872#undef outb
1873
1874/* silence compiler warnings */
1875u_char inb(u_int);
1876void outb(u_int, u_char);
1877
1878u_char
1879inb(u_int port)
1880{
1881	u_char	data;
1882	/*
1883	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1884	 * %edx, while gcc generates inferior code (movw instead of movl)
1885	 * if we tell it to load (u_short) port.
1886	 */
1887	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1888	return (data);
1889}
1890
1891void
1892outb(u_int port, u_char data)
1893{
1894	u_char	al;
1895	/*
1896	 * Use an unnecessary assignment to help gcc's register allocator.
1897	 * This make a large difference for gcc-1.40 and a tiny difference
1898	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1899	 * best results.  gcc-2.6.0 can't handle this.
1900	 */
1901	al = data;
1902	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1903}
1904
1905#endif /* DDB */
1906