machdep.c revision 292472
177218Sphk/*-
277218Sphk * Copyright (c) 2003 Peter Wemm.
377218Sphk * Copyright (c) 1992 Terrence R. Lambert.
477218Sphk * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
577218Sphk * All rights reserved.
677218Sphk *
777218Sphk * This code is derived from software contributed to Berkeley by
877218Sphk * William Jolitz.
977218Sphk *
1077218Sphk * Redistribution and use in source and binary forms, with or without
1177218Sphk * modification, are permitted provided that the following conditions
1291454Sbrooks * are met:
1391454Sbrooks * 1. Redistributions of source code must retain the above copyright
1477218Sphk *    notice, this list of conditions and the following disclaimer.
1577218Sphk * 2. Redistributions in binary form must reproduce the above copyright
1677218Sphk *    notice, this list of conditions and the following disclaimer in the
1777218Sphk *    documentation and/or other materials provided with the distribution.
1877218Sphk * 3. All advertising materials mentioning features or use of this software
1977218Sphk *    must display the following acknowledgement:
2077218Sphk *	This product includes software developed by the University of
2177218Sphk *	California, Berkeley and its contributors.
2277218Sphk * 4. Neither the name of the University nor the names of its contributors
2377218Sphk *    may be used to endorse or promote products derived from this software
2477218Sphk *    without specific prior written permission.
2577218Sphk *
2677218Sphk * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
2777218Sphk * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2877218Sphk * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2977218Sphk * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3077218Sphk * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3177218Sphk * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3277218Sphk * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3377218Sphk * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3477218Sphk * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3577218Sphk * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3677218Sphk * SUCH DAMAGE.
3777218Sphk *
3877218Sphk *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
3977218Sphk */
4077218Sphk
4177218Sphk#include <sys/cdefs.h>
4277218Sphk__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 292472 2015-12-19 19:01:43Z imp $");
4377218Sphk
4477218Sphk#include "opt_atpic.h"
4577218Sphk#include "opt_compat.h"
4677218Sphk#include "opt_cpu.h"
4777218Sphk#include "opt_ddb.h"
4877218Sphk#include "opt_inet.h"
4977218Sphk#include "opt_isa.h"
5077218Sphk#include "opt_kstack_pages.h"
5177218Sphk#include "opt_maxmem.h"
5277218Sphk#include "opt_mp_watchdog.h"
5377218Sphk#include "opt_perfmon.h"
5477218Sphk#include "opt_platform.h"
5577218Sphk#include "opt_sched.h"
5677218Sphk
5777218Sphk#include <sys/param.h>
5877218Sphk#include <sys/proc.h>
5977218Sphk#include <sys/systm.h>
6077218Sphk#include <sys/bio.h>
6177218Sphk#include <sys/buf.h>
6277218Sphk#include <sys/bus.h>
6377218Sphk#include <sys/callout.h>
6477218Sphk#include <sys/cons.h>
6577218Sphk#include <sys/cpu.h>
6677218Sphk#include <sys/efi.h>
6777218Sphk#include <sys/eventhandler.h>
6877218Sphk#include <sys/exec.h>
6977218Sphk#include <sys/imgact.h>
7077218Sphk#include <sys/kdb.h>
7177218Sphk#include <sys/kernel.h>
7277218Sphk#include <sys/ktr.h>
7377218Sphk#include <sys/linker.h>
7477218Sphk#include <sys/lock.h>
7577218Sphk#include <sys/malloc.h>
7677218Sphk#include <sys/memrange.h>
7777218Sphk#include <sys/msgbuf.h>
78116957Ssam#include <sys/mutex.h>
79120178Ssam#include <sys/pcpu.h>
80116957Ssam#include <sys/ptrace.h>
8177218Sphk#include <sys/reboot.h>
8277218Sphk#include <sys/rwlock.h>
8377218Sphk#include <sys/sched.h>
8477218Sphk#include <sys/signalvar.h>
8577218Sphk#ifdef SMP
8677218Sphk#include <sys/smp.h>
8777218Sphk#endif
8877218Sphk#include <sys/syscallsubr.h>
8977218Sphk#include <sys/sysctl.h>
9077218Sphk#include <sys/sysent.h>
9177218Sphk#include <sys/sysproto.h>
9277218Sphk#include <sys/ucontext.h>
9377218Sphk#include <sys/vmmeter.h>
9477218Sphk
9577218Sphk#include <vm/vm.h>
9677218Sphk#include <vm/vm_extern.h>
9777218Sphk#include <vm/vm_kern.h>
9877218Sphk#include <vm/vm_page.h>
9977218Sphk#include <vm/vm_map.h>
10077218Sphk#include <vm/vm_object.h>
10177218Sphk#include <vm/vm_pager.h>
10277218Sphk#include <vm/vm_param.h>
10377218Sphk
10477218Sphk#ifdef DDB
10577218Sphk#ifndef KDB
106121827Sbrooks#error KDB must be enabled in order for DDB to work!
10788748Sambrisko#endif
10888748Sambrisko#include <ddb/ddb.h>
10988748Sambrisko#include <ddb/db_sym.h>
11088748Sambrisko#endif
11177218Sphk
11277218Sphk#include <net/netisr.h>
11377218Sphk
11477218Sphk#include <machine/clock.h>
11577218Sphk#include <machine/cpu.h>
11677218Sphk#include <machine/cputypes.h>
11777218Sphk#include <machine/intr_machdep.h>
11877218Sphk#include <x86/mca.h>
11977218Sphk#include <machine/md_var.h>
12077218Sphk#include <machine/metadata.h>
12177218Sphk#include <machine/mp_watchdog.h>
12277218Sphk#include <machine/pc/bios.h>
12377218Sphk#include <machine/pcb.h>
12477218Sphk#include <machine/proc.h>
12577218Sphk#include <machine/reg.h>
12677218Sphk#include <machine/sigframe.h>
12777218Sphk#include <machine/specialreg.h>
12877218Sphk#ifdef PERFMON
12977218Sphk#include <machine/perfmon.h>
13077218Sphk#endif
13177218Sphk#include <machine/tss.h>
13277218Sphk#ifdef SMP
13377218Sphk#include <machine/smp.h>
13477218Sphk#endif
135116957Ssam#ifdef FDT
136116957Ssam#include <x86/fdt.h>
137116957Ssam#endif
138116957Ssam
13977218Sphk#ifdef DEV_ATPIC
14077218Sphk#include <x86/isa/icu.h>
14177218Sphk#else
14277218Sphk#include <x86/apicvar.h>
14377218Sphk#endif
14477218Sphk
14577218Sphk#include <isa/isareg.h>
14691454Sbrooks#include <isa/rtc.h>
14777218Sphk#include <x86/init.h>
14891454Sbrooks
14977218Sphk/* Sanity check for __curthread() */
15091454SbrooksCTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
15177218Sphk
15277218Sphkextern u_int64_t hammer_time(u_int64_t, u_int64_t);
15377218Sphk
15477218Sphk#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
15577218Sphk#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
15677218Sphk
15777218Sphkstatic void cpu_startup(void *);
15877218Sphkstatic void get_fpcontext(struct thread *td, mcontext_t *mcp,
15977218Sphk    char *xfpusave, size_t xfpusave_len);
16077218Sphkstatic int  set_fpcontext(struct thread *td, mcontext_t *mcp,
16177218Sphk    char *xfpustate, size_t xfpustate_len);
16277218SphkSYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
16377218Sphk
16491454Sbrooks/* Preload data parse function */
16577218Sphkstatic caddr_t native_parse_preload_data(u_int64_t);
16691454Sbrooks
16777218Sphk/* Native function to fetch and parse the e820 map */
16891454Sbrooksstatic void native_parse_memmap(caddr_t, vm_paddr_t *, int *);
16977218Sphk
17091454Sbrooks/* Default init_ops implementation. */
17177218Sphkstruct init_ops init_ops = {
17291454Sbrooks	.parse_preload_data =	native_parse_preload_data,
17377218Sphk	.early_clock_source_init =	i8254_init,
17477218Sphk	.early_delay =			i8254_delay,
17577218Sphk	.parse_memmap =			native_parse_memmap,
17677218Sphk#ifdef SMP
17777218Sphk	.mp_bootaddress =		mp_bootaddress,
17877218Sphk	.start_all_aps =		native_start_all_aps,
17977218Sphk#endif
18077218Sphk	.msi_init =			msi_init,
18177218Sphk};
18277218Sphk
18377218Sphk/*
18477218Sphk * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
18577218Sphk * the physical address at which the kernel is loaded.
18677218Sphk */
18777218Sphkextern char kernphys[];
18877218Sphk
18977218Sphkstruct msgbuf *msgbufp;
19077218Sphk
19177218Sphk/*
19277218Sphk * Physical address of the EFI System Table. Stashed from the metadata hints
19377218Sphk * passed into the kernel and used by the EFI code to call runtime services.
19477218Sphk */
19577218Sphkvm_paddr_t efi_systbl;
19677218Sphk
19777218Sphk/* Intel ICH registers */
19877218Sphk#define ICH_PMBASE	0x400
19977218Sphk#define ICH_SMI_EN	ICH_PMBASE + 0x30
20077218Sphk
20177218Sphkint	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
20277218Sphk
20391454Sbrooksint cold = 1;
20477218Sphk
20591454Sbrookslong Maxmem = 0;
20677218Sphklong realmem = 0;
20791454Sbrooks
20877218Sphk/*
20977218Sphk * The number of PHYSMAP entries must be one less than the number of
21077218Sphk * PHYSSEG entries because the PHYSMAP entry that spans the largest
21177218Sphk * physical address that is accessible by ISA DMA is split into two
21277218Sphk * PHYSSEG entries.
21377218Sphk */
21477218Sphk#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
21577218Sphk
21677218Sphkvm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
21777218Sphkvm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
21877218Sphk
21977218Sphk/* must be 2 less so 0 0 can signal end of chunks */
22077218Sphk#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
22177218Sphk#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
22277218Sphk
22377218Sphkstruct kva_md_info kmi;
22477218Sphk
22577218Sphkstatic struct trapframe proc0_tf;
22677218Sphkstruct region_descriptor r_gdt, r_idt;
22777218Sphk
22877218Sphkstruct pcpu __pcpu[MAXCPU];
22977218Sphk
23077218Sphkstruct mtx icu_lock;
23177218Sphk
23277218Sphkstruct mem_range_softc mem_range_softc;
233120178Ssam
23477218Sphkstruct mtx dt_lock;	/* lock for GDT and LDT */
23591454Sbrooks
23677218Sphkvoid (*vmm_resume_p)(void);
23777218Sphk
23877218Sphkstatic void
23977218Sphkcpu_startup(dummy)
24077218Sphk	void *dummy;
24177218Sphk{
24277218Sphk	uintmax_t memsize;
24377218Sphk	char *sysenv;
24477218Sphk
24577218Sphk	/*
24677218Sphk	 * On MacBooks, we need to disallow the legacy USB circuit to
24777218Sphk	 * generate an SMI# because this can cause several problems,
24877218Sphk	 * namely: incorrect CPU frequency detection and failure to
24977218Sphk	 * start the APs.
25077218Sphk	 * We do this by disabling a bit in the SMI_EN (SMI Control and
25177218Sphk	 * Enable register) of the Intel ICH LPC Interface Bridge.
25277218Sphk	 */
25377218Sphk	sysenv = kern_getenv("smbios.system.product");
25477218Sphk	if (sysenv != NULL) {
25577218Sphk		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
25677218Sphk		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
257120178Ssam		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
25877218Sphk		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
25977218Sphk		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
26077218Sphk		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
26191454Sbrooks		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
26277218Sphk		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
26377218Sphk			if (bootverbose)
26477218Sphk				printf("Disabling LEGACY_USB_EN bit on "
26591454Sbrooks				    "Intel ICH.\n");
26677218Sphk			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
26777218Sphk		}
26877218Sphk		freeenv(sysenv);
26977218Sphk	}
27077218Sphk
27177218Sphk	/*
27277218Sphk	 * Good {morning,afternoon,evening,night}.
27377218Sphk	 */
27477218Sphk	startrtclock();
27577218Sphk	printcpuinfo();
27677218Sphk	panicifcpuunsupported();
27777218Sphk#ifdef PERFMON
27877218Sphk	perfmon_init();
27977218Sphk#endif
28077218Sphk
28191454Sbrooks	/*
28277218Sphk	 * Display physical memory if SMBIOS reports reasonable amount.
28377218Sphk	 */
28477218Sphk	memsize = 0;
28577218Sphk	sysenv = kern_getenv("smbios.memory.enabled");
28677218Sphk	if (sysenv != NULL) {
28777218Sphk		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
28877218Sphk		freeenv(sysenv);
289127649Ssam	}
290127649Ssam	if (memsize < ptoa((uintmax_t)vm_cnt.v_free_count))
291127649Ssam		memsize = ptoa((uintmax_t)Maxmem);
292127649Ssam	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
293127649Ssam	realmem = atop(memsize);
294127649Ssam
295127649Ssam	/*
296127649Ssam	 * Display any holes after the first chunk of extended memory.
297127649Ssam	 */
298127649Ssam	if (bootverbose) {
299127649Ssam		int indx;
300127649Ssam
301127649Ssam		printf("Physical memory chunk(s):\n");
302127649Ssam		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
303127649Ssam			vm_paddr_t size;
304127649Ssam
305127649Ssam			size = phys_avail[indx + 1] - phys_avail[indx];
306127649Ssam			printf(
307127649Ssam			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
308127649Ssam			    (uintmax_t)phys_avail[indx],
309127649Ssam			    (uintmax_t)phys_avail[indx + 1] - 1,
310127649Ssam			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
311127649Ssam		}
312127649Ssam	}
313127649Ssam
314127649Ssam	vm_ksubmap_init(&kmi);
315127649Ssam
316127649Ssam	printf("avail memory = %ju (%ju MB)\n",
317127649Ssam	    ptoa((uintmax_t)vm_cnt.v_free_count),
318127649Ssam	    ptoa((uintmax_t)vm_cnt.v_free_count) / 1048576);
31995005Simp
32077218Sphk	/*
32177218Sphk	 * Set up buffers, so they can be used to read disk labels.
32277218Sphk	 */
32377218Sphk	bufinit();
32477218Sphk	vm_pager_bufferinit();
32577218Sphk
32677218Sphk	cpu_setregs();
32777218Sphk}
32877218Sphk
32977218Sphk/*
33077218Sphk * Send an interrupt to process.
33177218Sphk *
33277218Sphk * Stack is set up to allow sigcode stored
33377218Sphk * at top to call routine, followed by call
33477218Sphk * to sigreturn routine below.  After sigreturn
33577218Sphk * resets the signal mask, the stack, and the
33677218Sphk * frame pointer, it returns to the user
33777218Sphk * specified pc, psl.
33877218Sphk */
33988748Sambriskovoid
34088748Sambriskosendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
34188748Sambrisko{
34288748Sambrisko	struct sigframe sf, *sfp;
34388748Sambrisko	struct pcb *pcb;
34488748Sambrisko	struct proc *p;
34588748Sambrisko	struct thread *td;
34688748Sambrisko	struct sigacts *psp;
34788748Sambrisko	char *sp;
34888748Sambrisko	struct trapframe *regs;
34988748Sambrisko	char *xfpusave;
35088748Sambrisko	size_t xfpusave_len;
35177218Sphk	int sig;
35277218Sphk	int oonstack;
35377218Sphk
35477218Sphk	td = curthread;
35577218Sphk	pcb = td->td_pcb;
35677218Sphk	p = td->td_proc;
35777218Sphk	PROC_LOCK_ASSERT(p, MA_OWNED);
35877218Sphk	sig = ksi->ksi_signo;
35977218Sphk	psp = p->p_sigacts;
36077218Sphk	mtx_assert(&psp->ps_mtx, MA_OWNED);
36177218Sphk	regs = td->td_frame;
36277218Sphk	oonstack = sigonstack(regs->tf_rsp);
36377218Sphk
36477218Sphk	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
36577218Sphk		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
36677218Sphk		xfpusave = __builtin_alloca(xfpusave_len);
36777218Sphk	} else {
36877218Sphk		xfpusave_len = 0;
36977218Sphk		xfpusave = NULL;
37077218Sphk	}
37177218Sphk
37277218Sphk	/* Save user context. */
37377218Sphk	bzero(&sf, sizeof(sf));
37477218Sphk	sf.sf_uc.uc_sigmask = *mask;
37577218Sphk	sf.sf_uc.uc_stack = td->td_sigstk;
37677218Sphk	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
37777218Sphk	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
37877218Sphk	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
37977218Sphk	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
38077218Sphk	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
38177218Sphk	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
38277218Sphk	fpstate_drop(td);
38377218Sphk	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
38477218Sphk	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
38577218Sphk	bzero(sf.sf_uc.uc_mcontext.mc_spare,
38677218Sphk	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
38777218Sphk	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
38877218Sphk
38977218Sphk	/* Allocate space for the signal handler context. */
39077218Sphk	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
39177218Sphk	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
39277218Sphk		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
39377218Sphk#if defined(COMPAT_43)
39477218Sphk		td->td_sigstk.ss_flags |= SS_ONSTACK;
39577218Sphk#endif
39677218Sphk	} else
39777218Sphk		sp = (char *)regs->tf_rsp - 128;
39877218Sphk	if (xfpusave != NULL) {
39977218Sphk		sp -= xfpusave_len;
40077218Sphk		sp = (char *)((unsigned long)sp & ~0x3Ful);
40177218Sphk		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
40277218Sphk	}
40377218Sphk	sp -= sizeof(struct sigframe);
40477218Sphk	/* Align to 16 bytes. */
40577218Sphk	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
40691454Sbrooks
40777218Sphk	/* Build the argument list for the signal handler. */
40877218Sphk	regs->tf_rdi = sig;			/* arg 1 in %rdi */
40977218Sphk	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
41077218Sphk	bzero(&sf.sf_si, sizeof(sf.sf_si));
41177218Sphk	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
41277218Sphk		/* Signal handler installed with SA_SIGINFO. */
413127649Ssam		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
414127649Ssam		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
415127649Ssam
416127649Ssam		/* Fill in POSIX parts */
417127649Ssam		sf.sf_si = ksi->ksi_info;
418127649Ssam		sf.sf_si.si_signo = sig; /* maybe a translated signal */
419127649Ssam		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
420127649Ssam	} else {
421127649Ssam		/* Old FreeBSD-style arguments. */
422127649Ssam		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
423127649Ssam		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
424127649Ssam		sf.sf_ahu.sf_handler = catcher;
425127649Ssam	}
426127649Ssam	mtx_unlock(&psp->ps_mtx);
427127649Ssam	PROC_UNLOCK(p);
428127649Ssam
429127649Ssam	/*
430127649Ssam	 * Copy the sigframe out to the user's stack.
431127649Ssam	 */
432127649Ssam	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
433127649Ssam	    (xfpusave != NULL && copyout(xfpusave,
434127649Ssam	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
435127649Ssam	    != 0)) {
436127649Ssam#ifdef DEBUG
437127649Ssam		printf("process %ld has trashed its stack\n", (long)p->p_pid);
438127649Ssam#endif
439127649Ssam		PROC_LOCK(p);
440127649Ssam		sigexit(td, SIGILL);
441127649Ssam	}
442127649Ssam
443127649Ssam	regs->tf_rsp = (long)sfp;
444127649Ssam	regs->tf_rip = p->p_sysent->sv_sigcode_base;
445127649Ssam	regs->tf_rflags &= ~(PSL_T | PSL_D);
446127649Ssam	regs->tf_cs = _ucodesel;
447127649Ssam	regs->tf_ds = _udatasel;
448127649Ssam	regs->tf_ss = _udatasel;
44977218Sphk	regs->tf_es = _udatasel;
45080315Sbrooks	regs->tf_fs = _ufssel;
45180315Sbrooks	regs->tf_gs = _ugssel;
45277218Sphk	regs->tf_flags = TF_HASSEGS;
45377218Sphk	set_pcb_flags(pcb, PCB_FULL_IRET);
45477218Sphk	PROC_LOCK(p);
45577218Sphk	mtx_lock(&psp->ps_mtx);
45677218Sphk}
45777218Sphk
45877218Sphk/*
45977218Sphk * System call to cleanup state after a signal
46077218Sphk * has been taken.  Reset signal mask and
46177218Sphk * stack state from context left by sendsig (above).
46277218Sphk * Return to previous pc and psl as specified by
46377218Sphk * context left by sendsig. Check carefully to
46477218Sphk * make sure that the user has not modified the
46577218Sphk * state to gain improper privileges.
46677218Sphk *
46777218Sphk * MPSAFE
46877218Sphk */
46977218Sphkint
47077218Sphksys_sigreturn(td, uap)
47191454Sbrooks	struct thread *td;
47277218Sphk	struct sigreturn_args /* {
47377218Sphk		const struct __ucontext *sigcntxp;
47477218Sphk	} */ *uap;
47577218Sphk{
47677218Sphk	ucontext_t uc;
47777218Sphk	struct pcb *pcb;
47877218Sphk	struct proc *p;
47977218Sphk	struct trapframe *regs;
48077218Sphk	ucontext_t *ucp;
48177218Sphk	char *xfpustate;
48277218Sphk	size_t xfpustate_len;
48377218Sphk	long rflags;
48477218Sphk	int cs, error, ret;
48577218Sphk	ksiginfo_t ksi;
48677218Sphk
48777218Sphk	pcb = td->td_pcb;
48877218Sphk	p = td->td_proc;
48977218Sphk
49077218Sphk	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
49191454Sbrooks	if (error != 0) {
49277218Sphk		uprintf("pid %d (%s): sigreturn copyin failed\n",
49377218Sphk		    p->p_pid, td->td_name);
49477218Sphk		return (error);
49577218Sphk	}
49677218Sphk	ucp = &uc;
497120178Ssam	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
498120178Ssam		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
49977218Sphk		    td->td_name, ucp->uc_mcontext.mc_flags);
50077218Sphk		return (EINVAL);
501120178Ssam	}
502120178Ssam	regs = td->td_frame;
50391454Sbrooks	rflags = ucp->uc_mcontext.mc_rflags;
50477218Sphk	/*
50577218Sphk	 * Don't allow users to change privileged or reserved flags.
50680315Sbrooks	 */
50780315Sbrooks	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
50877218Sphk		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
50977218Sphk		    td->td_name, rflags);
51077218Sphk		return (EINVAL);
51177218Sphk	}
51277218Sphk
51377218Sphk	/*
51477218Sphk	 * Don't allow users to load a valid privileged %cs.  Let the
51577218Sphk	 * hardware check for invalid selectors, excess privilege in
51677218Sphk	 * other selectors, invalid %eip's and invalid %esp's.
51777218Sphk	 */
51877218Sphk	cs = ucp->uc_mcontext.mc_cs;
51977218Sphk	if (!CS_SECURE(cs)) {
52077218Sphk		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
52177218Sphk		    td->td_name, cs);
52277218Sphk		ksiginfo_init_trap(&ksi);
52377218Sphk		ksi.ksi_signo = SIGBUS;
52477218Sphk		ksi.ksi_code = BUS_OBJERR;
52591454Sbrooks		ksi.ksi_trapno = T_PROTFLT;
52677218Sphk		ksi.ksi_addr = (void *)regs->tf_rip;
52777218Sphk		trapsignal(td, &ksi);
52877218Sphk		return (EINVAL);
52977218Sphk	}
53077218Sphk
53177218Sphk	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
53277218Sphk		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
53377218Sphk		if (xfpustate_len > cpu_max_ext_state_size -
53477218Sphk		    sizeof(struct savefpu)) {
53577218Sphk			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
53677218Sphk			    p->p_pid, td->td_name, xfpustate_len);
53777218Sphk			return (EINVAL);
53877218Sphk		}
53977218Sphk		xfpustate = __builtin_alloca(xfpustate_len);
54077218Sphk		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
54177218Sphk		    xfpustate, xfpustate_len);
54277218Sphk		if (error != 0) {
54377218Sphk			uprintf(
54477218Sphk	"pid %d (%s): sigreturn copying xfpustate failed\n",
54577218Sphk			    p->p_pid, td->td_name);
54677218Sphk			return (error);
54777218Sphk		}
54877218Sphk	} else {
549127831Sphk		xfpustate = NULL;
55077218Sphk		xfpustate_len = 0;
55177218Sphk	}
55277218Sphk	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
553127831Sphk	if (ret != 0) {
554127831Sphk		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
555127831Sphk		    p->p_pid, td->td_name, ret);
556127831Sphk		return (ret);
55777218Sphk	}
558127831Sphk	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
55977218Sphk	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
56077218Sphk	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
56177218Sphk
562127831Sphk#if defined(COMPAT_43)
56377218Sphk	if (ucp->uc_mcontext.mc_onstack & 1)
56477218Sphk		td->td_sigstk.ss_flags |= SS_ONSTACK;
56577218Sphk	else
56677218Sphk		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
56777218Sphk#endif
56877218Sphk
56977218Sphk	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
57077218Sphk	set_pcb_flags(pcb, PCB_FULL_IRET);
57177218Sphk	return (EJUSTRETURN);
57277218Sphk}
57377218Sphk
57477218Sphk#ifdef COMPAT_FREEBSD4
57577218Sphkint
57677218Sphkfreebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
57777218Sphk{
57877218Sphk
57977218Sphk	return sys_sigreturn(td, (struct sigreturn_args *)uap);
58077218Sphk}
58177218Sphk#endif
58277218Sphk
58377218Sphk/*
58477218Sphk * Reset registers to default values on exec.
58577218Sphk */
58677218Sphkvoid
58777218Sphkexec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
58877218Sphk{
58977218Sphk	struct trapframe *regs = td->td_frame;
59077218Sphk	struct pcb *pcb = td->td_pcb;
59177218Sphk
59291454Sbrooks	mtx_lock(&dt_lock);
59377218Sphk	if (td->td_proc->p_md.md_ldt != NULL)
59477218Sphk		user_ldt_free(td);
59577218Sphk	else
59677218Sphk		mtx_unlock(&dt_lock);
59777218Sphk
59877218Sphk	pcb->pcb_fsbase = 0;
59977218Sphk	pcb->pcb_gsbase = 0;
60077218Sphk	clear_pcb_flags(pcb, PCB_32BIT);
60177218Sphk	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
60277218Sphk	set_pcb_flags(pcb, PCB_FULL_IRET);
60377218Sphk
60477218Sphk	bzero((char *)regs, sizeof(struct trapframe));
60577218Sphk	regs->tf_rip = imgp->entry_addr;
60677218Sphk	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
60777218Sphk	regs->tf_rdi = stack;		/* argv */
60877218Sphk	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
60977218Sphk	regs->tf_ss = _udatasel;
610	regs->tf_cs = _ucodesel;
611	regs->tf_ds = _udatasel;
612	regs->tf_es = _udatasel;
613	regs->tf_fs = _ufssel;
614	regs->tf_gs = _ugssel;
615	regs->tf_flags = TF_HASSEGS;
616	td->td_retval[1] = 0;
617
618	/*
619	 * Reset the hardware debug registers if they were in use.
620	 * They won't have any meaning for the newly exec'd process.
621	 */
622	if (pcb->pcb_flags & PCB_DBREGS) {
623		pcb->pcb_dr0 = 0;
624		pcb->pcb_dr1 = 0;
625		pcb->pcb_dr2 = 0;
626		pcb->pcb_dr3 = 0;
627		pcb->pcb_dr6 = 0;
628		pcb->pcb_dr7 = 0;
629		if (pcb == curpcb) {
630			/*
631			 * Clear the debug registers on the running
632			 * CPU, otherwise they will end up affecting
633			 * the next process we switch to.
634			 */
635			reset_dbregs();
636		}
637		clear_pcb_flags(pcb, PCB_DBREGS);
638	}
639
640	/*
641	 * Drop the FP state if we hold it, so that the process gets a
642	 * clean FP state if it uses the FPU again.
643	 */
644	fpstate_drop(td);
645}
646
647void
648cpu_setregs(void)
649{
650	register_t cr0;
651
652	cr0 = rcr0();
653	/*
654	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
655	 * BSP.  See the comments there about why we set them.
656	 */
657	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
658	load_cr0(cr0);
659}
660
661/*
662 * Initialize amd64 and configure to run kernel
663 */
664
665/*
666 * Initialize segments & interrupt table
667 */
668
669struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
670static struct gate_descriptor idt0[NIDT];
671struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
672
673static char dblfault_stack[PAGE_SIZE] __aligned(16);
674
675static char nmi0_stack[PAGE_SIZE] __aligned(16);
676CTASSERT(sizeof(struct nmi_pcpu) == 16);
677
678struct amd64tss common_tss[MAXCPU];
679
680/*
681 * Software prototypes -- in more palatable form.
682 *
683 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
684 * slots as corresponding segments for i386 kernel.
685 */
686struct soft_segment_descriptor gdt_segs[] = {
687/* GNULL_SEL	0 Null Descriptor */
688{	.ssd_base = 0x0,
689	.ssd_limit = 0x0,
690	.ssd_type = 0,
691	.ssd_dpl = 0,
692	.ssd_p = 0,
693	.ssd_long = 0,
694	.ssd_def32 = 0,
695	.ssd_gran = 0		},
696/* GNULL2_SEL	1 Null Descriptor */
697{	.ssd_base = 0x0,
698	.ssd_limit = 0x0,
699	.ssd_type = 0,
700	.ssd_dpl = 0,
701	.ssd_p = 0,
702	.ssd_long = 0,
703	.ssd_def32 = 0,
704	.ssd_gran = 0		},
705/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
706{	.ssd_base = 0x0,
707	.ssd_limit = 0xfffff,
708	.ssd_type = SDT_MEMRWA,
709	.ssd_dpl = SEL_UPL,
710	.ssd_p = 1,
711	.ssd_long = 0,
712	.ssd_def32 = 1,
713	.ssd_gran = 1		},
714/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
715{	.ssd_base = 0x0,
716	.ssd_limit = 0xfffff,
717	.ssd_type = SDT_MEMRWA,
718	.ssd_dpl = SEL_UPL,
719	.ssd_p = 1,
720	.ssd_long = 0,
721	.ssd_def32 = 1,
722	.ssd_gran = 1		},
723/* GCODE_SEL	4 Code Descriptor for kernel */
724{	.ssd_base = 0x0,
725	.ssd_limit = 0xfffff,
726	.ssd_type = SDT_MEMERA,
727	.ssd_dpl = SEL_KPL,
728	.ssd_p = 1,
729	.ssd_long = 1,
730	.ssd_def32 = 0,
731	.ssd_gran = 1		},
732/* GDATA_SEL	5 Data Descriptor for kernel */
733{	.ssd_base = 0x0,
734	.ssd_limit = 0xfffff,
735	.ssd_type = SDT_MEMRWA,
736	.ssd_dpl = SEL_KPL,
737	.ssd_p = 1,
738	.ssd_long = 1,
739	.ssd_def32 = 0,
740	.ssd_gran = 1		},
741/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
742{	.ssd_base = 0x0,
743	.ssd_limit = 0xfffff,
744	.ssd_type = SDT_MEMERA,
745	.ssd_dpl = SEL_UPL,
746	.ssd_p = 1,
747	.ssd_long = 0,
748	.ssd_def32 = 1,
749	.ssd_gran = 1		},
750/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
751{	.ssd_base = 0x0,
752	.ssd_limit = 0xfffff,
753	.ssd_type = SDT_MEMRWA,
754	.ssd_dpl = SEL_UPL,
755	.ssd_p = 1,
756	.ssd_long = 0,
757	.ssd_def32 = 1,
758	.ssd_gran = 1		},
759/* GUCODE_SEL	8 64 bit Code Descriptor for user */
760{	.ssd_base = 0x0,
761	.ssd_limit = 0xfffff,
762	.ssd_type = SDT_MEMERA,
763	.ssd_dpl = SEL_UPL,
764	.ssd_p = 1,
765	.ssd_long = 1,
766	.ssd_def32 = 0,
767	.ssd_gran = 1		},
768/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
769{	.ssd_base = 0x0,
770	.ssd_limit = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE - 1,
771	.ssd_type = SDT_SYSTSS,
772	.ssd_dpl = SEL_KPL,
773	.ssd_p = 1,
774	.ssd_long = 0,
775	.ssd_def32 = 0,
776	.ssd_gran = 0		},
777/* Actually, the TSS is a system descriptor which is double size */
778{	.ssd_base = 0x0,
779	.ssd_limit = 0x0,
780	.ssd_type = 0,
781	.ssd_dpl = 0,
782	.ssd_p = 0,
783	.ssd_long = 0,
784	.ssd_def32 = 0,
785	.ssd_gran = 0		},
786/* GUSERLDT_SEL	11 LDT Descriptor */
787{	.ssd_base = 0x0,
788	.ssd_limit = 0x0,
789	.ssd_type = 0,
790	.ssd_dpl = 0,
791	.ssd_p = 0,
792	.ssd_long = 0,
793	.ssd_def32 = 0,
794	.ssd_gran = 0		},
795/* GUSERLDT_SEL	12 LDT Descriptor, double size */
796{	.ssd_base = 0x0,
797	.ssd_limit = 0x0,
798	.ssd_type = 0,
799	.ssd_dpl = 0,
800	.ssd_p = 0,
801	.ssd_long = 0,
802	.ssd_def32 = 0,
803	.ssd_gran = 0		},
804};
805
806void
807setidt(int idx, inthand_t *func, int typ, int dpl, int ist)
808{
809	struct gate_descriptor *ip;
810
811	ip = idt + idx;
812	ip->gd_looffset = (uintptr_t)func;
813	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
814	ip->gd_ist = ist;
815	ip->gd_xx = 0;
816	ip->gd_type = typ;
817	ip->gd_dpl = dpl;
818	ip->gd_p = 1;
819	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
820}
821
822extern inthand_t
823	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
824	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
825	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
826	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
827	IDTVEC(xmm), IDTVEC(dblfault),
828#ifdef KDTRACE_HOOKS
829	IDTVEC(dtrace_ret),
830#endif
831#ifdef XENHVM
832	IDTVEC(xen_intr_upcall),
833#endif
834	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
835
836#ifdef DDB
837/*
838 * Display the index and function name of any IDT entries that don't use
839 * the default 'rsvd' entry point.
840 */
841DB_SHOW_COMMAND(idt, db_show_idt)
842{
843	struct gate_descriptor *ip;
844	int idx;
845	uintptr_t func;
846
847	ip = idt;
848	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
849		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
850		if (func != (uintptr_t)&IDTVEC(rsvd)) {
851			db_printf("%3d\t", idx);
852			db_printsym(func, DB_STGY_PROC);
853			db_printf("\n");
854		}
855		ip++;
856	}
857}
858
859/* Show privileged registers. */
860DB_SHOW_COMMAND(sysregs, db_show_sysregs)
861{
862	struct {
863		uint16_t limit;
864		uint64_t base;
865	} __packed idtr, gdtr;
866	uint16_t ldt, tr;
867
868	__asm __volatile("sidt %0" : "=m" (idtr));
869	db_printf("idtr\t0x%016lx/%04x\n",
870	    (u_long)idtr.base, (u_int)idtr.limit);
871	__asm __volatile("sgdt %0" : "=m" (gdtr));
872	db_printf("gdtr\t0x%016lx/%04x\n",
873	    (u_long)gdtr.base, (u_int)gdtr.limit);
874	__asm __volatile("sldt %0" : "=r" (ldt));
875	db_printf("ldtr\t0x%04x\n", ldt);
876	__asm __volatile("str %0" : "=r" (tr));
877	db_printf("tr\t0x%04x\n", tr);
878	db_printf("cr0\t0x%016lx\n", rcr0());
879	db_printf("cr2\t0x%016lx\n", rcr2());
880	db_printf("cr3\t0x%016lx\n", rcr3());
881	db_printf("cr4\t0x%016lx\n", rcr4());
882	if (rcr4() & CR4_XSAVE)
883		db_printf("xcr0\t0x%016lx\n", rxcr(0));
884	db_printf("EFER\t0x%016lx\n", rdmsr(MSR_EFER));
885	if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
886		db_printf("FEATURES_CTL\t%016lx\n",
887		    rdmsr(MSR_IA32_FEATURE_CONTROL));
888	db_printf("DEBUG_CTL\t0x%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
889	db_printf("PAT\t0x%016lx\n", rdmsr(MSR_PAT));
890	db_printf("GSBASE\t0x%016lx\n", rdmsr(MSR_GSBASE));
891}
892
893DB_SHOW_COMMAND(dbregs, db_show_dbregs)
894{
895
896	db_printf("dr0\t0x%016lx\n", rdr0());
897	db_printf("dr1\t0x%016lx\n", rdr1());
898	db_printf("dr2\t0x%016lx\n", rdr2());
899	db_printf("dr3\t0x%016lx\n", rdr3());
900	db_printf("dr6\t0x%016lx\n", rdr6());
901	db_printf("dr7\t0x%016lx\n", rdr7());
902}
903#endif
904
905void
906sdtossd(sd, ssd)
907	struct user_segment_descriptor *sd;
908	struct soft_segment_descriptor *ssd;
909{
910
911	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
912	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
913	ssd->ssd_type  = sd->sd_type;
914	ssd->ssd_dpl   = sd->sd_dpl;
915	ssd->ssd_p     = sd->sd_p;
916	ssd->ssd_long  = sd->sd_long;
917	ssd->ssd_def32 = sd->sd_def32;
918	ssd->ssd_gran  = sd->sd_gran;
919}
920
921void
922ssdtosd(ssd, sd)
923	struct soft_segment_descriptor *ssd;
924	struct user_segment_descriptor *sd;
925{
926
927	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
928	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
929	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
930	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
931	sd->sd_type  = ssd->ssd_type;
932	sd->sd_dpl   = ssd->ssd_dpl;
933	sd->sd_p     = ssd->ssd_p;
934	sd->sd_long  = ssd->ssd_long;
935	sd->sd_def32 = ssd->ssd_def32;
936	sd->sd_gran  = ssd->ssd_gran;
937}
938
939void
940ssdtosyssd(ssd, sd)
941	struct soft_segment_descriptor *ssd;
942	struct system_segment_descriptor *sd;
943{
944
945	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
946	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
947	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
948	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
949	sd->sd_type  = ssd->ssd_type;
950	sd->sd_dpl   = ssd->ssd_dpl;
951	sd->sd_p     = ssd->ssd_p;
952	sd->sd_gran  = ssd->ssd_gran;
953}
954
955#if !defined(DEV_ATPIC) && defined(DEV_ISA)
956#include <isa/isavar.h>
957#include <isa/isareg.h>
958/*
959 * Return a bitmap of the current interrupt requests.  This is 8259-specific
960 * and is only suitable for use at probe time.
961 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
962 * It shouldn't be here.  There should probably be an APIC centric
963 * implementation in the apic driver code, if at all.
964 */
965intrmask_t
966isa_irq_pending(void)
967{
968	u_char irr1;
969	u_char irr2;
970
971	irr1 = inb(IO_ICU1);
972	irr2 = inb(IO_ICU2);
973	return ((irr2 << 8) | irr1);
974}
975#endif
976
977u_int basemem;
978
979static int
980add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
981    int *physmap_idxp)
982{
983	int i, insert_idx, physmap_idx;
984
985	physmap_idx = *physmap_idxp;
986
987	if (length == 0)
988		return (1);
989
990	/*
991	 * Find insertion point while checking for overlap.  Start off by
992	 * assuming the new entry will be added to the end.
993	 *
994	 * NB: physmap_idx points to the next free slot.
995	 */
996	insert_idx = physmap_idx;
997	for (i = 0; i <= physmap_idx; i += 2) {
998		if (base < physmap[i + 1]) {
999			if (base + length <= physmap[i]) {
1000				insert_idx = i;
1001				break;
1002			}
1003			if (boothowto & RB_VERBOSE)
1004				printf(
1005		    "Overlapping memory regions, ignoring second region\n");
1006			return (1);
1007		}
1008	}
1009
1010	/* See if we can prepend to the next entry. */
1011	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1012		physmap[insert_idx] = base;
1013		return (1);
1014	}
1015
1016	/* See if we can append to the previous entry. */
1017	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1018		physmap[insert_idx - 1] += length;
1019		return (1);
1020	}
1021
1022	physmap_idx += 2;
1023	*physmap_idxp = physmap_idx;
1024	if (physmap_idx == PHYSMAP_SIZE) {
1025		printf(
1026		"Too many segments in the physical address map, giving up\n");
1027		return (0);
1028	}
1029
1030	/*
1031	 * Move the last 'N' entries down to make room for the new
1032	 * entry if needed.
1033	 */
1034	for (i = (physmap_idx - 2); i > insert_idx; i -= 2) {
1035		physmap[i] = physmap[i - 2];
1036		physmap[i + 1] = physmap[i - 1];
1037	}
1038
1039	/* Insert the new entry. */
1040	physmap[insert_idx] = base;
1041	physmap[insert_idx + 1] = base + length;
1042	return (1);
1043}
1044
1045void
1046bios_add_smap_entries(struct bios_smap *smapbase, u_int32_t smapsize,
1047                      vm_paddr_t *physmap, int *physmap_idx)
1048{
1049	struct bios_smap *smap, *smapend;
1050
1051	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1052
1053	for (smap = smapbase; smap < smapend; smap++) {
1054		if (boothowto & RB_VERBOSE)
1055			printf("SMAP type=%02x base=%016lx len=%016lx\n",
1056			    smap->type, smap->base, smap->length);
1057
1058		if (smap->type != SMAP_TYPE_MEMORY)
1059			continue;
1060
1061		if (!add_physmap_entry(smap->base, smap->length, physmap,
1062		    physmap_idx))
1063			break;
1064	}
1065}
1066
1067#define efi_next_descriptor(ptr, size) \
1068	((struct efi_md *)(((uint8_t *) ptr) + size))
1069
1070static void
1071add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
1072    int *physmap_idx)
1073{
1074	struct efi_md *map, *p;
1075	const char *type;
1076	size_t efisz;
1077	int ndesc, i;
1078
1079	static const char *types[] = {
1080		"Reserved",
1081		"LoaderCode",
1082		"LoaderData",
1083		"BootServicesCode",
1084		"BootServicesData",
1085		"RuntimeServicesCode",
1086		"RuntimeServicesData",
1087		"ConventionalMemory",
1088		"UnusableMemory",
1089		"ACPIReclaimMemory",
1090		"ACPIMemoryNVS",
1091		"MemoryMappedIO",
1092		"MemoryMappedIOPortSpace",
1093		"PalCode"
1094	};
1095
1096	/*
1097	 * Memory map data provided by UEFI via the GetMemoryMap
1098	 * Boot Services API.
1099	 */
1100	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1101	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
1102
1103	if (efihdr->descriptor_size == 0)
1104		return;
1105	ndesc = efihdr->memory_size / efihdr->descriptor_size;
1106
1107	if (boothowto & RB_VERBOSE)
1108		printf("%23s %12s %12s %8s %4s\n",
1109		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1110
1111	for (i = 0, p = map; i < ndesc; i++,
1112	    p = efi_next_descriptor(p, efihdr->descriptor_size)) {
1113		if (boothowto & RB_VERBOSE) {
1114			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1115				type = types[p->md_type];
1116			else
1117				type = "<INVALID>";
1118			printf("%23s %012lx %12p %08lx ", type, p->md_phys,
1119			    p->md_virt, p->md_pages);
1120			if (p->md_attr & EFI_MD_ATTR_UC)
1121				printf("UC ");
1122			if (p->md_attr & EFI_MD_ATTR_WC)
1123				printf("WC ");
1124			if (p->md_attr & EFI_MD_ATTR_WT)
1125				printf("WT ");
1126			if (p->md_attr & EFI_MD_ATTR_WB)
1127				printf("WB ");
1128			if (p->md_attr & EFI_MD_ATTR_UCE)
1129				printf("UCE ");
1130			if (p->md_attr & EFI_MD_ATTR_WP)
1131				printf("WP ");
1132			if (p->md_attr & EFI_MD_ATTR_RP)
1133				printf("RP ");
1134			if (p->md_attr & EFI_MD_ATTR_XP)
1135				printf("XP ");
1136			if (p->md_attr & EFI_MD_ATTR_RT)
1137				printf("RUNTIME");
1138			printf("\n");
1139		}
1140
1141		switch (p->md_type) {
1142		case EFI_MD_TYPE_CODE:
1143		case EFI_MD_TYPE_DATA:
1144		case EFI_MD_TYPE_BS_CODE:
1145		case EFI_MD_TYPE_BS_DATA:
1146		case EFI_MD_TYPE_FREE:
1147			/*
1148			 * We're allowed to use any entry with these types.
1149			 */
1150			break;
1151		default:
1152			continue;
1153		}
1154
1155		if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
1156		    physmap, physmap_idx))
1157			break;
1158	}
1159}
1160
1161static char bootmethod[16] = "";
1162SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1163    "System firmware boot method");
1164
1165static void
1166native_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx)
1167{
1168	struct bios_smap *smap;
1169	struct efi_map_header *efihdr;
1170	u_int32_t size;
1171
1172	/*
1173	 * Memory map from INT 15:E820.
1174	 *
1175	 * subr_module.c says:
1176	 * "Consumer may safely assume that size value precedes data."
1177	 * ie: an int32_t immediately precedes smap.
1178	 */
1179
1180	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1181	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1182	smap = (struct bios_smap *)preload_search_info(kmdp,
1183	    MODINFO_METADATA | MODINFOMD_SMAP);
1184	if (efihdr == NULL && smap == NULL)
1185		panic("No BIOS smap or EFI map info from loader!");
1186
1187	if (efihdr != NULL) {
1188		add_efi_map_entries(efihdr, physmap, physmap_idx);
1189		strlcpy(bootmethod, "UEFI", sizeof(bootmethod));
1190	} else {
1191		size = *((u_int32_t *)smap - 1);
1192		bios_add_smap_entries(smap, size, physmap, physmap_idx);
1193		strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
1194	}
1195}
1196
1197#define	PAGES_PER_GB	(1024 * 1024 * 1024 / PAGE_SIZE)
1198
1199/*
1200 * Populate the (physmap) array with base/bound pairs describing the
1201 * available physical memory in the system, then test this memory and
1202 * build the phys_avail array describing the actually-available memory.
1203 *
1204 * Total memory size may be set by the kernel environment variable
1205 * hw.physmem or the compile-time define MAXMEM.
1206 *
1207 * XXX first should be vm_paddr_t.
1208 */
1209static void
1210getmemsize(caddr_t kmdp, u_int64_t first)
1211{
1212	int i, physmap_idx, pa_indx, da_indx;
1213	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1214	u_long physmem_start, physmem_tunable, memtest;
1215	pt_entry_t *pte;
1216	quad_t dcons_addr, dcons_size;
1217	int page_counter;
1218
1219	bzero(physmap, sizeof(physmap));
1220	physmap_idx = 0;
1221
1222	init_ops.parse_memmap(kmdp, physmap, &physmap_idx);
1223	physmap_idx -= 2;
1224
1225	/*
1226	 * Find the 'base memory' segment for SMP
1227	 */
1228	basemem = 0;
1229	for (i = 0; i <= physmap_idx; i += 2) {
1230		if (physmap[i] <= 0xA0000) {
1231			basemem = physmap[i + 1] / 1024;
1232			break;
1233		}
1234	}
1235	if (basemem == 0 || basemem > 640) {
1236		if (bootverbose)
1237			printf(
1238		"Memory map doesn't contain a basemem segment, faking it");
1239		basemem = 640;
1240	}
1241
1242	/*
1243	 * Make hole for "AP -> long mode" bootstrap code.  The
1244	 * mp_bootaddress vector is only available when the kernel
1245	 * is configured to support APs and APs for the system start
1246	 * in 32bit mode (e.g. SMP bare metal).
1247	 */
1248	if (init_ops.mp_bootaddress) {
1249		if (physmap[1] >= 0x100000000)
1250			panic(
1251	"Basemem segment is not suitable for AP bootstrap code!");
1252		physmap[1] = init_ops.mp_bootaddress(physmap[1] / 1024);
1253	}
1254
1255	/*
1256	 * Maxmem isn't the "maximum memory", it's one larger than the
1257	 * highest page of the physical address space.  It should be
1258	 * called something like "Maxphyspage".  We may adjust this
1259	 * based on ``hw.physmem'' and the results of the memory test.
1260	 */
1261	Maxmem = atop(physmap[physmap_idx + 1]);
1262
1263#ifdef MAXMEM
1264	Maxmem = MAXMEM / 4;
1265#endif
1266
1267	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1268		Maxmem = atop(physmem_tunable);
1269
1270	/*
1271	 * The boot memory test is disabled by default, as it takes a
1272	 * significant amount of time on large-memory systems, and is
1273	 * unfriendly to virtual machines as it unnecessarily touches all
1274	 * pages.
1275	 *
1276	 * A general name is used as the code may be extended to support
1277	 * additional tests beyond the current "page present" test.
1278	 */
1279	memtest = 0;
1280	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1281
1282	/*
1283	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1284	 * in the system.
1285	 */
1286	if (Maxmem > atop(physmap[physmap_idx + 1]))
1287		Maxmem = atop(physmap[physmap_idx + 1]);
1288
1289	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1290	    (boothowto & RB_VERBOSE))
1291		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1292
1293	/* call pmap initialization to make new kernel address space */
1294	pmap_bootstrap(&first);
1295
1296	/*
1297	 * Size up each available chunk of physical memory.
1298	 *
1299	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1300	 * By default, mask off the first 16 pages unless we appear to be
1301	 * running in a VM.
1302	 */
1303	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1304	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1305	if (physmap[0] < physmem_start) {
1306		if (physmem_start < PAGE_SIZE)
1307			physmap[0] = PAGE_SIZE;
1308		else if (physmem_start >= physmap[1])
1309			physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1310		else
1311			physmap[0] = round_page(physmem_start);
1312	}
1313	pa_indx = 0;
1314	da_indx = 1;
1315	phys_avail[pa_indx++] = physmap[0];
1316	phys_avail[pa_indx] = physmap[0];
1317	dump_avail[da_indx] = physmap[0];
1318	pte = CMAP1;
1319
1320	/*
1321	 * Get dcons buffer address
1322	 */
1323	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1324	    getenv_quad("dcons.size", &dcons_size) == 0)
1325		dcons_addr = 0;
1326
1327	/*
1328	 * physmap is in bytes, so when converting to page boundaries,
1329	 * round up the start address and round down the end address.
1330	 */
1331	page_counter = 0;
1332	if (memtest != 0)
1333		printf("Testing system memory");
1334	for (i = 0; i <= physmap_idx; i += 2) {
1335		vm_paddr_t end;
1336
1337		end = ptoa((vm_paddr_t)Maxmem);
1338		if (physmap[i + 1] < end)
1339			end = trunc_page(physmap[i + 1]);
1340		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1341			int tmp, page_bad, full;
1342			int *ptr = (int *)CADDR1;
1343
1344			full = FALSE;
1345			/*
1346			 * block out kernel memory as not available.
1347			 */
1348			if (pa >= (vm_paddr_t)kernphys && pa < first)
1349				goto do_dump_avail;
1350
1351			/*
1352			 * block out dcons buffer
1353			 */
1354			if (dcons_addr > 0
1355			    && pa >= trunc_page(dcons_addr)
1356			    && pa < dcons_addr + dcons_size)
1357				goto do_dump_avail;
1358
1359			page_bad = FALSE;
1360			if (memtest == 0)
1361				goto skip_memtest;
1362
1363			/*
1364			 * Print a "." every GB to show we're making
1365			 * progress.
1366			 */
1367			page_counter++;
1368			if ((page_counter % PAGES_PER_GB) == 0)
1369				printf(".");
1370
1371			/*
1372			 * map page into kernel: valid, read/write,non-cacheable
1373			 */
1374			*pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
1375			invltlb();
1376
1377			tmp = *(int *)ptr;
1378			/*
1379			 * Test for alternating 1's and 0's
1380			 */
1381			*(volatile int *)ptr = 0xaaaaaaaa;
1382			if (*(volatile int *)ptr != 0xaaaaaaaa)
1383				page_bad = TRUE;
1384			/*
1385			 * Test for alternating 0's and 1's
1386			 */
1387			*(volatile int *)ptr = 0x55555555;
1388			if (*(volatile int *)ptr != 0x55555555)
1389				page_bad = TRUE;
1390			/*
1391			 * Test for all 1's
1392			 */
1393			*(volatile int *)ptr = 0xffffffff;
1394			if (*(volatile int *)ptr != 0xffffffff)
1395				page_bad = TRUE;
1396			/*
1397			 * Test for all 0's
1398			 */
1399			*(volatile int *)ptr = 0x0;
1400			if (*(volatile int *)ptr != 0x0)
1401				page_bad = TRUE;
1402			/*
1403			 * Restore original value.
1404			 */
1405			*(int *)ptr = tmp;
1406
1407skip_memtest:
1408			/*
1409			 * Adjust array of valid/good pages.
1410			 */
1411			if (page_bad == TRUE)
1412				continue;
1413			/*
1414			 * If this good page is a continuation of the
1415			 * previous set of good pages, then just increase
1416			 * the end pointer. Otherwise start a new chunk.
1417			 * Note that "end" points one higher than end,
1418			 * making the range >= start and < end.
1419			 * If we're also doing a speculative memory
1420			 * test and we at or past the end, bump up Maxmem
1421			 * so that we keep going. The first bad page
1422			 * will terminate the loop.
1423			 */
1424			if (phys_avail[pa_indx] == pa) {
1425				phys_avail[pa_indx] += PAGE_SIZE;
1426			} else {
1427				pa_indx++;
1428				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1429					printf(
1430		"Too many holes in the physical address space, giving up\n");
1431					pa_indx--;
1432					full = TRUE;
1433					goto do_dump_avail;
1434				}
1435				phys_avail[pa_indx++] = pa;	/* start */
1436				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1437			}
1438			physmem++;
1439do_dump_avail:
1440			if (dump_avail[da_indx] == pa) {
1441				dump_avail[da_indx] += PAGE_SIZE;
1442			} else {
1443				da_indx++;
1444				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1445					da_indx--;
1446					goto do_next;
1447				}
1448				dump_avail[da_indx++] = pa; /* start */
1449				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1450			}
1451do_next:
1452			if (full)
1453				break;
1454		}
1455	}
1456	*pte = 0;
1457	invltlb();
1458	if (memtest != 0)
1459		printf("\n");
1460
1461	/*
1462	 * XXX
1463	 * The last chunk must contain at least one page plus the message
1464	 * buffer to avoid complicating other code (message buffer address
1465	 * calculation, etc.).
1466	 */
1467	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1468	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1469		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1470		phys_avail[pa_indx--] = 0;
1471		phys_avail[pa_indx--] = 0;
1472	}
1473
1474	Maxmem = atop(phys_avail[pa_indx]);
1475
1476	/* Trim off space for the message buffer. */
1477	phys_avail[pa_indx] -= round_page(msgbufsize);
1478
1479	/* Map the message buffer. */
1480	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1481}
1482
1483static caddr_t
1484native_parse_preload_data(u_int64_t modulep)
1485{
1486	caddr_t kmdp;
1487#ifdef DDB
1488	vm_offset_t ksym_start;
1489	vm_offset_t ksym_end;
1490#endif
1491
1492	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1493	preload_bootstrap_relocate(KERNBASE);
1494	kmdp = preload_search_by_type("elf kernel");
1495	if (kmdp == NULL)
1496		kmdp = preload_search_by_type("elf64 kernel");
1497	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1498	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1499#ifdef DDB
1500	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1501	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1502	db_fetch_ksymtab(ksym_start, ksym_end);
1503#endif
1504	efi_systbl = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
1505
1506	return (kmdp);
1507}
1508
1509u_int64_t
1510hammer_time(u_int64_t modulep, u_int64_t physfree)
1511{
1512	caddr_t kmdp;
1513	int gsel_tss, x;
1514	struct pcpu *pc;
1515	struct nmi_pcpu *np;
1516	struct xstate_hdr *xhdr;
1517	u_int64_t msr;
1518	char *env;
1519	size_t kstack0_sz;
1520
1521	/*
1522 	 * This may be done better later if it gets more high level
1523 	 * components in it. If so just link td->td_proc here.
1524	 */
1525	proc_linkup0(&proc0, &thread0);
1526
1527	kmdp = init_ops.parse_preload_data(modulep);
1528
1529	/* Init basic tunables, hz etc */
1530	init_param1();
1531
1532	thread0.td_kstack = physfree + KERNBASE;
1533	thread0.td_kstack_pages = kstack_pages;
1534	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1535	bzero((void *)thread0.td_kstack, kstack0_sz);
1536	physfree += kstack0_sz;
1537
1538	/*
1539	 * make gdt memory segments
1540	 */
1541	for (x = 0; x < NGDT; x++) {
1542		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1543		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1544			ssdtosd(&gdt_segs[x], &gdt[x]);
1545	}
1546	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1547	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1548	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1549
1550	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1551	r_gdt.rd_base =  (long) gdt;
1552	lgdt(&r_gdt);
1553	pc = &__pcpu[0];
1554
1555	wrmsr(MSR_FSBASE, 0);		/* User value */
1556	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1557	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1558
1559	pcpu_init(pc, 0, sizeof(struct pcpu));
1560	dpcpu_init((void *)(physfree + KERNBASE), 0);
1561	physfree += DPCPU_SIZE;
1562	PCPU_SET(prvspace, pc);
1563	PCPU_SET(curthread, &thread0);
1564	PCPU_SET(tssp, &common_tss[0]);
1565	PCPU_SET(commontssp, &common_tss[0]);
1566	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1567	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1568	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1569	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1570
1571	/*
1572	 * Initialize mutexes.
1573	 *
1574	 * icu_lock: in order to allow an interrupt to occur in a critical
1575	 * 	     section, to set pcpu->ipending (etc...) properly, we
1576	 *	     must be able to get the icu lock, so it can't be
1577	 *	     under witness.
1578	 */
1579	mutex_init();
1580	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1581	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1582
1583	/* exceptions */
1584	for (x = 0; x < NIDT; x++)
1585		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1586	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1587	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1588	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1589 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1590	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1591	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1592	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1593	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1594	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1595	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1596	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1597	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1598	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1599	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1600	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1601	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1602	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1603	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1604	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1605#ifdef KDTRACE_HOOKS
1606	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1607#endif
1608#ifdef XENHVM
1609	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
1610#endif
1611
1612	r_idt.rd_limit = sizeof(idt0) - 1;
1613	r_idt.rd_base = (long) idt;
1614	lidt(&r_idt);
1615
1616	/*
1617	 * Initialize the clock before the console so that console
1618	 * initialization can use DELAY().
1619	 */
1620	clock_init();
1621
1622	/*
1623	 * Use vt(4) by default for UEFI boot (during the sc(4)/vt(4)
1624	 * transition).
1625	 * Once bootblocks have updated, we can test directly for
1626	 * efi_systbl != NULL here...
1627	 */
1628	if (preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_MAP)
1629	    != NULL)
1630		vty_set_preferred(VTY_VT);
1631
1632	identify_cpu();		/* Final stage of CPU initialization */
1633	initializecpu();	/* Initialize CPU registers */
1634	initializecpucache();
1635
1636	/* doublefault stack space, runs on ist1 */
1637	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1638
1639	/*
1640	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1641	 * above the start of the ist2 stack.
1642	 */
1643	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1644	np->np_pcpu = (register_t) pc;
1645	common_tss[0].tss_ist2 = (long) np;
1646
1647	/* Set the IO permission bitmap (empty due to tss seg limit) */
1648	common_tss[0].tss_iobase = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE;
1649
1650	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1651	ltr(gsel_tss);
1652
1653	/* Set up the fast syscall stuff */
1654	msr = rdmsr(MSR_EFER) | EFER_SCE;
1655	wrmsr(MSR_EFER, msr);
1656	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1657	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1658	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1659	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1660	wrmsr(MSR_STAR, msr);
1661	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1662
1663	getmemsize(kmdp, physfree);
1664	init_param2(physmem);
1665
1666	/* now running on new page tables, configured,and u/iom is accessible */
1667
1668	cninit();
1669
1670#ifdef DEV_ISA
1671#ifdef DEV_ATPIC
1672	elcr_probe();
1673	atpic_startup();
1674#else
1675	/* Reset and mask the atpics and leave them shut down. */
1676	atpic_reset();
1677
1678	/*
1679	 * Point the ICU spurious interrupt vectors at the APIC spurious
1680	 * interrupt handler.
1681	 */
1682	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1683	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1684#endif
1685#else
1686#error "have you forgotten the isa device?";
1687#endif
1688
1689	kdb_init();
1690
1691#ifdef KDB
1692	if (boothowto & RB_KDB)
1693		kdb_enter(KDB_WHY_BOOTFLAGS,
1694		    "Boot flags requested debugger");
1695#endif
1696
1697	msgbufinit(msgbufp, msgbufsize);
1698	fpuinit();
1699
1700	/*
1701	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
1702	 * area size.  Zero out the extended state header in fpu save
1703	 * area.
1704	 */
1705	thread0.td_pcb = get_pcb_td(&thread0);
1706	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1707	if (use_xsave) {
1708		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1709		    1);
1710		xhdr->xstate_bv = xsave_mask;
1711	}
1712	/* make an initial tss so cpu can get interrupt stack on syscall! */
1713	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
1714	/* Ensure the stack is aligned to 16 bytes */
1715	common_tss[0].tss_rsp0 &= ~0xFul;
1716	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1717	PCPU_SET(curpcb, thread0.td_pcb);
1718
1719	/* transfer to user mode */
1720
1721	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1722	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1723	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1724	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1725	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1726
1727	load_ds(_udatasel);
1728	load_es(_udatasel);
1729	load_fs(_ufssel);
1730
1731	/* setup proc 0's pcb */
1732	thread0.td_pcb->pcb_flags = 0;
1733	thread0.td_frame = &proc0_tf;
1734
1735        env = kern_getenv("kernelname");
1736	if (env != NULL)
1737		strlcpy(kernelname, env, sizeof(kernelname));
1738
1739	cpu_probe_amdc1e();
1740
1741#ifdef FDT
1742	x86_init_fdt();
1743#endif
1744
1745	/* Location of kernel stack for locore */
1746	return ((u_int64_t)thread0.td_pcb);
1747}
1748
1749void
1750cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1751{
1752
1753	pcpu->pc_acpi_id = 0xffffffff;
1754}
1755
1756static int
1757smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
1758{
1759	struct bios_smap *smapbase;
1760	struct bios_smap_xattr smap;
1761	caddr_t kmdp;
1762	uint32_t *smapattr;
1763	int count, error, i;
1764
1765	/* Retrieve the system memory map from the loader. */
1766	kmdp = preload_search_by_type("elf kernel");
1767	if (kmdp == NULL)
1768		kmdp = preload_search_by_type("elf64 kernel");
1769	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1770	    MODINFO_METADATA | MODINFOMD_SMAP);
1771	if (smapbase == NULL)
1772		return (0);
1773	smapattr = (uint32_t *)preload_search_info(kmdp,
1774	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
1775	count = *((uint32_t *)smapbase - 1) / sizeof(*smapbase);
1776	error = 0;
1777	for (i = 0; i < count; i++) {
1778		smap.base = smapbase[i].base;
1779		smap.length = smapbase[i].length;
1780		smap.type = smapbase[i].type;
1781		if (smapattr != NULL)
1782			smap.xattr = smapattr[i];
1783		else
1784			smap.xattr = 0;
1785		error = SYSCTL_OUT(req, &smap, sizeof(smap));
1786	}
1787	return (error);
1788}
1789SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1790    smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
1791
1792static int
1793efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1794{
1795	struct efi_map_header *efihdr;
1796	caddr_t kmdp;
1797	uint32_t efisize;
1798
1799	kmdp = preload_search_by_type("elf kernel");
1800	if (kmdp == NULL)
1801		kmdp = preload_search_by_type("elf64 kernel");
1802	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1803	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1804	if (efihdr == NULL)
1805		return (0);
1806	efisize = *((uint32_t *)efihdr - 1);
1807	return (SYSCTL_OUT(req, efihdr, efisize));
1808}
1809SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1810    efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1811
1812void
1813spinlock_enter(void)
1814{
1815	struct thread *td;
1816	register_t flags;
1817
1818	td = curthread;
1819	if (td->td_md.md_spinlock_count == 0) {
1820		flags = intr_disable();
1821		td->td_md.md_spinlock_count = 1;
1822		td->td_md.md_saved_flags = flags;
1823	} else
1824		td->td_md.md_spinlock_count++;
1825	critical_enter();
1826}
1827
1828void
1829spinlock_exit(void)
1830{
1831	struct thread *td;
1832	register_t flags;
1833
1834	td = curthread;
1835	critical_exit();
1836	flags = td->td_md.md_saved_flags;
1837	td->td_md.md_spinlock_count--;
1838	if (td->td_md.md_spinlock_count == 0)
1839		intr_restore(flags);
1840}
1841
1842/*
1843 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1844 * we want to start a backtrace from the function that caused us to enter
1845 * the debugger. We have the context in the trapframe, but base the trace
1846 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1847 * enough for a backtrace.
1848 */
1849void
1850makectx(struct trapframe *tf, struct pcb *pcb)
1851{
1852
1853	pcb->pcb_r12 = tf->tf_r12;
1854	pcb->pcb_r13 = tf->tf_r13;
1855	pcb->pcb_r14 = tf->tf_r14;
1856	pcb->pcb_r15 = tf->tf_r15;
1857	pcb->pcb_rbp = tf->tf_rbp;
1858	pcb->pcb_rbx = tf->tf_rbx;
1859	pcb->pcb_rip = tf->tf_rip;
1860	pcb->pcb_rsp = tf->tf_rsp;
1861}
1862
1863int
1864ptrace_set_pc(struct thread *td, unsigned long addr)
1865{
1866
1867	td->td_frame->tf_rip = addr;
1868	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1869	return (0);
1870}
1871
1872int
1873ptrace_single_step(struct thread *td)
1874{
1875	td->td_frame->tf_rflags |= PSL_T;
1876	return (0);
1877}
1878
1879int
1880ptrace_clear_single_step(struct thread *td)
1881{
1882	td->td_frame->tf_rflags &= ~PSL_T;
1883	return (0);
1884}
1885
1886int
1887fill_regs(struct thread *td, struct reg *regs)
1888{
1889	struct trapframe *tp;
1890
1891	tp = td->td_frame;
1892	return (fill_frame_regs(tp, regs));
1893}
1894
1895int
1896fill_frame_regs(struct trapframe *tp, struct reg *regs)
1897{
1898	regs->r_r15 = tp->tf_r15;
1899	regs->r_r14 = tp->tf_r14;
1900	regs->r_r13 = tp->tf_r13;
1901	regs->r_r12 = tp->tf_r12;
1902	regs->r_r11 = tp->tf_r11;
1903	regs->r_r10 = tp->tf_r10;
1904	regs->r_r9  = tp->tf_r9;
1905	regs->r_r8  = tp->tf_r8;
1906	regs->r_rdi = tp->tf_rdi;
1907	regs->r_rsi = tp->tf_rsi;
1908	regs->r_rbp = tp->tf_rbp;
1909	regs->r_rbx = tp->tf_rbx;
1910	regs->r_rdx = tp->tf_rdx;
1911	regs->r_rcx = tp->tf_rcx;
1912	regs->r_rax = tp->tf_rax;
1913	regs->r_rip = tp->tf_rip;
1914	regs->r_cs = tp->tf_cs;
1915	regs->r_rflags = tp->tf_rflags;
1916	regs->r_rsp = tp->tf_rsp;
1917	regs->r_ss = tp->tf_ss;
1918	if (tp->tf_flags & TF_HASSEGS) {
1919		regs->r_ds = tp->tf_ds;
1920		regs->r_es = tp->tf_es;
1921		regs->r_fs = tp->tf_fs;
1922		regs->r_gs = tp->tf_gs;
1923	} else {
1924		regs->r_ds = 0;
1925		regs->r_es = 0;
1926		regs->r_fs = 0;
1927		regs->r_gs = 0;
1928	}
1929	return (0);
1930}
1931
1932int
1933set_regs(struct thread *td, struct reg *regs)
1934{
1935	struct trapframe *tp;
1936	register_t rflags;
1937
1938	tp = td->td_frame;
1939	rflags = regs->r_rflags & 0xffffffff;
1940	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1941		return (EINVAL);
1942	tp->tf_r15 = regs->r_r15;
1943	tp->tf_r14 = regs->r_r14;
1944	tp->tf_r13 = regs->r_r13;
1945	tp->tf_r12 = regs->r_r12;
1946	tp->tf_r11 = regs->r_r11;
1947	tp->tf_r10 = regs->r_r10;
1948	tp->tf_r9  = regs->r_r9;
1949	tp->tf_r8  = regs->r_r8;
1950	tp->tf_rdi = regs->r_rdi;
1951	tp->tf_rsi = regs->r_rsi;
1952	tp->tf_rbp = regs->r_rbp;
1953	tp->tf_rbx = regs->r_rbx;
1954	tp->tf_rdx = regs->r_rdx;
1955	tp->tf_rcx = regs->r_rcx;
1956	tp->tf_rax = regs->r_rax;
1957	tp->tf_rip = regs->r_rip;
1958	tp->tf_cs = regs->r_cs;
1959	tp->tf_rflags = rflags;
1960	tp->tf_rsp = regs->r_rsp;
1961	tp->tf_ss = regs->r_ss;
1962	if (0) {	/* XXXKIB */
1963		tp->tf_ds = regs->r_ds;
1964		tp->tf_es = regs->r_es;
1965		tp->tf_fs = regs->r_fs;
1966		tp->tf_gs = regs->r_gs;
1967		tp->tf_flags = TF_HASSEGS;
1968	}
1969	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1970	return (0);
1971}
1972
1973/* XXX check all this stuff! */
1974/* externalize from sv_xmm */
1975static void
1976fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1977{
1978	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1979	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1980	int i;
1981
1982	/* pcb -> fpregs */
1983	bzero(fpregs, sizeof(*fpregs));
1984
1985	/* FPU control/status */
1986	penv_fpreg->en_cw = penv_xmm->en_cw;
1987	penv_fpreg->en_sw = penv_xmm->en_sw;
1988	penv_fpreg->en_tw = penv_xmm->en_tw;
1989	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1990	penv_fpreg->en_rip = penv_xmm->en_rip;
1991	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1992	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1993	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1994
1995	/* FPU registers */
1996	for (i = 0; i < 8; ++i)
1997		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1998
1999	/* SSE registers */
2000	for (i = 0; i < 16; ++i)
2001		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2002}
2003
2004/* internalize from fpregs into sv_xmm */
2005static void
2006set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2007{
2008	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2009	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2010	int i;
2011
2012	/* fpregs -> pcb */
2013	/* FPU control/status */
2014	penv_xmm->en_cw = penv_fpreg->en_cw;
2015	penv_xmm->en_sw = penv_fpreg->en_sw;
2016	penv_xmm->en_tw = penv_fpreg->en_tw;
2017	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2018	penv_xmm->en_rip = penv_fpreg->en_rip;
2019	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2020	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2021	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2022
2023	/* FPU registers */
2024	for (i = 0; i < 8; ++i)
2025		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2026
2027	/* SSE registers */
2028	for (i = 0; i < 16; ++i)
2029		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2030}
2031
2032/* externalize from td->pcb */
2033int
2034fill_fpregs(struct thread *td, struct fpreg *fpregs)
2035{
2036
2037	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2038	    P_SHOULDSTOP(td->td_proc),
2039	    ("not suspended thread %p", td));
2040	fpugetregs(td);
2041	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2042	return (0);
2043}
2044
2045/* internalize to td->pcb */
2046int
2047set_fpregs(struct thread *td, struct fpreg *fpregs)
2048{
2049
2050	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2051	fpuuserinited(td);
2052	return (0);
2053}
2054
2055/*
2056 * Get machine context.
2057 */
2058int
2059get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2060{
2061	struct pcb *pcb;
2062	struct trapframe *tp;
2063
2064	pcb = td->td_pcb;
2065	tp = td->td_frame;
2066	PROC_LOCK(curthread->td_proc);
2067	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2068	PROC_UNLOCK(curthread->td_proc);
2069	mcp->mc_r15 = tp->tf_r15;
2070	mcp->mc_r14 = tp->tf_r14;
2071	mcp->mc_r13 = tp->tf_r13;
2072	mcp->mc_r12 = tp->tf_r12;
2073	mcp->mc_r11 = tp->tf_r11;
2074	mcp->mc_r10 = tp->tf_r10;
2075	mcp->mc_r9  = tp->tf_r9;
2076	mcp->mc_r8  = tp->tf_r8;
2077	mcp->mc_rdi = tp->tf_rdi;
2078	mcp->mc_rsi = tp->tf_rsi;
2079	mcp->mc_rbp = tp->tf_rbp;
2080	mcp->mc_rbx = tp->tf_rbx;
2081	mcp->mc_rcx = tp->tf_rcx;
2082	mcp->mc_rflags = tp->tf_rflags;
2083	if (flags & GET_MC_CLEAR_RET) {
2084		mcp->mc_rax = 0;
2085		mcp->mc_rdx = 0;
2086		mcp->mc_rflags &= ~PSL_C;
2087	} else {
2088		mcp->mc_rax = tp->tf_rax;
2089		mcp->mc_rdx = tp->tf_rdx;
2090	}
2091	mcp->mc_rip = tp->tf_rip;
2092	mcp->mc_cs = tp->tf_cs;
2093	mcp->mc_rsp = tp->tf_rsp;
2094	mcp->mc_ss = tp->tf_ss;
2095	mcp->mc_ds = tp->tf_ds;
2096	mcp->mc_es = tp->tf_es;
2097	mcp->mc_fs = tp->tf_fs;
2098	mcp->mc_gs = tp->tf_gs;
2099	mcp->mc_flags = tp->tf_flags;
2100	mcp->mc_len = sizeof(*mcp);
2101	get_fpcontext(td, mcp, NULL, 0);
2102	mcp->mc_fsbase = pcb->pcb_fsbase;
2103	mcp->mc_gsbase = pcb->pcb_gsbase;
2104	mcp->mc_xfpustate = 0;
2105	mcp->mc_xfpustate_len = 0;
2106	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2107	return (0);
2108}
2109
2110/*
2111 * Set machine context.
2112 *
2113 * However, we don't set any but the user modifiable flags, and we won't
2114 * touch the cs selector.
2115 */
2116int
2117set_mcontext(struct thread *td, mcontext_t *mcp)
2118{
2119	struct pcb *pcb;
2120	struct trapframe *tp;
2121	char *xfpustate;
2122	long rflags;
2123	int ret;
2124
2125	pcb = td->td_pcb;
2126	tp = td->td_frame;
2127	if (mcp->mc_len != sizeof(*mcp) ||
2128	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2129		return (EINVAL);
2130	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2131	    (tp->tf_rflags & ~PSL_USERCHANGE);
2132	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2133		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2134		    sizeof(struct savefpu))
2135			return (EINVAL);
2136		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2137		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2138		    mcp->mc_xfpustate_len);
2139		if (ret != 0)
2140			return (ret);
2141	} else
2142		xfpustate = NULL;
2143	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2144	if (ret != 0)
2145		return (ret);
2146	tp->tf_r15 = mcp->mc_r15;
2147	tp->tf_r14 = mcp->mc_r14;
2148	tp->tf_r13 = mcp->mc_r13;
2149	tp->tf_r12 = mcp->mc_r12;
2150	tp->tf_r11 = mcp->mc_r11;
2151	tp->tf_r10 = mcp->mc_r10;
2152	tp->tf_r9  = mcp->mc_r9;
2153	tp->tf_r8  = mcp->mc_r8;
2154	tp->tf_rdi = mcp->mc_rdi;
2155	tp->tf_rsi = mcp->mc_rsi;
2156	tp->tf_rbp = mcp->mc_rbp;
2157	tp->tf_rbx = mcp->mc_rbx;
2158	tp->tf_rdx = mcp->mc_rdx;
2159	tp->tf_rcx = mcp->mc_rcx;
2160	tp->tf_rax = mcp->mc_rax;
2161	tp->tf_rip = mcp->mc_rip;
2162	tp->tf_rflags = rflags;
2163	tp->tf_rsp = mcp->mc_rsp;
2164	tp->tf_ss = mcp->mc_ss;
2165	tp->tf_flags = mcp->mc_flags;
2166	if (tp->tf_flags & TF_HASSEGS) {
2167		tp->tf_ds = mcp->mc_ds;
2168		tp->tf_es = mcp->mc_es;
2169		tp->tf_fs = mcp->mc_fs;
2170		tp->tf_gs = mcp->mc_gs;
2171	}
2172	if (mcp->mc_flags & _MC_HASBASES) {
2173		pcb->pcb_fsbase = mcp->mc_fsbase;
2174		pcb->pcb_gsbase = mcp->mc_gsbase;
2175	}
2176	set_pcb_flags(pcb, PCB_FULL_IRET);
2177	return (0);
2178}
2179
2180static void
2181get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2182    size_t xfpusave_len)
2183{
2184	size_t max_len, len;
2185
2186	mcp->mc_ownedfp = fpugetregs(td);
2187	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2188	    sizeof(mcp->mc_fpstate));
2189	mcp->mc_fpformat = fpuformat();
2190	if (!use_xsave || xfpusave_len == 0)
2191		return;
2192	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2193	len = xfpusave_len;
2194	if (len > max_len) {
2195		len = max_len;
2196		bzero(xfpusave + max_len, len - max_len);
2197	}
2198	mcp->mc_flags |= _MC_HASFPXSTATE;
2199	mcp->mc_xfpustate_len = len;
2200	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2201}
2202
2203static int
2204set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
2205    size_t xfpustate_len)
2206{
2207	struct savefpu *fpstate;
2208	int error;
2209
2210	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2211		return (0);
2212	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2213		return (EINVAL);
2214	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2215		/* We don't care what state is left in the FPU or PCB. */
2216		fpstate_drop(td);
2217		error = 0;
2218	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2219	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2220		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2221		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2222		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2223	} else
2224		return (EINVAL);
2225	return (error);
2226}
2227
2228void
2229fpstate_drop(struct thread *td)
2230{
2231
2232	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2233	critical_enter();
2234	if (PCPU_GET(fpcurthread) == td)
2235		fpudrop();
2236	/*
2237	 * XXX force a full drop of the fpu.  The above only drops it if we
2238	 * owned it.
2239	 *
2240	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2241	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2242	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2243	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2244	 * have too many layers.
2245	 */
2246	clear_pcb_flags(curthread->td_pcb,
2247	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2248	critical_exit();
2249}
2250
2251int
2252fill_dbregs(struct thread *td, struct dbreg *dbregs)
2253{
2254	struct pcb *pcb;
2255
2256	if (td == NULL) {
2257		dbregs->dr[0] = rdr0();
2258		dbregs->dr[1] = rdr1();
2259		dbregs->dr[2] = rdr2();
2260		dbregs->dr[3] = rdr3();
2261		dbregs->dr[6] = rdr6();
2262		dbregs->dr[7] = rdr7();
2263	} else {
2264		pcb = td->td_pcb;
2265		dbregs->dr[0] = pcb->pcb_dr0;
2266		dbregs->dr[1] = pcb->pcb_dr1;
2267		dbregs->dr[2] = pcb->pcb_dr2;
2268		dbregs->dr[3] = pcb->pcb_dr3;
2269		dbregs->dr[6] = pcb->pcb_dr6;
2270		dbregs->dr[7] = pcb->pcb_dr7;
2271	}
2272	dbregs->dr[4] = 0;
2273	dbregs->dr[5] = 0;
2274	dbregs->dr[8] = 0;
2275	dbregs->dr[9] = 0;
2276	dbregs->dr[10] = 0;
2277	dbregs->dr[11] = 0;
2278	dbregs->dr[12] = 0;
2279	dbregs->dr[13] = 0;
2280	dbregs->dr[14] = 0;
2281	dbregs->dr[15] = 0;
2282	return (0);
2283}
2284
2285int
2286set_dbregs(struct thread *td, struct dbreg *dbregs)
2287{
2288	struct pcb *pcb;
2289	int i;
2290
2291	if (td == NULL) {
2292		load_dr0(dbregs->dr[0]);
2293		load_dr1(dbregs->dr[1]);
2294		load_dr2(dbregs->dr[2]);
2295		load_dr3(dbregs->dr[3]);
2296		load_dr6(dbregs->dr[6]);
2297		load_dr7(dbregs->dr[7]);
2298	} else {
2299		/*
2300		 * Don't let an illegal value for dr7 get set.  Specifically,
2301		 * check for undefined settings.  Setting these bit patterns
2302		 * result in undefined behaviour and can lead to an unexpected
2303		 * TRCTRAP or a general protection fault right here.
2304		 * Upper bits of dr6 and dr7 must not be set
2305		 */
2306		for (i = 0; i < 4; i++) {
2307			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2308				return (EINVAL);
2309			if (td->td_frame->tf_cs == _ucode32sel &&
2310			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2311				return (EINVAL);
2312		}
2313		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2314		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2315			return (EINVAL);
2316
2317		pcb = td->td_pcb;
2318
2319		/*
2320		 * Don't let a process set a breakpoint that is not within the
2321		 * process's address space.  If a process could do this, it
2322		 * could halt the system by setting a breakpoint in the kernel
2323		 * (if ddb was enabled).  Thus, we need to check to make sure
2324		 * that no breakpoints are being enabled for addresses outside
2325		 * process's address space.
2326		 *
2327		 * XXX - what about when the watched area of the user's
2328		 * address space is written into from within the kernel
2329		 * ... wouldn't that still cause a breakpoint to be generated
2330		 * from within kernel mode?
2331		 */
2332
2333		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2334			/* dr0 is enabled */
2335			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2336				return (EINVAL);
2337		}
2338		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2339			/* dr1 is enabled */
2340			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2341				return (EINVAL);
2342		}
2343		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2344			/* dr2 is enabled */
2345			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2346				return (EINVAL);
2347		}
2348		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2349			/* dr3 is enabled */
2350			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2351				return (EINVAL);
2352		}
2353
2354		pcb->pcb_dr0 = dbregs->dr[0];
2355		pcb->pcb_dr1 = dbregs->dr[1];
2356		pcb->pcb_dr2 = dbregs->dr[2];
2357		pcb->pcb_dr3 = dbregs->dr[3];
2358		pcb->pcb_dr6 = dbregs->dr[6];
2359		pcb->pcb_dr7 = dbregs->dr[7];
2360
2361		set_pcb_flags(pcb, PCB_DBREGS);
2362	}
2363
2364	return (0);
2365}
2366
2367void
2368reset_dbregs(void)
2369{
2370
2371	load_dr7(0);	/* Turn off the control bits first */
2372	load_dr0(0);
2373	load_dr1(0);
2374	load_dr2(0);
2375	load_dr3(0);
2376	load_dr6(0);
2377}
2378
2379/*
2380 * Return > 0 if a hardware breakpoint has been hit, and the
2381 * breakpoint was in user space.  Return 0, otherwise.
2382 */
2383int
2384user_dbreg_trap(void)
2385{
2386        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2387        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2388        int nbp;            /* number of breakpoints that triggered */
2389        caddr_t addr[4];    /* breakpoint addresses */
2390        int i;
2391
2392        dr7 = rdr7();
2393        if ((dr7 & 0x000000ff) == 0) {
2394                /*
2395                 * all GE and LE bits in the dr7 register are zero,
2396                 * thus the trap couldn't have been caused by the
2397                 * hardware debug registers
2398                 */
2399                return 0;
2400        }
2401
2402        nbp = 0;
2403        dr6 = rdr6();
2404        bp = dr6 & 0x0000000f;
2405
2406        if (!bp) {
2407                /*
2408                 * None of the breakpoint bits are set meaning this
2409                 * trap was not caused by any of the debug registers
2410                 */
2411                return 0;
2412        }
2413
2414        /*
2415         * at least one of the breakpoints were hit, check to see
2416         * which ones and if any of them are user space addresses
2417         */
2418
2419        if (bp & 0x01) {
2420                addr[nbp++] = (caddr_t)rdr0();
2421        }
2422        if (bp & 0x02) {
2423                addr[nbp++] = (caddr_t)rdr1();
2424        }
2425        if (bp & 0x04) {
2426                addr[nbp++] = (caddr_t)rdr2();
2427        }
2428        if (bp & 0x08) {
2429                addr[nbp++] = (caddr_t)rdr3();
2430        }
2431
2432        for (i = 0; i < nbp; i++) {
2433                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2434                        /*
2435                         * addr[i] is in user space
2436                         */
2437                        return nbp;
2438                }
2439        }
2440
2441        /*
2442         * None of the breakpoints are in user space.
2443         */
2444        return 0;
2445}
2446
2447#ifdef KDB
2448
2449/*
2450 * Provide inb() and outb() as functions.  They are normally only available as
2451 * inline functions, thus cannot be called from the debugger.
2452 */
2453
2454/* silence compiler warnings */
2455u_char inb_(u_short);
2456void outb_(u_short, u_char);
2457
2458u_char
2459inb_(u_short port)
2460{
2461	return inb(port);
2462}
2463
2464void
2465outb_(u_short port, u_char data)
2466{
2467	outb(port, data);
2468}
2469
2470#endif /* KDB */
2471