machdep.c revision 263140
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 263140 2014-03-14 02:58:48Z glebius $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_isa.h"
51#include "opt_kstack_pages.h"
52#include "opt_maxmem.h"
53#include "opt_mp_watchdog.h"
54#include "opt_perfmon.h"
55#include "opt_platform.h"
56#include "opt_sched.h"
57
58#include <sys/param.h>
59#include <sys/proc.h>
60#include <sys/systm.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/bus.h>
64#include <sys/callout.h>
65#include <sys/cons.h>
66#include <sys/cpu.h>
67#include <sys/eventhandler.h>
68#include <sys/exec.h>
69#include <sys/imgact.h>
70#include <sys/kdb.h>
71#include <sys/kernel.h>
72#include <sys/ktr.h>
73#include <sys/linker.h>
74#include <sys/lock.h>
75#include <sys/malloc.h>
76#include <sys/memrange.h>
77#include <sys/msgbuf.h>
78#include <sys/mutex.h>
79#include <sys/pcpu.h>
80#include <sys/ptrace.h>
81#include <sys/reboot.h>
82#include <sys/rwlock.h>
83#include <sys/sched.h>
84#include <sys/signalvar.h>
85#ifdef SMP
86#include <sys/smp.h>
87#endif
88#include <sys/syscallsubr.h>
89#include <sys/sysctl.h>
90#include <sys/sysent.h>
91#include <sys/sysproto.h>
92#include <sys/ucontext.h>
93#include <sys/vmmeter.h>
94
95#include <vm/vm.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_kern.h>
98#include <vm/vm_page.h>
99#include <vm/vm_map.h>
100#include <vm/vm_object.h>
101#include <vm/vm_pager.h>
102#include <vm/vm_param.h>
103
104#ifdef DDB
105#ifndef KDB
106#error KDB must be enabled in order for DDB to work!
107#endif
108#include <ddb/ddb.h>
109#include <ddb/db_sym.h>
110#endif
111
112#include <net/netisr.h>
113
114#include <machine/clock.h>
115#include <machine/cpu.h>
116#include <machine/cputypes.h>
117#include <machine/intr_machdep.h>
118#include <x86/mca.h>
119#include <machine/md_var.h>
120#include <machine/metadata.h>
121#include <machine/mp_watchdog.h>
122#include <machine/pc/bios.h>
123#include <machine/pcb.h>
124#include <machine/proc.h>
125#include <machine/reg.h>
126#include <machine/sigframe.h>
127#include <machine/specialreg.h>
128#ifdef PERFMON
129#include <machine/perfmon.h>
130#endif
131#include <machine/tss.h>
132#ifdef SMP
133#include <machine/smp.h>
134#endif
135#ifdef FDT
136#include <x86/fdt.h>
137#endif
138
139#ifdef DEV_ATPIC
140#include <x86/isa/icu.h>
141#else
142#include <x86/apicvar.h>
143#endif
144
145#include <isa/isareg.h>
146#include <isa/rtc.h>
147#include <x86/init.h>
148
149/* Sanity check for __curthread() */
150CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
151
152extern u_int64_t hammer_time(u_int64_t, u_int64_t);
153
154extern void printcpuinfo(void);	/* XXX header file */
155extern void identify_cpu(void);
156extern void panicifcpuunsupported(void);
157
158#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
159#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
160
161static void cpu_startup(void *);
162static void get_fpcontext(struct thread *td, mcontext_t *mcp,
163    char *xfpusave, size_t xfpusave_len);
164static int  set_fpcontext(struct thread *td, const mcontext_t *mcp,
165    char *xfpustate, size_t xfpustate_len);
166SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
167
168/* Preload data parse function */
169static caddr_t native_parse_preload_data(u_int64_t);
170
171/* Native function to fetch and parse the e820 map */
172static void native_parse_memmap(caddr_t, vm_paddr_t *, int *);
173
174/* Default init_ops implementation. */
175struct init_ops init_ops = {
176	.parse_preload_data =	native_parse_preload_data,
177	.early_clock_source_init =	i8254_init,
178	.early_delay =			i8254_delay,
179	.parse_memmap =			native_parse_memmap,
180#ifdef SMP
181	.mp_bootaddress =		mp_bootaddress,
182	.start_all_aps =		native_start_all_aps,
183#endif
184};
185
186/*
187 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
188 * the physical address at which the kernel is loaded.
189 */
190extern char kernphys[];
191#ifdef DDB
192extern vm_offset_t ksym_start, ksym_end;
193#endif
194
195struct msgbuf *msgbufp;
196
197/* Intel ICH registers */
198#define ICH_PMBASE	0x400
199#define ICH_SMI_EN	ICH_PMBASE + 0x30
200
201int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
202
203int cold = 1;
204
205long Maxmem = 0;
206long realmem = 0;
207
208/*
209 * The number of PHYSMAP entries must be one less than the number of
210 * PHYSSEG entries because the PHYSMAP entry that spans the largest
211 * physical address that is accessible by ISA DMA is split into two
212 * PHYSSEG entries.
213 */
214#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
215
216vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
217vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
218
219/* must be 2 less so 0 0 can signal end of chunks */
220#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
221#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
222
223struct kva_md_info kmi;
224
225static struct trapframe proc0_tf;
226struct region_descriptor r_gdt, r_idt;
227
228struct pcpu __pcpu[MAXCPU];
229
230struct mtx icu_lock;
231
232struct mem_range_softc mem_range_softc;
233
234struct mtx dt_lock;	/* lock for GDT and LDT */
235
236void (*vmm_resume_p)(void);
237
238static void
239cpu_startup(dummy)
240	void *dummy;
241{
242	uintmax_t memsize;
243	char *sysenv;
244
245	/*
246	 * On MacBooks, we need to disallow the legacy USB circuit to
247	 * generate an SMI# because this can cause several problems,
248	 * namely: incorrect CPU frequency detection and failure to
249	 * start the APs.
250	 * We do this by disabling a bit in the SMI_EN (SMI Control and
251	 * Enable register) of the Intel ICH LPC Interface Bridge.
252	 */
253	sysenv = getenv("smbios.system.product");
254	if (sysenv != NULL) {
255		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
256		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
257		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
258		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
259		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
260		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
261			if (bootverbose)
262				printf("Disabling LEGACY_USB_EN bit on "
263				    "Intel ICH.\n");
264			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
265		}
266		freeenv(sysenv);
267	}
268
269	/*
270	 * Good {morning,afternoon,evening,night}.
271	 */
272	startrtclock();
273	printcpuinfo();
274	panicifcpuunsupported();
275#ifdef PERFMON
276	perfmon_init();
277#endif
278
279	/*
280	 * Display physical memory if SMBIOS reports reasonable amount.
281	 */
282	memsize = 0;
283	sysenv = getenv("smbios.memory.enabled");
284	if (sysenv != NULL) {
285		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
286		freeenv(sysenv);
287	}
288	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
289		memsize = ptoa((uintmax_t)Maxmem);
290	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
291	realmem = atop(memsize);
292
293	/*
294	 * Display any holes after the first chunk of extended memory.
295	 */
296	if (bootverbose) {
297		int indx;
298
299		printf("Physical memory chunk(s):\n");
300		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
301			vm_paddr_t size;
302
303			size = phys_avail[indx + 1] - phys_avail[indx];
304			printf(
305			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
306			    (uintmax_t)phys_avail[indx],
307			    (uintmax_t)phys_avail[indx + 1] - 1,
308			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
309		}
310	}
311
312	vm_ksubmap_init(&kmi);
313
314	printf("avail memory = %ju (%ju MB)\n",
315	    ptoa((uintmax_t)cnt.v_free_count),
316	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
317
318	/*
319	 * Set up buffers, so they can be used to read disk labels.
320	 */
321	bufinit();
322	vm_pager_bufferinit();
323
324	cpu_setregs();
325}
326
327/*
328 * Send an interrupt to process.
329 *
330 * Stack is set up to allow sigcode stored
331 * at top to call routine, followed by call
332 * to sigreturn routine below.  After sigreturn
333 * resets the signal mask, the stack, and the
334 * frame pointer, it returns to the user
335 * specified pc, psl.
336 */
337void
338sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
339{
340	struct sigframe sf, *sfp;
341	struct pcb *pcb;
342	struct proc *p;
343	struct thread *td;
344	struct sigacts *psp;
345	char *sp;
346	struct trapframe *regs;
347	char *xfpusave;
348	size_t xfpusave_len;
349	int sig;
350	int oonstack;
351
352	td = curthread;
353	pcb = td->td_pcb;
354	p = td->td_proc;
355	PROC_LOCK_ASSERT(p, MA_OWNED);
356	sig = ksi->ksi_signo;
357	psp = p->p_sigacts;
358	mtx_assert(&psp->ps_mtx, MA_OWNED);
359	regs = td->td_frame;
360	oonstack = sigonstack(regs->tf_rsp);
361
362	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
363		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
364		xfpusave = __builtin_alloca(xfpusave_len);
365	} else {
366		xfpusave_len = 0;
367		xfpusave = NULL;
368	}
369
370	/* Save user context. */
371	bzero(&sf, sizeof(sf));
372	sf.sf_uc.uc_sigmask = *mask;
373	sf.sf_uc.uc_stack = td->td_sigstk;
374	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
375	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
376	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
377	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
378	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
379	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
380	fpstate_drop(td);
381	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
382	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
383	bzero(sf.sf_uc.uc_mcontext.mc_spare,
384	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
385	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
386
387	/* Allocate space for the signal handler context. */
388	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
389	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
390		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
391#if defined(COMPAT_43)
392		td->td_sigstk.ss_flags |= SS_ONSTACK;
393#endif
394	} else
395		sp = (char *)regs->tf_rsp - 128;
396	if (xfpusave != NULL) {
397		sp -= xfpusave_len;
398		sp = (char *)((unsigned long)sp & ~0x3Ful);
399		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
400	}
401	sp -= sizeof(struct sigframe);
402	/* Align to 16 bytes. */
403	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
404
405	/* Translate the signal if appropriate. */
406	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
407		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
408
409	/* Build the argument list for the signal handler. */
410	regs->tf_rdi = sig;			/* arg 1 in %rdi */
411	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
412	bzero(&sf.sf_si, sizeof(sf.sf_si));
413	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
414		/* Signal handler installed with SA_SIGINFO. */
415		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
416		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
417
418		/* Fill in POSIX parts */
419		sf.sf_si = ksi->ksi_info;
420		sf.sf_si.si_signo = sig; /* maybe a translated signal */
421		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
422	} else {
423		/* Old FreeBSD-style arguments. */
424		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
425		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
426		sf.sf_ahu.sf_handler = catcher;
427	}
428	mtx_unlock(&psp->ps_mtx);
429	PROC_UNLOCK(p);
430
431	/*
432	 * Copy the sigframe out to the user's stack.
433	 */
434	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
435	    (xfpusave != NULL && copyout(xfpusave,
436	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
437	    != 0)) {
438#ifdef DEBUG
439		printf("process %ld has trashed its stack\n", (long)p->p_pid);
440#endif
441		PROC_LOCK(p);
442		sigexit(td, SIGILL);
443	}
444
445	regs->tf_rsp = (long)sfp;
446	regs->tf_rip = p->p_sysent->sv_sigcode_base;
447	regs->tf_rflags &= ~(PSL_T | PSL_D);
448	regs->tf_cs = _ucodesel;
449	regs->tf_ds = _udatasel;
450	regs->tf_es = _udatasel;
451	regs->tf_fs = _ufssel;
452	regs->tf_gs = _ugssel;
453	regs->tf_flags = TF_HASSEGS;
454	set_pcb_flags(pcb, PCB_FULL_IRET);
455	PROC_LOCK(p);
456	mtx_lock(&psp->ps_mtx);
457}
458
459/*
460 * System call to cleanup state after a signal
461 * has been taken.  Reset signal mask and
462 * stack state from context left by sendsig (above).
463 * Return to previous pc and psl as specified by
464 * context left by sendsig. Check carefully to
465 * make sure that the user has not modified the
466 * state to gain improper privileges.
467 *
468 * MPSAFE
469 */
470int
471sys_sigreturn(td, uap)
472	struct thread *td;
473	struct sigreturn_args /* {
474		const struct __ucontext *sigcntxp;
475	} */ *uap;
476{
477	ucontext_t uc;
478	struct pcb *pcb;
479	struct proc *p;
480	struct trapframe *regs;
481	ucontext_t *ucp;
482	char *xfpustate;
483	size_t xfpustate_len;
484	long rflags;
485	int cs, error, ret;
486	ksiginfo_t ksi;
487
488	pcb = td->td_pcb;
489	p = td->td_proc;
490
491	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
492	if (error != 0) {
493		uprintf("pid %d (%s): sigreturn copyin failed\n",
494		    p->p_pid, td->td_name);
495		return (error);
496	}
497	ucp = &uc;
498	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
499		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
500		    td->td_name, ucp->uc_mcontext.mc_flags);
501		return (EINVAL);
502	}
503	regs = td->td_frame;
504	rflags = ucp->uc_mcontext.mc_rflags;
505	/*
506	 * Don't allow users to change privileged or reserved flags.
507	 */
508	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
509		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
510		    td->td_name, rflags);
511		return (EINVAL);
512	}
513
514	/*
515	 * Don't allow users to load a valid privileged %cs.  Let the
516	 * hardware check for invalid selectors, excess privilege in
517	 * other selectors, invalid %eip's and invalid %esp's.
518	 */
519	cs = ucp->uc_mcontext.mc_cs;
520	if (!CS_SECURE(cs)) {
521		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
522		    td->td_name, cs);
523		ksiginfo_init_trap(&ksi);
524		ksi.ksi_signo = SIGBUS;
525		ksi.ksi_code = BUS_OBJERR;
526		ksi.ksi_trapno = T_PROTFLT;
527		ksi.ksi_addr = (void *)regs->tf_rip;
528		trapsignal(td, &ksi);
529		return (EINVAL);
530	}
531
532	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
533		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
534		if (xfpustate_len > cpu_max_ext_state_size -
535		    sizeof(struct savefpu)) {
536			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
537			    p->p_pid, td->td_name, xfpustate_len);
538			return (EINVAL);
539		}
540		xfpustate = __builtin_alloca(xfpustate_len);
541		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
542		    xfpustate, xfpustate_len);
543		if (error != 0) {
544			uprintf(
545	"pid %d (%s): sigreturn copying xfpustate failed\n",
546			    p->p_pid, td->td_name);
547			return (error);
548		}
549	} else {
550		xfpustate = NULL;
551		xfpustate_len = 0;
552	}
553	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
554	if (ret != 0) {
555		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
556		    p->p_pid, td->td_name, ret);
557		return (ret);
558	}
559	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
560	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
561	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
562
563#if defined(COMPAT_43)
564	if (ucp->uc_mcontext.mc_onstack & 1)
565		td->td_sigstk.ss_flags |= SS_ONSTACK;
566	else
567		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
568#endif
569
570	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
571	set_pcb_flags(pcb, PCB_FULL_IRET);
572	return (EJUSTRETURN);
573}
574
575#ifdef COMPAT_FREEBSD4
576int
577freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
578{
579
580	return sys_sigreturn(td, (struct sigreturn_args *)uap);
581}
582#endif
583
584
585/*
586 * Machine dependent boot() routine
587 *
588 * I haven't seen anything to put here yet
589 * Possibly some stuff might be grafted back here from boot()
590 */
591void
592cpu_boot(int howto)
593{
594}
595
596/*
597 * Flush the D-cache for non-DMA I/O so that the I-cache can
598 * be made coherent later.
599 */
600void
601cpu_flush_dcache(void *ptr, size_t len)
602{
603	/* Not applicable */
604}
605
606/* Get current clock frequency for the given cpu id. */
607int
608cpu_est_clockrate(int cpu_id, uint64_t *rate)
609{
610	uint64_t tsc1, tsc2;
611	uint64_t acnt, mcnt, perf;
612	register_t reg;
613
614	if (pcpu_find(cpu_id) == NULL || rate == NULL)
615		return (EINVAL);
616
617	/*
618	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
619	 * DELAY(9) based logic fails.
620	 */
621	if (tsc_is_invariant && !tsc_perf_stat)
622		return (EOPNOTSUPP);
623
624#ifdef SMP
625	if (smp_cpus > 1) {
626		/* Schedule ourselves on the indicated cpu. */
627		thread_lock(curthread);
628		sched_bind(curthread, cpu_id);
629		thread_unlock(curthread);
630	}
631#endif
632
633	/* Calibrate by measuring a short delay. */
634	reg = intr_disable();
635	if (tsc_is_invariant) {
636		wrmsr(MSR_MPERF, 0);
637		wrmsr(MSR_APERF, 0);
638		tsc1 = rdtsc();
639		DELAY(1000);
640		mcnt = rdmsr(MSR_MPERF);
641		acnt = rdmsr(MSR_APERF);
642		tsc2 = rdtsc();
643		intr_restore(reg);
644		perf = 1000 * acnt / mcnt;
645		*rate = (tsc2 - tsc1) * perf;
646	} else {
647		tsc1 = rdtsc();
648		DELAY(1000);
649		tsc2 = rdtsc();
650		intr_restore(reg);
651		*rate = (tsc2 - tsc1) * 1000;
652	}
653
654#ifdef SMP
655	if (smp_cpus > 1) {
656		thread_lock(curthread);
657		sched_unbind(curthread);
658		thread_unlock(curthread);
659	}
660#endif
661
662	return (0);
663}
664
665/*
666 * Shutdown the CPU as much as possible
667 */
668void
669cpu_halt(void)
670{
671	for (;;)
672		halt();
673}
674
675void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
676static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
677static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
678TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
679SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
680    0, "Use MONITOR/MWAIT for short idle");
681
682#define	STATE_RUNNING	0x0
683#define	STATE_MWAIT	0x1
684#define	STATE_SLEEPING	0x2
685
686static void
687cpu_idle_acpi(sbintime_t sbt)
688{
689	int *state;
690
691	state = (int *)PCPU_PTR(monitorbuf);
692	*state = STATE_SLEEPING;
693
694	/* See comments in cpu_idle_hlt(). */
695	disable_intr();
696	if (sched_runnable())
697		enable_intr();
698	else if (cpu_idle_hook)
699		cpu_idle_hook(sbt);
700	else
701		__asm __volatile("sti; hlt");
702	*state = STATE_RUNNING;
703}
704
705static void
706cpu_idle_hlt(sbintime_t sbt)
707{
708	int *state;
709
710	state = (int *)PCPU_PTR(monitorbuf);
711	*state = STATE_SLEEPING;
712
713	/*
714	 * Since we may be in a critical section from cpu_idle(), if
715	 * an interrupt fires during that critical section we may have
716	 * a pending preemption.  If the CPU halts, then that thread
717	 * may not execute until a later interrupt awakens the CPU.
718	 * To handle this race, check for a runnable thread after
719	 * disabling interrupts and immediately return if one is
720	 * found.  Also, we must absolutely guarentee that hlt is
721	 * the next instruction after sti.  This ensures that any
722	 * interrupt that fires after the call to disable_intr() will
723	 * immediately awaken the CPU from hlt.  Finally, please note
724	 * that on x86 this works fine because of interrupts enabled only
725	 * after the instruction following sti takes place, while IF is set
726	 * to 1 immediately, allowing hlt instruction to acknowledge the
727	 * interrupt.
728	 */
729	disable_intr();
730	if (sched_runnable())
731		enable_intr();
732	else
733		__asm __volatile("sti; hlt");
734	*state = STATE_RUNNING;
735}
736
737/*
738 * MWAIT cpu power states.  Lower 4 bits are sub-states.
739 */
740#define	MWAIT_C0	0xf0
741#define	MWAIT_C1	0x00
742#define	MWAIT_C2	0x10
743#define	MWAIT_C3	0x20
744#define	MWAIT_C4	0x30
745
746static void
747cpu_idle_mwait(sbintime_t sbt)
748{
749	int *state;
750
751	state = (int *)PCPU_PTR(monitorbuf);
752	*state = STATE_MWAIT;
753
754	/* See comments in cpu_idle_hlt(). */
755	disable_intr();
756	if (sched_runnable()) {
757		enable_intr();
758		*state = STATE_RUNNING;
759		return;
760	}
761	cpu_monitor(state, 0, 0);
762	if (*state == STATE_MWAIT)
763		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
764	else
765		enable_intr();
766	*state = STATE_RUNNING;
767}
768
769static void
770cpu_idle_spin(sbintime_t sbt)
771{
772	int *state;
773	int i;
774
775	state = (int *)PCPU_PTR(monitorbuf);
776	*state = STATE_RUNNING;
777
778	/*
779	 * The sched_runnable() call is racy but as long as there is
780	 * a loop missing it one time will have just a little impact if any
781	 * (and it is much better than missing the check at all).
782	 */
783	for (i = 0; i < 1000; i++) {
784		if (sched_runnable())
785			return;
786		cpu_spinwait();
787	}
788}
789
790/*
791 * C1E renders the local APIC timer dead, so we disable it by
792 * reading the Interrupt Pending Message register and clearing
793 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
794 *
795 * Reference:
796 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
797 *   #32559 revision 3.00+
798 */
799#define	MSR_AMDK8_IPM		0xc0010055
800#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
801#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
802#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
803
804static void
805cpu_probe_amdc1e(void)
806{
807
808	/*
809	 * Detect the presence of C1E capability mostly on latest
810	 * dual-cores (or future) k8 family.
811	 */
812	if (cpu_vendor_id == CPU_VENDOR_AMD &&
813	    (cpu_id & 0x00000f00) == 0x00000f00 &&
814	    (cpu_id & 0x0fff0000) >=  0x00040000) {
815		cpu_ident_amdc1e = 1;
816	}
817}
818
819void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
820
821void
822cpu_idle(int busy)
823{
824	uint64_t msr;
825	sbintime_t sbt = -1;
826
827	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
828	    busy, curcpu);
829#ifdef MP_WATCHDOG
830	ap_watchdog(PCPU_GET(cpuid));
831#endif
832	/* If we are busy - try to use fast methods. */
833	if (busy) {
834		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
835			cpu_idle_mwait(busy);
836			goto out;
837		}
838	}
839
840	/* If we have time - switch timers into idle mode. */
841	if (!busy) {
842		critical_enter();
843		sbt = cpu_idleclock();
844	}
845
846	/* Apply AMD APIC timer C1E workaround. */
847	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
848		msr = rdmsr(MSR_AMDK8_IPM);
849		if (msr & AMDK8_CMPHALT)
850			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
851	}
852
853	/* Call main idle method. */
854	cpu_idle_fn(sbt);
855
856	/* Switch timers back into active mode. */
857	if (!busy) {
858		cpu_activeclock();
859		critical_exit();
860	}
861out:
862	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
863	    busy, curcpu);
864}
865
866int
867cpu_idle_wakeup(int cpu)
868{
869	struct pcpu *pcpu;
870	int *state;
871
872	pcpu = pcpu_find(cpu);
873	state = (int *)pcpu->pc_monitorbuf;
874	/*
875	 * This doesn't need to be atomic since missing the race will
876	 * simply result in unnecessary IPIs.
877	 */
878	if (*state == STATE_SLEEPING)
879		return (0);
880	if (*state == STATE_MWAIT)
881		*state = STATE_RUNNING;
882	return (1);
883}
884
885/*
886 * Ordered by speed/power consumption.
887 */
888struct {
889	void	*id_fn;
890	char	*id_name;
891} idle_tbl[] = {
892	{ cpu_idle_spin, "spin" },
893	{ cpu_idle_mwait, "mwait" },
894	{ cpu_idle_hlt, "hlt" },
895	{ cpu_idle_acpi, "acpi" },
896	{ NULL, NULL }
897};
898
899static int
900idle_sysctl_available(SYSCTL_HANDLER_ARGS)
901{
902	char *avail, *p;
903	int error;
904	int i;
905
906	avail = malloc(256, M_TEMP, M_WAITOK);
907	p = avail;
908	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
909		if (strstr(idle_tbl[i].id_name, "mwait") &&
910		    (cpu_feature2 & CPUID2_MON) == 0)
911			continue;
912		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
913		    cpu_idle_hook == NULL)
914			continue;
915		p += sprintf(p, "%s%s", p != avail ? ", " : "",
916		    idle_tbl[i].id_name);
917	}
918	error = sysctl_handle_string(oidp, avail, 0, req);
919	free(avail, M_TEMP);
920	return (error);
921}
922
923SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
924    0, 0, idle_sysctl_available, "A", "list of available idle functions");
925
926static int
927idle_sysctl(SYSCTL_HANDLER_ARGS)
928{
929	char buf[16];
930	int error;
931	char *p;
932	int i;
933
934	p = "unknown";
935	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
936		if (idle_tbl[i].id_fn == cpu_idle_fn) {
937			p = idle_tbl[i].id_name;
938			break;
939		}
940	}
941	strncpy(buf, p, sizeof(buf));
942	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
943	if (error != 0 || req->newptr == NULL)
944		return (error);
945	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
946		if (strstr(idle_tbl[i].id_name, "mwait") &&
947		    (cpu_feature2 & CPUID2_MON) == 0)
948			continue;
949		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
950		    cpu_idle_hook == NULL)
951			continue;
952		if (strcmp(idle_tbl[i].id_name, buf))
953			continue;
954		cpu_idle_fn = idle_tbl[i].id_fn;
955		return (0);
956	}
957	return (EINVAL);
958}
959
960SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
961    idle_sysctl, "A", "currently selected idle function");
962
963/*
964 * Reset registers to default values on exec.
965 */
966void
967exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
968{
969	struct trapframe *regs = td->td_frame;
970	struct pcb *pcb = td->td_pcb;
971
972	mtx_lock(&dt_lock);
973	if (td->td_proc->p_md.md_ldt != NULL)
974		user_ldt_free(td);
975	else
976		mtx_unlock(&dt_lock);
977
978	pcb->pcb_fsbase = 0;
979	pcb->pcb_gsbase = 0;
980	clear_pcb_flags(pcb, PCB_32BIT);
981	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
982	set_pcb_flags(pcb, PCB_FULL_IRET);
983
984	bzero((char *)regs, sizeof(struct trapframe));
985	regs->tf_rip = imgp->entry_addr;
986	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
987	regs->tf_rdi = stack;		/* argv */
988	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
989	regs->tf_ss = _udatasel;
990	regs->tf_cs = _ucodesel;
991	regs->tf_ds = _udatasel;
992	regs->tf_es = _udatasel;
993	regs->tf_fs = _ufssel;
994	regs->tf_gs = _ugssel;
995	regs->tf_flags = TF_HASSEGS;
996	td->td_retval[1] = 0;
997
998	/*
999	 * Reset the hardware debug registers if they were in use.
1000	 * They won't have any meaning for the newly exec'd process.
1001	 */
1002	if (pcb->pcb_flags & PCB_DBREGS) {
1003		pcb->pcb_dr0 = 0;
1004		pcb->pcb_dr1 = 0;
1005		pcb->pcb_dr2 = 0;
1006		pcb->pcb_dr3 = 0;
1007		pcb->pcb_dr6 = 0;
1008		pcb->pcb_dr7 = 0;
1009		if (pcb == curpcb) {
1010			/*
1011			 * Clear the debug registers on the running
1012			 * CPU, otherwise they will end up affecting
1013			 * the next process we switch to.
1014			 */
1015			reset_dbregs();
1016		}
1017		clear_pcb_flags(pcb, PCB_DBREGS);
1018	}
1019
1020	/*
1021	 * Drop the FP state if we hold it, so that the process gets a
1022	 * clean FP state if it uses the FPU again.
1023	 */
1024	fpstate_drop(td);
1025}
1026
1027void
1028cpu_setregs(void)
1029{
1030	register_t cr0;
1031
1032	cr0 = rcr0();
1033	/*
1034	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
1035	 * BSP.  See the comments there about why we set them.
1036	 */
1037	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1038	load_cr0(cr0);
1039}
1040
1041/*
1042 * Initialize amd64 and configure to run kernel
1043 */
1044
1045/*
1046 * Initialize segments & interrupt table
1047 */
1048
1049struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
1050static struct gate_descriptor idt0[NIDT];
1051struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1052
1053static char dblfault_stack[PAGE_SIZE] __aligned(16);
1054
1055static char nmi0_stack[PAGE_SIZE] __aligned(16);
1056CTASSERT(sizeof(struct nmi_pcpu) == 16);
1057
1058struct amd64tss common_tss[MAXCPU];
1059
1060/*
1061 * Software prototypes -- in more palatable form.
1062 *
1063 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
1064 * slots as corresponding segments for i386 kernel.
1065 */
1066struct soft_segment_descriptor gdt_segs[] = {
1067/* GNULL_SEL	0 Null Descriptor */
1068{	.ssd_base = 0x0,
1069	.ssd_limit = 0x0,
1070	.ssd_type = 0,
1071	.ssd_dpl = 0,
1072	.ssd_p = 0,
1073	.ssd_long = 0,
1074	.ssd_def32 = 0,
1075	.ssd_gran = 0		},
1076/* GNULL2_SEL	1 Null Descriptor */
1077{	.ssd_base = 0x0,
1078	.ssd_limit = 0x0,
1079	.ssd_type = 0,
1080	.ssd_dpl = 0,
1081	.ssd_p = 0,
1082	.ssd_long = 0,
1083	.ssd_def32 = 0,
1084	.ssd_gran = 0		},
1085/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
1086{	.ssd_base = 0x0,
1087	.ssd_limit = 0xfffff,
1088	.ssd_type = SDT_MEMRWA,
1089	.ssd_dpl = SEL_UPL,
1090	.ssd_p = 1,
1091	.ssd_long = 0,
1092	.ssd_def32 = 1,
1093	.ssd_gran = 1		},
1094/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1095{	.ssd_base = 0x0,
1096	.ssd_limit = 0xfffff,
1097	.ssd_type = SDT_MEMRWA,
1098	.ssd_dpl = SEL_UPL,
1099	.ssd_p = 1,
1100	.ssd_long = 0,
1101	.ssd_def32 = 1,
1102	.ssd_gran = 1		},
1103/* GCODE_SEL	4 Code Descriptor for kernel */
1104{	.ssd_base = 0x0,
1105	.ssd_limit = 0xfffff,
1106	.ssd_type = SDT_MEMERA,
1107	.ssd_dpl = SEL_KPL,
1108	.ssd_p = 1,
1109	.ssd_long = 1,
1110	.ssd_def32 = 0,
1111	.ssd_gran = 1		},
1112/* GDATA_SEL	5 Data Descriptor for kernel */
1113{	.ssd_base = 0x0,
1114	.ssd_limit = 0xfffff,
1115	.ssd_type = SDT_MEMRWA,
1116	.ssd_dpl = SEL_KPL,
1117	.ssd_p = 1,
1118	.ssd_long = 1,
1119	.ssd_def32 = 0,
1120	.ssd_gran = 1		},
1121/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1122{	.ssd_base = 0x0,
1123	.ssd_limit = 0xfffff,
1124	.ssd_type = SDT_MEMERA,
1125	.ssd_dpl = SEL_UPL,
1126	.ssd_p = 1,
1127	.ssd_long = 0,
1128	.ssd_def32 = 1,
1129	.ssd_gran = 1		},
1130/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1131{	.ssd_base = 0x0,
1132	.ssd_limit = 0xfffff,
1133	.ssd_type = SDT_MEMRWA,
1134	.ssd_dpl = SEL_UPL,
1135	.ssd_p = 1,
1136	.ssd_long = 0,
1137	.ssd_def32 = 1,
1138	.ssd_gran = 1		},
1139/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1140{	.ssd_base = 0x0,
1141	.ssd_limit = 0xfffff,
1142	.ssd_type = SDT_MEMERA,
1143	.ssd_dpl = SEL_UPL,
1144	.ssd_p = 1,
1145	.ssd_long = 1,
1146	.ssd_def32 = 0,
1147	.ssd_gran = 1		},
1148/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1149{	.ssd_base = 0x0,
1150	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1151	.ssd_type = SDT_SYSTSS,
1152	.ssd_dpl = SEL_KPL,
1153	.ssd_p = 1,
1154	.ssd_long = 0,
1155	.ssd_def32 = 0,
1156	.ssd_gran = 0		},
1157/* Actually, the TSS is a system descriptor which is double size */
1158{	.ssd_base = 0x0,
1159	.ssd_limit = 0x0,
1160	.ssd_type = 0,
1161	.ssd_dpl = 0,
1162	.ssd_p = 0,
1163	.ssd_long = 0,
1164	.ssd_def32 = 0,
1165	.ssd_gran = 0		},
1166/* GUSERLDT_SEL	11 LDT Descriptor */
1167{	.ssd_base = 0x0,
1168	.ssd_limit = 0x0,
1169	.ssd_type = 0,
1170	.ssd_dpl = 0,
1171	.ssd_p = 0,
1172	.ssd_long = 0,
1173	.ssd_def32 = 0,
1174	.ssd_gran = 0		},
1175/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1176{	.ssd_base = 0x0,
1177	.ssd_limit = 0x0,
1178	.ssd_type = 0,
1179	.ssd_dpl = 0,
1180	.ssd_p = 0,
1181	.ssd_long = 0,
1182	.ssd_def32 = 0,
1183	.ssd_gran = 0		},
1184};
1185
1186void
1187setidt(idx, func, typ, dpl, ist)
1188	int idx;
1189	inthand_t *func;
1190	int typ;
1191	int dpl;
1192	int ist;
1193{
1194	struct gate_descriptor *ip;
1195
1196	ip = idt + idx;
1197	ip->gd_looffset = (uintptr_t)func;
1198	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1199	ip->gd_ist = ist;
1200	ip->gd_xx = 0;
1201	ip->gd_type = typ;
1202	ip->gd_dpl = dpl;
1203	ip->gd_p = 1;
1204	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1205}
1206
1207extern inthand_t
1208	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1209	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1210	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1211	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1212	IDTVEC(xmm), IDTVEC(dblfault),
1213#ifdef KDTRACE_HOOKS
1214	IDTVEC(dtrace_ret),
1215#endif
1216#ifdef XENHVM
1217	IDTVEC(xen_intr_upcall),
1218#endif
1219	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1220
1221#ifdef DDB
1222/*
1223 * Display the index and function name of any IDT entries that don't use
1224 * the default 'rsvd' entry point.
1225 */
1226DB_SHOW_COMMAND(idt, db_show_idt)
1227{
1228	struct gate_descriptor *ip;
1229	int idx;
1230	uintptr_t func;
1231
1232	ip = idt;
1233	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1234		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1235		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1236			db_printf("%3d\t", idx);
1237			db_printsym(func, DB_STGY_PROC);
1238			db_printf("\n");
1239		}
1240		ip++;
1241	}
1242}
1243
1244/* Show privileged registers. */
1245DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1246{
1247	struct {
1248		uint16_t limit;
1249		uint64_t base;
1250	} __packed idtr, gdtr;
1251	uint16_t ldt, tr;
1252
1253	__asm __volatile("sidt %0" : "=m" (idtr));
1254	db_printf("idtr\t0x%016lx/%04x\n",
1255	    (u_long)idtr.base, (u_int)idtr.limit);
1256	__asm __volatile("sgdt %0" : "=m" (gdtr));
1257	db_printf("gdtr\t0x%016lx/%04x\n",
1258	    (u_long)gdtr.base, (u_int)gdtr.limit);
1259	__asm __volatile("sldt %0" : "=r" (ldt));
1260	db_printf("ldtr\t0x%04x\n", ldt);
1261	__asm __volatile("str %0" : "=r" (tr));
1262	db_printf("tr\t0x%04x\n", tr);
1263	db_printf("cr0\t0x%016lx\n", rcr0());
1264	db_printf("cr2\t0x%016lx\n", rcr2());
1265	db_printf("cr3\t0x%016lx\n", rcr3());
1266	db_printf("cr4\t0x%016lx\n", rcr4());
1267	db_printf("EFER\t%016lx\n", rdmsr(MSR_EFER));
1268	db_printf("FEATURES_CTL\t%016lx\n", rdmsr(MSR_IA32_FEATURE_CONTROL));
1269	db_printf("DEBUG_CTL\t%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
1270	db_printf("PAT\t%016lx\n", rdmsr(MSR_PAT));
1271	db_printf("GSBASE\t%016lx\n", rdmsr(MSR_GSBASE));
1272}
1273#endif
1274
1275void
1276sdtossd(sd, ssd)
1277	struct user_segment_descriptor *sd;
1278	struct soft_segment_descriptor *ssd;
1279{
1280
1281	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1282	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1283	ssd->ssd_type  = sd->sd_type;
1284	ssd->ssd_dpl   = sd->sd_dpl;
1285	ssd->ssd_p     = sd->sd_p;
1286	ssd->ssd_long  = sd->sd_long;
1287	ssd->ssd_def32 = sd->sd_def32;
1288	ssd->ssd_gran  = sd->sd_gran;
1289}
1290
1291void
1292ssdtosd(ssd, sd)
1293	struct soft_segment_descriptor *ssd;
1294	struct user_segment_descriptor *sd;
1295{
1296
1297	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1298	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1299	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1300	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1301	sd->sd_type  = ssd->ssd_type;
1302	sd->sd_dpl   = ssd->ssd_dpl;
1303	sd->sd_p     = ssd->ssd_p;
1304	sd->sd_long  = ssd->ssd_long;
1305	sd->sd_def32 = ssd->ssd_def32;
1306	sd->sd_gran  = ssd->ssd_gran;
1307}
1308
1309void
1310ssdtosyssd(ssd, sd)
1311	struct soft_segment_descriptor *ssd;
1312	struct system_segment_descriptor *sd;
1313{
1314
1315	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1316	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1317	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1318	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1319	sd->sd_type  = ssd->ssd_type;
1320	sd->sd_dpl   = ssd->ssd_dpl;
1321	sd->sd_p     = ssd->ssd_p;
1322	sd->sd_gran  = ssd->ssd_gran;
1323}
1324
1325#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1326#include <isa/isavar.h>
1327#include <isa/isareg.h>
1328/*
1329 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1330 * and is only suitable for use at probe time.
1331 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1332 * It shouldn't be here.  There should probably be an APIC centric
1333 * implementation in the apic driver code, if at all.
1334 */
1335intrmask_t
1336isa_irq_pending(void)
1337{
1338	u_char irr1;
1339	u_char irr2;
1340
1341	irr1 = inb(IO_ICU1);
1342	irr2 = inb(IO_ICU2);
1343	return ((irr2 << 8) | irr1);
1344}
1345#endif
1346
1347u_int basemem;
1348
1349static int
1350add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
1351    int *physmap_idxp)
1352{
1353	int i, insert_idx, physmap_idx;
1354
1355	physmap_idx = *physmap_idxp;
1356
1357	if (length == 0)
1358		return (1);
1359
1360	/*
1361	 * Find insertion point while checking for overlap.  Start off by
1362	 * assuming the new entry will be added to the end.
1363	 */
1364	insert_idx = physmap_idx + 2;
1365	for (i = 0; i <= physmap_idx; i += 2) {
1366		if (base < physmap[i + 1]) {
1367			if (base + length <= physmap[i]) {
1368				insert_idx = i;
1369				break;
1370			}
1371			if (boothowto & RB_VERBOSE)
1372				printf(
1373		    "Overlapping memory regions, ignoring second region\n");
1374			return (1);
1375		}
1376	}
1377
1378	/* See if we can prepend to the next entry. */
1379	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1380		physmap[insert_idx] = base;
1381		return (1);
1382	}
1383
1384	/* See if we can append to the previous entry. */
1385	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1386		physmap[insert_idx - 1] += length;
1387		return (1);
1388	}
1389
1390	physmap_idx += 2;
1391	*physmap_idxp = physmap_idx;
1392	if (physmap_idx == PHYSMAP_SIZE) {
1393		printf(
1394		"Too many segments in the physical address map, giving up\n");
1395		return (0);
1396	}
1397
1398	/*
1399	 * Move the last 'N' entries down to make room for the new
1400	 * entry if needed.
1401	 */
1402	for (i = physmap_idx; i > insert_idx; i -= 2) {
1403		physmap[i] = physmap[i - 2];
1404		physmap[i + 1] = physmap[i - 1];
1405	}
1406
1407	/* Insert the new entry. */
1408	physmap[insert_idx] = base;
1409	physmap[insert_idx + 1] = base + length;
1410	return (1);
1411}
1412
1413void
1414bios_add_smap_entries(struct bios_smap *smapbase, u_int32_t smapsize,
1415                      vm_paddr_t *physmap, int *physmap_idx)
1416{
1417	struct bios_smap *smap, *smapend;
1418
1419	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1420
1421	for (smap = smapbase; smap < smapend; smap++) {
1422		if (boothowto & RB_VERBOSE)
1423			printf("SMAP type=%02x base=%016lx len=%016lx\n",
1424			    smap->type, smap->base, smap->length);
1425
1426		if (smap->type != SMAP_TYPE_MEMORY)
1427			continue;
1428
1429		if (!add_physmap_entry(smap->base, smap->length, physmap,
1430		    physmap_idx))
1431			break;
1432	}
1433}
1434
1435static void
1436native_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx)
1437{
1438	struct bios_smap *smap;
1439	u_int32_t size;
1440
1441	/*
1442	 * Memory map from INT 15:E820.
1443	 *
1444	 * subr_module.c says:
1445	 * "Consumer may safely assume that size value precedes data."
1446	 * ie: an int32_t immediately precedes smap.
1447	 */
1448
1449	smap = (struct bios_smap *)preload_search_info(kmdp,
1450	    MODINFO_METADATA | MODINFOMD_SMAP);
1451	if (smap == NULL)
1452		panic("No BIOS smap info from loader!");
1453	size = *((u_int32_t *)smap - 1);
1454
1455	bios_add_smap_entries(smap, size, physmap, physmap_idx);
1456}
1457
1458/*
1459 * Populate the (physmap) array with base/bound pairs describing the
1460 * available physical memory in the system, then test this memory and
1461 * build the phys_avail array describing the actually-available memory.
1462 *
1463 * Total memory size may be set by the kernel environment variable
1464 * hw.physmem or the compile-time define MAXMEM.
1465 *
1466 * XXX first should be vm_paddr_t.
1467 */
1468static void
1469getmemsize(caddr_t kmdp, u_int64_t first)
1470{
1471	int i, physmap_idx, pa_indx, da_indx;
1472	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1473	u_long physmem_start, physmem_tunable, memtest;
1474	pt_entry_t *pte;
1475	quad_t dcons_addr, dcons_size;
1476
1477	bzero(physmap, sizeof(physmap));
1478	basemem = 0;
1479	physmap_idx = 0;
1480
1481	init_ops.parse_memmap(kmdp, physmap, &physmap_idx);
1482
1483	/*
1484	 * Find the 'base memory' segment for SMP
1485	 */
1486	basemem = 0;
1487	for (i = 0; i <= physmap_idx; i += 2) {
1488		if (physmap[i] == 0x00000000) {
1489			basemem = physmap[i + 1] / 1024;
1490			break;
1491		}
1492	}
1493	if (basemem == 0)
1494		panic("BIOS smap did not include a basemem segment!");
1495
1496	/*
1497	 * Make hole for "AP -> long mode" bootstrap code.  The
1498	 * mp_bootaddress vector is only available when the kernel
1499	 * is configured to support APs and APs for the system start
1500	 * in 32bit mode (e.g. SMP bare metal).
1501	 */
1502	if (init_ops.mp_bootaddress)
1503		physmap[1] = init_ops.mp_bootaddress(physmap[1] / 1024);
1504
1505	/*
1506	 * Maxmem isn't the "maximum memory", it's one larger than the
1507	 * highest page of the physical address space.  It should be
1508	 * called something like "Maxphyspage".  We may adjust this
1509	 * based on ``hw.physmem'' and the results of the memory test.
1510	 */
1511	Maxmem = atop(physmap[physmap_idx + 1]);
1512
1513#ifdef MAXMEM
1514	Maxmem = MAXMEM / 4;
1515#endif
1516
1517	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1518		Maxmem = atop(physmem_tunable);
1519
1520	/*
1521	 * The boot memory test is disabled by default, as it takes a
1522	 * significant amount of time on large-memory systems, and is
1523	 * unfriendly to virtual machines as it unnecessarily touches all
1524	 * pages.
1525	 *
1526	 * A general name is used as the code may be extended to support
1527	 * additional tests beyond the current "page present" test.
1528	 */
1529	memtest = 0;
1530	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1531
1532	/*
1533	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1534	 * in the system.
1535	 */
1536	if (Maxmem > atop(physmap[physmap_idx + 1]))
1537		Maxmem = atop(physmap[physmap_idx + 1]);
1538
1539	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1540	    (boothowto & RB_VERBOSE))
1541		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1542
1543	/* call pmap initialization to make new kernel address space */
1544	pmap_bootstrap(&first);
1545
1546	/*
1547	 * Size up each available chunk of physical memory.
1548	 *
1549	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1550	 * By default, mask off the first 16 pages unless we appear to be
1551	 * running in a VM.
1552	 */
1553	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1554	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1555	if (physmem_start < PAGE_SIZE)
1556		physmap[0] = PAGE_SIZE;
1557	else if (physmem_start >= physmap[1])
1558		physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1559	else
1560		physmap[0] = round_page(physmem_start);
1561	pa_indx = 0;
1562	da_indx = 1;
1563	phys_avail[pa_indx++] = physmap[0];
1564	phys_avail[pa_indx] = physmap[0];
1565	dump_avail[da_indx] = physmap[0];
1566	pte = CMAP1;
1567
1568	/*
1569	 * Get dcons buffer address
1570	 */
1571	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1572	    getenv_quad("dcons.size", &dcons_size) == 0)
1573		dcons_addr = 0;
1574
1575	/*
1576	 * physmap is in bytes, so when converting to page boundaries,
1577	 * round up the start address and round down the end address.
1578	 */
1579	for (i = 0; i <= physmap_idx; i += 2) {
1580		vm_paddr_t end;
1581
1582		end = ptoa((vm_paddr_t)Maxmem);
1583		if (physmap[i + 1] < end)
1584			end = trunc_page(physmap[i + 1]);
1585		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1586			int tmp, page_bad, full;
1587			int *ptr = (int *)CADDR1;
1588
1589			full = FALSE;
1590			/*
1591			 * block out kernel memory as not available.
1592			 */
1593			if (pa >= (vm_paddr_t)kernphys && pa < first)
1594				goto do_dump_avail;
1595
1596			/*
1597			 * block out dcons buffer
1598			 */
1599			if (dcons_addr > 0
1600			    && pa >= trunc_page(dcons_addr)
1601			    && pa < dcons_addr + dcons_size)
1602				goto do_dump_avail;
1603
1604			page_bad = FALSE;
1605			if (memtest == 0)
1606				goto skip_memtest;
1607
1608			/*
1609			 * map page into kernel: valid, read/write,non-cacheable
1610			 */
1611			*pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
1612			invltlb();
1613
1614			tmp = *(int *)ptr;
1615			/*
1616			 * Test for alternating 1's and 0's
1617			 */
1618			*(volatile int *)ptr = 0xaaaaaaaa;
1619			if (*(volatile int *)ptr != 0xaaaaaaaa)
1620				page_bad = TRUE;
1621			/*
1622			 * Test for alternating 0's and 1's
1623			 */
1624			*(volatile int *)ptr = 0x55555555;
1625			if (*(volatile int *)ptr != 0x55555555)
1626				page_bad = TRUE;
1627			/*
1628			 * Test for all 1's
1629			 */
1630			*(volatile int *)ptr = 0xffffffff;
1631			if (*(volatile int *)ptr != 0xffffffff)
1632				page_bad = TRUE;
1633			/*
1634			 * Test for all 0's
1635			 */
1636			*(volatile int *)ptr = 0x0;
1637			if (*(volatile int *)ptr != 0x0)
1638				page_bad = TRUE;
1639			/*
1640			 * Restore original value.
1641			 */
1642			*(int *)ptr = tmp;
1643
1644skip_memtest:
1645			/*
1646			 * Adjust array of valid/good pages.
1647			 */
1648			if (page_bad == TRUE)
1649				continue;
1650			/*
1651			 * If this good page is a continuation of the
1652			 * previous set of good pages, then just increase
1653			 * the end pointer. Otherwise start a new chunk.
1654			 * Note that "end" points one higher than end,
1655			 * making the range >= start and < end.
1656			 * If we're also doing a speculative memory
1657			 * test and we at or past the end, bump up Maxmem
1658			 * so that we keep going. The first bad page
1659			 * will terminate the loop.
1660			 */
1661			if (phys_avail[pa_indx] == pa) {
1662				phys_avail[pa_indx] += PAGE_SIZE;
1663			} else {
1664				pa_indx++;
1665				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1666					printf(
1667		"Too many holes in the physical address space, giving up\n");
1668					pa_indx--;
1669					full = TRUE;
1670					goto do_dump_avail;
1671				}
1672				phys_avail[pa_indx++] = pa;	/* start */
1673				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1674			}
1675			physmem++;
1676do_dump_avail:
1677			if (dump_avail[da_indx] == pa) {
1678				dump_avail[da_indx] += PAGE_SIZE;
1679			} else {
1680				da_indx++;
1681				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1682					da_indx--;
1683					goto do_next;
1684				}
1685				dump_avail[da_indx++] = pa; /* start */
1686				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1687			}
1688do_next:
1689			if (full)
1690				break;
1691		}
1692	}
1693	*pte = 0;
1694	invltlb();
1695
1696	/*
1697	 * XXX
1698	 * The last chunk must contain at least one page plus the message
1699	 * buffer to avoid complicating other code (message buffer address
1700	 * calculation, etc.).
1701	 */
1702	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1703	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1704		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1705		phys_avail[pa_indx--] = 0;
1706		phys_avail[pa_indx--] = 0;
1707	}
1708
1709	Maxmem = atop(phys_avail[pa_indx]);
1710
1711	/* Trim off space for the message buffer. */
1712	phys_avail[pa_indx] -= round_page(msgbufsize);
1713
1714	/* Map the message buffer. */
1715	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1716}
1717
1718static caddr_t
1719native_parse_preload_data(u_int64_t modulep)
1720{
1721	caddr_t kmdp;
1722
1723	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1724	preload_bootstrap_relocate(KERNBASE);
1725	kmdp = preload_search_by_type("elf kernel");
1726	if (kmdp == NULL)
1727		kmdp = preload_search_by_type("elf64 kernel");
1728	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1729	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1730#ifdef DDB
1731	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1732	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1733#endif
1734
1735	return (kmdp);
1736}
1737
1738u_int64_t
1739hammer_time(u_int64_t modulep, u_int64_t physfree)
1740{
1741	caddr_t kmdp;
1742	int gsel_tss, x;
1743	struct pcpu *pc;
1744	struct nmi_pcpu *np;
1745	struct xstate_hdr *xhdr;
1746	u_int64_t msr;
1747	char *env;
1748	size_t kstack0_sz;
1749
1750	thread0.td_kstack = physfree + KERNBASE;
1751	thread0.td_kstack_pages = KSTACK_PAGES;
1752	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1753	bzero((void *)thread0.td_kstack, kstack0_sz);
1754	physfree += kstack0_sz;
1755
1756	/*
1757 	 * This may be done better later if it gets more high level
1758 	 * components in it. If so just link td->td_proc here.
1759	 */
1760	proc_linkup0(&proc0, &thread0);
1761
1762	kmdp = init_ops.parse_preload_data(modulep);
1763
1764	/* Init basic tunables, hz etc */
1765	init_param1();
1766
1767	/*
1768	 * make gdt memory segments
1769	 */
1770	for (x = 0; x < NGDT; x++) {
1771		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1772		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1773			ssdtosd(&gdt_segs[x], &gdt[x]);
1774	}
1775	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1776	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1777	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1778
1779	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1780	r_gdt.rd_base =  (long) gdt;
1781	lgdt(&r_gdt);
1782	pc = &__pcpu[0];
1783
1784	wrmsr(MSR_FSBASE, 0);		/* User value */
1785	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1786	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1787
1788	pcpu_init(pc, 0, sizeof(struct pcpu));
1789	dpcpu_init((void *)(physfree + KERNBASE), 0);
1790	physfree += DPCPU_SIZE;
1791	PCPU_SET(prvspace, pc);
1792	PCPU_SET(curthread, &thread0);
1793	PCPU_SET(tssp, &common_tss[0]);
1794	PCPU_SET(commontssp, &common_tss[0]);
1795	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1796	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1797	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1798	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1799
1800	/*
1801	 * Initialize mutexes.
1802	 *
1803	 * icu_lock: in order to allow an interrupt to occur in a critical
1804	 * 	     section, to set pcpu->ipending (etc...) properly, we
1805	 *	     must be able to get the icu lock, so it can't be
1806	 *	     under witness.
1807	 */
1808	mutex_init();
1809	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1810	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1811
1812	/* exceptions */
1813	for (x = 0; x < NIDT; x++)
1814		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1815	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1816	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1817	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1818 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1819	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1820	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1821	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1822	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1823	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1824	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1825	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1826	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1827	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1828	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1829	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1830	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1831	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1832	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1833	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1834#ifdef KDTRACE_HOOKS
1835	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1836#endif
1837#ifdef XENHVM
1838	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
1839#endif
1840
1841	r_idt.rd_limit = sizeof(idt0) - 1;
1842	r_idt.rd_base = (long) idt;
1843	lidt(&r_idt);
1844
1845	/*
1846	 * Initialize the clock before the console so that console
1847	 * initialization can use DELAY().
1848	 */
1849	clock_init();
1850
1851	/*
1852	 * Initialize the console before we print anything out.
1853	 */
1854	cninit();
1855
1856#ifdef DEV_ISA
1857#ifdef DEV_ATPIC
1858	elcr_probe();
1859	atpic_startup();
1860#else
1861	/* Reset and mask the atpics and leave them shut down. */
1862	atpic_reset();
1863
1864	/*
1865	 * Point the ICU spurious interrupt vectors at the APIC spurious
1866	 * interrupt handler.
1867	 */
1868	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1869	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1870#endif
1871#else
1872#error "have you forgotten the isa device?";
1873#endif
1874
1875	kdb_init();
1876
1877#ifdef KDB
1878	if (boothowto & RB_KDB)
1879		kdb_enter(KDB_WHY_BOOTFLAGS,
1880		    "Boot flags requested debugger");
1881#endif
1882
1883	identify_cpu();		/* Final stage of CPU initialization */
1884	initializecpu();	/* Initialize CPU registers */
1885	initializecpucache();
1886
1887	/* doublefault stack space, runs on ist1 */
1888	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1889
1890	/*
1891	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1892	 * above the start of the ist2 stack.
1893	 */
1894	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1895	np->np_pcpu = (register_t) pc;
1896	common_tss[0].tss_ist2 = (long) np;
1897
1898	/* Set the IO permission bitmap (empty due to tss seg limit) */
1899	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1900	    IOPAGES * PAGE_SIZE;
1901
1902	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1903	ltr(gsel_tss);
1904
1905	/* Set up the fast syscall stuff */
1906	msr = rdmsr(MSR_EFER) | EFER_SCE;
1907	wrmsr(MSR_EFER, msr);
1908	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1909	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1910	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1911	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1912	wrmsr(MSR_STAR, msr);
1913	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1914
1915	getmemsize(kmdp, physfree);
1916	init_param2(physmem);
1917
1918	/* now running on new page tables, configured,and u/iom is accessible */
1919
1920	msgbufinit(msgbufp, msgbufsize);
1921	fpuinit();
1922
1923	/*
1924	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
1925	 * area size.  Zero out the extended state header in fpu save
1926	 * area.
1927	 */
1928	thread0.td_pcb = get_pcb_td(&thread0);
1929	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1930	if (use_xsave) {
1931		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1932		    1);
1933		xhdr->xstate_bv = xsave_mask;
1934	}
1935	/* make an initial tss so cpu can get interrupt stack on syscall! */
1936	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
1937	/* Ensure the stack is aligned to 16 bytes */
1938	common_tss[0].tss_rsp0 &= ~0xFul;
1939	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1940	PCPU_SET(curpcb, thread0.td_pcb);
1941
1942	/* transfer to user mode */
1943
1944	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1945	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1946	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1947	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1948	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1949
1950	load_ds(_udatasel);
1951	load_es(_udatasel);
1952	load_fs(_ufssel);
1953
1954	/* setup proc 0's pcb */
1955	thread0.td_pcb->pcb_flags = 0;
1956	thread0.td_pcb->pcb_cr3 = KPML4phys; /* PCID 0 is reserved for kernel */
1957	thread0.td_frame = &proc0_tf;
1958
1959        env = getenv("kernelname");
1960	if (env != NULL)
1961		strlcpy(kernelname, env, sizeof(kernelname));
1962
1963	cpu_probe_amdc1e();
1964
1965#ifdef FDT
1966	x86_init_fdt();
1967#endif
1968
1969	/* Location of kernel stack for locore */
1970	return ((u_int64_t)thread0.td_pcb);
1971}
1972
1973void
1974cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1975{
1976
1977	pcpu->pc_acpi_id = 0xffffffff;
1978}
1979
1980void
1981spinlock_enter(void)
1982{
1983	struct thread *td;
1984	register_t flags;
1985
1986	td = curthread;
1987	if (td->td_md.md_spinlock_count == 0) {
1988		flags = intr_disable();
1989		td->td_md.md_spinlock_count = 1;
1990		td->td_md.md_saved_flags = flags;
1991	} else
1992		td->td_md.md_spinlock_count++;
1993	critical_enter();
1994}
1995
1996void
1997spinlock_exit(void)
1998{
1999	struct thread *td;
2000	register_t flags;
2001
2002	td = curthread;
2003	critical_exit();
2004	flags = td->td_md.md_saved_flags;
2005	td->td_md.md_spinlock_count--;
2006	if (td->td_md.md_spinlock_count == 0)
2007		intr_restore(flags);
2008}
2009
2010/*
2011 * Construct a PCB from a trapframe. This is called from kdb_trap() where
2012 * we want to start a backtrace from the function that caused us to enter
2013 * the debugger. We have the context in the trapframe, but base the trace
2014 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
2015 * enough for a backtrace.
2016 */
2017void
2018makectx(struct trapframe *tf, struct pcb *pcb)
2019{
2020
2021	pcb->pcb_r12 = tf->tf_r12;
2022	pcb->pcb_r13 = tf->tf_r13;
2023	pcb->pcb_r14 = tf->tf_r14;
2024	pcb->pcb_r15 = tf->tf_r15;
2025	pcb->pcb_rbp = tf->tf_rbp;
2026	pcb->pcb_rbx = tf->tf_rbx;
2027	pcb->pcb_rip = tf->tf_rip;
2028	pcb->pcb_rsp = tf->tf_rsp;
2029}
2030
2031int
2032ptrace_set_pc(struct thread *td, unsigned long addr)
2033{
2034	td->td_frame->tf_rip = addr;
2035	return (0);
2036}
2037
2038int
2039ptrace_single_step(struct thread *td)
2040{
2041	td->td_frame->tf_rflags |= PSL_T;
2042	return (0);
2043}
2044
2045int
2046ptrace_clear_single_step(struct thread *td)
2047{
2048	td->td_frame->tf_rflags &= ~PSL_T;
2049	return (0);
2050}
2051
2052int
2053fill_regs(struct thread *td, struct reg *regs)
2054{
2055	struct trapframe *tp;
2056
2057	tp = td->td_frame;
2058	return (fill_frame_regs(tp, regs));
2059}
2060
2061int
2062fill_frame_regs(struct trapframe *tp, struct reg *regs)
2063{
2064	regs->r_r15 = tp->tf_r15;
2065	regs->r_r14 = tp->tf_r14;
2066	regs->r_r13 = tp->tf_r13;
2067	regs->r_r12 = tp->tf_r12;
2068	regs->r_r11 = tp->tf_r11;
2069	regs->r_r10 = tp->tf_r10;
2070	regs->r_r9  = tp->tf_r9;
2071	regs->r_r8  = tp->tf_r8;
2072	regs->r_rdi = tp->tf_rdi;
2073	regs->r_rsi = tp->tf_rsi;
2074	regs->r_rbp = tp->tf_rbp;
2075	regs->r_rbx = tp->tf_rbx;
2076	regs->r_rdx = tp->tf_rdx;
2077	regs->r_rcx = tp->tf_rcx;
2078	regs->r_rax = tp->tf_rax;
2079	regs->r_rip = tp->tf_rip;
2080	regs->r_cs = tp->tf_cs;
2081	regs->r_rflags = tp->tf_rflags;
2082	regs->r_rsp = tp->tf_rsp;
2083	regs->r_ss = tp->tf_ss;
2084	if (tp->tf_flags & TF_HASSEGS) {
2085		regs->r_ds = tp->tf_ds;
2086		regs->r_es = tp->tf_es;
2087		regs->r_fs = tp->tf_fs;
2088		regs->r_gs = tp->tf_gs;
2089	} else {
2090		regs->r_ds = 0;
2091		regs->r_es = 0;
2092		regs->r_fs = 0;
2093		regs->r_gs = 0;
2094	}
2095	return (0);
2096}
2097
2098int
2099set_regs(struct thread *td, struct reg *regs)
2100{
2101	struct trapframe *tp;
2102	register_t rflags;
2103
2104	tp = td->td_frame;
2105	rflags = regs->r_rflags & 0xffffffff;
2106	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
2107		return (EINVAL);
2108	tp->tf_r15 = regs->r_r15;
2109	tp->tf_r14 = regs->r_r14;
2110	tp->tf_r13 = regs->r_r13;
2111	tp->tf_r12 = regs->r_r12;
2112	tp->tf_r11 = regs->r_r11;
2113	tp->tf_r10 = regs->r_r10;
2114	tp->tf_r9  = regs->r_r9;
2115	tp->tf_r8  = regs->r_r8;
2116	tp->tf_rdi = regs->r_rdi;
2117	tp->tf_rsi = regs->r_rsi;
2118	tp->tf_rbp = regs->r_rbp;
2119	tp->tf_rbx = regs->r_rbx;
2120	tp->tf_rdx = regs->r_rdx;
2121	tp->tf_rcx = regs->r_rcx;
2122	tp->tf_rax = regs->r_rax;
2123	tp->tf_rip = regs->r_rip;
2124	tp->tf_cs = regs->r_cs;
2125	tp->tf_rflags = rflags;
2126	tp->tf_rsp = regs->r_rsp;
2127	tp->tf_ss = regs->r_ss;
2128	if (0) {	/* XXXKIB */
2129		tp->tf_ds = regs->r_ds;
2130		tp->tf_es = regs->r_es;
2131		tp->tf_fs = regs->r_fs;
2132		tp->tf_gs = regs->r_gs;
2133		tp->tf_flags = TF_HASSEGS;
2134		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2135	}
2136	return (0);
2137}
2138
2139/* XXX check all this stuff! */
2140/* externalize from sv_xmm */
2141static void
2142fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
2143{
2144	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2145	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2146	int i;
2147
2148	/* pcb -> fpregs */
2149	bzero(fpregs, sizeof(*fpregs));
2150
2151	/* FPU control/status */
2152	penv_fpreg->en_cw = penv_xmm->en_cw;
2153	penv_fpreg->en_sw = penv_xmm->en_sw;
2154	penv_fpreg->en_tw = penv_xmm->en_tw;
2155	penv_fpreg->en_opcode = penv_xmm->en_opcode;
2156	penv_fpreg->en_rip = penv_xmm->en_rip;
2157	penv_fpreg->en_rdp = penv_xmm->en_rdp;
2158	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
2159	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
2160
2161	/* FPU registers */
2162	for (i = 0; i < 8; ++i)
2163		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2164
2165	/* SSE registers */
2166	for (i = 0; i < 16; ++i)
2167		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2168}
2169
2170/* internalize from fpregs into sv_xmm */
2171static void
2172set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2173{
2174	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2175	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2176	int i;
2177
2178	/* fpregs -> pcb */
2179	/* FPU control/status */
2180	penv_xmm->en_cw = penv_fpreg->en_cw;
2181	penv_xmm->en_sw = penv_fpreg->en_sw;
2182	penv_xmm->en_tw = penv_fpreg->en_tw;
2183	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2184	penv_xmm->en_rip = penv_fpreg->en_rip;
2185	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2186	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2187	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2188
2189	/* FPU registers */
2190	for (i = 0; i < 8; ++i)
2191		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2192
2193	/* SSE registers */
2194	for (i = 0; i < 16; ++i)
2195		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2196}
2197
2198/* externalize from td->pcb */
2199int
2200fill_fpregs(struct thread *td, struct fpreg *fpregs)
2201{
2202
2203	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2204	    P_SHOULDSTOP(td->td_proc),
2205	    ("not suspended thread %p", td));
2206	fpugetregs(td);
2207	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2208	return (0);
2209}
2210
2211/* internalize to td->pcb */
2212int
2213set_fpregs(struct thread *td, struct fpreg *fpregs)
2214{
2215
2216	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2217	fpuuserinited(td);
2218	return (0);
2219}
2220
2221/*
2222 * Get machine context.
2223 */
2224int
2225get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2226{
2227	struct pcb *pcb;
2228	struct trapframe *tp;
2229
2230	pcb = td->td_pcb;
2231	tp = td->td_frame;
2232	PROC_LOCK(curthread->td_proc);
2233	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2234	PROC_UNLOCK(curthread->td_proc);
2235	mcp->mc_r15 = tp->tf_r15;
2236	mcp->mc_r14 = tp->tf_r14;
2237	mcp->mc_r13 = tp->tf_r13;
2238	mcp->mc_r12 = tp->tf_r12;
2239	mcp->mc_r11 = tp->tf_r11;
2240	mcp->mc_r10 = tp->tf_r10;
2241	mcp->mc_r9  = tp->tf_r9;
2242	mcp->mc_r8  = tp->tf_r8;
2243	mcp->mc_rdi = tp->tf_rdi;
2244	mcp->mc_rsi = tp->tf_rsi;
2245	mcp->mc_rbp = tp->tf_rbp;
2246	mcp->mc_rbx = tp->tf_rbx;
2247	mcp->mc_rcx = tp->tf_rcx;
2248	mcp->mc_rflags = tp->tf_rflags;
2249	if (flags & GET_MC_CLEAR_RET) {
2250		mcp->mc_rax = 0;
2251		mcp->mc_rdx = 0;
2252		mcp->mc_rflags &= ~PSL_C;
2253	} else {
2254		mcp->mc_rax = tp->tf_rax;
2255		mcp->mc_rdx = tp->tf_rdx;
2256	}
2257	mcp->mc_rip = tp->tf_rip;
2258	mcp->mc_cs = tp->tf_cs;
2259	mcp->mc_rsp = tp->tf_rsp;
2260	mcp->mc_ss = tp->tf_ss;
2261	mcp->mc_ds = tp->tf_ds;
2262	mcp->mc_es = tp->tf_es;
2263	mcp->mc_fs = tp->tf_fs;
2264	mcp->mc_gs = tp->tf_gs;
2265	mcp->mc_flags = tp->tf_flags;
2266	mcp->mc_len = sizeof(*mcp);
2267	get_fpcontext(td, mcp, NULL, 0);
2268	mcp->mc_fsbase = pcb->pcb_fsbase;
2269	mcp->mc_gsbase = pcb->pcb_gsbase;
2270	mcp->mc_xfpustate = 0;
2271	mcp->mc_xfpustate_len = 0;
2272	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2273	return (0);
2274}
2275
2276/*
2277 * Set machine context.
2278 *
2279 * However, we don't set any but the user modifiable flags, and we won't
2280 * touch the cs selector.
2281 */
2282int
2283set_mcontext(struct thread *td, const mcontext_t *mcp)
2284{
2285	struct pcb *pcb;
2286	struct trapframe *tp;
2287	char *xfpustate;
2288	long rflags;
2289	int ret;
2290
2291	pcb = td->td_pcb;
2292	tp = td->td_frame;
2293	if (mcp->mc_len != sizeof(*mcp) ||
2294	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2295		return (EINVAL);
2296	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2297	    (tp->tf_rflags & ~PSL_USERCHANGE);
2298	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2299		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2300		    sizeof(struct savefpu))
2301			return (EINVAL);
2302		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2303		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2304		    mcp->mc_xfpustate_len);
2305		if (ret != 0)
2306			return (ret);
2307	} else
2308		xfpustate = NULL;
2309	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2310	if (ret != 0)
2311		return (ret);
2312	tp->tf_r15 = mcp->mc_r15;
2313	tp->tf_r14 = mcp->mc_r14;
2314	tp->tf_r13 = mcp->mc_r13;
2315	tp->tf_r12 = mcp->mc_r12;
2316	tp->tf_r11 = mcp->mc_r11;
2317	tp->tf_r10 = mcp->mc_r10;
2318	tp->tf_r9  = mcp->mc_r9;
2319	tp->tf_r8  = mcp->mc_r8;
2320	tp->tf_rdi = mcp->mc_rdi;
2321	tp->tf_rsi = mcp->mc_rsi;
2322	tp->tf_rbp = mcp->mc_rbp;
2323	tp->tf_rbx = mcp->mc_rbx;
2324	tp->tf_rdx = mcp->mc_rdx;
2325	tp->tf_rcx = mcp->mc_rcx;
2326	tp->tf_rax = mcp->mc_rax;
2327	tp->tf_rip = mcp->mc_rip;
2328	tp->tf_rflags = rflags;
2329	tp->tf_rsp = mcp->mc_rsp;
2330	tp->tf_ss = mcp->mc_ss;
2331	tp->tf_flags = mcp->mc_flags;
2332	if (tp->tf_flags & TF_HASSEGS) {
2333		tp->tf_ds = mcp->mc_ds;
2334		tp->tf_es = mcp->mc_es;
2335		tp->tf_fs = mcp->mc_fs;
2336		tp->tf_gs = mcp->mc_gs;
2337	}
2338	if (mcp->mc_flags & _MC_HASBASES) {
2339		pcb->pcb_fsbase = mcp->mc_fsbase;
2340		pcb->pcb_gsbase = mcp->mc_gsbase;
2341	}
2342	set_pcb_flags(pcb, PCB_FULL_IRET);
2343	return (0);
2344}
2345
2346static void
2347get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2348    size_t xfpusave_len)
2349{
2350	size_t max_len, len;
2351
2352	mcp->mc_ownedfp = fpugetregs(td);
2353	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2354	    sizeof(mcp->mc_fpstate));
2355	mcp->mc_fpformat = fpuformat();
2356	if (!use_xsave || xfpusave_len == 0)
2357		return;
2358	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2359	len = xfpusave_len;
2360	if (len > max_len) {
2361		len = max_len;
2362		bzero(xfpusave + max_len, len - max_len);
2363	}
2364	mcp->mc_flags |= _MC_HASFPXSTATE;
2365	mcp->mc_xfpustate_len = len;
2366	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2367}
2368
2369static int
2370set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate,
2371    size_t xfpustate_len)
2372{
2373	struct savefpu *fpstate;
2374	int error;
2375
2376	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2377		return (0);
2378	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2379		return (EINVAL);
2380	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2381		/* We don't care what state is left in the FPU or PCB. */
2382		fpstate_drop(td);
2383		error = 0;
2384	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2385	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2386		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2387		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2388		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2389	} else
2390		return (EINVAL);
2391	return (error);
2392}
2393
2394void
2395fpstate_drop(struct thread *td)
2396{
2397
2398	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2399	critical_enter();
2400	if (PCPU_GET(fpcurthread) == td)
2401		fpudrop();
2402	/*
2403	 * XXX force a full drop of the fpu.  The above only drops it if we
2404	 * owned it.
2405	 *
2406	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2407	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2408	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2409	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2410	 * have too many layers.
2411	 */
2412	clear_pcb_flags(curthread->td_pcb,
2413	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2414	critical_exit();
2415}
2416
2417int
2418fill_dbregs(struct thread *td, struct dbreg *dbregs)
2419{
2420	struct pcb *pcb;
2421
2422	if (td == NULL) {
2423		dbregs->dr[0] = rdr0();
2424		dbregs->dr[1] = rdr1();
2425		dbregs->dr[2] = rdr2();
2426		dbregs->dr[3] = rdr3();
2427		dbregs->dr[6] = rdr6();
2428		dbregs->dr[7] = rdr7();
2429	} else {
2430		pcb = td->td_pcb;
2431		dbregs->dr[0] = pcb->pcb_dr0;
2432		dbregs->dr[1] = pcb->pcb_dr1;
2433		dbregs->dr[2] = pcb->pcb_dr2;
2434		dbregs->dr[3] = pcb->pcb_dr3;
2435		dbregs->dr[6] = pcb->pcb_dr6;
2436		dbregs->dr[7] = pcb->pcb_dr7;
2437	}
2438	dbregs->dr[4] = 0;
2439	dbregs->dr[5] = 0;
2440	dbregs->dr[8] = 0;
2441	dbregs->dr[9] = 0;
2442	dbregs->dr[10] = 0;
2443	dbregs->dr[11] = 0;
2444	dbregs->dr[12] = 0;
2445	dbregs->dr[13] = 0;
2446	dbregs->dr[14] = 0;
2447	dbregs->dr[15] = 0;
2448	return (0);
2449}
2450
2451int
2452set_dbregs(struct thread *td, struct dbreg *dbregs)
2453{
2454	struct pcb *pcb;
2455	int i;
2456
2457	if (td == NULL) {
2458		load_dr0(dbregs->dr[0]);
2459		load_dr1(dbregs->dr[1]);
2460		load_dr2(dbregs->dr[2]);
2461		load_dr3(dbregs->dr[3]);
2462		load_dr6(dbregs->dr[6]);
2463		load_dr7(dbregs->dr[7]);
2464	} else {
2465		/*
2466		 * Don't let an illegal value for dr7 get set.  Specifically,
2467		 * check for undefined settings.  Setting these bit patterns
2468		 * result in undefined behaviour and can lead to an unexpected
2469		 * TRCTRAP or a general protection fault right here.
2470		 * Upper bits of dr6 and dr7 must not be set
2471		 */
2472		for (i = 0; i < 4; i++) {
2473			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2474				return (EINVAL);
2475			if (td->td_frame->tf_cs == _ucode32sel &&
2476			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2477				return (EINVAL);
2478		}
2479		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2480		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2481			return (EINVAL);
2482
2483		pcb = td->td_pcb;
2484
2485		/*
2486		 * Don't let a process set a breakpoint that is not within the
2487		 * process's address space.  If a process could do this, it
2488		 * could halt the system by setting a breakpoint in the kernel
2489		 * (if ddb was enabled).  Thus, we need to check to make sure
2490		 * that no breakpoints are being enabled for addresses outside
2491		 * process's address space.
2492		 *
2493		 * XXX - what about when the watched area of the user's
2494		 * address space is written into from within the kernel
2495		 * ... wouldn't that still cause a breakpoint to be generated
2496		 * from within kernel mode?
2497		 */
2498
2499		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2500			/* dr0 is enabled */
2501			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2502				return (EINVAL);
2503		}
2504		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2505			/* dr1 is enabled */
2506			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2507				return (EINVAL);
2508		}
2509		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2510			/* dr2 is enabled */
2511			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2512				return (EINVAL);
2513		}
2514		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2515			/* dr3 is enabled */
2516			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2517				return (EINVAL);
2518		}
2519
2520		pcb->pcb_dr0 = dbregs->dr[0];
2521		pcb->pcb_dr1 = dbregs->dr[1];
2522		pcb->pcb_dr2 = dbregs->dr[2];
2523		pcb->pcb_dr3 = dbregs->dr[3];
2524		pcb->pcb_dr6 = dbregs->dr[6];
2525		pcb->pcb_dr7 = dbregs->dr[7];
2526
2527		set_pcb_flags(pcb, PCB_DBREGS);
2528	}
2529
2530	return (0);
2531}
2532
2533void
2534reset_dbregs(void)
2535{
2536
2537	load_dr7(0);	/* Turn off the control bits first */
2538	load_dr0(0);
2539	load_dr1(0);
2540	load_dr2(0);
2541	load_dr3(0);
2542	load_dr6(0);
2543}
2544
2545/*
2546 * Return > 0 if a hardware breakpoint has been hit, and the
2547 * breakpoint was in user space.  Return 0, otherwise.
2548 */
2549int
2550user_dbreg_trap(void)
2551{
2552        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2553        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2554        int nbp;            /* number of breakpoints that triggered */
2555        caddr_t addr[4];    /* breakpoint addresses */
2556        int i;
2557
2558        dr7 = rdr7();
2559        if ((dr7 & 0x000000ff) == 0) {
2560                /*
2561                 * all GE and LE bits in the dr7 register are zero,
2562                 * thus the trap couldn't have been caused by the
2563                 * hardware debug registers
2564                 */
2565                return 0;
2566        }
2567
2568        nbp = 0;
2569        dr6 = rdr6();
2570        bp = dr6 & 0x0000000f;
2571
2572        if (!bp) {
2573                /*
2574                 * None of the breakpoint bits are set meaning this
2575                 * trap was not caused by any of the debug registers
2576                 */
2577                return 0;
2578        }
2579
2580        /*
2581         * at least one of the breakpoints were hit, check to see
2582         * which ones and if any of them are user space addresses
2583         */
2584
2585        if (bp & 0x01) {
2586                addr[nbp++] = (caddr_t)rdr0();
2587        }
2588        if (bp & 0x02) {
2589                addr[nbp++] = (caddr_t)rdr1();
2590        }
2591        if (bp & 0x04) {
2592                addr[nbp++] = (caddr_t)rdr2();
2593        }
2594        if (bp & 0x08) {
2595                addr[nbp++] = (caddr_t)rdr3();
2596        }
2597
2598        for (i = 0; i < nbp; i++) {
2599                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2600                        /*
2601                         * addr[i] is in user space
2602                         */
2603                        return nbp;
2604                }
2605        }
2606
2607        /*
2608         * None of the breakpoints are in user space.
2609         */
2610        return 0;
2611}
2612
2613#ifdef KDB
2614
2615/*
2616 * Provide inb() and outb() as functions.  They are normally only available as
2617 * inline functions, thus cannot be called from the debugger.
2618 */
2619
2620/* silence compiler warnings */
2621u_char inb_(u_short);
2622void outb_(u_short, u_char);
2623
2624u_char
2625inb_(u_short port)
2626{
2627	return inb(port);
2628}
2629
2630void
2631outb_(u_short port, u_char data)
2632{
2633	outb(port, data);
2634}
2635
2636#endif /* KDB */
2637