machdep.c revision 293045
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 293045 2016-01-02 02:53:48Z ian $");
43
44#include "opt_atpic.h"
45#include "opt_compat.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_inet.h"
49#include "opt_isa.h"
50#include "opt_kstack_pages.h"
51#include "opt_maxmem.h"
52#include "opt_mp_watchdog.h"
53#include "opt_perfmon.h"
54#include "opt_platform.h"
55#include "opt_sched.h"
56
57#include <sys/param.h>
58#include <sys/proc.h>
59#include <sys/systm.h>
60#include <sys/bio.h>
61#include <sys/buf.h>
62#include <sys/bus.h>
63#include <sys/callout.h>
64#include <sys/cons.h>
65#include <sys/cpu.h>
66#include <sys/efi.h>
67#include <sys/eventhandler.h>
68#include <sys/exec.h>
69#include <sys/imgact.h>
70#include <sys/kdb.h>
71#include <sys/kernel.h>
72#include <sys/ktr.h>
73#include <sys/linker.h>
74#include <sys/lock.h>
75#include <sys/malloc.h>
76#include <sys/memrange.h>
77#include <sys/msgbuf.h>
78#include <sys/mutex.h>
79#include <sys/pcpu.h>
80#include <sys/ptrace.h>
81#include <sys/reboot.h>
82#include <sys/rwlock.h>
83#include <sys/sched.h>
84#include <sys/signalvar.h>
85#ifdef SMP
86#include <sys/smp.h>
87#endif
88#include <sys/syscallsubr.h>
89#include <sys/sysctl.h>
90#include <sys/sysent.h>
91#include <sys/sysproto.h>
92#include <sys/ucontext.h>
93#include <sys/vmmeter.h>
94
95#include <vm/vm.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_kern.h>
98#include <vm/vm_page.h>
99#include <vm/vm_map.h>
100#include <vm/vm_object.h>
101#include <vm/vm_pager.h>
102#include <vm/vm_param.h>
103
104#ifdef DDB
105#ifndef KDB
106#error KDB must be enabled in order for DDB to work!
107#endif
108#include <ddb/ddb.h>
109#include <ddb/db_sym.h>
110#endif
111
112#include <net/netisr.h>
113
114#include <machine/clock.h>
115#include <machine/cpu.h>
116#include <machine/cputypes.h>
117#include <machine/intr_machdep.h>
118#include <x86/mca.h>
119#include <machine/md_var.h>
120#include <machine/metadata.h>
121#include <machine/mp_watchdog.h>
122#include <machine/pc/bios.h>
123#include <machine/pcb.h>
124#include <machine/proc.h>
125#include <machine/reg.h>
126#include <machine/sigframe.h>
127#include <machine/specialreg.h>
128#ifdef PERFMON
129#include <machine/perfmon.h>
130#endif
131#include <machine/tss.h>
132#ifdef SMP
133#include <machine/smp.h>
134#endif
135#ifdef FDT
136#include <x86/fdt.h>
137#endif
138
139#ifdef DEV_ATPIC
140#include <x86/isa/icu.h>
141#else
142#include <x86/apicvar.h>
143#endif
144
145#include <isa/isareg.h>
146#include <isa/rtc.h>
147#include <x86/init.h>
148
149/* Sanity check for __curthread() */
150CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
151
152extern u_int64_t hammer_time(u_int64_t, u_int64_t);
153
154#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
155#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
156
157static void cpu_startup(void *);
158static void get_fpcontext(struct thread *td, mcontext_t *mcp,
159    char *xfpusave, size_t xfpusave_len);
160static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
161    char *xfpustate, size_t xfpustate_len);
162SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
163
164/* Preload data parse function */
165static caddr_t native_parse_preload_data(u_int64_t);
166
167/* Native function to fetch and parse the e820 map */
168static void native_parse_memmap(caddr_t, vm_paddr_t *, int *);
169
170/* Default init_ops implementation. */
171struct init_ops init_ops = {
172	.parse_preload_data =	native_parse_preload_data,
173	.early_clock_source_init =	i8254_init,
174	.early_delay =			i8254_delay,
175	.parse_memmap =			native_parse_memmap,
176#ifdef SMP
177	.mp_bootaddress =		mp_bootaddress,
178	.start_all_aps =		native_start_all_aps,
179#endif
180	.msi_init =			msi_init,
181};
182
183/*
184 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
185 * the physical address at which the kernel is loaded.
186 */
187extern char kernphys[];
188
189struct msgbuf *msgbufp;
190
191/*
192 * Physical address of the EFI System Table. Stashed from the metadata hints
193 * passed into the kernel and used by the EFI code to call runtime services.
194 */
195vm_paddr_t efi_systbl;
196
197/* Intel ICH registers */
198#define ICH_PMBASE	0x400
199#define ICH_SMI_EN	ICH_PMBASE + 0x30
200
201int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
202
203int cold = 1;
204
205long Maxmem = 0;
206long realmem = 0;
207
208/*
209 * The number of PHYSMAP entries must be one less than the number of
210 * PHYSSEG entries because the PHYSMAP entry that spans the largest
211 * physical address that is accessible by ISA DMA is split into two
212 * PHYSSEG entries.
213 */
214#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
215
216vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
217vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
218
219/* must be 2 less so 0 0 can signal end of chunks */
220#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
221#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
222
223struct kva_md_info kmi;
224
225static struct trapframe proc0_tf;
226struct region_descriptor r_gdt, r_idt;
227
228struct pcpu __pcpu[MAXCPU];
229
230struct mtx icu_lock;
231
232struct mem_range_softc mem_range_softc;
233
234struct mtx dt_lock;	/* lock for GDT and LDT */
235
236void (*vmm_resume_p)(void);
237
238static void
239cpu_startup(dummy)
240	void *dummy;
241{
242	uintmax_t memsize;
243	char *sysenv;
244
245	/*
246	 * On MacBooks, we need to disallow the legacy USB circuit to
247	 * generate an SMI# because this can cause several problems,
248	 * namely: incorrect CPU frequency detection and failure to
249	 * start the APs.
250	 * We do this by disabling a bit in the SMI_EN (SMI Control and
251	 * Enable register) of the Intel ICH LPC Interface Bridge.
252	 */
253	sysenv = kern_getenv("smbios.system.product");
254	if (sysenv != NULL) {
255		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
256		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
257		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
258		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
259		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
260		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
261		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
262		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
263			if (bootverbose)
264				printf("Disabling LEGACY_USB_EN bit on "
265				    "Intel ICH.\n");
266			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
267		}
268		freeenv(sysenv);
269	}
270
271	/*
272	 * Good {morning,afternoon,evening,night}.
273	 */
274	startrtclock();
275	printcpuinfo();
276	panicifcpuunsupported();
277#ifdef PERFMON
278	perfmon_init();
279#endif
280
281	/*
282	 * Display physical memory if SMBIOS reports reasonable amount.
283	 */
284	memsize = 0;
285	sysenv = kern_getenv("smbios.memory.enabled");
286	if (sysenv != NULL) {
287		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
288		freeenv(sysenv);
289	}
290	if (memsize < ptoa((uintmax_t)vm_cnt.v_free_count))
291		memsize = ptoa((uintmax_t)Maxmem);
292	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
293	realmem = atop(memsize);
294
295	/*
296	 * Display any holes after the first chunk of extended memory.
297	 */
298	if (bootverbose) {
299		int indx;
300
301		printf("Physical memory chunk(s):\n");
302		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
303			vm_paddr_t size;
304
305			size = phys_avail[indx + 1] - phys_avail[indx];
306			printf(
307			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
308			    (uintmax_t)phys_avail[indx],
309			    (uintmax_t)phys_avail[indx + 1] - 1,
310			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
311		}
312	}
313
314	vm_ksubmap_init(&kmi);
315
316	printf("avail memory = %ju (%ju MB)\n",
317	    ptoa((uintmax_t)vm_cnt.v_free_count),
318	    ptoa((uintmax_t)vm_cnt.v_free_count) / 1048576);
319
320	/*
321	 * Set up buffers, so they can be used to read disk labels.
322	 */
323	bufinit();
324	vm_pager_bufferinit();
325
326	cpu_setregs();
327}
328
329/*
330 * Send an interrupt to process.
331 *
332 * Stack is set up to allow sigcode stored
333 * at top to call routine, followed by call
334 * to sigreturn routine below.  After sigreturn
335 * resets the signal mask, the stack, and the
336 * frame pointer, it returns to the user
337 * specified pc, psl.
338 */
339void
340sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
341{
342	struct sigframe sf, *sfp;
343	struct pcb *pcb;
344	struct proc *p;
345	struct thread *td;
346	struct sigacts *psp;
347	char *sp;
348	struct trapframe *regs;
349	char *xfpusave;
350	size_t xfpusave_len;
351	int sig;
352	int oonstack;
353
354	td = curthread;
355	pcb = td->td_pcb;
356	p = td->td_proc;
357	PROC_LOCK_ASSERT(p, MA_OWNED);
358	sig = ksi->ksi_signo;
359	psp = p->p_sigacts;
360	mtx_assert(&psp->ps_mtx, MA_OWNED);
361	regs = td->td_frame;
362	oonstack = sigonstack(regs->tf_rsp);
363
364	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
365		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
366		xfpusave = __builtin_alloca(xfpusave_len);
367	} else {
368		xfpusave_len = 0;
369		xfpusave = NULL;
370	}
371
372	/* Save user context. */
373	bzero(&sf, sizeof(sf));
374	sf.sf_uc.uc_sigmask = *mask;
375	sf.sf_uc.uc_stack = td->td_sigstk;
376	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
377	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
378	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
379	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
380	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
381	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
382	fpstate_drop(td);
383	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
384	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
385	bzero(sf.sf_uc.uc_mcontext.mc_spare,
386	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
387	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
388
389	/* Allocate space for the signal handler context. */
390	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
391	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
392		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
393#if defined(COMPAT_43)
394		td->td_sigstk.ss_flags |= SS_ONSTACK;
395#endif
396	} else
397		sp = (char *)regs->tf_rsp - 128;
398	if (xfpusave != NULL) {
399		sp -= xfpusave_len;
400		sp = (char *)((unsigned long)sp & ~0x3Ful);
401		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
402	}
403	sp -= sizeof(struct sigframe);
404	/* Align to 16 bytes. */
405	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
406
407	/* Build the argument list for the signal handler. */
408	regs->tf_rdi = sig;			/* arg 1 in %rdi */
409	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
410	bzero(&sf.sf_si, sizeof(sf.sf_si));
411	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
412		/* Signal handler installed with SA_SIGINFO. */
413		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
414		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
415
416		/* Fill in POSIX parts */
417		sf.sf_si = ksi->ksi_info;
418		sf.sf_si.si_signo = sig; /* maybe a translated signal */
419		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
420	} else {
421		/* Old FreeBSD-style arguments. */
422		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
423		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
424		sf.sf_ahu.sf_handler = catcher;
425	}
426	mtx_unlock(&psp->ps_mtx);
427	PROC_UNLOCK(p);
428
429	/*
430	 * Copy the sigframe out to the user's stack.
431	 */
432	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
433	    (xfpusave != NULL && copyout(xfpusave,
434	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
435	    != 0)) {
436#ifdef DEBUG
437		printf("process %ld has trashed its stack\n", (long)p->p_pid);
438#endif
439		PROC_LOCK(p);
440		sigexit(td, SIGILL);
441	}
442
443	regs->tf_rsp = (long)sfp;
444	regs->tf_rip = p->p_sysent->sv_sigcode_base;
445	regs->tf_rflags &= ~(PSL_T | PSL_D);
446	regs->tf_cs = _ucodesel;
447	regs->tf_ds = _udatasel;
448	regs->tf_ss = _udatasel;
449	regs->tf_es = _udatasel;
450	regs->tf_fs = _ufssel;
451	regs->tf_gs = _ugssel;
452	regs->tf_flags = TF_HASSEGS;
453	set_pcb_flags(pcb, PCB_FULL_IRET);
454	PROC_LOCK(p);
455	mtx_lock(&psp->ps_mtx);
456}
457
458/*
459 * System call to cleanup state after a signal
460 * has been taken.  Reset signal mask and
461 * stack state from context left by sendsig (above).
462 * Return to previous pc and psl as specified by
463 * context left by sendsig. Check carefully to
464 * make sure that the user has not modified the
465 * state to gain improper privileges.
466 *
467 * MPSAFE
468 */
469int
470sys_sigreturn(td, uap)
471	struct thread *td;
472	struct sigreturn_args /* {
473		const struct __ucontext *sigcntxp;
474	} */ *uap;
475{
476	ucontext_t uc;
477	struct pcb *pcb;
478	struct proc *p;
479	struct trapframe *regs;
480	ucontext_t *ucp;
481	char *xfpustate;
482	size_t xfpustate_len;
483	long rflags;
484	int cs, error, ret;
485	ksiginfo_t ksi;
486
487	pcb = td->td_pcb;
488	p = td->td_proc;
489
490	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
491	if (error != 0) {
492		uprintf("pid %d (%s): sigreturn copyin failed\n",
493		    p->p_pid, td->td_name);
494		return (error);
495	}
496	ucp = &uc;
497	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
498		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
499		    td->td_name, ucp->uc_mcontext.mc_flags);
500		return (EINVAL);
501	}
502	regs = td->td_frame;
503	rflags = ucp->uc_mcontext.mc_rflags;
504	/*
505	 * Don't allow users to change privileged or reserved flags.
506	 */
507	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
508		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
509		    td->td_name, rflags);
510		return (EINVAL);
511	}
512
513	/*
514	 * Don't allow users to load a valid privileged %cs.  Let the
515	 * hardware check for invalid selectors, excess privilege in
516	 * other selectors, invalid %eip's and invalid %esp's.
517	 */
518	cs = ucp->uc_mcontext.mc_cs;
519	if (!CS_SECURE(cs)) {
520		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
521		    td->td_name, cs);
522		ksiginfo_init_trap(&ksi);
523		ksi.ksi_signo = SIGBUS;
524		ksi.ksi_code = BUS_OBJERR;
525		ksi.ksi_trapno = T_PROTFLT;
526		ksi.ksi_addr = (void *)regs->tf_rip;
527		trapsignal(td, &ksi);
528		return (EINVAL);
529	}
530
531	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
532		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
533		if (xfpustate_len > cpu_max_ext_state_size -
534		    sizeof(struct savefpu)) {
535			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
536			    p->p_pid, td->td_name, xfpustate_len);
537			return (EINVAL);
538		}
539		xfpustate = __builtin_alloca(xfpustate_len);
540		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
541		    xfpustate, xfpustate_len);
542		if (error != 0) {
543			uprintf(
544	"pid %d (%s): sigreturn copying xfpustate failed\n",
545			    p->p_pid, td->td_name);
546			return (error);
547		}
548	} else {
549		xfpustate = NULL;
550		xfpustate_len = 0;
551	}
552	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
553	if (ret != 0) {
554		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
555		    p->p_pid, td->td_name, ret);
556		return (ret);
557	}
558	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
559	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
560	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
561
562#if defined(COMPAT_43)
563	if (ucp->uc_mcontext.mc_onstack & 1)
564		td->td_sigstk.ss_flags |= SS_ONSTACK;
565	else
566		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
567#endif
568
569	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
570	set_pcb_flags(pcb, PCB_FULL_IRET);
571	return (EJUSTRETURN);
572}
573
574#ifdef COMPAT_FREEBSD4
575int
576freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
577{
578
579	return sys_sigreturn(td, (struct sigreturn_args *)uap);
580}
581#endif
582
583/*
584 * Reset registers to default values on exec.
585 */
586void
587exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
588{
589	struct trapframe *regs = td->td_frame;
590	struct pcb *pcb = td->td_pcb;
591
592	mtx_lock(&dt_lock);
593	if (td->td_proc->p_md.md_ldt != NULL)
594		user_ldt_free(td);
595	else
596		mtx_unlock(&dt_lock);
597
598	pcb->pcb_fsbase = 0;
599	pcb->pcb_gsbase = 0;
600	clear_pcb_flags(pcb, PCB_32BIT);
601	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
602	set_pcb_flags(pcb, PCB_FULL_IRET);
603
604	bzero((char *)regs, sizeof(struct trapframe));
605	regs->tf_rip = imgp->entry_addr;
606	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
607	regs->tf_rdi = stack;		/* argv */
608	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
609	regs->tf_ss = _udatasel;
610	regs->tf_cs = _ucodesel;
611	regs->tf_ds = _udatasel;
612	regs->tf_es = _udatasel;
613	regs->tf_fs = _ufssel;
614	regs->tf_gs = _ugssel;
615	regs->tf_flags = TF_HASSEGS;
616	td->td_retval[1] = 0;
617
618	/*
619	 * Reset the hardware debug registers if they were in use.
620	 * They won't have any meaning for the newly exec'd process.
621	 */
622	if (pcb->pcb_flags & PCB_DBREGS) {
623		pcb->pcb_dr0 = 0;
624		pcb->pcb_dr1 = 0;
625		pcb->pcb_dr2 = 0;
626		pcb->pcb_dr3 = 0;
627		pcb->pcb_dr6 = 0;
628		pcb->pcb_dr7 = 0;
629		if (pcb == curpcb) {
630			/*
631			 * Clear the debug registers on the running
632			 * CPU, otherwise they will end up affecting
633			 * the next process we switch to.
634			 */
635			reset_dbregs();
636		}
637		clear_pcb_flags(pcb, PCB_DBREGS);
638	}
639
640	/*
641	 * Drop the FP state if we hold it, so that the process gets a
642	 * clean FP state if it uses the FPU again.
643	 */
644	fpstate_drop(td);
645}
646
647void
648cpu_setregs(void)
649{
650	register_t cr0;
651
652	cr0 = rcr0();
653	/*
654	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
655	 * BSP.  See the comments there about why we set them.
656	 */
657	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
658	load_cr0(cr0);
659}
660
661/*
662 * Initialize amd64 and configure to run kernel
663 */
664
665/*
666 * Initialize segments & interrupt table
667 */
668
669struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
670static struct gate_descriptor idt0[NIDT];
671struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
672
673static char dblfault_stack[PAGE_SIZE] __aligned(16);
674
675static char nmi0_stack[PAGE_SIZE] __aligned(16);
676CTASSERT(sizeof(struct nmi_pcpu) == 16);
677
678struct amd64tss common_tss[MAXCPU];
679
680/*
681 * Software prototypes -- in more palatable form.
682 *
683 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
684 * slots as corresponding segments for i386 kernel.
685 */
686struct soft_segment_descriptor gdt_segs[] = {
687/* GNULL_SEL	0 Null Descriptor */
688{	.ssd_base = 0x0,
689	.ssd_limit = 0x0,
690	.ssd_type = 0,
691	.ssd_dpl = 0,
692	.ssd_p = 0,
693	.ssd_long = 0,
694	.ssd_def32 = 0,
695	.ssd_gran = 0		},
696/* GNULL2_SEL	1 Null Descriptor */
697{	.ssd_base = 0x0,
698	.ssd_limit = 0x0,
699	.ssd_type = 0,
700	.ssd_dpl = 0,
701	.ssd_p = 0,
702	.ssd_long = 0,
703	.ssd_def32 = 0,
704	.ssd_gran = 0		},
705/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
706{	.ssd_base = 0x0,
707	.ssd_limit = 0xfffff,
708	.ssd_type = SDT_MEMRWA,
709	.ssd_dpl = SEL_UPL,
710	.ssd_p = 1,
711	.ssd_long = 0,
712	.ssd_def32 = 1,
713	.ssd_gran = 1		},
714/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
715{	.ssd_base = 0x0,
716	.ssd_limit = 0xfffff,
717	.ssd_type = SDT_MEMRWA,
718	.ssd_dpl = SEL_UPL,
719	.ssd_p = 1,
720	.ssd_long = 0,
721	.ssd_def32 = 1,
722	.ssd_gran = 1		},
723/* GCODE_SEL	4 Code Descriptor for kernel */
724{	.ssd_base = 0x0,
725	.ssd_limit = 0xfffff,
726	.ssd_type = SDT_MEMERA,
727	.ssd_dpl = SEL_KPL,
728	.ssd_p = 1,
729	.ssd_long = 1,
730	.ssd_def32 = 0,
731	.ssd_gran = 1		},
732/* GDATA_SEL	5 Data Descriptor for kernel */
733{	.ssd_base = 0x0,
734	.ssd_limit = 0xfffff,
735	.ssd_type = SDT_MEMRWA,
736	.ssd_dpl = SEL_KPL,
737	.ssd_p = 1,
738	.ssd_long = 1,
739	.ssd_def32 = 0,
740	.ssd_gran = 1		},
741/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
742{	.ssd_base = 0x0,
743	.ssd_limit = 0xfffff,
744	.ssd_type = SDT_MEMERA,
745	.ssd_dpl = SEL_UPL,
746	.ssd_p = 1,
747	.ssd_long = 0,
748	.ssd_def32 = 1,
749	.ssd_gran = 1		},
750/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
751{	.ssd_base = 0x0,
752	.ssd_limit = 0xfffff,
753	.ssd_type = SDT_MEMRWA,
754	.ssd_dpl = SEL_UPL,
755	.ssd_p = 1,
756	.ssd_long = 0,
757	.ssd_def32 = 1,
758	.ssd_gran = 1		},
759/* GUCODE_SEL	8 64 bit Code Descriptor for user */
760{	.ssd_base = 0x0,
761	.ssd_limit = 0xfffff,
762	.ssd_type = SDT_MEMERA,
763	.ssd_dpl = SEL_UPL,
764	.ssd_p = 1,
765	.ssd_long = 1,
766	.ssd_def32 = 0,
767	.ssd_gran = 1		},
768/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
769{	.ssd_base = 0x0,
770	.ssd_limit = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE - 1,
771	.ssd_type = SDT_SYSTSS,
772	.ssd_dpl = SEL_KPL,
773	.ssd_p = 1,
774	.ssd_long = 0,
775	.ssd_def32 = 0,
776	.ssd_gran = 0		},
777/* Actually, the TSS is a system descriptor which is double size */
778{	.ssd_base = 0x0,
779	.ssd_limit = 0x0,
780	.ssd_type = 0,
781	.ssd_dpl = 0,
782	.ssd_p = 0,
783	.ssd_long = 0,
784	.ssd_def32 = 0,
785	.ssd_gran = 0		},
786/* GUSERLDT_SEL	11 LDT Descriptor */
787{	.ssd_base = 0x0,
788	.ssd_limit = 0x0,
789	.ssd_type = 0,
790	.ssd_dpl = 0,
791	.ssd_p = 0,
792	.ssd_long = 0,
793	.ssd_def32 = 0,
794	.ssd_gran = 0		},
795/* GUSERLDT_SEL	12 LDT Descriptor, double size */
796{	.ssd_base = 0x0,
797	.ssd_limit = 0x0,
798	.ssd_type = 0,
799	.ssd_dpl = 0,
800	.ssd_p = 0,
801	.ssd_long = 0,
802	.ssd_def32 = 0,
803	.ssd_gran = 0		},
804};
805
806void
807setidt(int idx, inthand_t *func, int typ, int dpl, int ist)
808{
809	struct gate_descriptor *ip;
810
811	ip = idt + idx;
812	ip->gd_looffset = (uintptr_t)func;
813	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
814	ip->gd_ist = ist;
815	ip->gd_xx = 0;
816	ip->gd_type = typ;
817	ip->gd_dpl = dpl;
818	ip->gd_p = 1;
819	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
820}
821
822extern inthand_t
823	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
824	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
825	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
826	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
827	IDTVEC(xmm), IDTVEC(dblfault),
828#ifdef KDTRACE_HOOKS
829	IDTVEC(dtrace_ret),
830#endif
831#ifdef XENHVM
832	IDTVEC(xen_intr_upcall),
833#endif
834	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
835
836#ifdef DDB
837/*
838 * Display the index and function name of any IDT entries that don't use
839 * the default 'rsvd' entry point.
840 */
841DB_SHOW_COMMAND(idt, db_show_idt)
842{
843	struct gate_descriptor *ip;
844	int idx;
845	uintptr_t func;
846
847	ip = idt;
848	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
849		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
850		if (func != (uintptr_t)&IDTVEC(rsvd)) {
851			db_printf("%3d\t", idx);
852			db_printsym(func, DB_STGY_PROC);
853			db_printf("\n");
854		}
855		ip++;
856	}
857}
858
859/* Show privileged registers. */
860DB_SHOW_COMMAND(sysregs, db_show_sysregs)
861{
862	struct {
863		uint16_t limit;
864		uint64_t base;
865	} __packed idtr, gdtr;
866	uint16_t ldt, tr;
867
868	__asm __volatile("sidt %0" : "=m" (idtr));
869	db_printf("idtr\t0x%016lx/%04x\n",
870	    (u_long)idtr.base, (u_int)idtr.limit);
871	__asm __volatile("sgdt %0" : "=m" (gdtr));
872	db_printf("gdtr\t0x%016lx/%04x\n",
873	    (u_long)gdtr.base, (u_int)gdtr.limit);
874	__asm __volatile("sldt %0" : "=r" (ldt));
875	db_printf("ldtr\t0x%04x\n", ldt);
876	__asm __volatile("str %0" : "=r" (tr));
877	db_printf("tr\t0x%04x\n", tr);
878	db_printf("cr0\t0x%016lx\n", rcr0());
879	db_printf("cr2\t0x%016lx\n", rcr2());
880	db_printf("cr3\t0x%016lx\n", rcr3());
881	db_printf("cr4\t0x%016lx\n", rcr4());
882	if (rcr4() & CR4_XSAVE)
883		db_printf("xcr0\t0x%016lx\n", rxcr(0));
884	db_printf("EFER\t0x%016lx\n", rdmsr(MSR_EFER));
885	if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
886		db_printf("FEATURES_CTL\t%016lx\n",
887		    rdmsr(MSR_IA32_FEATURE_CONTROL));
888	db_printf("DEBUG_CTL\t0x%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
889	db_printf("PAT\t0x%016lx\n", rdmsr(MSR_PAT));
890	db_printf("GSBASE\t0x%016lx\n", rdmsr(MSR_GSBASE));
891}
892
893DB_SHOW_COMMAND(dbregs, db_show_dbregs)
894{
895
896	db_printf("dr0\t0x%016lx\n", rdr0());
897	db_printf("dr1\t0x%016lx\n", rdr1());
898	db_printf("dr2\t0x%016lx\n", rdr2());
899	db_printf("dr3\t0x%016lx\n", rdr3());
900	db_printf("dr6\t0x%016lx\n", rdr6());
901	db_printf("dr7\t0x%016lx\n", rdr7());
902}
903#endif
904
905void
906sdtossd(sd, ssd)
907	struct user_segment_descriptor *sd;
908	struct soft_segment_descriptor *ssd;
909{
910
911	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
912	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
913	ssd->ssd_type  = sd->sd_type;
914	ssd->ssd_dpl   = sd->sd_dpl;
915	ssd->ssd_p     = sd->sd_p;
916	ssd->ssd_long  = sd->sd_long;
917	ssd->ssd_def32 = sd->sd_def32;
918	ssd->ssd_gran  = sd->sd_gran;
919}
920
921void
922ssdtosd(ssd, sd)
923	struct soft_segment_descriptor *ssd;
924	struct user_segment_descriptor *sd;
925{
926
927	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
928	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
929	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
930	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
931	sd->sd_type  = ssd->ssd_type;
932	sd->sd_dpl   = ssd->ssd_dpl;
933	sd->sd_p     = ssd->ssd_p;
934	sd->sd_long  = ssd->ssd_long;
935	sd->sd_def32 = ssd->ssd_def32;
936	sd->sd_gran  = ssd->ssd_gran;
937}
938
939void
940ssdtosyssd(ssd, sd)
941	struct soft_segment_descriptor *ssd;
942	struct system_segment_descriptor *sd;
943{
944
945	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
946	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
947	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
948	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
949	sd->sd_type  = ssd->ssd_type;
950	sd->sd_dpl   = ssd->ssd_dpl;
951	sd->sd_p     = ssd->ssd_p;
952	sd->sd_gran  = ssd->ssd_gran;
953}
954
955#if !defined(DEV_ATPIC) && defined(DEV_ISA)
956#include <isa/isavar.h>
957#include <isa/isareg.h>
958/*
959 * Return a bitmap of the current interrupt requests.  This is 8259-specific
960 * and is only suitable for use at probe time.
961 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
962 * It shouldn't be here.  There should probably be an APIC centric
963 * implementation in the apic driver code, if at all.
964 */
965intrmask_t
966isa_irq_pending(void)
967{
968	u_char irr1;
969	u_char irr2;
970
971	irr1 = inb(IO_ICU1);
972	irr2 = inb(IO_ICU2);
973	return ((irr2 << 8) | irr1);
974}
975#endif
976
977u_int basemem;
978
979static int
980add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
981    int *physmap_idxp)
982{
983	int i, insert_idx, physmap_idx;
984
985	physmap_idx = *physmap_idxp;
986
987	if (length == 0)
988		return (1);
989
990	/*
991	 * Find insertion point while checking for overlap.  Start off by
992	 * assuming the new entry will be added to the end.
993	 *
994	 * NB: physmap_idx points to the next free slot.
995	 */
996	insert_idx = physmap_idx;
997	for (i = 0; i <= physmap_idx; i += 2) {
998		if (base < physmap[i + 1]) {
999			if (base + length <= physmap[i]) {
1000				insert_idx = i;
1001				break;
1002			}
1003			if (boothowto & RB_VERBOSE)
1004				printf(
1005		    "Overlapping memory regions, ignoring second region\n");
1006			return (1);
1007		}
1008	}
1009
1010	/* See if we can prepend to the next entry. */
1011	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1012		physmap[insert_idx] = base;
1013		return (1);
1014	}
1015
1016	/* See if we can append to the previous entry. */
1017	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1018		physmap[insert_idx - 1] += length;
1019		return (1);
1020	}
1021
1022	physmap_idx += 2;
1023	*physmap_idxp = physmap_idx;
1024	if (physmap_idx == PHYSMAP_SIZE) {
1025		printf(
1026		"Too many segments in the physical address map, giving up\n");
1027		return (0);
1028	}
1029
1030	/*
1031	 * Move the last 'N' entries down to make room for the new
1032	 * entry if needed.
1033	 */
1034	for (i = (physmap_idx - 2); i > insert_idx; i -= 2) {
1035		physmap[i] = physmap[i - 2];
1036		physmap[i + 1] = physmap[i - 1];
1037	}
1038
1039	/* Insert the new entry. */
1040	physmap[insert_idx] = base;
1041	physmap[insert_idx + 1] = base + length;
1042	return (1);
1043}
1044
1045void
1046bios_add_smap_entries(struct bios_smap *smapbase, u_int32_t smapsize,
1047                      vm_paddr_t *physmap, int *physmap_idx)
1048{
1049	struct bios_smap *smap, *smapend;
1050
1051	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1052
1053	for (smap = smapbase; smap < smapend; smap++) {
1054		if (boothowto & RB_VERBOSE)
1055			printf("SMAP type=%02x base=%016lx len=%016lx\n",
1056			    smap->type, smap->base, smap->length);
1057
1058		if (smap->type != SMAP_TYPE_MEMORY)
1059			continue;
1060
1061		if (!add_physmap_entry(smap->base, smap->length, physmap,
1062		    physmap_idx))
1063			break;
1064	}
1065}
1066
1067#define efi_next_descriptor(ptr, size) \
1068	((struct efi_md *)(((uint8_t *) ptr) + size))
1069
1070static void
1071add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
1072    int *physmap_idx)
1073{
1074	struct efi_md *map, *p;
1075	const char *type;
1076	size_t efisz;
1077	int ndesc, i;
1078
1079	static const char *types[] = {
1080		"Reserved",
1081		"LoaderCode",
1082		"LoaderData",
1083		"BootServicesCode",
1084		"BootServicesData",
1085		"RuntimeServicesCode",
1086		"RuntimeServicesData",
1087		"ConventionalMemory",
1088		"UnusableMemory",
1089		"ACPIReclaimMemory",
1090		"ACPIMemoryNVS",
1091		"MemoryMappedIO",
1092		"MemoryMappedIOPortSpace",
1093		"PalCode"
1094	};
1095
1096	/*
1097	 * Memory map data provided by UEFI via the GetMemoryMap
1098	 * Boot Services API.
1099	 */
1100	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1101	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
1102
1103	if (efihdr->descriptor_size == 0)
1104		return;
1105	ndesc = efihdr->memory_size / efihdr->descriptor_size;
1106
1107	if (boothowto & RB_VERBOSE)
1108		printf("%23s %12s %12s %8s %4s\n",
1109		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1110
1111	for (i = 0, p = map; i < ndesc; i++,
1112	    p = efi_next_descriptor(p, efihdr->descriptor_size)) {
1113		if (boothowto & RB_VERBOSE) {
1114			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1115				type = types[p->md_type];
1116			else
1117				type = "<INVALID>";
1118			printf("%23s %012lx %12p %08lx ", type, p->md_phys,
1119			    p->md_virt, p->md_pages);
1120			if (p->md_attr & EFI_MD_ATTR_UC)
1121				printf("UC ");
1122			if (p->md_attr & EFI_MD_ATTR_WC)
1123				printf("WC ");
1124			if (p->md_attr & EFI_MD_ATTR_WT)
1125				printf("WT ");
1126			if (p->md_attr & EFI_MD_ATTR_WB)
1127				printf("WB ");
1128			if (p->md_attr & EFI_MD_ATTR_UCE)
1129				printf("UCE ");
1130			if (p->md_attr & EFI_MD_ATTR_WP)
1131				printf("WP ");
1132			if (p->md_attr & EFI_MD_ATTR_RP)
1133				printf("RP ");
1134			if (p->md_attr & EFI_MD_ATTR_XP)
1135				printf("XP ");
1136			if (p->md_attr & EFI_MD_ATTR_RT)
1137				printf("RUNTIME");
1138			printf("\n");
1139		}
1140
1141		switch (p->md_type) {
1142		case EFI_MD_TYPE_CODE:
1143		case EFI_MD_TYPE_DATA:
1144		case EFI_MD_TYPE_BS_CODE:
1145		case EFI_MD_TYPE_BS_DATA:
1146		case EFI_MD_TYPE_FREE:
1147			/*
1148			 * We're allowed to use any entry with these types.
1149			 */
1150			break;
1151		default:
1152			continue;
1153		}
1154
1155		if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
1156		    physmap, physmap_idx))
1157			break;
1158	}
1159}
1160
1161static char bootmethod[16] = "";
1162SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1163    "System firmware boot method");
1164
1165static void
1166native_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx)
1167{
1168	struct bios_smap *smap;
1169	struct efi_map_header *efihdr;
1170	u_int32_t size;
1171
1172	/*
1173	 * Memory map from INT 15:E820.
1174	 *
1175	 * subr_module.c says:
1176	 * "Consumer may safely assume that size value precedes data."
1177	 * ie: an int32_t immediately precedes smap.
1178	 */
1179
1180	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1181	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1182	smap = (struct bios_smap *)preload_search_info(kmdp,
1183	    MODINFO_METADATA | MODINFOMD_SMAP);
1184	if (efihdr == NULL && smap == NULL)
1185		panic("No BIOS smap or EFI map info from loader!");
1186
1187	if (efihdr != NULL) {
1188		add_efi_map_entries(efihdr, physmap, physmap_idx);
1189		strlcpy(bootmethod, "UEFI", sizeof(bootmethod));
1190	} else {
1191		size = *((u_int32_t *)smap - 1);
1192		bios_add_smap_entries(smap, size, physmap, physmap_idx);
1193		strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
1194	}
1195}
1196
1197#define	PAGES_PER_GB	(1024 * 1024 * 1024 / PAGE_SIZE)
1198
1199/*
1200 * Populate the (physmap) array with base/bound pairs describing the
1201 * available physical memory in the system, then test this memory and
1202 * build the phys_avail array describing the actually-available memory.
1203 *
1204 * Total memory size may be set by the kernel environment variable
1205 * hw.physmem or the compile-time define MAXMEM.
1206 *
1207 * XXX first should be vm_paddr_t.
1208 */
1209static void
1210getmemsize(caddr_t kmdp, u_int64_t first)
1211{
1212	int i, physmap_idx, pa_indx, da_indx;
1213	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1214	u_long physmem_start, physmem_tunable, memtest;
1215	pt_entry_t *pte;
1216	quad_t dcons_addr, dcons_size;
1217	int page_counter;
1218
1219	bzero(physmap, sizeof(physmap));
1220	physmap_idx = 0;
1221
1222	init_ops.parse_memmap(kmdp, physmap, &physmap_idx);
1223	physmap_idx -= 2;
1224
1225	/*
1226	 * Find the 'base memory' segment for SMP
1227	 */
1228	basemem = 0;
1229	for (i = 0; i <= physmap_idx; i += 2) {
1230		if (physmap[i] <= 0xA0000) {
1231			basemem = physmap[i + 1] / 1024;
1232			break;
1233		}
1234	}
1235	if (basemem == 0 || basemem > 640) {
1236		if (bootverbose)
1237			printf(
1238		"Memory map doesn't contain a basemem segment, faking it");
1239		basemem = 640;
1240	}
1241
1242	/*
1243	 * Make hole for "AP -> long mode" bootstrap code.  The
1244	 * mp_bootaddress vector is only available when the kernel
1245	 * is configured to support APs and APs for the system start
1246	 * in 32bit mode (e.g. SMP bare metal).
1247	 */
1248	if (init_ops.mp_bootaddress) {
1249		if (physmap[1] >= 0x100000000)
1250			panic(
1251	"Basemem segment is not suitable for AP bootstrap code!");
1252		physmap[1] = init_ops.mp_bootaddress(physmap[1] / 1024);
1253	}
1254
1255	/*
1256	 * Maxmem isn't the "maximum memory", it's one larger than the
1257	 * highest page of the physical address space.  It should be
1258	 * called something like "Maxphyspage".  We may adjust this
1259	 * based on ``hw.physmem'' and the results of the memory test.
1260	 */
1261	Maxmem = atop(physmap[physmap_idx + 1]);
1262
1263#ifdef MAXMEM
1264	Maxmem = MAXMEM / 4;
1265#endif
1266
1267	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1268		Maxmem = atop(physmem_tunable);
1269
1270	/*
1271	 * The boot memory test is disabled by default, as it takes a
1272	 * significant amount of time on large-memory systems, and is
1273	 * unfriendly to virtual machines as it unnecessarily touches all
1274	 * pages.
1275	 *
1276	 * A general name is used as the code may be extended to support
1277	 * additional tests beyond the current "page present" test.
1278	 */
1279	memtest = 0;
1280	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1281
1282	/*
1283	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1284	 * in the system.
1285	 */
1286	if (Maxmem > atop(physmap[physmap_idx + 1]))
1287		Maxmem = atop(physmap[physmap_idx + 1]);
1288
1289	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1290	    (boothowto & RB_VERBOSE))
1291		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1292
1293	/* call pmap initialization to make new kernel address space */
1294	pmap_bootstrap(&first);
1295
1296	/*
1297	 * Size up each available chunk of physical memory.
1298	 *
1299	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1300	 * By default, mask off the first 16 pages unless we appear to be
1301	 * running in a VM.
1302	 */
1303	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1304	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1305	if (physmap[0] < physmem_start) {
1306		if (physmem_start < PAGE_SIZE)
1307			physmap[0] = PAGE_SIZE;
1308		else if (physmem_start >= physmap[1])
1309			physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1310		else
1311			physmap[0] = round_page(physmem_start);
1312	}
1313	pa_indx = 0;
1314	da_indx = 1;
1315	phys_avail[pa_indx++] = physmap[0];
1316	phys_avail[pa_indx] = physmap[0];
1317	dump_avail[da_indx] = physmap[0];
1318	pte = CMAP1;
1319
1320	/*
1321	 * Get dcons buffer address
1322	 */
1323	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1324	    getenv_quad("dcons.size", &dcons_size) == 0)
1325		dcons_addr = 0;
1326
1327	/*
1328	 * physmap is in bytes, so when converting to page boundaries,
1329	 * round up the start address and round down the end address.
1330	 */
1331	page_counter = 0;
1332	if (memtest != 0)
1333		printf("Testing system memory");
1334	for (i = 0; i <= physmap_idx; i += 2) {
1335		vm_paddr_t end;
1336
1337		end = ptoa((vm_paddr_t)Maxmem);
1338		if (physmap[i + 1] < end)
1339			end = trunc_page(physmap[i + 1]);
1340		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1341			int tmp, page_bad, full;
1342			int *ptr = (int *)CADDR1;
1343
1344			full = FALSE;
1345			/*
1346			 * block out kernel memory as not available.
1347			 */
1348			if (pa >= (vm_paddr_t)kernphys && pa < first)
1349				goto do_dump_avail;
1350
1351			/*
1352			 * block out dcons buffer
1353			 */
1354			if (dcons_addr > 0
1355			    && pa >= trunc_page(dcons_addr)
1356			    && pa < dcons_addr + dcons_size)
1357				goto do_dump_avail;
1358
1359			page_bad = FALSE;
1360			if (memtest == 0)
1361				goto skip_memtest;
1362
1363			/*
1364			 * Print a "." every GB to show we're making
1365			 * progress.
1366			 */
1367			page_counter++;
1368			if ((page_counter % PAGES_PER_GB) == 0)
1369				printf(".");
1370
1371			/*
1372			 * map page into kernel: valid, read/write,non-cacheable
1373			 */
1374			*pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
1375			invltlb();
1376
1377			tmp = *(int *)ptr;
1378			/*
1379			 * Test for alternating 1's and 0's
1380			 */
1381			*(volatile int *)ptr = 0xaaaaaaaa;
1382			if (*(volatile int *)ptr != 0xaaaaaaaa)
1383				page_bad = TRUE;
1384			/*
1385			 * Test for alternating 0's and 1's
1386			 */
1387			*(volatile int *)ptr = 0x55555555;
1388			if (*(volatile int *)ptr != 0x55555555)
1389				page_bad = TRUE;
1390			/*
1391			 * Test for all 1's
1392			 */
1393			*(volatile int *)ptr = 0xffffffff;
1394			if (*(volatile int *)ptr != 0xffffffff)
1395				page_bad = TRUE;
1396			/*
1397			 * Test for all 0's
1398			 */
1399			*(volatile int *)ptr = 0x0;
1400			if (*(volatile int *)ptr != 0x0)
1401				page_bad = TRUE;
1402			/*
1403			 * Restore original value.
1404			 */
1405			*(int *)ptr = tmp;
1406
1407skip_memtest:
1408			/*
1409			 * Adjust array of valid/good pages.
1410			 */
1411			if (page_bad == TRUE)
1412				continue;
1413			/*
1414			 * If this good page is a continuation of the
1415			 * previous set of good pages, then just increase
1416			 * the end pointer. Otherwise start a new chunk.
1417			 * Note that "end" points one higher than end,
1418			 * making the range >= start and < end.
1419			 * If we're also doing a speculative memory
1420			 * test and we at or past the end, bump up Maxmem
1421			 * so that we keep going. The first bad page
1422			 * will terminate the loop.
1423			 */
1424			if (phys_avail[pa_indx] == pa) {
1425				phys_avail[pa_indx] += PAGE_SIZE;
1426			} else {
1427				pa_indx++;
1428				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1429					printf(
1430		"Too many holes in the physical address space, giving up\n");
1431					pa_indx--;
1432					full = TRUE;
1433					goto do_dump_avail;
1434				}
1435				phys_avail[pa_indx++] = pa;	/* start */
1436				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1437			}
1438			physmem++;
1439do_dump_avail:
1440			if (dump_avail[da_indx] == pa) {
1441				dump_avail[da_indx] += PAGE_SIZE;
1442			} else {
1443				da_indx++;
1444				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1445					da_indx--;
1446					goto do_next;
1447				}
1448				dump_avail[da_indx++] = pa; /* start */
1449				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1450			}
1451do_next:
1452			if (full)
1453				break;
1454		}
1455	}
1456	*pte = 0;
1457	invltlb();
1458	if (memtest != 0)
1459		printf("\n");
1460
1461	/*
1462	 * XXX
1463	 * The last chunk must contain at least one page plus the message
1464	 * buffer to avoid complicating other code (message buffer address
1465	 * calculation, etc.).
1466	 */
1467	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1468	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1469		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1470		phys_avail[pa_indx--] = 0;
1471		phys_avail[pa_indx--] = 0;
1472	}
1473
1474	Maxmem = atop(phys_avail[pa_indx]);
1475
1476	/* Trim off space for the message buffer. */
1477	phys_avail[pa_indx] -= round_page(msgbufsize);
1478
1479	/* Map the message buffer. */
1480	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1481}
1482
1483static caddr_t
1484native_parse_preload_data(u_int64_t modulep)
1485{
1486	caddr_t kmdp;
1487	char *envp;
1488#ifdef DDB
1489	vm_offset_t ksym_start;
1490	vm_offset_t ksym_end;
1491#endif
1492
1493	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1494	preload_bootstrap_relocate(KERNBASE);
1495	kmdp = preload_search_by_type("elf kernel");
1496	if (kmdp == NULL)
1497		kmdp = preload_search_by_type("elf64 kernel");
1498	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1499	envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
1500	if (envp != NULL)
1501		envp += KERNBASE;
1502	init_static_kenv(envp, 0);
1503#ifdef DDB
1504	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1505	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1506	db_fetch_ksymtab(ksym_start, ksym_end);
1507#endif
1508	efi_systbl = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
1509
1510	return (kmdp);
1511}
1512
1513u_int64_t
1514hammer_time(u_int64_t modulep, u_int64_t physfree)
1515{
1516	caddr_t kmdp;
1517	int gsel_tss, x;
1518	struct pcpu *pc;
1519	struct nmi_pcpu *np;
1520	struct xstate_hdr *xhdr;
1521	u_int64_t msr;
1522	char *env;
1523	size_t kstack0_sz;
1524
1525	/*
1526 	 * This may be done better later if it gets more high level
1527 	 * components in it. If so just link td->td_proc here.
1528	 */
1529	proc_linkup0(&proc0, &thread0);
1530
1531	kmdp = init_ops.parse_preload_data(modulep);
1532
1533	/* Init basic tunables, hz etc */
1534	init_param1();
1535
1536	thread0.td_kstack = physfree + KERNBASE;
1537	thread0.td_kstack_pages = kstack_pages;
1538	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1539	bzero((void *)thread0.td_kstack, kstack0_sz);
1540	physfree += kstack0_sz;
1541
1542	/*
1543	 * make gdt memory segments
1544	 */
1545	for (x = 0; x < NGDT; x++) {
1546		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1547		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1548			ssdtosd(&gdt_segs[x], &gdt[x]);
1549	}
1550	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1551	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1552	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1553
1554	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1555	r_gdt.rd_base =  (long) gdt;
1556	lgdt(&r_gdt);
1557	pc = &__pcpu[0];
1558
1559	wrmsr(MSR_FSBASE, 0);		/* User value */
1560	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1561	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1562
1563	pcpu_init(pc, 0, sizeof(struct pcpu));
1564	dpcpu_init((void *)(physfree + KERNBASE), 0);
1565	physfree += DPCPU_SIZE;
1566	PCPU_SET(prvspace, pc);
1567	PCPU_SET(curthread, &thread0);
1568	PCPU_SET(tssp, &common_tss[0]);
1569	PCPU_SET(commontssp, &common_tss[0]);
1570	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1571	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1572	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1573	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1574
1575	/*
1576	 * Initialize mutexes.
1577	 *
1578	 * icu_lock: in order to allow an interrupt to occur in a critical
1579	 * 	     section, to set pcpu->ipending (etc...) properly, we
1580	 *	     must be able to get the icu lock, so it can't be
1581	 *	     under witness.
1582	 */
1583	mutex_init();
1584	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1585	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1586
1587	/* exceptions */
1588	for (x = 0; x < NIDT; x++)
1589		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1590	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1591	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1592	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1593 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1594	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1595	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1596	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1597	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1598	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1599	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1600	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1601	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1602	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1603	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1604	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1605	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1606	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1607	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1608	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1609#ifdef KDTRACE_HOOKS
1610	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1611#endif
1612#ifdef XENHVM
1613	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
1614#endif
1615
1616	r_idt.rd_limit = sizeof(idt0) - 1;
1617	r_idt.rd_base = (long) idt;
1618	lidt(&r_idt);
1619
1620	/*
1621	 * Initialize the clock before the console so that console
1622	 * initialization can use DELAY().
1623	 */
1624	clock_init();
1625
1626	/*
1627	 * Use vt(4) by default for UEFI boot (during the sc(4)/vt(4)
1628	 * transition).
1629	 * Once bootblocks have updated, we can test directly for
1630	 * efi_systbl != NULL here...
1631	 */
1632	if (preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_MAP)
1633	    != NULL)
1634		vty_set_preferred(VTY_VT);
1635
1636	identify_cpu();		/* Final stage of CPU initialization */
1637	initializecpu();	/* Initialize CPU registers */
1638	initializecpucache();
1639
1640	/* doublefault stack space, runs on ist1 */
1641	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1642
1643	/*
1644	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1645	 * above the start of the ist2 stack.
1646	 */
1647	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1648	np->np_pcpu = (register_t) pc;
1649	common_tss[0].tss_ist2 = (long) np;
1650
1651	/* Set the IO permission bitmap (empty due to tss seg limit) */
1652	common_tss[0].tss_iobase = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE;
1653
1654	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1655	ltr(gsel_tss);
1656
1657	/* Set up the fast syscall stuff */
1658	msr = rdmsr(MSR_EFER) | EFER_SCE;
1659	wrmsr(MSR_EFER, msr);
1660	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1661	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1662	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1663	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1664	wrmsr(MSR_STAR, msr);
1665	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1666
1667	getmemsize(kmdp, physfree);
1668	init_param2(physmem);
1669
1670	/* now running on new page tables, configured,and u/iom is accessible */
1671
1672	cninit();
1673
1674#ifdef DEV_ISA
1675#ifdef DEV_ATPIC
1676	elcr_probe();
1677	atpic_startup();
1678#else
1679	/* Reset and mask the atpics and leave them shut down. */
1680	atpic_reset();
1681
1682	/*
1683	 * Point the ICU spurious interrupt vectors at the APIC spurious
1684	 * interrupt handler.
1685	 */
1686	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1687	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1688#endif
1689#else
1690#error "have you forgotten the isa device?";
1691#endif
1692
1693	kdb_init();
1694
1695#ifdef KDB
1696	if (boothowto & RB_KDB)
1697		kdb_enter(KDB_WHY_BOOTFLAGS,
1698		    "Boot flags requested debugger");
1699#endif
1700
1701	msgbufinit(msgbufp, msgbufsize);
1702	fpuinit();
1703
1704	/*
1705	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
1706	 * area size.  Zero out the extended state header in fpu save
1707	 * area.
1708	 */
1709	thread0.td_pcb = get_pcb_td(&thread0);
1710	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1711	if (use_xsave) {
1712		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1713		    1);
1714		xhdr->xstate_bv = xsave_mask;
1715	}
1716	/* make an initial tss so cpu can get interrupt stack on syscall! */
1717	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
1718	/* Ensure the stack is aligned to 16 bytes */
1719	common_tss[0].tss_rsp0 &= ~0xFul;
1720	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1721	PCPU_SET(curpcb, thread0.td_pcb);
1722
1723	/* transfer to user mode */
1724
1725	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1726	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1727	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1728	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1729	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1730
1731	load_ds(_udatasel);
1732	load_es(_udatasel);
1733	load_fs(_ufssel);
1734
1735	/* setup proc 0's pcb */
1736	thread0.td_pcb->pcb_flags = 0;
1737	thread0.td_frame = &proc0_tf;
1738
1739        env = kern_getenv("kernelname");
1740	if (env != NULL)
1741		strlcpy(kernelname, env, sizeof(kernelname));
1742
1743	cpu_probe_amdc1e();
1744
1745#ifdef FDT
1746	x86_init_fdt();
1747#endif
1748
1749	/* Location of kernel stack for locore */
1750	return ((u_int64_t)thread0.td_pcb);
1751}
1752
1753void
1754cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1755{
1756
1757	pcpu->pc_acpi_id = 0xffffffff;
1758}
1759
1760static int
1761smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
1762{
1763	struct bios_smap *smapbase;
1764	struct bios_smap_xattr smap;
1765	caddr_t kmdp;
1766	uint32_t *smapattr;
1767	int count, error, i;
1768
1769	/* Retrieve the system memory map from the loader. */
1770	kmdp = preload_search_by_type("elf kernel");
1771	if (kmdp == NULL)
1772		kmdp = preload_search_by_type("elf64 kernel");
1773	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1774	    MODINFO_METADATA | MODINFOMD_SMAP);
1775	if (smapbase == NULL)
1776		return (0);
1777	smapattr = (uint32_t *)preload_search_info(kmdp,
1778	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
1779	count = *((uint32_t *)smapbase - 1) / sizeof(*smapbase);
1780	error = 0;
1781	for (i = 0; i < count; i++) {
1782		smap.base = smapbase[i].base;
1783		smap.length = smapbase[i].length;
1784		smap.type = smapbase[i].type;
1785		if (smapattr != NULL)
1786			smap.xattr = smapattr[i];
1787		else
1788			smap.xattr = 0;
1789		error = SYSCTL_OUT(req, &smap, sizeof(smap));
1790	}
1791	return (error);
1792}
1793SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1794    smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
1795
1796static int
1797efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1798{
1799	struct efi_map_header *efihdr;
1800	caddr_t kmdp;
1801	uint32_t efisize;
1802
1803	kmdp = preload_search_by_type("elf kernel");
1804	if (kmdp == NULL)
1805		kmdp = preload_search_by_type("elf64 kernel");
1806	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1807	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1808	if (efihdr == NULL)
1809		return (0);
1810	efisize = *((uint32_t *)efihdr - 1);
1811	return (SYSCTL_OUT(req, efihdr, efisize));
1812}
1813SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1814    efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1815
1816void
1817spinlock_enter(void)
1818{
1819	struct thread *td;
1820	register_t flags;
1821
1822	td = curthread;
1823	if (td->td_md.md_spinlock_count == 0) {
1824		flags = intr_disable();
1825		td->td_md.md_spinlock_count = 1;
1826		td->td_md.md_saved_flags = flags;
1827	} else
1828		td->td_md.md_spinlock_count++;
1829	critical_enter();
1830}
1831
1832void
1833spinlock_exit(void)
1834{
1835	struct thread *td;
1836	register_t flags;
1837
1838	td = curthread;
1839	critical_exit();
1840	flags = td->td_md.md_saved_flags;
1841	td->td_md.md_spinlock_count--;
1842	if (td->td_md.md_spinlock_count == 0)
1843		intr_restore(flags);
1844}
1845
1846/*
1847 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1848 * we want to start a backtrace from the function that caused us to enter
1849 * the debugger. We have the context in the trapframe, but base the trace
1850 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1851 * enough for a backtrace.
1852 */
1853void
1854makectx(struct trapframe *tf, struct pcb *pcb)
1855{
1856
1857	pcb->pcb_r12 = tf->tf_r12;
1858	pcb->pcb_r13 = tf->tf_r13;
1859	pcb->pcb_r14 = tf->tf_r14;
1860	pcb->pcb_r15 = tf->tf_r15;
1861	pcb->pcb_rbp = tf->tf_rbp;
1862	pcb->pcb_rbx = tf->tf_rbx;
1863	pcb->pcb_rip = tf->tf_rip;
1864	pcb->pcb_rsp = tf->tf_rsp;
1865}
1866
1867int
1868ptrace_set_pc(struct thread *td, unsigned long addr)
1869{
1870
1871	td->td_frame->tf_rip = addr;
1872	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1873	return (0);
1874}
1875
1876int
1877ptrace_single_step(struct thread *td)
1878{
1879	td->td_frame->tf_rflags |= PSL_T;
1880	return (0);
1881}
1882
1883int
1884ptrace_clear_single_step(struct thread *td)
1885{
1886	td->td_frame->tf_rflags &= ~PSL_T;
1887	return (0);
1888}
1889
1890int
1891fill_regs(struct thread *td, struct reg *regs)
1892{
1893	struct trapframe *tp;
1894
1895	tp = td->td_frame;
1896	return (fill_frame_regs(tp, regs));
1897}
1898
1899int
1900fill_frame_regs(struct trapframe *tp, struct reg *regs)
1901{
1902	regs->r_r15 = tp->tf_r15;
1903	regs->r_r14 = tp->tf_r14;
1904	regs->r_r13 = tp->tf_r13;
1905	regs->r_r12 = tp->tf_r12;
1906	regs->r_r11 = tp->tf_r11;
1907	regs->r_r10 = tp->tf_r10;
1908	regs->r_r9  = tp->tf_r9;
1909	regs->r_r8  = tp->tf_r8;
1910	regs->r_rdi = tp->tf_rdi;
1911	regs->r_rsi = tp->tf_rsi;
1912	regs->r_rbp = tp->tf_rbp;
1913	regs->r_rbx = tp->tf_rbx;
1914	regs->r_rdx = tp->tf_rdx;
1915	regs->r_rcx = tp->tf_rcx;
1916	regs->r_rax = tp->tf_rax;
1917	regs->r_rip = tp->tf_rip;
1918	regs->r_cs = tp->tf_cs;
1919	regs->r_rflags = tp->tf_rflags;
1920	regs->r_rsp = tp->tf_rsp;
1921	regs->r_ss = tp->tf_ss;
1922	if (tp->tf_flags & TF_HASSEGS) {
1923		regs->r_ds = tp->tf_ds;
1924		regs->r_es = tp->tf_es;
1925		regs->r_fs = tp->tf_fs;
1926		regs->r_gs = tp->tf_gs;
1927	} else {
1928		regs->r_ds = 0;
1929		regs->r_es = 0;
1930		regs->r_fs = 0;
1931		regs->r_gs = 0;
1932	}
1933	return (0);
1934}
1935
1936int
1937set_regs(struct thread *td, struct reg *regs)
1938{
1939	struct trapframe *tp;
1940	register_t rflags;
1941
1942	tp = td->td_frame;
1943	rflags = regs->r_rflags & 0xffffffff;
1944	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1945		return (EINVAL);
1946	tp->tf_r15 = regs->r_r15;
1947	tp->tf_r14 = regs->r_r14;
1948	tp->tf_r13 = regs->r_r13;
1949	tp->tf_r12 = regs->r_r12;
1950	tp->tf_r11 = regs->r_r11;
1951	tp->tf_r10 = regs->r_r10;
1952	tp->tf_r9  = regs->r_r9;
1953	tp->tf_r8  = regs->r_r8;
1954	tp->tf_rdi = regs->r_rdi;
1955	tp->tf_rsi = regs->r_rsi;
1956	tp->tf_rbp = regs->r_rbp;
1957	tp->tf_rbx = regs->r_rbx;
1958	tp->tf_rdx = regs->r_rdx;
1959	tp->tf_rcx = regs->r_rcx;
1960	tp->tf_rax = regs->r_rax;
1961	tp->tf_rip = regs->r_rip;
1962	tp->tf_cs = regs->r_cs;
1963	tp->tf_rflags = rflags;
1964	tp->tf_rsp = regs->r_rsp;
1965	tp->tf_ss = regs->r_ss;
1966	if (0) {	/* XXXKIB */
1967		tp->tf_ds = regs->r_ds;
1968		tp->tf_es = regs->r_es;
1969		tp->tf_fs = regs->r_fs;
1970		tp->tf_gs = regs->r_gs;
1971		tp->tf_flags = TF_HASSEGS;
1972	}
1973	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1974	return (0);
1975}
1976
1977/* XXX check all this stuff! */
1978/* externalize from sv_xmm */
1979static void
1980fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1981{
1982	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1983	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1984	int i;
1985
1986	/* pcb -> fpregs */
1987	bzero(fpregs, sizeof(*fpregs));
1988
1989	/* FPU control/status */
1990	penv_fpreg->en_cw = penv_xmm->en_cw;
1991	penv_fpreg->en_sw = penv_xmm->en_sw;
1992	penv_fpreg->en_tw = penv_xmm->en_tw;
1993	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1994	penv_fpreg->en_rip = penv_xmm->en_rip;
1995	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1996	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1997	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1998
1999	/* FPU registers */
2000	for (i = 0; i < 8; ++i)
2001		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2002
2003	/* SSE registers */
2004	for (i = 0; i < 16; ++i)
2005		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2006}
2007
2008/* internalize from fpregs into sv_xmm */
2009static void
2010set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2011{
2012	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2013	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2014	int i;
2015
2016	/* fpregs -> pcb */
2017	/* FPU control/status */
2018	penv_xmm->en_cw = penv_fpreg->en_cw;
2019	penv_xmm->en_sw = penv_fpreg->en_sw;
2020	penv_xmm->en_tw = penv_fpreg->en_tw;
2021	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2022	penv_xmm->en_rip = penv_fpreg->en_rip;
2023	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2024	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2025	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2026
2027	/* FPU registers */
2028	for (i = 0; i < 8; ++i)
2029		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2030
2031	/* SSE registers */
2032	for (i = 0; i < 16; ++i)
2033		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2034}
2035
2036/* externalize from td->pcb */
2037int
2038fill_fpregs(struct thread *td, struct fpreg *fpregs)
2039{
2040
2041	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2042	    P_SHOULDSTOP(td->td_proc),
2043	    ("not suspended thread %p", td));
2044	fpugetregs(td);
2045	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2046	return (0);
2047}
2048
2049/* internalize to td->pcb */
2050int
2051set_fpregs(struct thread *td, struct fpreg *fpregs)
2052{
2053
2054	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2055	fpuuserinited(td);
2056	return (0);
2057}
2058
2059/*
2060 * Get machine context.
2061 */
2062int
2063get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2064{
2065	struct pcb *pcb;
2066	struct trapframe *tp;
2067
2068	pcb = td->td_pcb;
2069	tp = td->td_frame;
2070	PROC_LOCK(curthread->td_proc);
2071	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2072	PROC_UNLOCK(curthread->td_proc);
2073	mcp->mc_r15 = tp->tf_r15;
2074	mcp->mc_r14 = tp->tf_r14;
2075	mcp->mc_r13 = tp->tf_r13;
2076	mcp->mc_r12 = tp->tf_r12;
2077	mcp->mc_r11 = tp->tf_r11;
2078	mcp->mc_r10 = tp->tf_r10;
2079	mcp->mc_r9  = tp->tf_r9;
2080	mcp->mc_r8  = tp->tf_r8;
2081	mcp->mc_rdi = tp->tf_rdi;
2082	mcp->mc_rsi = tp->tf_rsi;
2083	mcp->mc_rbp = tp->tf_rbp;
2084	mcp->mc_rbx = tp->tf_rbx;
2085	mcp->mc_rcx = tp->tf_rcx;
2086	mcp->mc_rflags = tp->tf_rflags;
2087	if (flags & GET_MC_CLEAR_RET) {
2088		mcp->mc_rax = 0;
2089		mcp->mc_rdx = 0;
2090		mcp->mc_rflags &= ~PSL_C;
2091	} else {
2092		mcp->mc_rax = tp->tf_rax;
2093		mcp->mc_rdx = tp->tf_rdx;
2094	}
2095	mcp->mc_rip = tp->tf_rip;
2096	mcp->mc_cs = tp->tf_cs;
2097	mcp->mc_rsp = tp->tf_rsp;
2098	mcp->mc_ss = tp->tf_ss;
2099	mcp->mc_ds = tp->tf_ds;
2100	mcp->mc_es = tp->tf_es;
2101	mcp->mc_fs = tp->tf_fs;
2102	mcp->mc_gs = tp->tf_gs;
2103	mcp->mc_flags = tp->tf_flags;
2104	mcp->mc_len = sizeof(*mcp);
2105	get_fpcontext(td, mcp, NULL, 0);
2106	mcp->mc_fsbase = pcb->pcb_fsbase;
2107	mcp->mc_gsbase = pcb->pcb_gsbase;
2108	mcp->mc_xfpustate = 0;
2109	mcp->mc_xfpustate_len = 0;
2110	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2111	return (0);
2112}
2113
2114/*
2115 * Set machine context.
2116 *
2117 * However, we don't set any but the user modifiable flags, and we won't
2118 * touch the cs selector.
2119 */
2120int
2121set_mcontext(struct thread *td, mcontext_t *mcp)
2122{
2123	struct pcb *pcb;
2124	struct trapframe *tp;
2125	char *xfpustate;
2126	long rflags;
2127	int ret;
2128
2129	pcb = td->td_pcb;
2130	tp = td->td_frame;
2131	if (mcp->mc_len != sizeof(*mcp) ||
2132	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2133		return (EINVAL);
2134	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2135	    (tp->tf_rflags & ~PSL_USERCHANGE);
2136	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2137		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2138		    sizeof(struct savefpu))
2139			return (EINVAL);
2140		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2141		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2142		    mcp->mc_xfpustate_len);
2143		if (ret != 0)
2144			return (ret);
2145	} else
2146		xfpustate = NULL;
2147	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2148	if (ret != 0)
2149		return (ret);
2150	tp->tf_r15 = mcp->mc_r15;
2151	tp->tf_r14 = mcp->mc_r14;
2152	tp->tf_r13 = mcp->mc_r13;
2153	tp->tf_r12 = mcp->mc_r12;
2154	tp->tf_r11 = mcp->mc_r11;
2155	tp->tf_r10 = mcp->mc_r10;
2156	tp->tf_r9  = mcp->mc_r9;
2157	tp->tf_r8  = mcp->mc_r8;
2158	tp->tf_rdi = mcp->mc_rdi;
2159	tp->tf_rsi = mcp->mc_rsi;
2160	tp->tf_rbp = mcp->mc_rbp;
2161	tp->tf_rbx = mcp->mc_rbx;
2162	tp->tf_rdx = mcp->mc_rdx;
2163	tp->tf_rcx = mcp->mc_rcx;
2164	tp->tf_rax = mcp->mc_rax;
2165	tp->tf_rip = mcp->mc_rip;
2166	tp->tf_rflags = rflags;
2167	tp->tf_rsp = mcp->mc_rsp;
2168	tp->tf_ss = mcp->mc_ss;
2169	tp->tf_flags = mcp->mc_flags;
2170	if (tp->tf_flags & TF_HASSEGS) {
2171		tp->tf_ds = mcp->mc_ds;
2172		tp->tf_es = mcp->mc_es;
2173		tp->tf_fs = mcp->mc_fs;
2174		tp->tf_gs = mcp->mc_gs;
2175	}
2176	if (mcp->mc_flags & _MC_HASBASES) {
2177		pcb->pcb_fsbase = mcp->mc_fsbase;
2178		pcb->pcb_gsbase = mcp->mc_gsbase;
2179	}
2180	set_pcb_flags(pcb, PCB_FULL_IRET);
2181	return (0);
2182}
2183
2184static void
2185get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2186    size_t xfpusave_len)
2187{
2188	size_t max_len, len;
2189
2190	mcp->mc_ownedfp = fpugetregs(td);
2191	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2192	    sizeof(mcp->mc_fpstate));
2193	mcp->mc_fpformat = fpuformat();
2194	if (!use_xsave || xfpusave_len == 0)
2195		return;
2196	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2197	len = xfpusave_len;
2198	if (len > max_len) {
2199		len = max_len;
2200		bzero(xfpusave + max_len, len - max_len);
2201	}
2202	mcp->mc_flags |= _MC_HASFPXSTATE;
2203	mcp->mc_xfpustate_len = len;
2204	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2205}
2206
2207static int
2208set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
2209    size_t xfpustate_len)
2210{
2211	struct savefpu *fpstate;
2212	int error;
2213
2214	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2215		return (0);
2216	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2217		return (EINVAL);
2218	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2219		/* We don't care what state is left in the FPU or PCB. */
2220		fpstate_drop(td);
2221		error = 0;
2222	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2223	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2224		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2225		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2226		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2227	} else
2228		return (EINVAL);
2229	return (error);
2230}
2231
2232void
2233fpstate_drop(struct thread *td)
2234{
2235
2236	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2237	critical_enter();
2238	if (PCPU_GET(fpcurthread) == td)
2239		fpudrop();
2240	/*
2241	 * XXX force a full drop of the fpu.  The above only drops it if we
2242	 * owned it.
2243	 *
2244	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2245	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2246	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2247	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2248	 * have too many layers.
2249	 */
2250	clear_pcb_flags(curthread->td_pcb,
2251	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2252	critical_exit();
2253}
2254
2255int
2256fill_dbregs(struct thread *td, struct dbreg *dbregs)
2257{
2258	struct pcb *pcb;
2259
2260	if (td == NULL) {
2261		dbregs->dr[0] = rdr0();
2262		dbregs->dr[1] = rdr1();
2263		dbregs->dr[2] = rdr2();
2264		dbregs->dr[3] = rdr3();
2265		dbregs->dr[6] = rdr6();
2266		dbregs->dr[7] = rdr7();
2267	} else {
2268		pcb = td->td_pcb;
2269		dbregs->dr[0] = pcb->pcb_dr0;
2270		dbregs->dr[1] = pcb->pcb_dr1;
2271		dbregs->dr[2] = pcb->pcb_dr2;
2272		dbregs->dr[3] = pcb->pcb_dr3;
2273		dbregs->dr[6] = pcb->pcb_dr6;
2274		dbregs->dr[7] = pcb->pcb_dr7;
2275	}
2276	dbregs->dr[4] = 0;
2277	dbregs->dr[5] = 0;
2278	dbregs->dr[8] = 0;
2279	dbregs->dr[9] = 0;
2280	dbregs->dr[10] = 0;
2281	dbregs->dr[11] = 0;
2282	dbregs->dr[12] = 0;
2283	dbregs->dr[13] = 0;
2284	dbregs->dr[14] = 0;
2285	dbregs->dr[15] = 0;
2286	return (0);
2287}
2288
2289int
2290set_dbregs(struct thread *td, struct dbreg *dbregs)
2291{
2292	struct pcb *pcb;
2293	int i;
2294
2295	if (td == NULL) {
2296		load_dr0(dbregs->dr[0]);
2297		load_dr1(dbregs->dr[1]);
2298		load_dr2(dbregs->dr[2]);
2299		load_dr3(dbregs->dr[3]);
2300		load_dr6(dbregs->dr[6]);
2301		load_dr7(dbregs->dr[7]);
2302	} else {
2303		/*
2304		 * Don't let an illegal value for dr7 get set.  Specifically,
2305		 * check for undefined settings.  Setting these bit patterns
2306		 * result in undefined behaviour and can lead to an unexpected
2307		 * TRCTRAP or a general protection fault right here.
2308		 * Upper bits of dr6 and dr7 must not be set
2309		 */
2310		for (i = 0; i < 4; i++) {
2311			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2312				return (EINVAL);
2313			if (td->td_frame->tf_cs == _ucode32sel &&
2314			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2315				return (EINVAL);
2316		}
2317		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2318		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2319			return (EINVAL);
2320
2321		pcb = td->td_pcb;
2322
2323		/*
2324		 * Don't let a process set a breakpoint that is not within the
2325		 * process's address space.  If a process could do this, it
2326		 * could halt the system by setting a breakpoint in the kernel
2327		 * (if ddb was enabled).  Thus, we need to check to make sure
2328		 * that no breakpoints are being enabled for addresses outside
2329		 * process's address space.
2330		 *
2331		 * XXX - what about when the watched area of the user's
2332		 * address space is written into from within the kernel
2333		 * ... wouldn't that still cause a breakpoint to be generated
2334		 * from within kernel mode?
2335		 */
2336
2337		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2338			/* dr0 is enabled */
2339			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2340				return (EINVAL);
2341		}
2342		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2343			/* dr1 is enabled */
2344			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2345				return (EINVAL);
2346		}
2347		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2348			/* dr2 is enabled */
2349			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2350				return (EINVAL);
2351		}
2352		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2353			/* dr3 is enabled */
2354			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2355				return (EINVAL);
2356		}
2357
2358		pcb->pcb_dr0 = dbregs->dr[0];
2359		pcb->pcb_dr1 = dbregs->dr[1];
2360		pcb->pcb_dr2 = dbregs->dr[2];
2361		pcb->pcb_dr3 = dbregs->dr[3];
2362		pcb->pcb_dr6 = dbregs->dr[6];
2363		pcb->pcb_dr7 = dbregs->dr[7];
2364
2365		set_pcb_flags(pcb, PCB_DBREGS);
2366	}
2367
2368	return (0);
2369}
2370
2371void
2372reset_dbregs(void)
2373{
2374
2375	load_dr7(0);	/* Turn off the control bits first */
2376	load_dr0(0);
2377	load_dr1(0);
2378	load_dr2(0);
2379	load_dr3(0);
2380	load_dr6(0);
2381}
2382
2383/*
2384 * Return > 0 if a hardware breakpoint has been hit, and the
2385 * breakpoint was in user space.  Return 0, otherwise.
2386 */
2387int
2388user_dbreg_trap(void)
2389{
2390        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2391        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2392        int nbp;            /* number of breakpoints that triggered */
2393        caddr_t addr[4];    /* breakpoint addresses */
2394        int i;
2395
2396        dr7 = rdr7();
2397        if ((dr7 & 0x000000ff) == 0) {
2398                /*
2399                 * all GE and LE bits in the dr7 register are zero,
2400                 * thus the trap couldn't have been caused by the
2401                 * hardware debug registers
2402                 */
2403                return 0;
2404        }
2405
2406        nbp = 0;
2407        dr6 = rdr6();
2408        bp = dr6 & 0x0000000f;
2409
2410        if (!bp) {
2411                /*
2412                 * None of the breakpoint bits are set meaning this
2413                 * trap was not caused by any of the debug registers
2414                 */
2415                return 0;
2416        }
2417
2418        /*
2419         * at least one of the breakpoints were hit, check to see
2420         * which ones and if any of them are user space addresses
2421         */
2422
2423        if (bp & 0x01) {
2424                addr[nbp++] = (caddr_t)rdr0();
2425        }
2426        if (bp & 0x02) {
2427                addr[nbp++] = (caddr_t)rdr1();
2428        }
2429        if (bp & 0x04) {
2430                addr[nbp++] = (caddr_t)rdr2();
2431        }
2432        if (bp & 0x08) {
2433                addr[nbp++] = (caddr_t)rdr3();
2434        }
2435
2436        for (i = 0; i < nbp; i++) {
2437                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2438                        /*
2439                         * addr[i] is in user space
2440                         */
2441                        return nbp;
2442                }
2443        }
2444
2445        /*
2446         * None of the breakpoints are in user space.
2447         */
2448        return 0;
2449}
2450
2451#ifdef KDB
2452
2453/*
2454 * Provide inb() and outb() as functions.  They are normally only available as
2455 * inline functions, thus cannot be called from the debugger.
2456 */
2457
2458/* silence compiler warnings */
2459u_char inb_(u_short);
2460void outb_(u_short, u_char);
2461
2462u_char
2463inb_(u_short port)
2464{
2465	return inb(port);
2466}
2467
2468void
2469outb_(u_short port, u_char data)
2470{
2471	outb(port, data);
2472}
2473
2474#endif /* KDB */
2475