machdep.c revision 31321
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 *	$Id: machdep.c,v 1.271 1997/11/07 09:20:15 phk Exp $
39 */
40
41#include "apm.h"
42#include "npx.h"
43#include "opt_sysvipc.h"
44#include "opt_ddb.h"
45#include "opt_bounce.h"
46#include "opt_maxmem.h"
47#include "opt_perfmon.h"
48#include "opt_smp.h"
49#include "opt_userconfig.h"
50#include "opt_vm86.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysproto.h>
55#include <sys/signalvar.h>
56#include <sys/kernel.h>
57#include <sys/proc.h>
58#include <sys/buf.h>
59#include <sys/reboot.h>
60#include <sys/conf.h>
61#include <sys/callout.h>
62#include <sys/malloc.h>
63#include <sys/mbuf.h>
64#include <sys/msgbuf.h>
65#include <sys/sysent.h>
66#include <sys/sysctl.h>
67#include <sys/vmmeter.h>
68
69#ifdef SYSVSHM
70#include <sys/shm.h>
71#endif
72
73#ifdef SYSVMSG
74#include <sys/msg.h>
75#endif
76
77#ifdef SYSVSEM
78#include <sys/sem.h>
79#endif
80
81#include <vm/vm.h>
82#include <vm/vm_param.h>
83#include <vm/vm_prot.h>
84#include <sys/lock.h>
85#include <vm/vm_kern.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_map.h>
89#include <vm/vm_pager.h>
90#include <vm/vm_extern.h>
91
92#include <sys/user.h>
93#include <sys/exec.h>
94
95#include <ddb/ddb.h>
96
97#include <net/netisr.h>
98
99#if NAPM > 0
100#include <machine/apm_bios.h>
101#endif
102#include <machine/cpu.h>
103#include <machine/reg.h>
104#include <machine/clock.h>
105#include <machine/specialreg.h>
106#include <machine/cons.h>
107#include <machine/bootinfo.h>
108#include <machine/md_var.h>
109#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
110#ifdef SMP
111#include <machine/smp.h>
112#endif
113#ifdef PERFMON
114#include <machine/perfmon.h>
115#endif
116
117#include <i386/isa/isa_device.h>
118#include <i386/isa/intr_machdep.h>
119#include <i386/isa/rtc.h>
120#include <machine/random.h>
121
122extern void init386 __P((int first));
123extern int ptrace_set_pc __P((struct proc *p, unsigned int addr));
124extern int ptrace_single_step __P((struct proc *p));
125extern int ptrace_write_u __P((struct proc *p, vm_offset_t off, int data));
126extern void dblfault_handler __P((void));
127
128extern void printcpuinfo(void);	/* XXX header file */
129extern void earlysetcpuclass(void);	/* same header file */
130extern void finishidentcpu(void);
131extern void panicifcpuunsupported(void);
132extern void initializecpu(void);
133
134static void cpu_startup __P((void *));
135SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
136
137static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
138
139#ifdef BOUNCE_BUFFERS
140#ifdef BOUNCEPAGES
141int	bouncepages = BOUNCEPAGES;
142#else
143int	bouncepages = 0;
144#endif
145#endif	/* BOUNCE_BUFFERS */
146
147int	msgbufmapped = 0;		/* set when safe to use msgbuf */
148int _udatasel, _ucodesel;
149u_int	atdevbase;
150
151
152int physmem = 0;
153int cold = 1;
154
155static int
156sysctl_hw_physmem SYSCTL_HANDLER_ARGS
157{
158	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
159	return (error);
160}
161
162SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
163	0, 0, sysctl_hw_physmem, "I", "");
164
165static int
166sysctl_hw_usermem SYSCTL_HANDLER_ARGS
167{
168	int error = sysctl_handle_int(oidp, 0,
169		ctob(physmem - cnt.v_wire_count), req);
170	return (error);
171}
172
173SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
174	0, 0, sysctl_hw_usermem, "I", "");
175
176int boothowto = 0, bootverbose = 0, Maxmem = 0;
177long dumplo;
178
179vm_offset_t phys_avail[10];
180
181/* must be 2 less so 0 0 can signal end of chunks */
182#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
183
184static void setup_netisrs __P((struct linker_set *)); /* XXX declare elsewhere */
185
186static vm_offset_t buffer_sva, buffer_eva;
187vm_offset_t clean_sva, clean_eva;
188static vm_offset_t pager_sva, pager_eva;
189extern struct linker_set netisr_set;
190
191#define offsetof(type, member)	((size_t)(&((type *)0)->member))
192
193static void
194cpu_startup(dummy)
195	void *dummy;
196{
197	register unsigned i;
198	register caddr_t v;
199	vm_offset_t maxaddr;
200	vm_size_t size = 0;
201	int firstaddr;
202	vm_offset_t minaddr;
203
204	if (boothowto & RB_VERBOSE)
205		bootverbose++;
206
207	/*
208	 * Good {morning,afternoon,evening,night}.
209	 */
210	printf(version);
211	earlysetcpuclass();
212	startrtclock();
213	printcpuinfo();
214	panicifcpuunsupported();
215#ifdef PERFMON
216	perfmon_init();
217#endif
218	printf("real memory  = %d (%dK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
219	/*
220	 * Display any holes after the first chunk of extended memory.
221	 */
222	if (bootverbose) {
223		int indx;
224
225		printf("Physical memory chunk(s):\n");
226		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
227			int size1 = phys_avail[indx + 1] - phys_avail[indx];
228
229			printf("0x%08lx - 0x%08lx, %d bytes (%d pages)\n", phys_avail[indx],
230			    phys_avail[indx + 1] - 1, size1, size1 / PAGE_SIZE);
231		}
232	}
233
234	/*
235	 * Quickly wire in netisrs.
236	 */
237	setup_netisrs(&netisr_set);
238
239	/*
240	 * Calculate callout wheel size
241	 */
242	for (callwheelsize = 1, callwheelbits = 0;
243	     callwheelsize < ncallout;
244	     callwheelsize <<= 1, ++callwheelbits)
245		;
246	callwheelmask = callwheelsize - 1;
247
248	/*
249	 * Allocate space for system data structures.
250	 * The first available kernel virtual address is in "v".
251	 * As pages of kernel virtual memory are allocated, "v" is incremented.
252	 * As pages of memory are allocated and cleared,
253	 * "firstaddr" is incremented.
254	 * An index into the kernel page table corresponding to the
255	 * virtual memory address maintained in "v" is kept in "mapaddr".
256	 */
257
258	/*
259	 * Make two passes.  The first pass calculates how much memory is
260	 * needed and allocates it.  The second pass assigns virtual
261	 * addresses to the various data structures.
262	 */
263	firstaddr = 0;
264again:
265	v = (caddr_t)firstaddr;
266
267#define	valloc(name, type, num) \
268	    (name) = (type *)v; v = (caddr_t)((name)+(num))
269#define	valloclim(name, type, num, lim) \
270	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
271	valloc(callout, struct callout, ncallout);
272	valloc(callwheel, struct callout_tailq, callwheelsize);
273#ifdef SYSVSHM
274	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
275#endif
276#ifdef SYSVSEM
277	valloc(sema, struct semid_ds, seminfo.semmni);
278	valloc(sem, struct sem, seminfo.semmns);
279	/* This is pretty disgusting! */
280	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
281#endif
282#ifdef SYSVMSG
283	valloc(msgpool, char, msginfo.msgmax);
284	valloc(msgmaps, struct msgmap, msginfo.msgseg);
285	valloc(msghdrs, struct msg, msginfo.msgtql);
286	valloc(msqids, struct msqid_ds, msginfo.msgmni);
287#endif
288
289	if (nbuf == 0) {
290		nbuf = 30;
291		if( physmem > 1024)
292			nbuf += min((physmem - 1024) / 8, 2048);
293	}
294	nswbuf = max(min(nbuf/4, 128), 16);
295
296	valloc(swbuf, struct buf, nswbuf);
297	valloc(buf, struct buf, nbuf);
298
299#ifdef BOUNCE_BUFFERS
300	/*
301	 * If there is more than 16MB of memory, allocate some bounce buffers
302	 */
303	if (Maxmem > 4096) {
304		if (bouncepages == 0) {
305			bouncepages = 64;
306			bouncepages += ((Maxmem - 4096) / 2048) * 32;
307			if (bouncepages > 128)
308				bouncepages = 128;
309		}
310		v = (caddr_t)((vm_offset_t)round_page(v));
311		valloc(bouncememory, char, bouncepages * PAGE_SIZE);
312	}
313#endif
314
315	/*
316	 * End of first pass, size has been calculated so allocate memory
317	 */
318	if (firstaddr == 0) {
319		size = (vm_size_t)(v - firstaddr);
320		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
321		if (firstaddr == 0)
322			panic("startup: no room for tables");
323		goto again;
324	}
325
326	/*
327	 * End of second pass, addresses have been assigned
328	 */
329	if ((vm_size_t)(v - firstaddr) != size)
330		panic("startup: table size inconsistency");
331
332#ifdef BOUNCE_BUFFERS
333	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
334			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) +
335				maxbkva + pager_map_size, TRUE);
336	io_map = kmem_suballoc(clean_map, &minaddr, &maxaddr, maxbkva, FALSE);
337#else
338	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
339			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size, TRUE);
340#endif
341	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
342				(nbuf*BKVASIZE), TRUE);
343	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
344				(nswbuf*MAXPHYS) + pager_map_size, TRUE);
345	pager_map->system_map = 1;
346	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
347				(16*ARG_MAX), TRUE);
348	u_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
349				(maxproc*UPAGES*PAGE_SIZE), FALSE);
350
351	/*
352	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
353	 * we use the more space efficient malloc in place of kmem_alloc.
354	 */
355	{
356		vm_offset_t mb_map_size;
357
358		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
359		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
360		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
361		bzero(mclrefcnt, mb_map_size / MCLBYTES);
362		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
363			mb_map_size, FALSE);
364		mb_map->system_map = 1;
365	}
366
367	/*
368	 * Initialize callouts
369	 */
370	SLIST_INIT(&callfree);
371	for (i = 0; i < ncallout; i++) {
372		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
373	}
374
375	for (i = 0; i < callwheelsize; i++) {
376		TAILQ_INIT(&callwheel[i]);
377	}
378
379#if defined(USERCONFIG)
380#if defined(USERCONFIG_BOOT)
381	if (1) {
382#else
383        if (boothowto & RB_CONFIG) {
384#endif
385		userconfig();
386		cninit();	/* the preferred console may have changed */
387	}
388#endif
389
390#ifdef BOUNCE_BUFFERS
391	/*
392	 * init bounce buffers
393	 */
394	vm_bounce_init();
395#endif
396
397	printf("avail memory = %d (%dK bytes)\n", ptoa(cnt.v_free_count),
398	    ptoa(cnt.v_free_count) / 1024);
399
400	/*
401	 * Set up buffers, so they can be used to read disk labels.
402	 */
403	bufinit();
404	vm_pager_bufferinit();
405
406#ifdef SMP
407	/*
408	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
409	 */
410	mp_start();			/* fire up the APs and APICs */
411	mp_announce();
412#endif  /* SMP */
413}
414
415int
416register_netisr(num, handler)
417	int num;
418	netisr_t *handler;
419{
420
421	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
422		printf("register_netisr: bad isr number: %d\n", num);
423		return (EINVAL);
424	}
425	netisrs[num] = handler;
426	return (0);
427}
428
429static void
430setup_netisrs(ls)
431	struct linker_set *ls;
432{
433	int i;
434	const struct netisrtab *nit;
435
436	for(i = 0; ls->ls_items[i]; i++) {
437		nit = (const struct netisrtab *)ls->ls_items[i];
438		register_netisr(nit->nit_num, nit->nit_isr);
439	}
440}
441
442/*
443 * Send an interrupt to process.
444 *
445 * Stack is set up to allow sigcode stored
446 * at top to call routine, followed by kcall
447 * to sigreturn routine below.  After sigreturn
448 * resets the signal mask, the stack, and the
449 * frame pointer, it returns to the user
450 * specified pc, psl.
451 */
452void
453sendsig(catcher, sig, mask, code)
454	sig_t catcher;
455	int sig, mask;
456	u_long code;
457{
458	register struct proc *p = curproc;
459	register struct trapframe *regs;
460	register struct sigframe *fp;
461	struct sigframe sf;
462	struct sigacts *psp = p->p_sigacts;
463	int oonstack;
464
465	regs = p->p_md.md_regs;
466        oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
467	/*
468	 * Allocate and validate space for the signal handler context.
469	 */
470        if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
471	    (psp->ps_sigonstack & sigmask(sig))) {
472		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
473		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
474		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
475	} else {
476		fp = (struct sigframe *)regs->tf_esp - 1;
477	}
478
479	/*
480	 * grow() will return FALSE if the fp will not fit inside the stack
481	 *	and the stack can not be grown. useracc will return FALSE
482	 *	if access is denied.
483	 */
484	if ((grow(p, (int)fp) == FALSE) ||
485	    (useracc((caddr_t)fp, sizeof(struct sigframe), B_WRITE) == FALSE)) {
486		/*
487		 * Process has trashed its stack; give it an illegal
488		 * instruction to halt it in its tracks.
489		 */
490		SIGACTION(p, SIGILL) = SIG_DFL;
491		sig = sigmask(SIGILL);
492		p->p_sigignore &= ~sig;
493		p->p_sigcatch &= ~sig;
494		p->p_sigmask &= ~sig;
495		psignal(p, SIGILL);
496		return;
497	}
498
499	/*
500	 * Build the argument list for the signal handler.
501	 */
502	if (p->p_sysent->sv_sigtbl) {
503		if (sig < p->p_sysent->sv_sigsize)
504			sig = p->p_sysent->sv_sigtbl[sig];
505		else
506			sig = p->p_sysent->sv_sigsize + 1;
507	}
508	sf.sf_signum = sig;
509	sf.sf_code = code;
510	sf.sf_scp = &fp->sf_sc;
511	sf.sf_addr = (char *) regs->tf_err;
512	sf.sf_handler = catcher;
513
514	/* save scratch registers */
515	sf.sf_sc.sc_eax = regs->tf_eax;
516	sf.sf_sc.sc_ebx = regs->tf_ebx;
517	sf.sf_sc.sc_ecx = regs->tf_ecx;
518	sf.sf_sc.sc_edx = regs->tf_edx;
519	sf.sf_sc.sc_esi = regs->tf_esi;
520	sf.sf_sc.sc_edi = regs->tf_edi;
521	sf.sf_sc.sc_cs = regs->tf_cs;
522	sf.sf_sc.sc_ds = regs->tf_ds;
523	sf.sf_sc.sc_ss = regs->tf_ss;
524	sf.sf_sc.sc_es = regs->tf_es;
525	sf.sf_sc.sc_isp = regs->tf_isp;
526
527	/*
528	 * Build the signal context to be used by sigreturn.
529	 */
530	sf.sf_sc.sc_onstack = oonstack;
531	sf.sf_sc.sc_mask = mask;
532	sf.sf_sc.sc_sp = regs->tf_esp;
533	sf.sf_sc.sc_fp = regs->tf_ebp;
534	sf.sf_sc.sc_pc = regs->tf_eip;
535	sf.sf_sc.sc_ps = regs->tf_eflags;
536	sf.sf_sc.sc_trapno = regs->tf_trapno;
537	sf.sf_sc.sc_err = regs->tf_err;
538
539	/*
540	 * If we're a vm86 process, we want to save the segment registers.
541	 * We also change eflags to be our emulated eflags, not the actual
542	 * eflags.
543	 */
544	if (regs->tf_eflags & PSL_VM) {
545		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
546		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
547
548		sf.sf_sc.sc_gs = tf->tf_vm86_gs;
549		sf.sf_sc.sc_fs = tf->tf_vm86_fs;
550		sf.sf_sc.sc_es = tf->tf_vm86_es;
551		sf.sf_sc.sc_ds = tf->tf_vm86_ds;
552
553		if (vm86->vm86_has_vme == 0)
554			sf.sf_sc.sc_ps = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
555			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
556
557		/*
558		 * We should never have PSL_T set when returning from vm86
559		 * mode.  It may be set here if we deliver a signal before
560		 * getting to vm86 mode, so turn it off.
561		 */
562		tf->tf_eflags &= ~(PSL_VM | PSL_T | PSL_VIF | PSL_VIP);
563	}
564
565	/*
566	 * Copy the sigframe out to the user's stack.
567	 */
568	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
569		/*
570		 * Something is wrong with the stack pointer.
571		 * ...Kill the process.
572		 */
573		sigexit(p, SIGILL);
574	}
575
576	regs->tf_esp = (int)fp;
577	regs->tf_eip = (int)(((char *)PS_STRINGS) - *(p->p_sysent->sv_szsigcode));
578	regs->tf_cs = _ucodesel;
579	regs->tf_ds = _udatasel;
580	regs->tf_es = _udatasel;
581	regs->tf_ss = _udatasel;
582}
583
584/*
585 * System call to cleanup state after a signal
586 * has been taken.  Reset signal mask and
587 * stack state from context left by sendsig (above).
588 * Return to previous pc and psl as specified by
589 * context left by sendsig. Check carefully to
590 * make sure that the user has not modified the
591 * state to gain improper privileges.
592 */
593int
594sigreturn(p, uap)
595	struct proc *p;
596	struct sigreturn_args /* {
597		struct sigcontext *sigcntxp;
598	} */ *uap;
599{
600	register struct sigcontext *scp;
601	register struct sigframe *fp;
602	register struct trapframe *regs = p->p_md.md_regs;
603	int eflags;
604
605	/*
606	 * (XXX old comment) regs->tf_esp points to the return address.
607	 * The user scp pointer is above that.
608	 * The return address is faked in the signal trampoline code
609	 * for consistency.
610	 */
611	scp = uap->sigcntxp;
612	fp = (struct sigframe *)
613	     ((caddr_t)scp - offsetof(struct sigframe, sf_sc));
614
615	if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
616		return(EFAULT);
617
618	eflags = scp->sc_ps;
619	if (eflags & PSL_VM) {
620		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
621		struct vm86_kernel *vm86;
622
623		/*
624		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
625		 * set up the vm86 area, and we can't enter vm86 mode.
626		 */
627		if (p->p_addr->u_pcb.pcb_ext == 0)
628			return (EINVAL);
629		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
630		if (vm86->vm86_inited == 0)
631			return (EINVAL);
632
633		/* go back to user mode if both flags are set */
634		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
635			trapsignal(p, SIGBUS, 0);
636
637#define VM_USERCHANGE	(PSL_USERCHANGE | PSL_RF)
638#define VME_USERCHANGE	(VM_USERCHANGE | PSL_VIP | PSL_VIF)
639		if (vm86->vm86_has_vme) {
640			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
641			    (eflags & VME_USERCHANGE) | PSL_VM;
642		} else {
643			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
644			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
645		}
646		tf->tf_vm86_ds = scp->sc_ds;
647		tf->tf_vm86_es = scp->sc_es;
648		tf->tf_vm86_fs = scp->sc_fs;
649		tf->tf_vm86_gs = scp->sc_gs;
650		tf->tf_ds = _udatasel;
651		tf->tf_es = _udatasel;
652	} else {
653		/*
654		 * Don't allow users to change privileged or reserved flags.
655		 */
656#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
657		/*
658		 * XXX do allow users to change the privileged flag PSL_RF.
659		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
660		 * should sometimes set it there too.  tf_eflags is kept in
661		 * the signal context during signal handling and there is no
662		 * other place to remember it, so the PSL_RF bit may be
663		 * corrupted by the signal handler without us knowing.
664		 * Corruption of the PSL_RF bit at worst causes one more or
665		 * one less debugger trap, so allowing it is fairly harmless.
666		 */
667		if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
668#ifdef DEBUG
669	    		printf("sigreturn: eflags = 0x%x\n", eflags);
670#endif
671	    		return(EINVAL);
672		}
673
674		/*
675		 * Don't allow users to load a valid privileged %cs.  Let the
676		 * hardware check for invalid selectors, excess privilege in
677		 * other selectors, invalid %eip's and invalid %esp's.
678		 */
679#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
680		if (!CS_SECURE(scp->sc_cs)) {
681#ifdef DEBUG
682    			printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
683#endif
684			trapsignal(p, SIGBUS, T_PROTFLT);
685			return(EINVAL);
686		}
687		regs->tf_ds = scp->sc_ds;
688		regs->tf_es = scp->sc_es;
689	}
690	/* restore scratch registers */
691	regs->tf_eax = scp->sc_eax;
692	regs->tf_ebx = scp->sc_ebx;
693	regs->tf_ecx = scp->sc_ecx;
694	regs->tf_edx = scp->sc_edx;
695	regs->tf_esi = scp->sc_esi;
696	regs->tf_edi = scp->sc_edi;
697	regs->tf_cs = scp->sc_cs;
698	regs->tf_ss = scp->sc_ss;
699	regs->tf_isp = scp->sc_isp;
700
701	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
702		return(EINVAL);
703
704	if (scp->sc_onstack & 01)
705		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
706	else
707		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
708	p->p_sigmask = scp->sc_mask & ~sigcantmask;
709	regs->tf_ebp = scp->sc_fp;
710	regs->tf_esp = scp->sc_sp;
711	regs->tf_eip = scp->sc_pc;
712	regs->tf_eflags = eflags;
713	return(EJUSTRETURN);
714}
715
716/*
717 * Machine dependent boot() routine
718 *
719 * I haven't seen anything to put here yet
720 * Possibly some stuff might be grafted back here from boot()
721 */
722void
723cpu_boot(int howto)
724{
725}
726
727/*
728 * Shutdown the CPU as much as possible
729 */
730void
731cpu_halt(void)
732{
733	for (;;)
734		__asm__ ("hlt");
735}
736
737/*
738 * Turn the power off.
739 */
740void
741cpu_power_down(void)
742{
743#if NAPM > 0
744	apm_power_off();
745#endif
746}
747
748/*
749 * Clear registers on exec
750 */
751void
752setregs(p, entry, stack)
753	struct proc *p;
754	u_long entry;
755	u_long stack;
756{
757	struct trapframe *regs = p->p_md.md_regs;
758
759#ifdef USER_LDT
760	struct pcb *pcb = &p->p_addr->u_pcb;
761
762	/* was i386_user_cleanup() in NetBSD */
763	if (pcb->pcb_ldt) {
764		if (pcb == curpcb)
765			lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
766		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
767			pcb->pcb_ldt_len * sizeof(union descriptor));
768		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
769 	}
770#endif
771
772	bzero((char *)regs, sizeof(struct trapframe));
773	regs->tf_eip = entry;
774	regs->tf_esp = stack;
775	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
776	regs->tf_ss = _udatasel;
777	regs->tf_ds = _udatasel;
778	regs->tf_es = _udatasel;
779	regs->tf_cs = _ucodesel;
780
781	/*
782	 * Initialize the math emulator (if any) for the current process.
783	 * Actually, just clear the bit that says that the emulator has
784	 * been initialized.  Initialization is delayed until the process
785	 * traps to the emulator (if it is done at all) mainly because
786	 * emulators don't provide an entry point for initialization.
787	 */
788	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
789
790	/*
791	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
792	 * for why fwait must be trapped at least if there is an npx or an
793	 * emulator).  This is mainly to handle the case where npx0 is not
794	 * configured, since the npx routines normally set up the trap
795	 * otherwise.  It should be done only at boot time, but doing it
796	 * here allows modifying `npx_exists' for testing the emulator on
797	 * systems with an npx.
798	 */
799	load_cr0(rcr0() | CR0_MP | CR0_TS);
800
801#if NNPX > 0
802	/* Initialize the npx (if any) for the current process. */
803	npxinit(__INITIAL_NPXCW__);
804#endif
805}
806
807static int
808sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
809{
810	int error;
811	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
812		req);
813	if (!error && req->newptr)
814		resettodr();
815	return (error);
816}
817
818SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
819	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
820
821SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
822	CTLFLAG_RW, &disable_rtc_set, 0, "");
823
824SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
825	CTLFLAG_RD, &bootinfo, bootinfo, "");
826
827SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
828	CTLFLAG_RW, &wall_cmos_clock, 0, "");
829
830/*
831 * Initialize 386 and configure to run kernel
832 */
833
834/*
835 * Initialize segments & interrupt table
836 */
837
838int currentldt;
839int _default_ldt;
840#ifdef SMP
841union descriptor gdt[NGDT + NCPU];	/* global descriptor table */
842#else
843union descriptor gdt[NGDT];		/* global descriptor table */
844#endif
845struct gate_descriptor idt[NIDT];	/* interrupt descriptor table */
846union descriptor ldt[NLDT];		/* local descriptor table */
847#ifdef SMP
848/* table descriptors - used to load tables by microp */
849struct region_descriptor r_gdt, r_idt;
850#endif
851
852#ifdef SMP
853extern struct i386tss common_tss;	/* One tss per cpu */
854#ifdef VM86
855extern struct segment_descriptor common_tssd;
856extern int private_tss;
857extern u_int my_tr;
858#endif /* VM86 */
859#else
860struct i386tss common_tss;
861#ifdef VM86
862struct segment_descriptor common_tssd;
863u_int private_tss;			/* flag indicating private tss */
864u_int my_tr;				/* which task register setting */
865#endif /* VM86 */
866#endif
867
868static struct i386tss dblfault_tss;
869static char dblfault_stack[PAGE_SIZE];
870
871extern  struct user *proc0paddr;
872
873
874/* software prototypes -- in more palatable form */
875struct soft_segment_descriptor gdt_segs[
876#ifdef SMP
877					NGDT + NCPU
878#endif
879						   ] = {
880/* GNULL_SEL	0 Null Descriptor */
881{	0x0,			/* segment base address  */
882	0x0,			/* length */
883	0,			/* segment type */
884	0,			/* segment descriptor priority level */
885	0,			/* segment descriptor present */
886	0, 0,
887	0,			/* default 32 vs 16 bit size */
888	0  			/* limit granularity (byte/page units)*/ },
889/* GCODE_SEL	1 Code Descriptor for kernel */
890{	0x0,			/* segment base address  */
891	0xfffff,		/* length - all address space */
892	SDT_MEMERA,		/* segment type */
893	0,			/* segment descriptor priority level */
894	1,			/* segment descriptor present */
895	0, 0,
896	1,			/* default 32 vs 16 bit size */
897	1  			/* limit granularity (byte/page units)*/ },
898/* GDATA_SEL	2 Data Descriptor for kernel */
899{	0x0,			/* segment base address  */
900	0xfffff,		/* length - all address space */
901	SDT_MEMRWA,		/* segment type */
902	0,			/* segment descriptor priority level */
903	1,			/* segment descriptor present */
904	0, 0,
905	1,			/* default 32 vs 16 bit size */
906	1  			/* limit granularity (byte/page units)*/ },
907/* GLDT_SEL	3 LDT Descriptor */
908{	(int) ldt,		/* segment base address  */
909	sizeof(ldt)-1,		/* length - all address space */
910	SDT_SYSLDT,		/* segment type */
911	SEL_UPL,		/* segment descriptor priority level */
912	1,			/* segment descriptor present */
913	0, 0,
914	0,			/* unused - default 32 vs 16 bit size */
915	0  			/* limit granularity (byte/page units)*/ },
916/* GTGATE_SEL	4 Null Descriptor - Placeholder */
917{	0x0,			/* segment base address  */
918	0x0,			/* length - all address space */
919	0,			/* segment type */
920	0,			/* segment descriptor priority level */
921	0,			/* segment descriptor present */
922	0, 0,
923	0,			/* default 32 vs 16 bit size */
924	0  			/* limit granularity (byte/page units)*/ },
925/* GPANIC_SEL	5 Panic Tss Descriptor */
926{	(int) &dblfault_tss,	/* segment base address  */
927	sizeof(struct i386tss)-1,/* length - all address space */
928	SDT_SYS386TSS,		/* segment type */
929	0,			/* segment descriptor priority level */
930	1,			/* segment descriptor present */
931	0, 0,
932	0,			/* unused - default 32 vs 16 bit size */
933	0  			/* limit granularity (byte/page units)*/ },
934/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
935{
936	(int) &common_tss,	/* segment base address */
937	sizeof(struct i386tss)-1,/* length - all address space */
938	SDT_SYS386TSS,		/* segment type */
939	0,			/* segment descriptor priority level */
940	1,			/* segment descriptor present */
941	0, 0,
942	0,			/* unused - default 32 vs 16 bit size */
943	0  			/* limit granularity (byte/page units)*/ },
944/* GUSERLDT_SEL	7 User LDT Descriptor per process */
945{	(int) ldt,		/* segment base address  */
946	(512 * sizeof(union descriptor)-1),		/* length */
947	SDT_SYSLDT,		/* segment type */
948	0,			/* segment descriptor priority level */
949	1,			/* segment descriptor present */
950	0, 0,
951	0,			/* unused - default 32 vs 16 bit size */
952	0  			/* limit granularity (byte/page units)*/ },
953/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
954{	0,			/* segment base address (overwritten by APM)  */
955	0xfffff,		/* length */
956	SDT_MEMERA,		/* segment type */
957	0,			/* segment descriptor priority level */
958	1,			/* segment descriptor present */
959	0, 0,
960	1,			/* default 32 vs 16 bit size */
961	1  			/* limit granularity (byte/page units)*/ },
962/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
963{	0,			/* segment base address (overwritten by APM)  */
964	0xfffff,		/* length */
965	SDT_MEMERA,		/* segment type */
966	0,			/* segment descriptor priority level */
967	1,			/* segment descriptor present */
968	0, 0,
969	0,			/* default 32 vs 16 bit size */
970	1  			/* limit granularity (byte/page units)*/ },
971/* GAPMDATA_SEL	10 APM BIOS 32-bit interface (Data) */
972{	0,			/* segment base address (overwritten by APM) */
973	0xfffff,		/* length */
974	SDT_MEMRWA,		/* segment type */
975	0,			/* segment descriptor priority level */
976	1,			/* segment descriptor present */
977	0, 0,
978	1,			/* default 32 vs 16 bit size */
979	1  			/* limit granularity (byte/page units)*/ },
980};
981
982static struct soft_segment_descriptor ldt_segs[] = {
983	/* Null Descriptor - overwritten by call gate */
984{	0x0,			/* segment base address  */
985	0x0,			/* length - all address space */
986	0,			/* segment type */
987	0,			/* segment descriptor priority level */
988	0,			/* segment descriptor present */
989	0, 0,
990	0,			/* default 32 vs 16 bit size */
991	0  			/* limit granularity (byte/page units)*/ },
992	/* Null Descriptor - overwritten by call gate */
993{	0x0,			/* segment base address  */
994	0x0,			/* length - all address space */
995	0,			/* segment type */
996	0,			/* segment descriptor priority level */
997	0,			/* segment descriptor present */
998	0, 0,
999	0,			/* default 32 vs 16 bit size */
1000	0  			/* limit granularity (byte/page units)*/ },
1001	/* Null Descriptor - overwritten by call gate */
1002{	0x0,			/* segment base address  */
1003	0x0,			/* length - all address space */
1004	0,			/* segment type */
1005	0,			/* segment descriptor priority level */
1006	0,			/* segment descriptor present */
1007	0, 0,
1008	0,			/* default 32 vs 16 bit size */
1009	0  			/* limit granularity (byte/page units)*/ },
1010	/* Code Descriptor for user */
1011{	0x0,			/* segment base address  */
1012	0xfffff,		/* length - all address space */
1013	SDT_MEMERA,		/* segment type */
1014	SEL_UPL,		/* segment descriptor priority level */
1015	1,			/* segment descriptor present */
1016	0, 0,
1017	1,			/* default 32 vs 16 bit size */
1018	1  			/* limit granularity (byte/page units)*/ },
1019	/* Data Descriptor for user */
1020{	0x0,			/* segment base address  */
1021	0xfffff,		/* length - all address space */
1022	SDT_MEMRWA,		/* segment type */
1023	SEL_UPL,		/* segment descriptor priority level */
1024	1,			/* segment descriptor present */
1025	0, 0,
1026	1,			/* default 32 vs 16 bit size */
1027	1  			/* limit granularity (byte/page units)*/ },
1028};
1029
1030void
1031setidt(idx, func, typ, dpl, selec)
1032	int idx;
1033	inthand_t *func;
1034	int typ;
1035	int dpl;
1036	int selec;
1037{
1038	struct gate_descriptor *ip = idt + idx;
1039
1040	ip->gd_looffset = (int)func;
1041	ip->gd_selector = selec;
1042	ip->gd_stkcpy = 0;
1043	ip->gd_xx = 0;
1044	ip->gd_type = typ;
1045	ip->gd_dpl = dpl;
1046	ip->gd_p = 1;
1047	ip->gd_hioffset = ((int)func)>>16 ;
1048}
1049
1050#define	IDTVEC(name)	__CONCAT(X,name)
1051
1052extern inthand_t
1053	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1054	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1055	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1056	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1057	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1058
1059void
1060sdtossd(sd, ssd)
1061	struct segment_descriptor *sd;
1062	struct soft_segment_descriptor *ssd;
1063{
1064	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1065	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1066	ssd->ssd_type  = sd->sd_type;
1067	ssd->ssd_dpl   = sd->sd_dpl;
1068	ssd->ssd_p     = sd->sd_p;
1069	ssd->ssd_def32 = sd->sd_def32;
1070	ssd->ssd_gran  = sd->sd_gran;
1071}
1072
1073void
1074init386(first)
1075	int first;
1076{
1077	int x;
1078	unsigned biosbasemem, biosextmem;
1079	struct gate_descriptor *gdp;
1080	int gsel_tss;
1081
1082	struct isa_device *idp;
1083#ifndef SMP
1084	/* table descriptors - used to load tables by microp */
1085	struct region_descriptor r_gdt, r_idt;
1086#endif
1087	int pagesinbase, pagesinext;
1088	int target_page, pa_indx;
1089	int off;
1090	int speculative_mprobe;
1091
1092	proc0.p_addr = proc0paddr;
1093
1094	atdevbase = ISA_HOLE_START + KERNBASE;
1095
1096	/*
1097	 * Initialize the console before we print anything out.
1098	 */
1099	cninit();
1100
1101	/*
1102	 * make gdt memory segments, the code segment goes up to end of the
1103	 * page with etext in it, the data segment goes to the end of
1104	 * the address space
1105	 */
1106	/*
1107	 * XXX text protection is temporarily (?) disabled.  The limit was
1108	 * i386_btop(round_page(etext)) - 1.
1109	 */
1110	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1111	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1112#ifdef BDE_DEBUGGER
1113#define	NGDT1	8		/* avoid overwriting db entries with APM ones */
1114#else
1115#define	NGDT1	(sizeof gdt_segs / sizeof gdt_segs[0])
1116#endif
1117	for (x = 0; x < NGDT1; x++)
1118		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1119#ifdef VM86
1120	common_tssd = gdt[GPROC0_SEL].sd;
1121#endif /* VM86 */
1122
1123#ifdef SMP
1124	/*
1125	 * Spin these up now.  init_secondary() grabs them.  We could use
1126	 * #for(x,y,z) / #endfor cpp directives if they existed.
1127	 */
1128	for (x = 0; x < NCPU; x++) {
1129		gdt_segs[NGDT + x] = gdt_segs[GPROC0_SEL];
1130		ssdtosd(&gdt_segs[NGDT + x], &gdt[NGDT + x].sd);
1131	}
1132#endif
1133
1134	/* make ldt memory segments */
1135	/*
1136	 * The data segment limit must not cover the user area because we
1137	 * don't want the user area to be writable in copyout() etc. (page
1138	 * level protection is lost in kernel mode on 386's).  Also, we
1139	 * don't want the user area to be writable directly (page level
1140	 * protection of the user area is not available on 486's with
1141	 * CR0_WP set, because there is no user-read/kernel-write mode).
1142	 *
1143	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1144	 * should be spelled ...MAX_USER...
1145	 */
1146#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1147	/*
1148	 * The code segment limit has to cover the user area until we move
1149	 * the signal trampoline out of the user area.  This is safe because
1150	 * the code segment cannot be written to directly.
1151	 */
1152#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1153	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1154	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1155	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1156		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1157
1158	/* exceptions */
1159	for (x = 0; x < NIDT; x++)
1160		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1161	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1162	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1163	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1164 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1165	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1166	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1167	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1168	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1169	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1170	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1171	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1172	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1173	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1174	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1175	setidt(14, &IDTVEC(page),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1176	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1177	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1178	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1179	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1180 	setidt(0x80, &IDTVEC(int0x80_syscall),
1181			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1182
1183#include	"isa.h"
1184#if	NISA >0
1185	isa_defaultirq();
1186#endif
1187	rand_initialize();
1188
1189	r_gdt.rd_limit = sizeof(gdt) - 1;
1190	r_gdt.rd_base =  (int) gdt;
1191	lgdt(&r_gdt);
1192
1193	r_idt.rd_limit = sizeof(idt) - 1;
1194	r_idt.rd_base = (int) idt;
1195	lidt(&r_idt);
1196
1197	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1198	lldt(_default_ldt);
1199	currentldt = _default_ldt;
1200
1201#ifdef DDB
1202	kdb_init();
1203	if (boothowto & RB_KDB)
1204		Debugger("Boot flags requested debugger");
1205#endif
1206
1207	finishidentcpu();	/* Final stage of CPU initialization */
1208	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1209	initializecpu();	/* Initialize CPU registers */
1210
1211	/* Use BIOS values stored in RTC CMOS RAM, since probing
1212	 * breaks certain 386 AT relics.
1213	 */
1214	biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
1215	biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
1216
1217	/*
1218	 * If BIOS tells us that it has more than 640k in the basemem,
1219	 *	don't believe it - set it to 640k.
1220	 */
1221	if (biosbasemem > 640) {
1222		printf("Preposterous RTC basemem of %dK, truncating to 640K\n",
1223		       biosbasemem);
1224		biosbasemem = 640;
1225	}
1226	if (bootinfo.bi_memsizes_valid && bootinfo.bi_basemem > 640) {
1227		printf("Preposterous BIOS basemem of %dK, truncating to 640K\n",
1228		       bootinfo.bi_basemem);
1229		bootinfo.bi_basemem = 640;
1230	}
1231
1232	/*
1233	 * Warn if the official BIOS interface disagrees with the RTC
1234	 * interface used above about the amount of base memory or the
1235	 * amount of extended memory.  Prefer the BIOS value for the base
1236	 * memory.  This is necessary for machines that `steal' base
1237	 * memory for use as BIOS memory, at least if we are going to use
1238	 * the BIOS for apm.  Prefer the RTC value for extended memory.
1239	 * Eventually the hackish interface shouldn't even be looked at.
1240	 */
1241	if (bootinfo.bi_memsizes_valid) {
1242		if (bootinfo.bi_basemem != biosbasemem) {
1243			vm_offset_t pa;
1244
1245			printf(
1246	"BIOS basemem (%ldK) != RTC basemem (%dK), setting to BIOS value\n",
1247			       bootinfo.bi_basemem, biosbasemem);
1248			biosbasemem = bootinfo.bi_basemem;
1249
1250			/*
1251			 * XXX if biosbasemem is now < 640, there is `hole'
1252			 * between the end of base memory and the start of
1253			 * ISA memory.  The hole may be empty or it may
1254			 * contain BIOS code or data.  Map it read/write so
1255			 * that the BIOS can write to it.  (Memory from 0 to
1256			 * the physical end of the kernel is mapped read-only
1257			 * to begin with and then parts of it are remapped.
1258			 * The parts that aren't remapped form holes that
1259			 * remain read-only and are unused by the kernel.
1260			 * The base memory area is below the physical end of
1261			 * the kernel and right now forms a read-only hole.
1262			 * The part of it from 0 to
1263			 * (trunc_page(biosbasemem * 1024) - 1) will be
1264			 * remapped and used by the kernel later.)
1265			 *
1266			 * This code is similar to the code used in
1267			 * pmap_mapdev, but since no memory needs to be
1268			 * allocated we simply change the mapping.
1269			 */
1270			for (pa = trunc_page(biosbasemem * 1024);
1271			     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1272				unsigned *pte;
1273
1274				pte = (unsigned *)vtopte(pa + KERNBASE);
1275				*pte = pa | PG_RW | PG_V;
1276			}
1277		}
1278		if (bootinfo.bi_extmem != biosextmem)
1279			printf("BIOS extmem (%ldK) != RTC extmem (%dK)\n",
1280			       bootinfo.bi_extmem, biosextmem);
1281	}
1282
1283#ifdef SMP
1284	/* make hole for AP bootstrap code */
1285	pagesinbase = mp_bootaddress(biosbasemem) / PAGE_SIZE;
1286#else
1287	pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
1288#endif
1289
1290	pagesinext = biosextmem * 1024 / PAGE_SIZE;
1291
1292	/*
1293	 * Special hack for chipsets that still remap the 384k hole when
1294	 *	there's 16MB of memory - this really confuses people that
1295	 *	are trying to use bus mastering ISA controllers with the
1296	 *	"16MB limit"; they only have 16MB, but the remapping puts
1297	 *	them beyond the limit.
1298	 */
1299	/*
1300	 * If extended memory is between 15-16MB (16-17MB phys address range),
1301	 *	chop it to 15MB.
1302	 */
1303	if ((pagesinext > 3840) && (pagesinext < 4096))
1304		pagesinext = 3840;
1305
1306	/*
1307	 * Maxmem isn't the "maximum memory", it's one larger than the
1308	 * highest page of the physical address space.  It should be
1309	 * called something like "Maxphyspage".
1310	 */
1311	Maxmem = pagesinext + 0x100000/PAGE_SIZE;
1312	/*
1313	 * Indicate that we wish to do a speculative search for memory beyond
1314	 * the end of the reported size if the indicated amount is 64MB (0x4000
1315	 * pages) - which is the largest amount that the BIOS/bootblocks can
1316	 * currently report. If a specific amount of memory is indicated via
1317	 * the MAXMEM option or the npx0 "msize", then don't do the speculative
1318	 * memory probe.
1319	 */
1320	if (Maxmem >= 0x4000)
1321		speculative_mprobe = TRUE;
1322	else
1323		speculative_mprobe = FALSE;
1324
1325#ifdef MAXMEM
1326	Maxmem = MAXMEM/4;
1327	speculative_mprobe = FALSE;
1328#endif
1329
1330#if NNPX > 0
1331	idp = find_isadev(isa_devtab_null, &npxdriver, 0);
1332	if (idp != NULL && idp->id_msize != 0) {
1333		Maxmem = idp->id_msize / 4;
1334		speculative_mprobe = FALSE;
1335	}
1336#endif
1337
1338#ifdef SMP
1339	/* look for the MP hardware - needed for apic addresses */
1340	mp_probe();
1341#endif
1342
1343	/* call pmap initialization to make new kernel address space */
1344	pmap_bootstrap (first, 0);
1345
1346	/*
1347	 * Size up each available chunk of physical memory.
1348	 */
1349
1350	/*
1351	 * We currently don't bother testing base memory.
1352	 * XXX  ...but we probably should.
1353	 */
1354	pa_indx = 0;
1355	if (pagesinbase > 1) {
1356		phys_avail[pa_indx++] = PAGE_SIZE;	/* skip first page of memory */
1357		phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
1358		physmem = pagesinbase - 1;
1359	} else {
1360		/* point at first chunk end */
1361		pa_indx++;
1362	}
1363
1364	for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
1365		int tmp, page_bad;
1366
1367		page_bad = FALSE;
1368
1369		/*
1370		 * map page into kernel: valid, read/write, non-cacheable
1371		 */
1372		*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
1373		invltlb();
1374
1375		tmp = *(int *)CADDR1;
1376		/*
1377		 * Test for alternating 1's and 0's
1378		 */
1379		*(volatile int *)CADDR1 = 0xaaaaaaaa;
1380		if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
1381			page_bad = TRUE;
1382		}
1383		/*
1384		 * Test for alternating 0's and 1's
1385		 */
1386		*(volatile int *)CADDR1 = 0x55555555;
1387		if (*(volatile int *)CADDR1 != 0x55555555) {
1388			page_bad = TRUE;
1389		}
1390		/*
1391		 * Test for all 1's
1392		 */
1393		*(volatile int *)CADDR1 = 0xffffffff;
1394		if (*(volatile int *)CADDR1 != 0xffffffff) {
1395			page_bad = TRUE;
1396		}
1397		/*
1398		 * Test for all 0's
1399		 */
1400		*(volatile int *)CADDR1 = 0x0;
1401		if (*(volatile int *)CADDR1 != 0x0) {
1402			/*
1403			 * test of page failed
1404			 */
1405			page_bad = TRUE;
1406		}
1407		/*
1408		 * Restore original value.
1409		 */
1410		*(int *)CADDR1 = tmp;
1411
1412		/*
1413		 * Adjust array of valid/good pages.
1414		 */
1415		if (page_bad == FALSE) {
1416			/*
1417			 * If this good page is a continuation of the
1418			 * previous set of good pages, then just increase
1419			 * the end pointer. Otherwise start a new chunk.
1420			 * Note that "end" points one higher than end,
1421			 * making the range >= start and < end.
1422			 * If we're also doing a speculative memory
1423			 * test and we at or past the end, bump up Maxmem
1424			 * so that we keep going. The first bad page
1425			 * will terminate the loop.
1426			 */
1427			if (phys_avail[pa_indx] == target_page) {
1428				phys_avail[pa_indx] += PAGE_SIZE;
1429				if (speculative_mprobe == TRUE &&
1430				    phys_avail[pa_indx] >= (64*1024*1024))
1431					Maxmem++;
1432			} else {
1433				pa_indx++;
1434				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1435					printf("Too many holes in the physical address space, giving up\n");
1436					pa_indx--;
1437					break;
1438				}
1439				phys_avail[pa_indx++] = target_page;	/* start */
1440				phys_avail[pa_indx] = target_page + PAGE_SIZE;	/* end */
1441			}
1442			physmem++;
1443		}
1444	}
1445
1446	*(int *)CMAP1 = 0;
1447	invltlb();
1448
1449	/*
1450	 * XXX
1451	 * The last chunk must contain at least one page plus the message
1452	 * buffer to avoid complicating other code (message buffer address
1453	 * calculation, etc.).
1454	 */
1455	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1456	    round_page(sizeof(struct msgbuf)) >= phys_avail[pa_indx]) {
1457		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1458		phys_avail[pa_indx--] = 0;
1459		phys_avail[pa_indx--] = 0;
1460	}
1461
1462	Maxmem = atop(phys_avail[pa_indx]);
1463
1464	/* Trim off space for the message buffer. */
1465	phys_avail[pa_indx] -= round_page(sizeof(struct msgbuf));
1466
1467	avail_end = phys_avail[pa_indx];
1468
1469	/* now running on new page tables, configured,and u/iom is accessible */
1470
1471	/* Map the message buffer. */
1472	for (off = 0; off < round_page(sizeof(struct msgbuf)); off += PAGE_SIZE)
1473		pmap_enter(kernel_pmap, (vm_offset_t)msgbufp + off,
1474			   avail_end + off, VM_PROT_ALL, TRUE);
1475	msgbufmapped = 1;
1476
1477	/* make an initial tss so cpu can get interrupt stack on syscall! */
1478#ifdef VM86
1479	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
1480#else
1481	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE;
1482#endif /* VM86 */
1483	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1484	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1485	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1486	ltr(gsel_tss);
1487#ifdef VM86
1488	private_tss = 0;
1489	my_tr = GPROC0_SEL;
1490#endif
1491
1492	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1493	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1494	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1495	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1496	dblfault_tss.tss_cr3 = (int)IdlePTD;
1497	dblfault_tss.tss_eip = (int) dblfault_handler;
1498	dblfault_tss.tss_eflags = PSL_KERNEL;
1499	dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs =
1500	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1501	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1502	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1503
1504	/* make a call gate to reenter kernel with */
1505	gdp = &ldt[LSYS5CALLS_SEL].gd;
1506
1507	x = (int) &IDTVEC(syscall);
1508	gdp->gd_looffset = x++;
1509	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1510	gdp->gd_stkcpy = 1;
1511	gdp->gd_type = SDT_SYS386CGT;
1512	gdp->gd_dpl = SEL_UPL;
1513	gdp->gd_p = 1;
1514	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1515
1516	/* XXX does this work? */
1517	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1518
1519	/* transfer to user mode */
1520
1521	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1522	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1523
1524	/* setup proc 0's pcb */
1525	proc0.p_addr->u_pcb.pcb_flags = 0;
1526	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1527	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1528	proc0.p_addr->u_pcb.pcb_ext = 0;
1529}
1530
1531int
1532ptrace_set_pc(p, addr)
1533	struct proc *p;
1534	unsigned int addr;
1535{
1536	p->p_md.md_regs->tf_eip = addr;
1537	return (0);
1538}
1539
1540int
1541ptrace_single_step(p)
1542	struct proc *p;
1543{
1544	p->p_md.md_regs->tf_eflags |= PSL_T;
1545	return (0);
1546}
1547
1548int ptrace_write_u(p, off, data)
1549	struct proc *p;
1550	vm_offset_t off;
1551	int data;
1552{
1553	struct trapframe frame_copy;
1554	vm_offset_t min;
1555	struct trapframe *tp;
1556
1557	/*
1558	 * Privileged kernel state is scattered all over the user area.
1559	 * Only allow write access to parts of regs and to fpregs.
1560	 */
1561	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
1562	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
1563		tp = p->p_md.md_regs;
1564		frame_copy = *tp;
1565		*(int *)((char *)&frame_copy + (off - min)) = data;
1566		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
1567		    !CS_SECURE(frame_copy.tf_cs))
1568			return (EINVAL);
1569		*(int*)((char *)p->p_addr + off) = data;
1570		return (0);
1571	}
1572	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
1573	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
1574		*(int*)((char *)p->p_addr + off) = data;
1575		return (0);
1576	}
1577	return (EFAULT);
1578}
1579
1580int
1581fill_regs(p, regs)
1582	struct proc *p;
1583	struct reg *regs;
1584{
1585	struct pcb *pcb;
1586	struct trapframe *tp;
1587
1588	tp = p->p_md.md_regs;
1589	regs->r_es = tp->tf_es;
1590	regs->r_ds = tp->tf_ds;
1591	regs->r_edi = tp->tf_edi;
1592	regs->r_esi = tp->tf_esi;
1593	regs->r_ebp = tp->tf_ebp;
1594	regs->r_ebx = tp->tf_ebx;
1595	regs->r_edx = tp->tf_edx;
1596	regs->r_ecx = tp->tf_ecx;
1597	regs->r_eax = tp->tf_eax;
1598	regs->r_eip = tp->tf_eip;
1599	regs->r_cs = tp->tf_cs;
1600	regs->r_eflags = tp->tf_eflags;
1601	regs->r_esp = tp->tf_esp;
1602	regs->r_ss = tp->tf_ss;
1603	pcb = &p->p_addr->u_pcb;
1604	regs->r_fs = pcb->pcb_fs;
1605	regs->r_gs = pcb->pcb_gs;
1606	return (0);
1607}
1608
1609int
1610set_regs(p, regs)
1611	struct proc *p;
1612	struct reg *regs;
1613{
1614	struct pcb *pcb;
1615	struct trapframe *tp;
1616
1617	tp = p->p_md.md_regs;
1618	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
1619	    !CS_SECURE(regs->r_cs))
1620		return (EINVAL);
1621	tp->tf_es = regs->r_es;
1622	tp->tf_ds = regs->r_ds;
1623	tp->tf_edi = regs->r_edi;
1624	tp->tf_esi = regs->r_esi;
1625	tp->tf_ebp = regs->r_ebp;
1626	tp->tf_ebx = regs->r_ebx;
1627	tp->tf_edx = regs->r_edx;
1628	tp->tf_ecx = regs->r_ecx;
1629	tp->tf_eax = regs->r_eax;
1630	tp->tf_eip = regs->r_eip;
1631	tp->tf_cs = regs->r_cs;
1632	tp->tf_eflags = regs->r_eflags;
1633	tp->tf_esp = regs->r_esp;
1634	tp->tf_ss = regs->r_ss;
1635	pcb = &p->p_addr->u_pcb;
1636	pcb->pcb_fs = regs->r_fs;
1637	pcb->pcb_gs = regs->r_gs;
1638	return (0);
1639}
1640
1641#ifndef DDB
1642void
1643Debugger(const char *msg)
1644{
1645	printf("Debugger(\"%s\") called.\n", msg);
1646}
1647#endif /* no DDB */
1648
1649#include <sys/disklabel.h>
1650
1651/*
1652 * Determine the size of the transfer, and make sure it is
1653 * within the boundaries of the partition. Adjust transfer
1654 * if needed, and signal errors or early completion.
1655 */
1656int
1657bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
1658{
1659        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
1660        int labelsect = lp->d_partitions[0].p_offset;
1661        int maxsz = p->p_size,
1662                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
1663
1664        /* overwriting disk label ? */
1665        /* XXX should also protect bootstrap in first 8K */
1666        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
1667#if LABELSECTOR != 0
1668            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
1669#endif
1670            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1671                bp->b_error = EROFS;
1672                goto bad;
1673        }
1674
1675#if     defined(DOSBBSECTOR) && defined(notyet)
1676        /* overwriting master boot record? */
1677        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
1678            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1679                bp->b_error = EROFS;
1680                goto bad;
1681        }
1682#endif
1683
1684        /* beyond partition? */
1685        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
1686                /* if exactly at end of disk, return an EOF */
1687                if (bp->b_blkno == maxsz) {
1688                        bp->b_resid = bp->b_bcount;
1689                        return(0);
1690                }
1691                /* or truncate if part of it fits */
1692                sz = maxsz - bp->b_blkno;
1693                if (sz <= 0) {
1694                        bp->b_error = EINVAL;
1695                        goto bad;
1696                }
1697                bp->b_bcount = sz << DEV_BSHIFT;
1698        }
1699
1700        bp->b_pblkno = bp->b_blkno + p->p_offset;
1701        return(1);
1702
1703bad:
1704        bp->b_flags |= B_ERROR;
1705        return(-1);
1706}
1707
1708#ifdef DDB
1709
1710/*
1711 * Provide inb() and outb() as functions.  They are normally only
1712 * available as macros calling inlined functions, thus cannot be
1713 * called inside DDB.
1714 *
1715 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1716 */
1717
1718#undef inb
1719#undef outb
1720
1721/* silence compiler warnings */
1722u_char inb(u_int);
1723void outb(u_int, u_char);
1724
1725u_char
1726inb(u_int port)
1727{
1728	u_char	data;
1729	/*
1730	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1731	 * %edx, while gcc generates inferior code (movw instead of movl)
1732	 * if we tell it to load (u_short) port.
1733	 */
1734	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1735	return (data);
1736}
1737
1738void
1739outb(u_int port, u_char data)
1740{
1741	u_char	al;
1742	/*
1743	 * Use an unnecessary assignment to help gcc's register allocator.
1744	 * This make a large difference for gcc-1.40 and a tiny difference
1745	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1746	 * best results.  gcc-2.6.0 can't handle this.
1747	 */
1748	al = data;
1749	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1750}
1751
1752#endif /* DDB */
1753