machdep.c revision 283479
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 283479 2015-05-24 17:56:02Z dchagin $");
43
44#include "opt_atpic.h"
45#include "opt_compat.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_inet.h"
49#include "opt_isa.h"
50#include "opt_kstack_pages.h"
51#include "opt_maxmem.h"
52#include "opt_mp_watchdog.h"
53#include "opt_perfmon.h"
54#include "opt_platform.h"
55#include "opt_sched.h"
56
57#include <sys/param.h>
58#include <sys/proc.h>
59#include <sys/systm.h>
60#include <sys/bio.h>
61#include <sys/buf.h>
62#include <sys/bus.h>
63#include <sys/callout.h>
64#include <sys/cons.h>
65#include <sys/cpu.h>
66#include <sys/efi.h>
67#include <sys/eventhandler.h>
68#include <sys/exec.h>
69#include <sys/imgact.h>
70#include <sys/kdb.h>
71#include <sys/kernel.h>
72#include <sys/ktr.h>
73#include <sys/linker.h>
74#include <sys/lock.h>
75#include <sys/malloc.h>
76#include <sys/memrange.h>
77#include <sys/msgbuf.h>
78#include <sys/mutex.h>
79#include <sys/pcpu.h>
80#include <sys/ptrace.h>
81#include <sys/reboot.h>
82#include <sys/rwlock.h>
83#include <sys/sched.h>
84#include <sys/signalvar.h>
85#ifdef SMP
86#include <sys/smp.h>
87#endif
88#include <sys/syscallsubr.h>
89#include <sys/sysctl.h>
90#include <sys/sysent.h>
91#include <sys/sysproto.h>
92#include <sys/ucontext.h>
93#include <sys/vmmeter.h>
94
95#include <vm/vm.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_kern.h>
98#include <vm/vm_page.h>
99#include <vm/vm_map.h>
100#include <vm/vm_object.h>
101#include <vm/vm_pager.h>
102#include <vm/vm_param.h>
103
104#ifdef DDB
105#ifndef KDB
106#error KDB must be enabled in order for DDB to work!
107#endif
108#include <ddb/ddb.h>
109#include <ddb/db_sym.h>
110#endif
111
112#include <net/netisr.h>
113
114#include <machine/clock.h>
115#include <machine/cpu.h>
116#include <machine/cputypes.h>
117#include <machine/intr_machdep.h>
118#include <x86/mca.h>
119#include <machine/md_var.h>
120#include <machine/metadata.h>
121#include <machine/mp_watchdog.h>
122#include <machine/pc/bios.h>
123#include <machine/pcb.h>
124#include <machine/proc.h>
125#include <machine/reg.h>
126#include <machine/sigframe.h>
127#include <machine/specialreg.h>
128#ifdef PERFMON
129#include <machine/perfmon.h>
130#endif
131#include <machine/tss.h>
132#ifdef SMP
133#include <machine/smp.h>
134#endif
135#ifdef FDT
136#include <x86/fdt.h>
137#endif
138
139#ifdef DEV_ATPIC
140#include <x86/isa/icu.h>
141#else
142#include <x86/apicvar.h>
143#endif
144
145#include <isa/isareg.h>
146#include <isa/rtc.h>
147#include <x86/init.h>
148
149/* Sanity check for __curthread() */
150CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
151
152extern u_int64_t hammer_time(u_int64_t, u_int64_t);
153
154#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
155#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
156
157static void cpu_startup(void *);
158static void get_fpcontext(struct thread *td, mcontext_t *mcp,
159    char *xfpusave, size_t xfpusave_len);
160static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
161    char *xfpustate, size_t xfpustate_len);
162SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
163
164/* Preload data parse function */
165static caddr_t native_parse_preload_data(u_int64_t);
166
167/* Native function to fetch and parse the e820 map */
168static void native_parse_memmap(caddr_t, vm_paddr_t *, int *);
169
170/* Default init_ops implementation. */
171struct init_ops init_ops = {
172	.parse_preload_data =	native_parse_preload_data,
173	.early_clock_source_init =	i8254_init,
174	.early_delay =			i8254_delay,
175	.parse_memmap =			native_parse_memmap,
176#ifdef SMP
177	.mp_bootaddress =		mp_bootaddress,
178	.start_all_aps =		native_start_all_aps,
179#endif
180	.msi_init =			msi_init,
181};
182
183/*
184 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
185 * the physical address at which the kernel is loaded.
186 */
187extern char kernphys[];
188
189struct msgbuf *msgbufp;
190
191/* Intel ICH registers */
192#define ICH_PMBASE	0x400
193#define ICH_SMI_EN	ICH_PMBASE + 0x30
194
195int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
196
197int cold = 1;
198
199long Maxmem = 0;
200long realmem = 0;
201
202/*
203 * The number of PHYSMAP entries must be one less than the number of
204 * PHYSSEG entries because the PHYSMAP entry that spans the largest
205 * physical address that is accessible by ISA DMA is split into two
206 * PHYSSEG entries.
207 */
208#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
209
210vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
211vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
212
213/* must be 2 less so 0 0 can signal end of chunks */
214#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
215#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
216
217struct kva_md_info kmi;
218
219static struct trapframe proc0_tf;
220struct region_descriptor r_gdt, r_idt;
221
222struct pcpu __pcpu[MAXCPU];
223
224struct mtx icu_lock;
225
226struct mem_range_softc mem_range_softc;
227
228struct mtx dt_lock;	/* lock for GDT and LDT */
229
230void (*vmm_resume_p)(void);
231
232static void
233cpu_startup(dummy)
234	void *dummy;
235{
236	uintmax_t memsize;
237	char *sysenv;
238
239	/*
240	 * On MacBooks, we need to disallow the legacy USB circuit to
241	 * generate an SMI# because this can cause several problems,
242	 * namely: incorrect CPU frequency detection and failure to
243	 * start the APs.
244	 * We do this by disabling a bit in the SMI_EN (SMI Control and
245	 * Enable register) of the Intel ICH LPC Interface Bridge.
246	 */
247	sysenv = kern_getenv("smbios.system.product");
248	if (sysenv != NULL) {
249		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
250		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
251		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
252		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
253		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
254		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
255		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
256		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
257			if (bootverbose)
258				printf("Disabling LEGACY_USB_EN bit on "
259				    "Intel ICH.\n");
260			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
261		}
262		freeenv(sysenv);
263	}
264
265	/*
266	 * Good {morning,afternoon,evening,night}.
267	 */
268	startrtclock();
269	printcpuinfo();
270	panicifcpuunsupported();
271#ifdef PERFMON
272	perfmon_init();
273#endif
274
275	/*
276	 * Display physical memory if SMBIOS reports reasonable amount.
277	 */
278	memsize = 0;
279	sysenv = kern_getenv("smbios.memory.enabled");
280	if (sysenv != NULL) {
281		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
282		freeenv(sysenv);
283	}
284	if (memsize < ptoa((uintmax_t)vm_cnt.v_free_count))
285		memsize = ptoa((uintmax_t)Maxmem);
286	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
287	realmem = atop(memsize);
288
289	/*
290	 * Display any holes after the first chunk of extended memory.
291	 */
292	if (bootverbose) {
293		int indx;
294
295		printf("Physical memory chunk(s):\n");
296		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
297			vm_paddr_t size;
298
299			size = phys_avail[indx + 1] - phys_avail[indx];
300			printf(
301			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
302			    (uintmax_t)phys_avail[indx],
303			    (uintmax_t)phys_avail[indx + 1] - 1,
304			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
305		}
306	}
307
308	vm_ksubmap_init(&kmi);
309
310	printf("avail memory = %ju (%ju MB)\n",
311	    ptoa((uintmax_t)vm_cnt.v_free_count),
312	    ptoa((uintmax_t)vm_cnt.v_free_count) / 1048576);
313
314	/*
315	 * Set up buffers, so they can be used to read disk labels.
316	 */
317	bufinit();
318	vm_pager_bufferinit();
319
320	cpu_setregs();
321}
322
323/*
324 * Send an interrupt to process.
325 *
326 * Stack is set up to allow sigcode stored
327 * at top to call routine, followed by call
328 * to sigreturn routine below.  After sigreturn
329 * resets the signal mask, the stack, and the
330 * frame pointer, it returns to the user
331 * specified pc, psl.
332 */
333void
334sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
335{
336	struct sigframe sf, *sfp;
337	struct pcb *pcb;
338	struct proc *p;
339	struct thread *td;
340	struct sigacts *psp;
341	char *sp;
342	struct trapframe *regs;
343	char *xfpusave;
344	size_t xfpusave_len;
345	int sig;
346	int oonstack;
347
348	td = curthread;
349	pcb = td->td_pcb;
350	p = td->td_proc;
351	PROC_LOCK_ASSERT(p, MA_OWNED);
352	sig = ksi->ksi_signo;
353	psp = p->p_sigacts;
354	mtx_assert(&psp->ps_mtx, MA_OWNED);
355	regs = td->td_frame;
356	oonstack = sigonstack(regs->tf_rsp);
357
358	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
359		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
360		xfpusave = __builtin_alloca(xfpusave_len);
361	} else {
362		xfpusave_len = 0;
363		xfpusave = NULL;
364	}
365
366	/* Save user context. */
367	bzero(&sf, sizeof(sf));
368	sf.sf_uc.uc_sigmask = *mask;
369	sf.sf_uc.uc_stack = td->td_sigstk;
370	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
371	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
372	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
373	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
374	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
375	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
376	fpstate_drop(td);
377	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
378	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
379	bzero(sf.sf_uc.uc_mcontext.mc_spare,
380	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
381	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
382
383	/* Allocate space for the signal handler context. */
384	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
385	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
386		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
387#if defined(COMPAT_43)
388		td->td_sigstk.ss_flags |= SS_ONSTACK;
389#endif
390	} else
391		sp = (char *)regs->tf_rsp - 128;
392	if (xfpusave != NULL) {
393		sp -= xfpusave_len;
394		sp = (char *)((unsigned long)sp & ~0x3Ful);
395		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
396	}
397	sp -= sizeof(struct sigframe);
398	/* Align to 16 bytes. */
399	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
400
401	/* Build the argument list for the signal handler. */
402	regs->tf_rdi = sig;			/* arg 1 in %rdi */
403	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
404	bzero(&sf.sf_si, sizeof(sf.sf_si));
405	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
406		/* Signal handler installed with SA_SIGINFO. */
407		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
408		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
409
410		/* Fill in POSIX parts */
411		sf.sf_si = ksi->ksi_info;
412		sf.sf_si.si_signo = sig; /* maybe a translated signal */
413		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
414	} else {
415		/* Old FreeBSD-style arguments. */
416		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
417		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
418		sf.sf_ahu.sf_handler = catcher;
419	}
420	mtx_unlock(&psp->ps_mtx);
421	PROC_UNLOCK(p);
422
423	/*
424	 * Copy the sigframe out to the user's stack.
425	 */
426	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
427	    (xfpusave != NULL && copyout(xfpusave,
428	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
429	    != 0)) {
430#ifdef DEBUG
431		printf("process %ld has trashed its stack\n", (long)p->p_pid);
432#endif
433		PROC_LOCK(p);
434		sigexit(td, SIGILL);
435	}
436
437	regs->tf_rsp = (long)sfp;
438	regs->tf_rip = p->p_sysent->sv_sigcode_base;
439	regs->tf_rflags &= ~(PSL_T | PSL_D);
440	regs->tf_cs = _ucodesel;
441	regs->tf_ds = _udatasel;
442	regs->tf_ss = _udatasel;
443	regs->tf_es = _udatasel;
444	regs->tf_fs = _ufssel;
445	regs->tf_gs = _ugssel;
446	regs->tf_flags = TF_HASSEGS;
447	set_pcb_flags(pcb, PCB_FULL_IRET);
448	PROC_LOCK(p);
449	mtx_lock(&psp->ps_mtx);
450}
451
452/*
453 * System call to cleanup state after a signal
454 * has been taken.  Reset signal mask and
455 * stack state from context left by sendsig (above).
456 * Return to previous pc and psl as specified by
457 * context left by sendsig. Check carefully to
458 * make sure that the user has not modified the
459 * state to gain improper privileges.
460 *
461 * MPSAFE
462 */
463int
464sys_sigreturn(td, uap)
465	struct thread *td;
466	struct sigreturn_args /* {
467		const struct __ucontext *sigcntxp;
468	} */ *uap;
469{
470	ucontext_t uc;
471	struct pcb *pcb;
472	struct proc *p;
473	struct trapframe *regs;
474	ucontext_t *ucp;
475	char *xfpustate;
476	size_t xfpustate_len;
477	long rflags;
478	int cs, error, ret;
479	ksiginfo_t ksi;
480
481	pcb = td->td_pcb;
482	p = td->td_proc;
483
484	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
485	if (error != 0) {
486		uprintf("pid %d (%s): sigreturn copyin failed\n",
487		    p->p_pid, td->td_name);
488		return (error);
489	}
490	ucp = &uc;
491	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
492		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
493		    td->td_name, ucp->uc_mcontext.mc_flags);
494		return (EINVAL);
495	}
496	regs = td->td_frame;
497	rflags = ucp->uc_mcontext.mc_rflags;
498	/*
499	 * Don't allow users to change privileged or reserved flags.
500	 */
501	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
502		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
503		    td->td_name, rflags);
504		return (EINVAL);
505	}
506
507	/*
508	 * Don't allow users to load a valid privileged %cs.  Let the
509	 * hardware check for invalid selectors, excess privilege in
510	 * other selectors, invalid %eip's and invalid %esp's.
511	 */
512	cs = ucp->uc_mcontext.mc_cs;
513	if (!CS_SECURE(cs)) {
514		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
515		    td->td_name, cs);
516		ksiginfo_init_trap(&ksi);
517		ksi.ksi_signo = SIGBUS;
518		ksi.ksi_code = BUS_OBJERR;
519		ksi.ksi_trapno = T_PROTFLT;
520		ksi.ksi_addr = (void *)regs->tf_rip;
521		trapsignal(td, &ksi);
522		return (EINVAL);
523	}
524
525	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
526		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
527		if (xfpustate_len > cpu_max_ext_state_size -
528		    sizeof(struct savefpu)) {
529			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
530			    p->p_pid, td->td_name, xfpustate_len);
531			return (EINVAL);
532		}
533		xfpustate = __builtin_alloca(xfpustate_len);
534		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
535		    xfpustate, xfpustate_len);
536		if (error != 0) {
537			uprintf(
538	"pid %d (%s): sigreturn copying xfpustate failed\n",
539			    p->p_pid, td->td_name);
540			return (error);
541		}
542	} else {
543		xfpustate = NULL;
544		xfpustate_len = 0;
545	}
546	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
547	if (ret != 0) {
548		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
549		    p->p_pid, td->td_name, ret);
550		return (ret);
551	}
552	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
553	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
554	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
555
556#if defined(COMPAT_43)
557	if (ucp->uc_mcontext.mc_onstack & 1)
558		td->td_sigstk.ss_flags |= SS_ONSTACK;
559	else
560		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
561#endif
562
563	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
564	set_pcb_flags(pcb, PCB_FULL_IRET);
565	return (EJUSTRETURN);
566}
567
568#ifdef COMPAT_FREEBSD4
569int
570freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
571{
572
573	return sys_sigreturn(td, (struct sigreturn_args *)uap);
574}
575#endif
576
577/*
578 * Reset registers to default values on exec.
579 */
580void
581exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
582{
583	struct trapframe *regs = td->td_frame;
584	struct pcb *pcb = td->td_pcb;
585
586	mtx_lock(&dt_lock);
587	if (td->td_proc->p_md.md_ldt != NULL)
588		user_ldt_free(td);
589	else
590		mtx_unlock(&dt_lock);
591
592	pcb->pcb_fsbase = 0;
593	pcb->pcb_gsbase = 0;
594	clear_pcb_flags(pcb, PCB_32BIT);
595	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
596	set_pcb_flags(pcb, PCB_FULL_IRET);
597
598	bzero((char *)regs, sizeof(struct trapframe));
599	regs->tf_rip = imgp->entry_addr;
600	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
601	regs->tf_rdi = stack;		/* argv */
602	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
603	regs->tf_ss = _udatasel;
604	regs->tf_cs = _ucodesel;
605	regs->tf_ds = _udatasel;
606	regs->tf_es = _udatasel;
607	regs->tf_fs = _ufssel;
608	regs->tf_gs = _ugssel;
609	regs->tf_flags = TF_HASSEGS;
610	td->td_retval[1] = 0;
611
612	/*
613	 * Reset the hardware debug registers if they were in use.
614	 * They won't have any meaning for the newly exec'd process.
615	 */
616	if (pcb->pcb_flags & PCB_DBREGS) {
617		pcb->pcb_dr0 = 0;
618		pcb->pcb_dr1 = 0;
619		pcb->pcb_dr2 = 0;
620		pcb->pcb_dr3 = 0;
621		pcb->pcb_dr6 = 0;
622		pcb->pcb_dr7 = 0;
623		if (pcb == curpcb) {
624			/*
625			 * Clear the debug registers on the running
626			 * CPU, otherwise they will end up affecting
627			 * the next process we switch to.
628			 */
629			reset_dbregs();
630		}
631		clear_pcb_flags(pcb, PCB_DBREGS);
632	}
633
634	/*
635	 * Drop the FP state if we hold it, so that the process gets a
636	 * clean FP state if it uses the FPU again.
637	 */
638	fpstate_drop(td);
639}
640
641void
642cpu_setregs(void)
643{
644	register_t cr0;
645
646	cr0 = rcr0();
647	/*
648	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
649	 * BSP.  See the comments there about why we set them.
650	 */
651	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
652	load_cr0(cr0);
653}
654
655/*
656 * Initialize amd64 and configure to run kernel
657 */
658
659/*
660 * Initialize segments & interrupt table
661 */
662
663struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
664static struct gate_descriptor idt0[NIDT];
665struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
666
667static char dblfault_stack[PAGE_SIZE] __aligned(16);
668
669static char nmi0_stack[PAGE_SIZE] __aligned(16);
670CTASSERT(sizeof(struct nmi_pcpu) == 16);
671
672struct amd64tss common_tss[MAXCPU];
673
674/*
675 * Software prototypes -- in more palatable form.
676 *
677 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
678 * slots as corresponding segments for i386 kernel.
679 */
680struct soft_segment_descriptor gdt_segs[] = {
681/* GNULL_SEL	0 Null Descriptor */
682{	.ssd_base = 0x0,
683	.ssd_limit = 0x0,
684	.ssd_type = 0,
685	.ssd_dpl = 0,
686	.ssd_p = 0,
687	.ssd_long = 0,
688	.ssd_def32 = 0,
689	.ssd_gran = 0		},
690/* GNULL2_SEL	1 Null Descriptor */
691{	.ssd_base = 0x0,
692	.ssd_limit = 0x0,
693	.ssd_type = 0,
694	.ssd_dpl = 0,
695	.ssd_p = 0,
696	.ssd_long = 0,
697	.ssd_def32 = 0,
698	.ssd_gran = 0		},
699/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
700{	.ssd_base = 0x0,
701	.ssd_limit = 0xfffff,
702	.ssd_type = SDT_MEMRWA,
703	.ssd_dpl = SEL_UPL,
704	.ssd_p = 1,
705	.ssd_long = 0,
706	.ssd_def32 = 1,
707	.ssd_gran = 1		},
708/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
709{	.ssd_base = 0x0,
710	.ssd_limit = 0xfffff,
711	.ssd_type = SDT_MEMRWA,
712	.ssd_dpl = SEL_UPL,
713	.ssd_p = 1,
714	.ssd_long = 0,
715	.ssd_def32 = 1,
716	.ssd_gran = 1		},
717/* GCODE_SEL	4 Code Descriptor for kernel */
718{	.ssd_base = 0x0,
719	.ssd_limit = 0xfffff,
720	.ssd_type = SDT_MEMERA,
721	.ssd_dpl = SEL_KPL,
722	.ssd_p = 1,
723	.ssd_long = 1,
724	.ssd_def32 = 0,
725	.ssd_gran = 1		},
726/* GDATA_SEL	5 Data Descriptor for kernel */
727{	.ssd_base = 0x0,
728	.ssd_limit = 0xfffff,
729	.ssd_type = SDT_MEMRWA,
730	.ssd_dpl = SEL_KPL,
731	.ssd_p = 1,
732	.ssd_long = 1,
733	.ssd_def32 = 0,
734	.ssd_gran = 1		},
735/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
736{	.ssd_base = 0x0,
737	.ssd_limit = 0xfffff,
738	.ssd_type = SDT_MEMERA,
739	.ssd_dpl = SEL_UPL,
740	.ssd_p = 1,
741	.ssd_long = 0,
742	.ssd_def32 = 1,
743	.ssd_gran = 1		},
744/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
745{	.ssd_base = 0x0,
746	.ssd_limit = 0xfffff,
747	.ssd_type = SDT_MEMRWA,
748	.ssd_dpl = SEL_UPL,
749	.ssd_p = 1,
750	.ssd_long = 0,
751	.ssd_def32 = 1,
752	.ssd_gran = 1		},
753/* GUCODE_SEL	8 64 bit Code Descriptor for user */
754{	.ssd_base = 0x0,
755	.ssd_limit = 0xfffff,
756	.ssd_type = SDT_MEMERA,
757	.ssd_dpl = SEL_UPL,
758	.ssd_p = 1,
759	.ssd_long = 1,
760	.ssd_def32 = 0,
761	.ssd_gran = 1		},
762/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
763{	.ssd_base = 0x0,
764	.ssd_limit = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE - 1,
765	.ssd_type = SDT_SYSTSS,
766	.ssd_dpl = SEL_KPL,
767	.ssd_p = 1,
768	.ssd_long = 0,
769	.ssd_def32 = 0,
770	.ssd_gran = 0		},
771/* Actually, the TSS is a system descriptor which is double size */
772{	.ssd_base = 0x0,
773	.ssd_limit = 0x0,
774	.ssd_type = 0,
775	.ssd_dpl = 0,
776	.ssd_p = 0,
777	.ssd_long = 0,
778	.ssd_def32 = 0,
779	.ssd_gran = 0		},
780/* GUSERLDT_SEL	11 LDT Descriptor */
781{	.ssd_base = 0x0,
782	.ssd_limit = 0x0,
783	.ssd_type = 0,
784	.ssd_dpl = 0,
785	.ssd_p = 0,
786	.ssd_long = 0,
787	.ssd_def32 = 0,
788	.ssd_gran = 0		},
789/* GUSERLDT_SEL	12 LDT Descriptor, double size */
790{	.ssd_base = 0x0,
791	.ssd_limit = 0x0,
792	.ssd_type = 0,
793	.ssd_dpl = 0,
794	.ssd_p = 0,
795	.ssd_long = 0,
796	.ssd_def32 = 0,
797	.ssd_gran = 0		},
798};
799
800void
801setidt(idx, func, typ, dpl, ist)
802	int idx;
803	inthand_t *func;
804	int typ;
805	int dpl;
806	int ist;
807{
808	struct gate_descriptor *ip;
809
810	ip = idt + idx;
811	ip->gd_looffset = (uintptr_t)func;
812	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
813	ip->gd_ist = ist;
814	ip->gd_xx = 0;
815	ip->gd_type = typ;
816	ip->gd_dpl = dpl;
817	ip->gd_p = 1;
818	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
819}
820
821extern inthand_t
822	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
823	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
824	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
825	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
826	IDTVEC(xmm), IDTVEC(dblfault),
827#ifdef KDTRACE_HOOKS
828	IDTVEC(dtrace_ret),
829#endif
830#ifdef XENHVM
831	IDTVEC(xen_intr_upcall),
832#endif
833	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
834
835#ifdef DDB
836/*
837 * Display the index and function name of any IDT entries that don't use
838 * the default 'rsvd' entry point.
839 */
840DB_SHOW_COMMAND(idt, db_show_idt)
841{
842	struct gate_descriptor *ip;
843	int idx;
844	uintptr_t func;
845
846	ip = idt;
847	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
848		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
849		if (func != (uintptr_t)&IDTVEC(rsvd)) {
850			db_printf("%3d\t", idx);
851			db_printsym(func, DB_STGY_PROC);
852			db_printf("\n");
853		}
854		ip++;
855	}
856}
857
858/* Show privileged registers. */
859DB_SHOW_COMMAND(sysregs, db_show_sysregs)
860{
861	struct {
862		uint16_t limit;
863		uint64_t base;
864	} __packed idtr, gdtr;
865	uint16_t ldt, tr;
866
867	__asm __volatile("sidt %0" : "=m" (idtr));
868	db_printf("idtr\t0x%016lx/%04x\n",
869	    (u_long)idtr.base, (u_int)idtr.limit);
870	__asm __volatile("sgdt %0" : "=m" (gdtr));
871	db_printf("gdtr\t0x%016lx/%04x\n",
872	    (u_long)gdtr.base, (u_int)gdtr.limit);
873	__asm __volatile("sldt %0" : "=r" (ldt));
874	db_printf("ldtr\t0x%04x\n", ldt);
875	__asm __volatile("str %0" : "=r" (tr));
876	db_printf("tr\t0x%04x\n", tr);
877	db_printf("cr0\t0x%016lx\n", rcr0());
878	db_printf("cr2\t0x%016lx\n", rcr2());
879	db_printf("cr3\t0x%016lx\n", rcr3());
880	db_printf("cr4\t0x%016lx\n", rcr4());
881	db_printf("EFER\t%016lx\n", rdmsr(MSR_EFER));
882	db_printf("FEATURES_CTL\t%016lx\n", rdmsr(MSR_IA32_FEATURE_CONTROL));
883	db_printf("DEBUG_CTL\t%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
884	db_printf("PAT\t%016lx\n", rdmsr(MSR_PAT));
885	db_printf("GSBASE\t%016lx\n", rdmsr(MSR_GSBASE));
886}
887#endif
888
889void
890sdtossd(sd, ssd)
891	struct user_segment_descriptor *sd;
892	struct soft_segment_descriptor *ssd;
893{
894
895	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
896	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
897	ssd->ssd_type  = sd->sd_type;
898	ssd->ssd_dpl   = sd->sd_dpl;
899	ssd->ssd_p     = sd->sd_p;
900	ssd->ssd_long  = sd->sd_long;
901	ssd->ssd_def32 = sd->sd_def32;
902	ssd->ssd_gran  = sd->sd_gran;
903}
904
905void
906ssdtosd(ssd, sd)
907	struct soft_segment_descriptor *ssd;
908	struct user_segment_descriptor *sd;
909{
910
911	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
912	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
913	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
914	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
915	sd->sd_type  = ssd->ssd_type;
916	sd->sd_dpl   = ssd->ssd_dpl;
917	sd->sd_p     = ssd->ssd_p;
918	sd->sd_long  = ssd->ssd_long;
919	sd->sd_def32 = ssd->ssd_def32;
920	sd->sd_gran  = ssd->ssd_gran;
921}
922
923void
924ssdtosyssd(ssd, sd)
925	struct soft_segment_descriptor *ssd;
926	struct system_segment_descriptor *sd;
927{
928
929	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
930	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
931	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
932	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
933	sd->sd_type  = ssd->ssd_type;
934	sd->sd_dpl   = ssd->ssd_dpl;
935	sd->sd_p     = ssd->ssd_p;
936	sd->sd_gran  = ssd->ssd_gran;
937}
938
939#if !defined(DEV_ATPIC) && defined(DEV_ISA)
940#include <isa/isavar.h>
941#include <isa/isareg.h>
942/*
943 * Return a bitmap of the current interrupt requests.  This is 8259-specific
944 * and is only suitable for use at probe time.
945 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
946 * It shouldn't be here.  There should probably be an APIC centric
947 * implementation in the apic driver code, if at all.
948 */
949intrmask_t
950isa_irq_pending(void)
951{
952	u_char irr1;
953	u_char irr2;
954
955	irr1 = inb(IO_ICU1);
956	irr2 = inb(IO_ICU2);
957	return ((irr2 << 8) | irr1);
958}
959#endif
960
961u_int basemem;
962
963static int
964add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
965    int *physmap_idxp)
966{
967	int i, insert_idx, physmap_idx;
968
969	physmap_idx = *physmap_idxp;
970
971	if (length == 0)
972		return (1);
973
974	/*
975	 * Find insertion point while checking for overlap.  Start off by
976	 * assuming the new entry will be added to the end.
977	 *
978	 * NB: physmap_idx points to the next free slot.
979	 */
980	insert_idx = physmap_idx;
981	for (i = 0; i <= physmap_idx; i += 2) {
982		if (base < physmap[i + 1]) {
983			if (base + length <= physmap[i]) {
984				insert_idx = i;
985				break;
986			}
987			if (boothowto & RB_VERBOSE)
988				printf(
989		    "Overlapping memory regions, ignoring second region\n");
990			return (1);
991		}
992	}
993
994	/* See if we can prepend to the next entry. */
995	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
996		physmap[insert_idx] = base;
997		return (1);
998	}
999
1000	/* See if we can append to the previous entry. */
1001	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1002		physmap[insert_idx - 1] += length;
1003		return (1);
1004	}
1005
1006	physmap_idx += 2;
1007	*physmap_idxp = physmap_idx;
1008	if (physmap_idx == PHYSMAP_SIZE) {
1009		printf(
1010		"Too many segments in the physical address map, giving up\n");
1011		return (0);
1012	}
1013
1014	/*
1015	 * Move the last 'N' entries down to make room for the new
1016	 * entry if needed.
1017	 */
1018	for (i = (physmap_idx - 2); i > insert_idx; i -= 2) {
1019		physmap[i] = physmap[i - 2];
1020		physmap[i + 1] = physmap[i - 1];
1021	}
1022
1023	/* Insert the new entry. */
1024	physmap[insert_idx] = base;
1025	physmap[insert_idx + 1] = base + length;
1026	return (1);
1027}
1028
1029void
1030bios_add_smap_entries(struct bios_smap *smapbase, u_int32_t smapsize,
1031                      vm_paddr_t *physmap, int *physmap_idx)
1032{
1033	struct bios_smap *smap, *smapend;
1034
1035	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1036
1037	for (smap = smapbase; smap < smapend; smap++) {
1038		if (boothowto & RB_VERBOSE)
1039			printf("SMAP type=%02x base=%016lx len=%016lx\n",
1040			    smap->type, smap->base, smap->length);
1041
1042		if (smap->type != SMAP_TYPE_MEMORY)
1043			continue;
1044
1045		if (!add_physmap_entry(smap->base, smap->length, physmap,
1046		    physmap_idx))
1047			break;
1048	}
1049}
1050
1051#define efi_next_descriptor(ptr, size) \
1052	((struct efi_md *)(((uint8_t *) ptr) + size))
1053
1054static void
1055add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
1056    int *physmap_idx)
1057{
1058	struct efi_md *map, *p;
1059	const char *type;
1060	size_t efisz;
1061	int ndesc, i;
1062
1063	static const char *types[] = {
1064		"Reserved",
1065		"LoaderCode",
1066		"LoaderData",
1067		"BootServicesCode",
1068		"BootServicesData",
1069		"RuntimeServicesCode",
1070		"RuntimeServicesData",
1071		"ConventionalMemory",
1072		"UnusableMemory",
1073		"ACPIReclaimMemory",
1074		"ACPIMemoryNVS",
1075		"MemoryMappedIO",
1076		"MemoryMappedIOPortSpace",
1077		"PalCode"
1078	};
1079
1080	/*
1081	 * Memory map data provided by UEFI via the GetMemoryMap
1082	 * Boot Services API.
1083	 */
1084	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1085	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
1086
1087	if (efihdr->descriptor_size == 0)
1088		return;
1089	ndesc = efihdr->memory_size / efihdr->descriptor_size;
1090
1091	if (boothowto & RB_VERBOSE)
1092		printf("%23s %12s %12s %8s %4s\n",
1093		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1094
1095	for (i = 0, p = map; i < ndesc; i++,
1096	    p = efi_next_descriptor(p, efihdr->descriptor_size)) {
1097		if (boothowto & RB_VERBOSE) {
1098			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1099				type = types[p->md_type];
1100			else
1101				type = "<INVALID>";
1102			printf("%23s %012lx %12p %08lx ", type, p->md_phys,
1103			    p->md_virt, p->md_pages);
1104			if (p->md_attr & EFI_MD_ATTR_UC)
1105				printf("UC ");
1106			if (p->md_attr & EFI_MD_ATTR_WC)
1107				printf("WC ");
1108			if (p->md_attr & EFI_MD_ATTR_WT)
1109				printf("WT ");
1110			if (p->md_attr & EFI_MD_ATTR_WB)
1111				printf("WB ");
1112			if (p->md_attr & EFI_MD_ATTR_UCE)
1113				printf("UCE ");
1114			if (p->md_attr & EFI_MD_ATTR_WP)
1115				printf("WP ");
1116			if (p->md_attr & EFI_MD_ATTR_RP)
1117				printf("RP ");
1118			if (p->md_attr & EFI_MD_ATTR_XP)
1119				printf("XP ");
1120			if (p->md_attr & EFI_MD_ATTR_RT)
1121				printf("RUNTIME");
1122			printf("\n");
1123		}
1124
1125		switch (p->md_type) {
1126		case EFI_MD_TYPE_CODE:
1127		case EFI_MD_TYPE_DATA:
1128		case EFI_MD_TYPE_BS_CODE:
1129		case EFI_MD_TYPE_BS_DATA:
1130		case EFI_MD_TYPE_FREE:
1131			/*
1132			 * We're allowed to use any entry with these types.
1133			 */
1134			break;
1135		default:
1136			continue;
1137		}
1138
1139		if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
1140		    physmap, physmap_idx))
1141			break;
1142	}
1143}
1144
1145static char bootmethod[16] = "";
1146SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1147    "System firmware boot method");
1148
1149static void
1150native_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx)
1151{
1152	struct bios_smap *smap;
1153	struct efi_map_header *efihdr;
1154	u_int32_t size;
1155
1156	/*
1157	 * Memory map from INT 15:E820.
1158	 *
1159	 * subr_module.c says:
1160	 * "Consumer may safely assume that size value precedes data."
1161	 * ie: an int32_t immediately precedes smap.
1162	 */
1163
1164	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1165	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1166	smap = (struct bios_smap *)preload_search_info(kmdp,
1167	    MODINFO_METADATA | MODINFOMD_SMAP);
1168	if (efihdr == NULL && smap == NULL)
1169		panic("No BIOS smap or EFI map info from loader!");
1170
1171	if (efihdr != NULL) {
1172		add_efi_map_entries(efihdr, physmap, physmap_idx);
1173		strlcpy(bootmethod, "UEFI", sizeof(bootmethod));
1174	} else {
1175		size = *((u_int32_t *)smap - 1);
1176		bios_add_smap_entries(smap, size, physmap, physmap_idx);
1177		strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
1178	}
1179}
1180
1181#define	PAGES_PER_GB	(1024 * 1024 * 1024 / PAGE_SIZE)
1182
1183/*
1184 * Populate the (physmap) array with base/bound pairs describing the
1185 * available physical memory in the system, then test this memory and
1186 * build the phys_avail array describing the actually-available memory.
1187 *
1188 * Total memory size may be set by the kernel environment variable
1189 * hw.physmem or the compile-time define MAXMEM.
1190 *
1191 * XXX first should be vm_paddr_t.
1192 */
1193static void
1194getmemsize(caddr_t kmdp, u_int64_t first)
1195{
1196	int i, physmap_idx, pa_indx, da_indx;
1197	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1198	u_long physmem_start, physmem_tunable, memtest;
1199	pt_entry_t *pte;
1200	quad_t dcons_addr, dcons_size;
1201	int page_counter;
1202
1203	bzero(physmap, sizeof(physmap));
1204	physmap_idx = 0;
1205
1206	init_ops.parse_memmap(kmdp, physmap, &physmap_idx);
1207	physmap_idx -= 2;
1208
1209	/*
1210	 * Find the 'base memory' segment for SMP
1211	 */
1212	basemem = 0;
1213	for (i = 0; i <= physmap_idx; i += 2) {
1214		if (physmap[i] <= 0xA0000) {
1215			basemem = physmap[i + 1] / 1024;
1216			break;
1217		}
1218	}
1219	if (basemem == 0 || basemem > 640) {
1220		if (bootverbose)
1221			printf(
1222		"Memory map doesn't contain a basemem segment, faking it");
1223		basemem = 640;
1224	}
1225
1226	/*
1227	 * Make hole for "AP -> long mode" bootstrap code.  The
1228	 * mp_bootaddress vector is only available when the kernel
1229	 * is configured to support APs and APs for the system start
1230	 * in 32bit mode (e.g. SMP bare metal).
1231	 */
1232	if (init_ops.mp_bootaddress) {
1233		if (physmap[1] >= 0x100000000)
1234			panic(
1235	"Basemem segment is not suitable for AP bootstrap code!");
1236		physmap[1] = init_ops.mp_bootaddress(physmap[1] / 1024);
1237	}
1238
1239	/*
1240	 * Maxmem isn't the "maximum memory", it's one larger than the
1241	 * highest page of the physical address space.  It should be
1242	 * called something like "Maxphyspage".  We may adjust this
1243	 * based on ``hw.physmem'' and the results of the memory test.
1244	 */
1245	Maxmem = atop(physmap[physmap_idx + 1]);
1246
1247#ifdef MAXMEM
1248	Maxmem = MAXMEM / 4;
1249#endif
1250
1251	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1252		Maxmem = atop(physmem_tunable);
1253
1254	/*
1255	 * The boot memory test is disabled by default, as it takes a
1256	 * significant amount of time on large-memory systems, and is
1257	 * unfriendly to virtual machines as it unnecessarily touches all
1258	 * pages.
1259	 *
1260	 * A general name is used as the code may be extended to support
1261	 * additional tests beyond the current "page present" test.
1262	 */
1263	memtest = 0;
1264	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1265
1266	/*
1267	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1268	 * in the system.
1269	 */
1270	if (Maxmem > atop(physmap[physmap_idx + 1]))
1271		Maxmem = atop(physmap[physmap_idx + 1]);
1272
1273	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1274	    (boothowto & RB_VERBOSE))
1275		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1276
1277	/* call pmap initialization to make new kernel address space */
1278	pmap_bootstrap(&first);
1279
1280	/*
1281	 * Size up each available chunk of physical memory.
1282	 *
1283	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1284	 * By default, mask off the first 16 pages unless we appear to be
1285	 * running in a VM.
1286	 */
1287	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1288	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1289	if (physmap[0] < physmem_start) {
1290		if (physmem_start < PAGE_SIZE)
1291			physmap[0] = PAGE_SIZE;
1292		else if (physmem_start >= physmap[1])
1293			physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1294		else
1295			physmap[0] = round_page(physmem_start);
1296	}
1297	pa_indx = 0;
1298	da_indx = 1;
1299	phys_avail[pa_indx++] = physmap[0];
1300	phys_avail[pa_indx] = physmap[0];
1301	dump_avail[da_indx] = physmap[0];
1302	pte = CMAP1;
1303
1304	/*
1305	 * Get dcons buffer address
1306	 */
1307	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1308	    getenv_quad("dcons.size", &dcons_size) == 0)
1309		dcons_addr = 0;
1310
1311	/*
1312	 * physmap is in bytes, so when converting to page boundaries,
1313	 * round up the start address and round down the end address.
1314	 */
1315	page_counter = 0;
1316	if (memtest != 0)
1317		printf("Testing system memory");
1318	for (i = 0; i <= physmap_idx; i += 2) {
1319		vm_paddr_t end;
1320
1321		end = ptoa((vm_paddr_t)Maxmem);
1322		if (physmap[i + 1] < end)
1323			end = trunc_page(physmap[i + 1]);
1324		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1325			int tmp, page_bad, full;
1326			int *ptr = (int *)CADDR1;
1327
1328			full = FALSE;
1329			/*
1330			 * block out kernel memory as not available.
1331			 */
1332			if (pa >= (vm_paddr_t)kernphys && pa < first)
1333				goto do_dump_avail;
1334
1335			/*
1336			 * block out dcons buffer
1337			 */
1338			if (dcons_addr > 0
1339			    && pa >= trunc_page(dcons_addr)
1340			    && pa < dcons_addr + dcons_size)
1341				goto do_dump_avail;
1342
1343			page_bad = FALSE;
1344			if (memtest == 0)
1345				goto skip_memtest;
1346
1347			/*
1348			 * Print a "." every GB to show we're making
1349			 * progress.
1350			 */
1351			page_counter++;
1352			if ((page_counter % PAGES_PER_GB) == 0)
1353				printf(".");
1354
1355			/*
1356			 * map page into kernel: valid, read/write,non-cacheable
1357			 */
1358			*pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
1359			invltlb();
1360
1361			tmp = *(int *)ptr;
1362			/*
1363			 * Test for alternating 1's and 0's
1364			 */
1365			*(volatile int *)ptr = 0xaaaaaaaa;
1366			if (*(volatile int *)ptr != 0xaaaaaaaa)
1367				page_bad = TRUE;
1368			/*
1369			 * Test for alternating 0's and 1's
1370			 */
1371			*(volatile int *)ptr = 0x55555555;
1372			if (*(volatile int *)ptr != 0x55555555)
1373				page_bad = TRUE;
1374			/*
1375			 * Test for all 1's
1376			 */
1377			*(volatile int *)ptr = 0xffffffff;
1378			if (*(volatile int *)ptr != 0xffffffff)
1379				page_bad = TRUE;
1380			/*
1381			 * Test for all 0's
1382			 */
1383			*(volatile int *)ptr = 0x0;
1384			if (*(volatile int *)ptr != 0x0)
1385				page_bad = TRUE;
1386			/*
1387			 * Restore original value.
1388			 */
1389			*(int *)ptr = tmp;
1390
1391skip_memtest:
1392			/*
1393			 * Adjust array of valid/good pages.
1394			 */
1395			if (page_bad == TRUE)
1396				continue;
1397			/*
1398			 * If this good page is a continuation of the
1399			 * previous set of good pages, then just increase
1400			 * the end pointer. Otherwise start a new chunk.
1401			 * Note that "end" points one higher than end,
1402			 * making the range >= start and < end.
1403			 * If we're also doing a speculative memory
1404			 * test and we at or past the end, bump up Maxmem
1405			 * so that we keep going. The first bad page
1406			 * will terminate the loop.
1407			 */
1408			if (phys_avail[pa_indx] == pa) {
1409				phys_avail[pa_indx] += PAGE_SIZE;
1410			} else {
1411				pa_indx++;
1412				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1413					printf(
1414		"Too many holes in the physical address space, giving up\n");
1415					pa_indx--;
1416					full = TRUE;
1417					goto do_dump_avail;
1418				}
1419				phys_avail[pa_indx++] = pa;	/* start */
1420				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1421			}
1422			physmem++;
1423do_dump_avail:
1424			if (dump_avail[da_indx] == pa) {
1425				dump_avail[da_indx] += PAGE_SIZE;
1426			} else {
1427				da_indx++;
1428				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1429					da_indx--;
1430					goto do_next;
1431				}
1432				dump_avail[da_indx++] = pa; /* start */
1433				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1434			}
1435do_next:
1436			if (full)
1437				break;
1438		}
1439	}
1440	*pte = 0;
1441	invltlb();
1442	if (memtest != 0)
1443		printf("\n");
1444
1445	/*
1446	 * XXX
1447	 * The last chunk must contain at least one page plus the message
1448	 * buffer to avoid complicating other code (message buffer address
1449	 * calculation, etc.).
1450	 */
1451	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1452	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1453		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1454		phys_avail[pa_indx--] = 0;
1455		phys_avail[pa_indx--] = 0;
1456	}
1457
1458	Maxmem = atop(phys_avail[pa_indx]);
1459
1460	/* Trim off space for the message buffer. */
1461	phys_avail[pa_indx] -= round_page(msgbufsize);
1462
1463	/* Map the message buffer. */
1464	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1465}
1466
1467static caddr_t
1468native_parse_preload_data(u_int64_t modulep)
1469{
1470	caddr_t kmdp;
1471#ifdef DDB
1472	vm_offset_t ksym_start;
1473	vm_offset_t ksym_end;
1474#endif
1475
1476	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1477	preload_bootstrap_relocate(KERNBASE);
1478	kmdp = preload_search_by_type("elf kernel");
1479	if (kmdp == NULL)
1480		kmdp = preload_search_by_type("elf64 kernel");
1481	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1482	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1483#ifdef DDB
1484	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1485	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1486	db_fetch_ksymtab(ksym_start, ksym_end);
1487#endif
1488
1489	return (kmdp);
1490}
1491
1492u_int64_t
1493hammer_time(u_int64_t modulep, u_int64_t physfree)
1494{
1495	caddr_t kmdp;
1496	int gsel_tss, x;
1497	struct pcpu *pc;
1498	struct nmi_pcpu *np;
1499	struct xstate_hdr *xhdr;
1500	u_int64_t msr;
1501	char *env;
1502	size_t kstack0_sz;
1503
1504	thread0.td_kstack = physfree + KERNBASE;
1505	thread0.td_kstack_pages = KSTACK_PAGES;
1506	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1507	bzero((void *)thread0.td_kstack, kstack0_sz);
1508	physfree += kstack0_sz;
1509
1510	/*
1511 	 * This may be done better later if it gets more high level
1512 	 * components in it. If so just link td->td_proc here.
1513	 */
1514	proc_linkup0(&proc0, &thread0);
1515
1516	kmdp = init_ops.parse_preload_data(modulep);
1517
1518	/* Init basic tunables, hz etc */
1519	init_param1();
1520
1521	/*
1522	 * make gdt memory segments
1523	 */
1524	for (x = 0; x < NGDT; x++) {
1525		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1526		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1527			ssdtosd(&gdt_segs[x], &gdt[x]);
1528	}
1529	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1530	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1531	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1532
1533	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1534	r_gdt.rd_base =  (long) gdt;
1535	lgdt(&r_gdt);
1536	pc = &__pcpu[0];
1537
1538	wrmsr(MSR_FSBASE, 0);		/* User value */
1539	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1540	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1541
1542	pcpu_init(pc, 0, sizeof(struct pcpu));
1543	dpcpu_init((void *)(physfree + KERNBASE), 0);
1544	physfree += DPCPU_SIZE;
1545	PCPU_SET(prvspace, pc);
1546	PCPU_SET(curthread, &thread0);
1547	PCPU_SET(tssp, &common_tss[0]);
1548	PCPU_SET(commontssp, &common_tss[0]);
1549	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1550	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1551	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1552	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1553
1554	/*
1555	 * Initialize mutexes.
1556	 *
1557	 * icu_lock: in order to allow an interrupt to occur in a critical
1558	 * 	     section, to set pcpu->ipending (etc...) properly, we
1559	 *	     must be able to get the icu lock, so it can't be
1560	 *	     under witness.
1561	 */
1562	mutex_init();
1563	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1564	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1565
1566	/* exceptions */
1567	for (x = 0; x < NIDT; x++)
1568		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1569	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1570	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1571	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1572 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1573	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1574	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1575	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1576	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1577	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1578	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1579	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1580	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1581	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1582	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1583	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1584	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1585	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1586	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1587	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1588#ifdef KDTRACE_HOOKS
1589	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1590#endif
1591#ifdef XENHVM
1592	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
1593#endif
1594
1595	r_idt.rd_limit = sizeof(idt0) - 1;
1596	r_idt.rd_base = (long) idt;
1597	lidt(&r_idt);
1598
1599	/*
1600	 * Initialize the clock before the console so that console
1601	 * initialization can use DELAY().
1602	 */
1603	clock_init();
1604
1605	/*
1606	 * Use vt(4) by default for UEFI boot (during the sc(4)/vt(4)
1607	 * transition).
1608	 */
1609	if (kmdp != NULL && preload_search_info(kmdp,
1610	    MODINFO_METADATA | MODINFOMD_EFI_MAP) != NULL)
1611		vty_set_preferred(VTY_VT);
1612
1613	/*
1614	 * Initialize the console before we print anything out.
1615	 */
1616	cninit();
1617
1618#ifdef DEV_ISA
1619#ifdef DEV_ATPIC
1620	elcr_probe();
1621	atpic_startup();
1622#else
1623	/* Reset and mask the atpics and leave them shut down. */
1624	atpic_reset();
1625
1626	/*
1627	 * Point the ICU spurious interrupt vectors at the APIC spurious
1628	 * interrupt handler.
1629	 */
1630	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1631	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1632#endif
1633#else
1634#error "have you forgotten the isa device?";
1635#endif
1636
1637	kdb_init();
1638
1639#ifdef KDB
1640	if (boothowto & RB_KDB)
1641		kdb_enter(KDB_WHY_BOOTFLAGS,
1642		    "Boot flags requested debugger");
1643#endif
1644
1645	identify_cpu();		/* Final stage of CPU initialization */
1646	initializecpu();	/* Initialize CPU registers */
1647	initializecpucache();
1648
1649	/* doublefault stack space, runs on ist1 */
1650	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1651
1652	/*
1653	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1654	 * above the start of the ist2 stack.
1655	 */
1656	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1657	np->np_pcpu = (register_t) pc;
1658	common_tss[0].tss_ist2 = (long) np;
1659
1660	/* Set the IO permission bitmap (empty due to tss seg limit) */
1661	common_tss[0].tss_iobase = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE;
1662
1663	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1664	ltr(gsel_tss);
1665
1666	/* Set up the fast syscall stuff */
1667	msr = rdmsr(MSR_EFER) | EFER_SCE;
1668	wrmsr(MSR_EFER, msr);
1669	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1670	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1671	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1672	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1673	wrmsr(MSR_STAR, msr);
1674	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1675
1676	getmemsize(kmdp, physfree);
1677	init_param2(physmem);
1678
1679	/* now running on new page tables, configured,and u/iom is accessible */
1680
1681	msgbufinit(msgbufp, msgbufsize);
1682	fpuinit();
1683
1684	/*
1685	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
1686	 * area size.  Zero out the extended state header in fpu save
1687	 * area.
1688	 */
1689	thread0.td_pcb = get_pcb_td(&thread0);
1690	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1691	if (use_xsave) {
1692		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1693		    1);
1694		xhdr->xstate_bv = xsave_mask;
1695	}
1696	/* make an initial tss so cpu can get interrupt stack on syscall! */
1697	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
1698	/* Ensure the stack is aligned to 16 bytes */
1699	common_tss[0].tss_rsp0 &= ~0xFul;
1700	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1701	PCPU_SET(curpcb, thread0.td_pcb);
1702
1703	/* transfer to user mode */
1704
1705	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1706	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1707	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1708	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1709	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1710
1711	load_ds(_udatasel);
1712	load_es(_udatasel);
1713	load_fs(_ufssel);
1714
1715	/* setup proc 0's pcb */
1716	thread0.td_pcb->pcb_flags = 0;
1717	thread0.td_frame = &proc0_tf;
1718
1719        env = kern_getenv("kernelname");
1720	if (env != NULL)
1721		strlcpy(kernelname, env, sizeof(kernelname));
1722
1723	cpu_probe_amdc1e();
1724
1725#ifdef FDT
1726	x86_init_fdt();
1727#endif
1728
1729	/* Location of kernel stack for locore */
1730	return ((u_int64_t)thread0.td_pcb);
1731}
1732
1733void
1734cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1735{
1736
1737	pcpu->pc_acpi_id = 0xffffffff;
1738}
1739
1740static int
1741smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
1742{
1743	struct bios_smap *smapbase;
1744	struct bios_smap_xattr smap;
1745	caddr_t kmdp;
1746	uint32_t *smapattr;
1747	int count, error, i;
1748
1749	/* Retrieve the system memory map from the loader. */
1750	kmdp = preload_search_by_type("elf kernel");
1751	if (kmdp == NULL)
1752		kmdp = preload_search_by_type("elf64 kernel");
1753	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1754	    MODINFO_METADATA | MODINFOMD_SMAP);
1755	if (smapbase == NULL)
1756		return (0);
1757	smapattr = (uint32_t *)preload_search_info(kmdp,
1758	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
1759	count = *((uint32_t *)smapbase - 1) / sizeof(*smapbase);
1760	error = 0;
1761	for (i = 0; i < count; i++) {
1762		smap.base = smapbase[i].base;
1763		smap.length = smapbase[i].length;
1764		smap.type = smapbase[i].type;
1765		if (smapattr != NULL)
1766			smap.xattr = smapattr[i];
1767		else
1768			smap.xattr = 0;
1769		error = SYSCTL_OUT(req, &smap, sizeof(smap));
1770	}
1771	return (error);
1772}
1773SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1774    smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
1775
1776static int
1777efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1778{
1779	struct efi_map_header *efihdr;
1780	caddr_t kmdp;
1781	uint32_t efisize;
1782
1783	kmdp = preload_search_by_type("elf kernel");
1784	if (kmdp == NULL)
1785		kmdp = preload_search_by_type("elf64 kernel");
1786	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1787	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1788	if (efihdr == NULL)
1789		return (0);
1790	efisize = *((uint32_t *)efihdr - 1);
1791	return (SYSCTL_OUT(req, efihdr, efisize));
1792}
1793SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1794    efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1795
1796void
1797spinlock_enter(void)
1798{
1799	struct thread *td;
1800	register_t flags;
1801
1802	td = curthread;
1803	if (td->td_md.md_spinlock_count == 0) {
1804		flags = intr_disable();
1805		td->td_md.md_spinlock_count = 1;
1806		td->td_md.md_saved_flags = flags;
1807	} else
1808		td->td_md.md_spinlock_count++;
1809	critical_enter();
1810}
1811
1812void
1813spinlock_exit(void)
1814{
1815	struct thread *td;
1816	register_t flags;
1817
1818	td = curthread;
1819	critical_exit();
1820	flags = td->td_md.md_saved_flags;
1821	td->td_md.md_spinlock_count--;
1822	if (td->td_md.md_spinlock_count == 0)
1823		intr_restore(flags);
1824}
1825
1826/*
1827 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1828 * we want to start a backtrace from the function that caused us to enter
1829 * the debugger. We have the context in the trapframe, but base the trace
1830 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1831 * enough for a backtrace.
1832 */
1833void
1834makectx(struct trapframe *tf, struct pcb *pcb)
1835{
1836
1837	pcb->pcb_r12 = tf->tf_r12;
1838	pcb->pcb_r13 = tf->tf_r13;
1839	pcb->pcb_r14 = tf->tf_r14;
1840	pcb->pcb_r15 = tf->tf_r15;
1841	pcb->pcb_rbp = tf->tf_rbp;
1842	pcb->pcb_rbx = tf->tf_rbx;
1843	pcb->pcb_rip = tf->tf_rip;
1844	pcb->pcb_rsp = tf->tf_rsp;
1845}
1846
1847int
1848ptrace_set_pc(struct thread *td, unsigned long addr)
1849{
1850
1851	td->td_frame->tf_rip = addr;
1852	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1853	return (0);
1854}
1855
1856int
1857ptrace_single_step(struct thread *td)
1858{
1859	td->td_frame->tf_rflags |= PSL_T;
1860	return (0);
1861}
1862
1863int
1864ptrace_clear_single_step(struct thread *td)
1865{
1866	td->td_frame->tf_rflags &= ~PSL_T;
1867	return (0);
1868}
1869
1870int
1871fill_regs(struct thread *td, struct reg *regs)
1872{
1873	struct trapframe *tp;
1874
1875	tp = td->td_frame;
1876	return (fill_frame_regs(tp, regs));
1877}
1878
1879int
1880fill_frame_regs(struct trapframe *tp, struct reg *regs)
1881{
1882	regs->r_r15 = tp->tf_r15;
1883	regs->r_r14 = tp->tf_r14;
1884	regs->r_r13 = tp->tf_r13;
1885	regs->r_r12 = tp->tf_r12;
1886	regs->r_r11 = tp->tf_r11;
1887	regs->r_r10 = tp->tf_r10;
1888	regs->r_r9  = tp->tf_r9;
1889	regs->r_r8  = tp->tf_r8;
1890	regs->r_rdi = tp->tf_rdi;
1891	regs->r_rsi = tp->tf_rsi;
1892	regs->r_rbp = tp->tf_rbp;
1893	regs->r_rbx = tp->tf_rbx;
1894	regs->r_rdx = tp->tf_rdx;
1895	regs->r_rcx = tp->tf_rcx;
1896	regs->r_rax = tp->tf_rax;
1897	regs->r_rip = tp->tf_rip;
1898	regs->r_cs = tp->tf_cs;
1899	regs->r_rflags = tp->tf_rflags;
1900	regs->r_rsp = tp->tf_rsp;
1901	regs->r_ss = tp->tf_ss;
1902	if (tp->tf_flags & TF_HASSEGS) {
1903		regs->r_ds = tp->tf_ds;
1904		regs->r_es = tp->tf_es;
1905		regs->r_fs = tp->tf_fs;
1906		regs->r_gs = tp->tf_gs;
1907	} else {
1908		regs->r_ds = 0;
1909		regs->r_es = 0;
1910		regs->r_fs = 0;
1911		regs->r_gs = 0;
1912	}
1913	return (0);
1914}
1915
1916int
1917set_regs(struct thread *td, struct reg *regs)
1918{
1919	struct trapframe *tp;
1920	register_t rflags;
1921
1922	tp = td->td_frame;
1923	rflags = regs->r_rflags & 0xffffffff;
1924	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1925		return (EINVAL);
1926	tp->tf_r15 = regs->r_r15;
1927	tp->tf_r14 = regs->r_r14;
1928	tp->tf_r13 = regs->r_r13;
1929	tp->tf_r12 = regs->r_r12;
1930	tp->tf_r11 = regs->r_r11;
1931	tp->tf_r10 = regs->r_r10;
1932	tp->tf_r9  = regs->r_r9;
1933	tp->tf_r8  = regs->r_r8;
1934	tp->tf_rdi = regs->r_rdi;
1935	tp->tf_rsi = regs->r_rsi;
1936	tp->tf_rbp = regs->r_rbp;
1937	tp->tf_rbx = regs->r_rbx;
1938	tp->tf_rdx = regs->r_rdx;
1939	tp->tf_rcx = regs->r_rcx;
1940	tp->tf_rax = regs->r_rax;
1941	tp->tf_rip = regs->r_rip;
1942	tp->tf_cs = regs->r_cs;
1943	tp->tf_rflags = rflags;
1944	tp->tf_rsp = regs->r_rsp;
1945	tp->tf_ss = regs->r_ss;
1946	if (0) {	/* XXXKIB */
1947		tp->tf_ds = regs->r_ds;
1948		tp->tf_es = regs->r_es;
1949		tp->tf_fs = regs->r_fs;
1950		tp->tf_gs = regs->r_gs;
1951		tp->tf_flags = TF_HASSEGS;
1952	}
1953	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1954	return (0);
1955}
1956
1957/* XXX check all this stuff! */
1958/* externalize from sv_xmm */
1959static void
1960fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1961{
1962	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1963	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1964	int i;
1965
1966	/* pcb -> fpregs */
1967	bzero(fpregs, sizeof(*fpregs));
1968
1969	/* FPU control/status */
1970	penv_fpreg->en_cw = penv_xmm->en_cw;
1971	penv_fpreg->en_sw = penv_xmm->en_sw;
1972	penv_fpreg->en_tw = penv_xmm->en_tw;
1973	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1974	penv_fpreg->en_rip = penv_xmm->en_rip;
1975	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1976	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1977	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1978
1979	/* FPU registers */
1980	for (i = 0; i < 8; ++i)
1981		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1982
1983	/* SSE registers */
1984	for (i = 0; i < 16; ++i)
1985		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1986}
1987
1988/* internalize from fpregs into sv_xmm */
1989static void
1990set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1991{
1992	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1993	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1994	int i;
1995
1996	/* fpregs -> pcb */
1997	/* FPU control/status */
1998	penv_xmm->en_cw = penv_fpreg->en_cw;
1999	penv_xmm->en_sw = penv_fpreg->en_sw;
2000	penv_xmm->en_tw = penv_fpreg->en_tw;
2001	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2002	penv_xmm->en_rip = penv_fpreg->en_rip;
2003	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2004	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2005	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2006
2007	/* FPU registers */
2008	for (i = 0; i < 8; ++i)
2009		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2010
2011	/* SSE registers */
2012	for (i = 0; i < 16; ++i)
2013		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2014}
2015
2016/* externalize from td->pcb */
2017int
2018fill_fpregs(struct thread *td, struct fpreg *fpregs)
2019{
2020
2021	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2022	    P_SHOULDSTOP(td->td_proc),
2023	    ("not suspended thread %p", td));
2024	fpugetregs(td);
2025	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2026	return (0);
2027}
2028
2029/* internalize to td->pcb */
2030int
2031set_fpregs(struct thread *td, struct fpreg *fpregs)
2032{
2033
2034	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2035	fpuuserinited(td);
2036	return (0);
2037}
2038
2039/*
2040 * Get machine context.
2041 */
2042int
2043get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2044{
2045	struct pcb *pcb;
2046	struct trapframe *tp;
2047
2048	pcb = td->td_pcb;
2049	tp = td->td_frame;
2050	PROC_LOCK(curthread->td_proc);
2051	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2052	PROC_UNLOCK(curthread->td_proc);
2053	mcp->mc_r15 = tp->tf_r15;
2054	mcp->mc_r14 = tp->tf_r14;
2055	mcp->mc_r13 = tp->tf_r13;
2056	mcp->mc_r12 = tp->tf_r12;
2057	mcp->mc_r11 = tp->tf_r11;
2058	mcp->mc_r10 = tp->tf_r10;
2059	mcp->mc_r9  = tp->tf_r9;
2060	mcp->mc_r8  = tp->tf_r8;
2061	mcp->mc_rdi = tp->tf_rdi;
2062	mcp->mc_rsi = tp->tf_rsi;
2063	mcp->mc_rbp = tp->tf_rbp;
2064	mcp->mc_rbx = tp->tf_rbx;
2065	mcp->mc_rcx = tp->tf_rcx;
2066	mcp->mc_rflags = tp->tf_rflags;
2067	if (flags & GET_MC_CLEAR_RET) {
2068		mcp->mc_rax = 0;
2069		mcp->mc_rdx = 0;
2070		mcp->mc_rflags &= ~PSL_C;
2071	} else {
2072		mcp->mc_rax = tp->tf_rax;
2073		mcp->mc_rdx = tp->tf_rdx;
2074	}
2075	mcp->mc_rip = tp->tf_rip;
2076	mcp->mc_cs = tp->tf_cs;
2077	mcp->mc_rsp = tp->tf_rsp;
2078	mcp->mc_ss = tp->tf_ss;
2079	mcp->mc_ds = tp->tf_ds;
2080	mcp->mc_es = tp->tf_es;
2081	mcp->mc_fs = tp->tf_fs;
2082	mcp->mc_gs = tp->tf_gs;
2083	mcp->mc_flags = tp->tf_flags;
2084	mcp->mc_len = sizeof(*mcp);
2085	get_fpcontext(td, mcp, NULL, 0);
2086	mcp->mc_fsbase = pcb->pcb_fsbase;
2087	mcp->mc_gsbase = pcb->pcb_gsbase;
2088	mcp->mc_xfpustate = 0;
2089	mcp->mc_xfpustate_len = 0;
2090	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2091	return (0);
2092}
2093
2094/*
2095 * Set machine context.
2096 *
2097 * However, we don't set any but the user modifiable flags, and we won't
2098 * touch the cs selector.
2099 */
2100int
2101set_mcontext(struct thread *td, mcontext_t *mcp)
2102{
2103	struct pcb *pcb;
2104	struct trapframe *tp;
2105	char *xfpustate;
2106	long rflags;
2107	int ret;
2108
2109	pcb = td->td_pcb;
2110	tp = td->td_frame;
2111	if (mcp->mc_len != sizeof(*mcp) ||
2112	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2113		return (EINVAL);
2114	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2115	    (tp->tf_rflags & ~PSL_USERCHANGE);
2116	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2117		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2118		    sizeof(struct savefpu))
2119			return (EINVAL);
2120		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2121		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2122		    mcp->mc_xfpustate_len);
2123		if (ret != 0)
2124			return (ret);
2125	} else
2126		xfpustate = NULL;
2127	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2128	if (ret != 0)
2129		return (ret);
2130	tp->tf_r15 = mcp->mc_r15;
2131	tp->tf_r14 = mcp->mc_r14;
2132	tp->tf_r13 = mcp->mc_r13;
2133	tp->tf_r12 = mcp->mc_r12;
2134	tp->tf_r11 = mcp->mc_r11;
2135	tp->tf_r10 = mcp->mc_r10;
2136	tp->tf_r9  = mcp->mc_r9;
2137	tp->tf_r8  = mcp->mc_r8;
2138	tp->tf_rdi = mcp->mc_rdi;
2139	tp->tf_rsi = mcp->mc_rsi;
2140	tp->tf_rbp = mcp->mc_rbp;
2141	tp->tf_rbx = mcp->mc_rbx;
2142	tp->tf_rdx = mcp->mc_rdx;
2143	tp->tf_rcx = mcp->mc_rcx;
2144	tp->tf_rax = mcp->mc_rax;
2145	tp->tf_rip = mcp->mc_rip;
2146	tp->tf_rflags = rflags;
2147	tp->tf_rsp = mcp->mc_rsp;
2148	tp->tf_ss = mcp->mc_ss;
2149	tp->tf_flags = mcp->mc_flags;
2150	if (tp->tf_flags & TF_HASSEGS) {
2151		tp->tf_ds = mcp->mc_ds;
2152		tp->tf_es = mcp->mc_es;
2153		tp->tf_fs = mcp->mc_fs;
2154		tp->tf_gs = mcp->mc_gs;
2155	}
2156	if (mcp->mc_flags & _MC_HASBASES) {
2157		pcb->pcb_fsbase = mcp->mc_fsbase;
2158		pcb->pcb_gsbase = mcp->mc_gsbase;
2159	}
2160	set_pcb_flags(pcb, PCB_FULL_IRET);
2161	return (0);
2162}
2163
2164static void
2165get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2166    size_t xfpusave_len)
2167{
2168	size_t max_len, len;
2169
2170	mcp->mc_ownedfp = fpugetregs(td);
2171	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2172	    sizeof(mcp->mc_fpstate));
2173	mcp->mc_fpformat = fpuformat();
2174	if (!use_xsave || xfpusave_len == 0)
2175		return;
2176	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2177	len = xfpusave_len;
2178	if (len > max_len) {
2179		len = max_len;
2180		bzero(xfpusave + max_len, len - max_len);
2181	}
2182	mcp->mc_flags |= _MC_HASFPXSTATE;
2183	mcp->mc_xfpustate_len = len;
2184	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2185}
2186
2187static int
2188set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
2189    size_t xfpustate_len)
2190{
2191	struct savefpu *fpstate;
2192	int error;
2193
2194	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2195		return (0);
2196	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2197		return (EINVAL);
2198	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2199		/* We don't care what state is left in the FPU or PCB. */
2200		fpstate_drop(td);
2201		error = 0;
2202	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2203	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2204		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2205		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2206		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2207	} else
2208		return (EINVAL);
2209	return (error);
2210}
2211
2212void
2213fpstate_drop(struct thread *td)
2214{
2215
2216	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2217	critical_enter();
2218	if (PCPU_GET(fpcurthread) == td)
2219		fpudrop();
2220	/*
2221	 * XXX force a full drop of the fpu.  The above only drops it if we
2222	 * owned it.
2223	 *
2224	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2225	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2226	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2227	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2228	 * have too many layers.
2229	 */
2230	clear_pcb_flags(curthread->td_pcb,
2231	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2232	critical_exit();
2233}
2234
2235int
2236fill_dbregs(struct thread *td, struct dbreg *dbregs)
2237{
2238	struct pcb *pcb;
2239
2240	if (td == NULL) {
2241		dbregs->dr[0] = rdr0();
2242		dbregs->dr[1] = rdr1();
2243		dbregs->dr[2] = rdr2();
2244		dbregs->dr[3] = rdr3();
2245		dbregs->dr[6] = rdr6();
2246		dbregs->dr[7] = rdr7();
2247	} else {
2248		pcb = td->td_pcb;
2249		dbregs->dr[0] = pcb->pcb_dr0;
2250		dbregs->dr[1] = pcb->pcb_dr1;
2251		dbregs->dr[2] = pcb->pcb_dr2;
2252		dbregs->dr[3] = pcb->pcb_dr3;
2253		dbregs->dr[6] = pcb->pcb_dr6;
2254		dbregs->dr[7] = pcb->pcb_dr7;
2255	}
2256	dbregs->dr[4] = 0;
2257	dbregs->dr[5] = 0;
2258	dbregs->dr[8] = 0;
2259	dbregs->dr[9] = 0;
2260	dbregs->dr[10] = 0;
2261	dbregs->dr[11] = 0;
2262	dbregs->dr[12] = 0;
2263	dbregs->dr[13] = 0;
2264	dbregs->dr[14] = 0;
2265	dbregs->dr[15] = 0;
2266	return (0);
2267}
2268
2269int
2270set_dbregs(struct thread *td, struct dbreg *dbregs)
2271{
2272	struct pcb *pcb;
2273	int i;
2274
2275	if (td == NULL) {
2276		load_dr0(dbregs->dr[0]);
2277		load_dr1(dbregs->dr[1]);
2278		load_dr2(dbregs->dr[2]);
2279		load_dr3(dbregs->dr[3]);
2280		load_dr6(dbregs->dr[6]);
2281		load_dr7(dbregs->dr[7]);
2282	} else {
2283		/*
2284		 * Don't let an illegal value for dr7 get set.  Specifically,
2285		 * check for undefined settings.  Setting these bit patterns
2286		 * result in undefined behaviour and can lead to an unexpected
2287		 * TRCTRAP or a general protection fault right here.
2288		 * Upper bits of dr6 and dr7 must not be set
2289		 */
2290		for (i = 0; i < 4; i++) {
2291			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2292				return (EINVAL);
2293			if (td->td_frame->tf_cs == _ucode32sel &&
2294			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2295				return (EINVAL);
2296		}
2297		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2298		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2299			return (EINVAL);
2300
2301		pcb = td->td_pcb;
2302
2303		/*
2304		 * Don't let a process set a breakpoint that is not within the
2305		 * process's address space.  If a process could do this, it
2306		 * could halt the system by setting a breakpoint in the kernel
2307		 * (if ddb was enabled).  Thus, we need to check to make sure
2308		 * that no breakpoints are being enabled for addresses outside
2309		 * process's address space.
2310		 *
2311		 * XXX - what about when the watched area of the user's
2312		 * address space is written into from within the kernel
2313		 * ... wouldn't that still cause a breakpoint to be generated
2314		 * from within kernel mode?
2315		 */
2316
2317		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2318			/* dr0 is enabled */
2319			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2320				return (EINVAL);
2321		}
2322		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2323			/* dr1 is enabled */
2324			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2325				return (EINVAL);
2326		}
2327		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2328			/* dr2 is enabled */
2329			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2330				return (EINVAL);
2331		}
2332		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2333			/* dr3 is enabled */
2334			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2335				return (EINVAL);
2336		}
2337
2338		pcb->pcb_dr0 = dbregs->dr[0];
2339		pcb->pcb_dr1 = dbregs->dr[1];
2340		pcb->pcb_dr2 = dbregs->dr[2];
2341		pcb->pcb_dr3 = dbregs->dr[3];
2342		pcb->pcb_dr6 = dbregs->dr[6];
2343		pcb->pcb_dr7 = dbregs->dr[7];
2344
2345		set_pcb_flags(pcb, PCB_DBREGS);
2346	}
2347
2348	return (0);
2349}
2350
2351void
2352reset_dbregs(void)
2353{
2354
2355	load_dr7(0);	/* Turn off the control bits first */
2356	load_dr0(0);
2357	load_dr1(0);
2358	load_dr2(0);
2359	load_dr3(0);
2360	load_dr6(0);
2361}
2362
2363/*
2364 * Return > 0 if a hardware breakpoint has been hit, and the
2365 * breakpoint was in user space.  Return 0, otherwise.
2366 */
2367int
2368user_dbreg_trap(void)
2369{
2370        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2371        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2372        int nbp;            /* number of breakpoints that triggered */
2373        caddr_t addr[4];    /* breakpoint addresses */
2374        int i;
2375
2376        dr7 = rdr7();
2377        if ((dr7 & 0x000000ff) == 0) {
2378                /*
2379                 * all GE and LE bits in the dr7 register are zero,
2380                 * thus the trap couldn't have been caused by the
2381                 * hardware debug registers
2382                 */
2383                return 0;
2384        }
2385
2386        nbp = 0;
2387        dr6 = rdr6();
2388        bp = dr6 & 0x0000000f;
2389
2390        if (!bp) {
2391                /*
2392                 * None of the breakpoint bits are set meaning this
2393                 * trap was not caused by any of the debug registers
2394                 */
2395                return 0;
2396        }
2397
2398        /*
2399         * at least one of the breakpoints were hit, check to see
2400         * which ones and if any of them are user space addresses
2401         */
2402
2403        if (bp & 0x01) {
2404                addr[nbp++] = (caddr_t)rdr0();
2405        }
2406        if (bp & 0x02) {
2407                addr[nbp++] = (caddr_t)rdr1();
2408        }
2409        if (bp & 0x04) {
2410                addr[nbp++] = (caddr_t)rdr2();
2411        }
2412        if (bp & 0x08) {
2413                addr[nbp++] = (caddr_t)rdr3();
2414        }
2415
2416        for (i = 0; i < nbp; i++) {
2417                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2418                        /*
2419                         * addr[i] is in user space
2420                         */
2421                        return nbp;
2422                }
2423        }
2424
2425        /*
2426         * None of the breakpoints are in user space.
2427         */
2428        return 0;
2429}
2430
2431#ifdef KDB
2432
2433/*
2434 * Provide inb() and outb() as functions.  They are normally only available as
2435 * inline functions, thus cannot be called from the debugger.
2436 */
2437
2438/* silence compiler warnings */
2439u_char inb_(u_short);
2440void outb_(u_short, u_char);
2441
2442u_char
2443inb_(u_short port)
2444{
2445	return inb(port);
2446}
2447
2448void
2449outb_(u_short port, u_char data)
2450{
2451	outb(port, data);
2452}
2453
2454#endif /* KDB */
2455