machdep.c revision 263006
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 263006 2014-03-11 10:15:25Z royger $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_perfmon.h"
56#include "opt_platform.h"
57#include "opt_sched.h"
58
59#include <sys/param.h>
60#include <sys/proc.h>
61#include <sys/systm.h>
62#include <sys/bio.h>
63#include <sys/buf.h>
64#include <sys/bus.h>
65#include <sys/callout.h>
66#include <sys/cons.h>
67#include <sys/cpu.h>
68#include <sys/eventhandler.h>
69#include <sys/exec.h>
70#include <sys/imgact.h>
71#include <sys/kdb.h>
72#include <sys/kernel.h>
73#include <sys/ktr.h>
74#include <sys/linker.h>
75#include <sys/lock.h>
76#include <sys/malloc.h>
77#include <sys/memrange.h>
78#include <sys/msgbuf.h>
79#include <sys/mutex.h>
80#include <sys/pcpu.h>
81#include <sys/ptrace.h>
82#include <sys/reboot.h>
83#include <sys/rwlock.h>
84#include <sys/sched.h>
85#include <sys/signalvar.h>
86#ifdef SMP
87#include <sys/smp.h>
88#endif
89#include <sys/syscallsubr.h>
90#include <sys/sysctl.h>
91#include <sys/sysent.h>
92#include <sys/sysproto.h>
93#include <sys/ucontext.h>
94#include <sys/vmmeter.h>
95
96#include <vm/vm.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_kern.h>
99#include <vm/vm_page.h>
100#include <vm/vm_map.h>
101#include <vm/vm_object.h>
102#include <vm/vm_pager.h>
103#include <vm/vm_param.h>
104
105#ifdef DDB
106#ifndef KDB
107#error KDB must be enabled in order for DDB to work!
108#endif
109#include <ddb/ddb.h>
110#include <ddb/db_sym.h>
111#endif
112
113#include <net/netisr.h>
114
115#include <machine/clock.h>
116#include <machine/cpu.h>
117#include <machine/cputypes.h>
118#include <machine/intr_machdep.h>
119#include <x86/mca.h>
120#include <machine/md_var.h>
121#include <machine/metadata.h>
122#include <machine/mp_watchdog.h>
123#include <machine/pc/bios.h>
124#include <machine/pcb.h>
125#include <machine/proc.h>
126#include <machine/reg.h>
127#include <machine/sigframe.h>
128#include <machine/specialreg.h>
129#ifdef PERFMON
130#include <machine/perfmon.h>
131#endif
132#include <machine/tss.h>
133#ifdef SMP
134#include <machine/smp.h>
135#endif
136#ifdef FDT
137#include <x86/fdt.h>
138#endif
139
140#ifdef DEV_ATPIC
141#include <x86/isa/icu.h>
142#else
143#include <x86/apicvar.h>
144#endif
145
146#include <isa/isareg.h>
147#include <isa/rtc.h>
148#include <x86/init.h>
149
150/* Sanity check for __curthread() */
151CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
152
153extern u_int64_t hammer_time(u_int64_t, u_int64_t);
154
155extern void printcpuinfo(void);	/* XXX header file */
156extern void identify_cpu(void);
157extern void panicifcpuunsupported(void);
158
159#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
160#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
161
162static void cpu_startup(void *);
163static void get_fpcontext(struct thread *td, mcontext_t *mcp,
164    char *xfpusave, size_t xfpusave_len);
165static int  set_fpcontext(struct thread *td, const mcontext_t *mcp,
166    char *xfpustate, size_t xfpustate_len);
167SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
168
169/* Preload data parse function */
170static caddr_t native_parse_preload_data(u_int64_t);
171
172/* Default init_ops implementation. */
173struct init_ops init_ops = {
174	.parse_preload_data =	native_parse_preload_data,
175};
176
177/*
178 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
179 * the physical address at which the kernel is loaded.
180 */
181extern char kernphys[];
182#ifdef DDB
183extern vm_offset_t ksym_start, ksym_end;
184#endif
185
186struct msgbuf *msgbufp;
187
188/* Intel ICH registers */
189#define ICH_PMBASE	0x400
190#define ICH_SMI_EN	ICH_PMBASE + 0x30
191
192int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
193
194int cold = 1;
195
196long Maxmem = 0;
197long realmem = 0;
198
199/*
200 * The number of PHYSMAP entries must be one less than the number of
201 * PHYSSEG entries because the PHYSMAP entry that spans the largest
202 * physical address that is accessible by ISA DMA is split into two
203 * PHYSSEG entries.
204 */
205#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
206
207vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
208vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
209
210/* must be 2 less so 0 0 can signal end of chunks */
211#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
212#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
213
214struct kva_md_info kmi;
215
216static struct trapframe proc0_tf;
217struct region_descriptor r_gdt, r_idt;
218
219struct pcpu __pcpu[MAXCPU];
220
221struct mtx icu_lock;
222
223struct mem_range_softc mem_range_softc;
224
225struct mtx dt_lock;	/* lock for GDT and LDT */
226
227void (*vmm_resume_p)(void);
228
229static void
230cpu_startup(dummy)
231	void *dummy;
232{
233	uintmax_t memsize;
234	char *sysenv;
235
236	/*
237	 * On MacBooks, we need to disallow the legacy USB circuit to
238	 * generate an SMI# because this can cause several problems,
239	 * namely: incorrect CPU frequency detection and failure to
240	 * start the APs.
241	 * We do this by disabling a bit in the SMI_EN (SMI Control and
242	 * Enable register) of the Intel ICH LPC Interface Bridge.
243	 */
244	sysenv = getenv("smbios.system.product");
245	if (sysenv != NULL) {
246		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
247		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
248		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
249		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
250		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
251		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
252			if (bootverbose)
253				printf("Disabling LEGACY_USB_EN bit on "
254				    "Intel ICH.\n");
255			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
256		}
257		freeenv(sysenv);
258	}
259
260	/*
261	 * Good {morning,afternoon,evening,night}.
262	 */
263	startrtclock();
264	printcpuinfo();
265	panicifcpuunsupported();
266#ifdef PERFMON
267	perfmon_init();
268#endif
269
270	/*
271	 * Display physical memory if SMBIOS reports reasonable amount.
272	 */
273	memsize = 0;
274	sysenv = getenv("smbios.memory.enabled");
275	if (sysenv != NULL) {
276		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
277		freeenv(sysenv);
278	}
279	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
280		memsize = ptoa((uintmax_t)Maxmem);
281	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
282	realmem = atop(memsize);
283
284	/*
285	 * Display any holes after the first chunk of extended memory.
286	 */
287	if (bootverbose) {
288		int indx;
289
290		printf("Physical memory chunk(s):\n");
291		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
292			vm_paddr_t size;
293
294			size = phys_avail[indx + 1] - phys_avail[indx];
295			printf(
296			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
297			    (uintmax_t)phys_avail[indx],
298			    (uintmax_t)phys_avail[indx + 1] - 1,
299			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
300		}
301	}
302
303	vm_ksubmap_init(&kmi);
304
305	printf("avail memory = %ju (%ju MB)\n",
306	    ptoa((uintmax_t)cnt.v_free_count),
307	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
308
309	/*
310	 * Set up buffers, so they can be used to read disk labels.
311	 */
312	bufinit();
313	vm_pager_bufferinit();
314
315	cpu_setregs();
316}
317
318/*
319 * Send an interrupt to process.
320 *
321 * Stack is set up to allow sigcode stored
322 * at top to call routine, followed by call
323 * to sigreturn routine below.  After sigreturn
324 * resets the signal mask, the stack, and the
325 * frame pointer, it returns to the user
326 * specified pc, psl.
327 */
328void
329sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
330{
331	struct sigframe sf, *sfp;
332	struct pcb *pcb;
333	struct proc *p;
334	struct thread *td;
335	struct sigacts *psp;
336	char *sp;
337	struct trapframe *regs;
338	char *xfpusave;
339	size_t xfpusave_len;
340	int sig;
341	int oonstack;
342
343	td = curthread;
344	pcb = td->td_pcb;
345	p = td->td_proc;
346	PROC_LOCK_ASSERT(p, MA_OWNED);
347	sig = ksi->ksi_signo;
348	psp = p->p_sigacts;
349	mtx_assert(&psp->ps_mtx, MA_OWNED);
350	regs = td->td_frame;
351	oonstack = sigonstack(regs->tf_rsp);
352
353	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
354		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
355		xfpusave = __builtin_alloca(xfpusave_len);
356	} else {
357		xfpusave_len = 0;
358		xfpusave = NULL;
359	}
360
361	/* Save user context. */
362	bzero(&sf, sizeof(sf));
363	sf.sf_uc.uc_sigmask = *mask;
364	sf.sf_uc.uc_stack = td->td_sigstk;
365	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
366	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
367	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
368	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
369	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
370	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
371	fpstate_drop(td);
372	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
373	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
374	bzero(sf.sf_uc.uc_mcontext.mc_spare,
375	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
376	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
377
378	/* Allocate space for the signal handler context. */
379	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
380	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
381		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
382#if defined(COMPAT_43)
383		td->td_sigstk.ss_flags |= SS_ONSTACK;
384#endif
385	} else
386		sp = (char *)regs->tf_rsp - 128;
387	if (xfpusave != NULL) {
388		sp -= xfpusave_len;
389		sp = (char *)((unsigned long)sp & ~0x3Ful);
390		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
391	}
392	sp -= sizeof(struct sigframe);
393	/* Align to 16 bytes. */
394	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
395
396	/* Translate the signal if appropriate. */
397	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
398		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
399
400	/* Build the argument list for the signal handler. */
401	regs->tf_rdi = sig;			/* arg 1 in %rdi */
402	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
403	bzero(&sf.sf_si, sizeof(sf.sf_si));
404	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
405		/* Signal handler installed with SA_SIGINFO. */
406		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
407		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
408
409		/* Fill in POSIX parts */
410		sf.sf_si = ksi->ksi_info;
411		sf.sf_si.si_signo = sig; /* maybe a translated signal */
412		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
413	} else {
414		/* Old FreeBSD-style arguments. */
415		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
416		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
417		sf.sf_ahu.sf_handler = catcher;
418	}
419	mtx_unlock(&psp->ps_mtx);
420	PROC_UNLOCK(p);
421
422	/*
423	 * Copy the sigframe out to the user's stack.
424	 */
425	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
426	    (xfpusave != NULL && copyout(xfpusave,
427	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
428	    != 0)) {
429#ifdef DEBUG
430		printf("process %ld has trashed its stack\n", (long)p->p_pid);
431#endif
432		PROC_LOCK(p);
433		sigexit(td, SIGILL);
434	}
435
436	regs->tf_rsp = (long)sfp;
437	regs->tf_rip = p->p_sysent->sv_sigcode_base;
438	regs->tf_rflags &= ~(PSL_T | PSL_D);
439	regs->tf_cs = _ucodesel;
440	regs->tf_ds = _udatasel;
441	regs->tf_es = _udatasel;
442	regs->tf_fs = _ufssel;
443	regs->tf_gs = _ugssel;
444	regs->tf_flags = TF_HASSEGS;
445	set_pcb_flags(pcb, PCB_FULL_IRET);
446	PROC_LOCK(p);
447	mtx_lock(&psp->ps_mtx);
448}
449
450/*
451 * System call to cleanup state after a signal
452 * has been taken.  Reset signal mask and
453 * stack state from context left by sendsig (above).
454 * Return to previous pc and psl as specified by
455 * context left by sendsig. Check carefully to
456 * make sure that the user has not modified the
457 * state to gain improper privileges.
458 *
459 * MPSAFE
460 */
461int
462sys_sigreturn(td, uap)
463	struct thread *td;
464	struct sigreturn_args /* {
465		const struct __ucontext *sigcntxp;
466	} */ *uap;
467{
468	ucontext_t uc;
469	struct pcb *pcb;
470	struct proc *p;
471	struct trapframe *regs;
472	ucontext_t *ucp;
473	char *xfpustate;
474	size_t xfpustate_len;
475	long rflags;
476	int cs, error, ret;
477	ksiginfo_t ksi;
478
479	pcb = td->td_pcb;
480	p = td->td_proc;
481
482	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
483	if (error != 0) {
484		uprintf("pid %d (%s): sigreturn copyin failed\n",
485		    p->p_pid, td->td_name);
486		return (error);
487	}
488	ucp = &uc;
489	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
490		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
491		    td->td_name, ucp->uc_mcontext.mc_flags);
492		return (EINVAL);
493	}
494	regs = td->td_frame;
495	rflags = ucp->uc_mcontext.mc_rflags;
496	/*
497	 * Don't allow users to change privileged or reserved flags.
498	 */
499	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
500		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
501		    td->td_name, rflags);
502		return (EINVAL);
503	}
504
505	/*
506	 * Don't allow users to load a valid privileged %cs.  Let the
507	 * hardware check for invalid selectors, excess privilege in
508	 * other selectors, invalid %eip's and invalid %esp's.
509	 */
510	cs = ucp->uc_mcontext.mc_cs;
511	if (!CS_SECURE(cs)) {
512		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
513		    td->td_name, cs);
514		ksiginfo_init_trap(&ksi);
515		ksi.ksi_signo = SIGBUS;
516		ksi.ksi_code = BUS_OBJERR;
517		ksi.ksi_trapno = T_PROTFLT;
518		ksi.ksi_addr = (void *)regs->tf_rip;
519		trapsignal(td, &ksi);
520		return (EINVAL);
521	}
522
523	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
524		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
525		if (xfpustate_len > cpu_max_ext_state_size -
526		    sizeof(struct savefpu)) {
527			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
528			    p->p_pid, td->td_name, xfpustate_len);
529			return (EINVAL);
530		}
531		xfpustate = __builtin_alloca(xfpustate_len);
532		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
533		    xfpustate, xfpustate_len);
534		if (error != 0) {
535			uprintf(
536	"pid %d (%s): sigreturn copying xfpustate failed\n",
537			    p->p_pid, td->td_name);
538			return (error);
539		}
540	} else {
541		xfpustate = NULL;
542		xfpustate_len = 0;
543	}
544	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
545	if (ret != 0) {
546		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
547		    p->p_pid, td->td_name, ret);
548		return (ret);
549	}
550	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
551	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
552	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
553
554#if defined(COMPAT_43)
555	if (ucp->uc_mcontext.mc_onstack & 1)
556		td->td_sigstk.ss_flags |= SS_ONSTACK;
557	else
558		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
559#endif
560
561	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
562	set_pcb_flags(pcb, PCB_FULL_IRET);
563	return (EJUSTRETURN);
564}
565
566#ifdef COMPAT_FREEBSD4
567int
568freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
569{
570
571	return sys_sigreturn(td, (struct sigreturn_args *)uap);
572}
573#endif
574
575
576/*
577 * Machine dependent boot() routine
578 *
579 * I haven't seen anything to put here yet
580 * Possibly some stuff might be grafted back here from boot()
581 */
582void
583cpu_boot(int howto)
584{
585}
586
587/*
588 * Flush the D-cache for non-DMA I/O so that the I-cache can
589 * be made coherent later.
590 */
591void
592cpu_flush_dcache(void *ptr, size_t len)
593{
594	/* Not applicable */
595}
596
597/* Get current clock frequency for the given cpu id. */
598int
599cpu_est_clockrate(int cpu_id, uint64_t *rate)
600{
601	uint64_t tsc1, tsc2;
602	uint64_t acnt, mcnt, perf;
603	register_t reg;
604
605	if (pcpu_find(cpu_id) == NULL || rate == NULL)
606		return (EINVAL);
607
608	/*
609	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
610	 * DELAY(9) based logic fails.
611	 */
612	if (tsc_is_invariant && !tsc_perf_stat)
613		return (EOPNOTSUPP);
614
615#ifdef SMP
616	if (smp_cpus > 1) {
617		/* Schedule ourselves on the indicated cpu. */
618		thread_lock(curthread);
619		sched_bind(curthread, cpu_id);
620		thread_unlock(curthread);
621	}
622#endif
623
624	/* Calibrate by measuring a short delay. */
625	reg = intr_disable();
626	if (tsc_is_invariant) {
627		wrmsr(MSR_MPERF, 0);
628		wrmsr(MSR_APERF, 0);
629		tsc1 = rdtsc();
630		DELAY(1000);
631		mcnt = rdmsr(MSR_MPERF);
632		acnt = rdmsr(MSR_APERF);
633		tsc2 = rdtsc();
634		intr_restore(reg);
635		perf = 1000 * acnt / mcnt;
636		*rate = (tsc2 - tsc1) * perf;
637	} else {
638		tsc1 = rdtsc();
639		DELAY(1000);
640		tsc2 = rdtsc();
641		intr_restore(reg);
642		*rate = (tsc2 - tsc1) * 1000;
643	}
644
645#ifdef SMP
646	if (smp_cpus > 1) {
647		thread_lock(curthread);
648		sched_unbind(curthread);
649		thread_unlock(curthread);
650	}
651#endif
652
653	return (0);
654}
655
656/*
657 * Shutdown the CPU as much as possible
658 */
659void
660cpu_halt(void)
661{
662	for (;;)
663		halt();
664}
665
666void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
667static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
668static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
669TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
670SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
671    0, "Use MONITOR/MWAIT for short idle");
672
673#define	STATE_RUNNING	0x0
674#define	STATE_MWAIT	0x1
675#define	STATE_SLEEPING	0x2
676
677static void
678cpu_idle_acpi(sbintime_t sbt)
679{
680	int *state;
681
682	state = (int *)PCPU_PTR(monitorbuf);
683	*state = STATE_SLEEPING;
684
685	/* See comments in cpu_idle_hlt(). */
686	disable_intr();
687	if (sched_runnable())
688		enable_intr();
689	else if (cpu_idle_hook)
690		cpu_idle_hook(sbt);
691	else
692		__asm __volatile("sti; hlt");
693	*state = STATE_RUNNING;
694}
695
696static void
697cpu_idle_hlt(sbintime_t sbt)
698{
699	int *state;
700
701	state = (int *)PCPU_PTR(monitorbuf);
702	*state = STATE_SLEEPING;
703
704	/*
705	 * Since we may be in a critical section from cpu_idle(), if
706	 * an interrupt fires during that critical section we may have
707	 * a pending preemption.  If the CPU halts, then that thread
708	 * may not execute until a later interrupt awakens the CPU.
709	 * To handle this race, check for a runnable thread after
710	 * disabling interrupts and immediately return if one is
711	 * found.  Also, we must absolutely guarentee that hlt is
712	 * the next instruction after sti.  This ensures that any
713	 * interrupt that fires after the call to disable_intr() will
714	 * immediately awaken the CPU from hlt.  Finally, please note
715	 * that on x86 this works fine because of interrupts enabled only
716	 * after the instruction following sti takes place, while IF is set
717	 * to 1 immediately, allowing hlt instruction to acknowledge the
718	 * interrupt.
719	 */
720	disable_intr();
721	if (sched_runnable())
722		enable_intr();
723	else
724		__asm __volatile("sti; hlt");
725	*state = STATE_RUNNING;
726}
727
728/*
729 * MWAIT cpu power states.  Lower 4 bits are sub-states.
730 */
731#define	MWAIT_C0	0xf0
732#define	MWAIT_C1	0x00
733#define	MWAIT_C2	0x10
734#define	MWAIT_C3	0x20
735#define	MWAIT_C4	0x30
736
737static void
738cpu_idle_mwait(sbintime_t sbt)
739{
740	int *state;
741
742	state = (int *)PCPU_PTR(monitorbuf);
743	*state = STATE_MWAIT;
744
745	/* See comments in cpu_idle_hlt(). */
746	disable_intr();
747	if (sched_runnable()) {
748		enable_intr();
749		*state = STATE_RUNNING;
750		return;
751	}
752	cpu_monitor(state, 0, 0);
753	if (*state == STATE_MWAIT)
754		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
755	else
756		enable_intr();
757	*state = STATE_RUNNING;
758}
759
760static void
761cpu_idle_spin(sbintime_t sbt)
762{
763	int *state;
764	int i;
765
766	state = (int *)PCPU_PTR(monitorbuf);
767	*state = STATE_RUNNING;
768
769	/*
770	 * The sched_runnable() call is racy but as long as there is
771	 * a loop missing it one time will have just a little impact if any
772	 * (and it is much better than missing the check at all).
773	 */
774	for (i = 0; i < 1000; i++) {
775		if (sched_runnable())
776			return;
777		cpu_spinwait();
778	}
779}
780
781/*
782 * C1E renders the local APIC timer dead, so we disable it by
783 * reading the Interrupt Pending Message register and clearing
784 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
785 *
786 * Reference:
787 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
788 *   #32559 revision 3.00+
789 */
790#define	MSR_AMDK8_IPM		0xc0010055
791#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
792#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
793#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
794
795static void
796cpu_probe_amdc1e(void)
797{
798
799	/*
800	 * Detect the presence of C1E capability mostly on latest
801	 * dual-cores (or future) k8 family.
802	 */
803	if (cpu_vendor_id == CPU_VENDOR_AMD &&
804	    (cpu_id & 0x00000f00) == 0x00000f00 &&
805	    (cpu_id & 0x0fff0000) >=  0x00040000) {
806		cpu_ident_amdc1e = 1;
807	}
808}
809
810void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
811
812void
813cpu_idle(int busy)
814{
815	uint64_t msr;
816	sbintime_t sbt = -1;
817
818	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
819	    busy, curcpu);
820#ifdef MP_WATCHDOG
821	ap_watchdog(PCPU_GET(cpuid));
822#endif
823	/* If we are busy - try to use fast methods. */
824	if (busy) {
825		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
826			cpu_idle_mwait(busy);
827			goto out;
828		}
829	}
830
831	/* If we have time - switch timers into idle mode. */
832	if (!busy) {
833		critical_enter();
834		sbt = cpu_idleclock();
835	}
836
837	/* Apply AMD APIC timer C1E workaround. */
838	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
839		msr = rdmsr(MSR_AMDK8_IPM);
840		if (msr & AMDK8_CMPHALT)
841			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
842	}
843
844	/* Call main idle method. */
845	cpu_idle_fn(sbt);
846
847	/* Switch timers back into active mode. */
848	if (!busy) {
849		cpu_activeclock();
850		critical_exit();
851	}
852out:
853	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
854	    busy, curcpu);
855}
856
857int
858cpu_idle_wakeup(int cpu)
859{
860	struct pcpu *pcpu;
861	int *state;
862
863	pcpu = pcpu_find(cpu);
864	state = (int *)pcpu->pc_monitorbuf;
865	/*
866	 * This doesn't need to be atomic since missing the race will
867	 * simply result in unnecessary IPIs.
868	 */
869	if (*state == STATE_SLEEPING)
870		return (0);
871	if (*state == STATE_MWAIT)
872		*state = STATE_RUNNING;
873	return (1);
874}
875
876/*
877 * Ordered by speed/power consumption.
878 */
879struct {
880	void	*id_fn;
881	char	*id_name;
882} idle_tbl[] = {
883	{ cpu_idle_spin, "spin" },
884	{ cpu_idle_mwait, "mwait" },
885	{ cpu_idle_hlt, "hlt" },
886	{ cpu_idle_acpi, "acpi" },
887	{ NULL, NULL }
888};
889
890static int
891idle_sysctl_available(SYSCTL_HANDLER_ARGS)
892{
893	char *avail, *p;
894	int error;
895	int i;
896
897	avail = malloc(256, M_TEMP, M_WAITOK);
898	p = avail;
899	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
900		if (strstr(idle_tbl[i].id_name, "mwait") &&
901		    (cpu_feature2 & CPUID2_MON) == 0)
902			continue;
903		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
904		    cpu_idle_hook == NULL)
905			continue;
906		p += sprintf(p, "%s%s", p != avail ? ", " : "",
907		    idle_tbl[i].id_name);
908	}
909	error = sysctl_handle_string(oidp, avail, 0, req);
910	free(avail, M_TEMP);
911	return (error);
912}
913
914SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
915    0, 0, idle_sysctl_available, "A", "list of available idle functions");
916
917static int
918idle_sysctl(SYSCTL_HANDLER_ARGS)
919{
920	char buf[16];
921	int error;
922	char *p;
923	int i;
924
925	p = "unknown";
926	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
927		if (idle_tbl[i].id_fn == cpu_idle_fn) {
928			p = idle_tbl[i].id_name;
929			break;
930		}
931	}
932	strncpy(buf, p, sizeof(buf));
933	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
934	if (error != 0 || req->newptr == NULL)
935		return (error);
936	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
937		if (strstr(idle_tbl[i].id_name, "mwait") &&
938		    (cpu_feature2 & CPUID2_MON) == 0)
939			continue;
940		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
941		    cpu_idle_hook == NULL)
942			continue;
943		if (strcmp(idle_tbl[i].id_name, buf))
944			continue;
945		cpu_idle_fn = idle_tbl[i].id_fn;
946		return (0);
947	}
948	return (EINVAL);
949}
950
951SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
952    idle_sysctl, "A", "currently selected idle function");
953
954/*
955 * Reset registers to default values on exec.
956 */
957void
958exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
959{
960	struct trapframe *regs = td->td_frame;
961	struct pcb *pcb = td->td_pcb;
962
963	mtx_lock(&dt_lock);
964	if (td->td_proc->p_md.md_ldt != NULL)
965		user_ldt_free(td);
966	else
967		mtx_unlock(&dt_lock);
968
969	pcb->pcb_fsbase = 0;
970	pcb->pcb_gsbase = 0;
971	clear_pcb_flags(pcb, PCB_32BIT);
972	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
973	set_pcb_flags(pcb, PCB_FULL_IRET);
974
975	bzero((char *)regs, sizeof(struct trapframe));
976	regs->tf_rip = imgp->entry_addr;
977	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
978	regs->tf_rdi = stack;		/* argv */
979	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
980	regs->tf_ss = _udatasel;
981	regs->tf_cs = _ucodesel;
982	regs->tf_ds = _udatasel;
983	regs->tf_es = _udatasel;
984	regs->tf_fs = _ufssel;
985	regs->tf_gs = _ugssel;
986	regs->tf_flags = TF_HASSEGS;
987	td->td_retval[1] = 0;
988
989	/*
990	 * Reset the hardware debug registers if they were in use.
991	 * They won't have any meaning for the newly exec'd process.
992	 */
993	if (pcb->pcb_flags & PCB_DBREGS) {
994		pcb->pcb_dr0 = 0;
995		pcb->pcb_dr1 = 0;
996		pcb->pcb_dr2 = 0;
997		pcb->pcb_dr3 = 0;
998		pcb->pcb_dr6 = 0;
999		pcb->pcb_dr7 = 0;
1000		if (pcb == curpcb) {
1001			/*
1002			 * Clear the debug registers on the running
1003			 * CPU, otherwise they will end up affecting
1004			 * the next process we switch to.
1005			 */
1006			reset_dbregs();
1007		}
1008		clear_pcb_flags(pcb, PCB_DBREGS);
1009	}
1010
1011	/*
1012	 * Drop the FP state if we hold it, so that the process gets a
1013	 * clean FP state if it uses the FPU again.
1014	 */
1015	fpstate_drop(td);
1016}
1017
1018void
1019cpu_setregs(void)
1020{
1021	register_t cr0;
1022
1023	cr0 = rcr0();
1024	/*
1025	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
1026	 * BSP.  See the comments there about why we set them.
1027	 */
1028	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1029	load_cr0(cr0);
1030}
1031
1032/*
1033 * Initialize amd64 and configure to run kernel
1034 */
1035
1036/*
1037 * Initialize segments & interrupt table
1038 */
1039
1040struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
1041static struct gate_descriptor idt0[NIDT];
1042struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1043
1044static char dblfault_stack[PAGE_SIZE] __aligned(16);
1045
1046static char nmi0_stack[PAGE_SIZE] __aligned(16);
1047CTASSERT(sizeof(struct nmi_pcpu) == 16);
1048
1049struct amd64tss common_tss[MAXCPU];
1050
1051/*
1052 * Software prototypes -- in more palatable form.
1053 *
1054 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
1055 * slots as corresponding segments for i386 kernel.
1056 */
1057struct soft_segment_descriptor gdt_segs[] = {
1058/* GNULL_SEL	0 Null Descriptor */
1059{	.ssd_base = 0x0,
1060	.ssd_limit = 0x0,
1061	.ssd_type = 0,
1062	.ssd_dpl = 0,
1063	.ssd_p = 0,
1064	.ssd_long = 0,
1065	.ssd_def32 = 0,
1066	.ssd_gran = 0		},
1067/* GNULL2_SEL	1 Null Descriptor */
1068{	.ssd_base = 0x0,
1069	.ssd_limit = 0x0,
1070	.ssd_type = 0,
1071	.ssd_dpl = 0,
1072	.ssd_p = 0,
1073	.ssd_long = 0,
1074	.ssd_def32 = 0,
1075	.ssd_gran = 0		},
1076/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
1077{	.ssd_base = 0x0,
1078	.ssd_limit = 0xfffff,
1079	.ssd_type = SDT_MEMRWA,
1080	.ssd_dpl = SEL_UPL,
1081	.ssd_p = 1,
1082	.ssd_long = 0,
1083	.ssd_def32 = 1,
1084	.ssd_gran = 1		},
1085/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1086{	.ssd_base = 0x0,
1087	.ssd_limit = 0xfffff,
1088	.ssd_type = SDT_MEMRWA,
1089	.ssd_dpl = SEL_UPL,
1090	.ssd_p = 1,
1091	.ssd_long = 0,
1092	.ssd_def32 = 1,
1093	.ssd_gran = 1		},
1094/* GCODE_SEL	4 Code Descriptor for kernel */
1095{	.ssd_base = 0x0,
1096	.ssd_limit = 0xfffff,
1097	.ssd_type = SDT_MEMERA,
1098	.ssd_dpl = SEL_KPL,
1099	.ssd_p = 1,
1100	.ssd_long = 1,
1101	.ssd_def32 = 0,
1102	.ssd_gran = 1		},
1103/* GDATA_SEL	5 Data Descriptor for kernel */
1104{	.ssd_base = 0x0,
1105	.ssd_limit = 0xfffff,
1106	.ssd_type = SDT_MEMRWA,
1107	.ssd_dpl = SEL_KPL,
1108	.ssd_p = 1,
1109	.ssd_long = 1,
1110	.ssd_def32 = 0,
1111	.ssd_gran = 1		},
1112/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1113{	.ssd_base = 0x0,
1114	.ssd_limit = 0xfffff,
1115	.ssd_type = SDT_MEMERA,
1116	.ssd_dpl = SEL_UPL,
1117	.ssd_p = 1,
1118	.ssd_long = 0,
1119	.ssd_def32 = 1,
1120	.ssd_gran = 1		},
1121/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1122{	.ssd_base = 0x0,
1123	.ssd_limit = 0xfffff,
1124	.ssd_type = SDT_MEMRWA,
1125	.ssd_dpl = SEL_UPL,
1126	.ssd_p = 1,
1127	.ssd_long = 0,
1128	.ssd_def32 = 1,
1129	.ssd_gran = 1		},
1130/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1131{	.ssd_base = 0x0,
1132	.ssd_limit = 0xfffff,
1133	.ssd_type = SDT_MEMERA,
1134	.ssd_dpl = SEL_UPL,
1135	.ssd_p = 1,
1136	.ssd_long = 1,
1137	.ssd_def32 = 0,
1138	.ssd_gran = 1		},
1139/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1140{	.ssd_base = 0x0,
1141	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1142	.ssd_type = SDT_SYSTSS,
1143	.ssd_dpl = SEL_KPL,
1144	.ssd_p = 1,
1145	.ssd_long = 0,
1146	.ssd_def32 = 0,
1147	.ssd_gran = 0		},
1148/* Actually, the TSS is a system descriptor which is double size */
1149{	.ssd_base = 0x0,
1150	.ssd_limit = 0x0,
1151	.ssd_type = 0,
1152	.ssd_dpl = 0,
1153	.ssd_p = 0,
1154	.ssd_long = 0,
1155	.ssd_def32 = 0,
1156	.ssd_gran = 0		},
1157/* GUSERLDT_SEL	11 LDT Descriptor */
1158{	.ssd_base = 0x0,
1159	.ssd_limit = 0x0,
1160	.ssd_type = 0,
1161	.ssd_dpl = 0,
1162	.ssd_p = 0,
1163	.ssd_long = 0,
1164	.ssd_def32 = 0,
1165	.ssd_gran = 0		},
1166/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1167{	.ssd_base = 0x0,
1168	.ssd_limit = 0x0,
1169	.ssd_type = 0,
1170	.ssd_dpl = 0,
1171	.ssd_p = 0,
1172	.ssd_long = 0,
1173	.ssd_def32 = 0,
1174	.ssd_gran = 0		},
1175};
1176
1177void
1178setidt(idx, func, typ, dpl, ist)
1179	int idx;
1180	inthand_t *func;
1181	int typ;
1182	int dpl;
1183	int ist;
1184{
1185	struct gate_descriptor *ip;
1186
1187	ip = idt + idx;
1188	ip->gd_looffset = (uintptr_t)func;
1189	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1190	ip->gd_ist = ist;
1191	ip->gd_xx = 0;
1192	ip->gd_type = typ;
1193	ip->gd_dpl = dpl;
1194	ip->gd_p = 1;
1195	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1196}
1197
1198extern inthand_t
1199	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1200	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1201	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1202	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1203	IDTVEC(xmm), IDTVEC(dblfault),
1204#ifdef KDTRACE_HOOKS
1205	IDTVEC(dtrace_ret),
1206#endif
1207#ifdef XENHVM
1208	IDTVEC(xen_intr_upcall),
1209#endif
1210	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1211
1212#ifdef DDB
1213/*
1214 * Display the index and function name of any IDT entries that don't use
1215 * the default 'rsvd' entry point.
1216 */
1217DB_SHOW_COMMAND(idt, db_show_idt)
1218{
1219	struct gate_descriptor *ip;
1220	int idx;
1221	uintptr_t func;
1222
1223	ip = idt;
1224	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1225		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1226		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1227			db_printf("%3d\t", idx);
1228			db_printsym(func, DB_STGY_PROC);
1229			db_printf("\n");
1230		}
1231		ip++;
1232	}
1233}
1234
1235/* Show privileged registers. */
1236DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1237{
1238	struct {
1239		uint16_t limit;
1240		uint64_t base;
1241	} __packed idtr, gdtr;
1242	uint16_t ldt, tr;
1243
1244	__asm __volatile("sidt %0" : "=m" (idtr));
1245	db_printf("idtr\t0x%016lx/%04x\n",
1246	    (u_long)idtr.base, (u_int)idtr.limit);
1247	__asm __volatile("sgdt %0" : "=m" (gdtr));
1248	db_printf("gdtr\t0x%016lx/%04x\n",
1249	    (u_long)gdtr.base, (u_int)gdtr.limit);
1250	__asm __volatile("sldt %0" : "=r" (ldt));
1251	db_printf("ldtr\t0x%04x\n", ldt);
1252	__asm __volatile("str %0" : "=r" (tr));
1253	db_printf("tr\t0x%04x\n", tr);
1254	db_printf("cr0\t0x%016lx\n", rcr0());
1255	db_printf("cr2\t0x%016lx\n", rcr2());
1256	db_printf("cr3\t0x%016lx\n", rcr3());
1257	db_printf("cr4\t0x%016lx\n", rcr4());
1258	db_printf("EFER\t%016lx\n", rdmsr(MSR_EFER));
1259	db_printf("FEATURES_CTL\t%016lx\n", rdmsr(MSR_IA32_FEATURE_CONTROL));
1260	db_printf("DEBUG_CTL\t%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
1261	db_printf("PAT\t%016lx\n", rdmsr(MSR_PAT));
1262	db_printf("GSBASE\t%016lx\n", rdmsr(MSR_GSBASE));
1263}
1264#endif
1265
1266void
1267sdtossd(sd, ssd)
1268	struct user_segment_descriptor *sd;
1269	struct soft_segment_descriptor *ssd;
1270{
1271
1272	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1273	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1274	ssd->ssd_type  = sd->sd_type;
1275	ssd->ssd_dpl   = sd->sd_dpl;
1276	ssd->ssd_p     = sd->sd_p;
1277	ssd->ssd_long  = sd->sd_long;
1278	ssd->ssd_def32 = sd->sd_def32;
1279	ssd->ssd_gran  = sd->sd_gran;
1280}
1281
1282void
1283ssdtosd(ssd, sd)
1284	struct soft_segment_descriptor *ssd;
1285	struct user_segment_descriptor *sd;
1286{
1287
1288	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1289	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1290	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1291	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1292	sd->sd_type  = ssd->ssd_type;
1293	sd->sd_dpl   = ssd->ssd_dpl;
1294	sd->sd_p     = ssd->ssd_p;
1295	sd->sd_long  = ssd->ssd_long;
1296	sd->sd_def32 = ssd->ssd_def32;
1297	sd->sd_gran  = ssd->ssd_gran;
1298}
1299
1300void
1301ssdtosyssd(ssd, sd)
1302	struct soft_segment_descriptor *ssd;
1303	struct system_segment_descriptor *sd;
1304{
1305
1306	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1307	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1308	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1309	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1310	sd->sd_type  = ssd->ssd_type;
1311	sd->sd_dpl   = ssd->ssd_dpl;
1312	sd->sd_p     = ssd->ssd_p;
1313	sd->sd_gran  = ssd->ssd_gran;
1314}
1315
1316#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1317#include <isa/isavar.h>
1318#include <isa/isareg.h>
1319/*
1320 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1321 * and is only suitable for use at probe time.
1322 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1323 * It shouldn't be here.  There should probably be an APIC centric
1324 * implementation in the apic driver code, if at all.
1325 */
1326intrmask_t
1327isa_irq_pending(void)
1328{
1329	u_char irr1;
1330	u_char irr2;
1331
1332	irr1 = inb(IO_ICU1);
1333	irr2 = inb(IO_ICU2);
1334	return ((irr2 << 8) | irr1);
1335}
1336#endif
1337
1338u_int basemem;
1339
1340static int
1341add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
1342    int *physmap_idxp)
1343{
1344	int i, insert_idx, physmap_idx;
1345
1346	physmap_idx = *physmap_idxp;
1347
1348	if (length == 0)
1349		return (1);
1350
1351	/*
1352	 * Find insertion point while checking for overlap.  Start off by
1353	 * assuming the new entry will be added to the end.
1354	 */
1355	insert_idx = physmap_idx + 2;
1356	for (i = 0; i <= physmap_idx; i += 2) {
1357		if (base < physmap[i + 1]) {
1358			if (base + length <= physmap[i]) {
1359				insert_idx = i;
1360				break;
1361			}
1362			if (boothowto & RB_VERBOSE)
1363				printf(
1364		    "Overlapping memory regions, ignoring second region\n");
1365			return (1);
1366		}
1367	}
1368
1369	/* See if we can prepend to the next entry. */
1370	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1371		physmap[insert_idx] = base;
1372		return (1);
1373	}
1374
1375	/* See if we can append to the previous entry. */
1376	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1377		physmap[insert_idx - 1] += length;
1378		return (1);
1379	}
1380
1381	physmap_idx += 2;
1382	*physmap_idxp = physmap_idx;
1383	if (physmap_idx == PHYSMAP_SIZE) {
1384		printf(
1385		"Too many segments in the physical address map, giving up\n");
1386		return (0);
1387	}
1388
1389	/*
1390	 * Move the last 'N' entries down to make room for the new
1391	 * entry if needed.
1392	 */
1393	for (i = physmap_idx; i > insert_idx; i -= 2) {
1394		physmap[i] = physmap[i - 2];
1395		physmap[i + 1] = physmap[i - 1];
1396	}
1397
1398	/* Insert the new entry. */
1399	physmap[insert_idx] = base;
1400	physmap[insert_idx + 1] = base + length;
1401	return (1);
1402}
1403
1404static void
1405add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap,
1406    int *physmap_idx)
1407{
1408	struct bios_smap *smap, *smapend;
1409	u_int32_t smapsize;
1410
1411	/*
1412	 * Memory map from INT 15:E820.
1413	 *
1414	 * subr_module.c says:
1415	 * "Consumer may safely assume that size value precedes data."
1416	 * ie: an int32_t immediately precedes smap.
1417	 */
1418	smapsize = *((u_int32_t *)smapbase - 1);
1419	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1420
1421	for (smap = smapbase; smap < smapend; smap++) {
1422		if (boothowto & RB_VERBOSE)
1423			printf("SMAP type=%02x base=%016lx len=%016lx\n",
1424			    smap->type, smap->base, smap->length);
1425
1426		if (smap->type != SMAP_TYPE_MEMORY)
1427			continue;
1428
1429		if (!add_physmap_entry(smap->base, smap->length, physmap,
1430		    physmap_idx))
1431			break;
1432	}
1433}
1434
1435/*
1436 * Populate the (physmap) array with base/bound pairs describing the
1437 * available physical memory in the system, then test this memory and
1438 * build the phys_avail array describing the actually-available memory.
1439 *
1440 * Total memory size may be set by the kernel environment variable
1441 * hw.physmem or the compile-time define MAXMEM.
1442 *
1443 * XXX first should be vm_paddr_t.
1444 */
1445static void
1446getmemsize(caddr_t kmdp, u_int64_t first)
1447{
1448	int i, physmap_idx, pa_indx, da_indx;
1449	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1450	u_long physmem_start, physmem_tunable, memtest;
1451	pt_entry_t *pte;
1452	struct bios_smap *smapbase;
1453	quad_t dcons_addr, dcons_size;
1454
1455	bzero(physmap, sizeof(physmap));
1456	basemem = 0;
1457	physmap_idx = 0;
1458
1459	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1460	    MODINFO_METADATA | MODINFOMD_SMAP);
1461	if (smapbase == NULL)
1462		panic("No BIOS smap info from loader!");
1463
1464	add_smap_entries(smapbase, physmap, &physmap_idx);
1465
1466	/*
1467	 * Find the 'base memory' segment for SMP
1468	 */
1469	basemem = 0;
1470	for (i = 0; i <= physmap_idx; i += 2) {
1471		if (physmap[i] == 0x00000000) {
1472			basemem = physmap[i + 1] / 1024;
1473			break;
1474		}
1475	}
1476	if (basemem == 0)
1477		panic("BIOS smap did not include a basemem segment!");
1478
1479#ifdef SMP
1480	/* make hole for AP bootstrap code */
1481	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1482#endif
1483
1484	/*
1485	 * Maxmem isn't the "maximum memory", it's one larger than the
1486	 * highest page of the physical address space.  It should be
1487	 * called something like "Maxphyspage".  We may adjust this
1488	 * based on ``hw.physmem'' and the results of the memory test.
1489	 */
1490	Maxmem = atop(physmap[physmap_idx + 1]);
1491
1492#ifdef MAXMEM
1493	Maxmem = MAXMEM / 4;
1494#endif
1495
1496	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1497		Maxmem = atop(physmem_tunable);
1498
1499	/*
1500	 * The boot memory test is disabled by default, as it takes a
1501	 * significant amount of time on large-memory systems, and is
1502	 * unfriendly to virtual machines as it unnecessarily touches all
1503	 * pages.
1504	 *
1505	 * A general name is used as the code may be extended to support
1506	 * additional tests beyond the current "page present" test.
1507	 */
1508	memtest = 0;
1509	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1510
1511	/*
1512	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1513	 * in the system.
1514	 */
1515	if (Maxmem > atop(physmap[physmap_idx + 1]))
1516		Maxmem = atop(physmap[physmap_idx + 1]);
1517
1518	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1519	    (boothowto & RB_VERBOSE))
1520		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1521
1522	/* call pmap initialization to make new kernel address space */
1523	pmap_bootstrap(&first);
1524
1525	/*
1526	 * Size up each available chunk of physical memory.
1527	 *
1528	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1529	 * By default, mask off the first 16 pages unless we appear to be
1530	 * running in a VM.
1531	 */
1532	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1533	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1534	if (physmem_start < PAGE_SIZE)
1535		physmap[0] = PAGE_SIZE;
1536	else if (physmem_start >= physmap[1])
1537		physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1538	else
1539		physmap[0] = round_page(physmem_start);
1540	pa_indx = 0;
1541	da_indx = 1;
1542	phys_avail[pa_indx++] = physmap[0];
1543	phys_avail[pa_indx] = physmap[0];
1544	dump_avail[da_indx] = physmap[0];
1545	pte = CMAP1;
1546
1547	/*
1548	 * Get dcons buffer address
1549	 */
1550	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1551	    getenv_quad("dcons.size", &dcons_size) == 0)
1552		dcons_addr = 0;
1553
1554	/*
1555	 * physmap is in bytes, so when converting to page boundaries,
1556	 * round up the start address and round down the end address.
1557	 */
1558	for (i = 0; i <= physmap_idx; i += 2) {
1559		vm_paddr_t end;
1560
1561		end = ptoa((vm_paddr_t)Maxmem);
1562		if (physmap[i + 1] < end)
1563			end = trunc_page(physmap[i + 1]);
1564		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1565			int tmp, page_bad, full;
1566			int *ptr = (int *)CADDR1;
1567
1568			full = FALSE;
1569			/*
1570			 * block out kernel memory as not available.
1571			 */
1572			if (pa >= (vm_paddr_t)kernphys && pa < first)
1573				goto do_dump_avail;
1574
1575			/*
1576			 * block out dcons buffer
1577			 */
1578			if (dcons_addr > 0
1579			    && pa >= trunc_page(dcons_addr)
1580			    && pa < dcons_addr + dcons_size)
1581				goto do_dump_avail;
1582
1583			page_bad = FALSE;
1584			if (memtest == 0)
1585				goto skip_memtest;
1586
1587			/*
1588			 * map page into kernel: valid, read/write,non-cacheable
1589			 */
1590			*pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
1591			invltlb();
1592
1593			tmp = *(int *)ptr;
1594			/*
1595			 * Test for alternating 1's and 0's
1596			 */
1597			*(volatile int *)ptr = 0xaaaaaaaa;
1598			if (*(volatile int *)ptr != 0xaaaaaaaa)
1599				page_bad = TRUE;
1600			/*
1601			 * Test for alternating 0's and 1's
1602			 */
1603			*(volatile int *)ptr = 0x55555555;
1604			if (*(volatile int *)ptr != 0x55555555)
1605				page_bad = TRUE;
1606			/*
1607			 * Test for all 1's
1608			 */
1609			*(volatile int *)ptr = 0xffffffff;
1610			if (*(volatile int *)ptr != 0xffffffff)
1611				page_bad = TRUE;
1612			/*
1613			 * Test for all 0's
1614			 */
1615			*(volatile int *)ptr = 0x0;
1616			if (*(volatile int *)ptr != 0x0)
1617				page_bad = TRUE;
1618			/*
1619			 * Restore original value.
1620			 */
1621			*(int *)ptr = tmp;
1622
1623skip_memtest:
1624			/*
1625			 * Adjust array of valid/good pages.
1626			 */
1627			if (page_bad == TRUE)
1628				continue;
1629			/*
1630			 * If this good page is a continuation of the
1631			 * previous set of good pages, then just increase
1632			 * the end pointer. Otherwise start a new chunk.
1633			 * Note that "end" points one higher than end,
1634			 * making the range >= start and < end.
1635			 * If we're also doing a speculative memory
1636			 * test and we at or past the end, bump up Maxmem
1637			 * so that we keep going. The first bad page
1638			 * will terminate the loop.
1639			 */
1640			if (phys_avail[pa_indx] == pa) {
1641				phys_avail[pa_indx] += PAGE_SIZE;
1642			} else {
1643				pa_indx++;
1644				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1645					printf(
1646		"Too many holes in the physical address space, giving up\n");
1647					pa_indx--;
1648					full = TRUE;
1649					goto do_dump_avail;
1650				}
1651				phys_avail[pa_indx++] = pa;	/* start */
1652				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1653			}
1654			physmem++;
1655do_dump_avail:
1656			if (dump_avail[da_indx] == pa) {
1657				dump_avail[da_indx] += PAGE_SIZE;
1658			} else {
1659				da_indx++;
1660				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1661					da_indx--;
1662					goto do_next;
1663				}
1664				dump_avail[da_indx++] = pa; /* start */
1665				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1666			}
1667do_next:
1668			if (full)
1669				break;
1670		}
1671	}
1672	*pte = 0;
1673	invltlb();
1674
1675	/*
1676	 * XXX
1677	 * The last chunk must contain at least one page plus the message
1678	 * buffer to avoid complicating other code (message buffer address
1679	 * calculation, etc.).
1680	 */
1681	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1682	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1683		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1684		phys_avail[pa_indx--] = 0;
1685		phys_avail[pa_indx--] = 0;
1686	}
1687
1688	Maxmem = atop(phys_avail[pa_indx]);
1689
1690	/* Trim off space for the message buffer. */
1691	phys_avail[pa_indx] -= round_page(msgbufsize);
1692
1693	/* Map the message buffer. */
1694	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1695}
1696
1697static caddr_t
1698native_parse_preload_data(u_int64_t modulep)
1699{
1700	caddr_t kmdp;
1701
1702	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1703	preload_bootstrap_relocate(KERNBASE);
1704	kmdp = preload_search_by_type("elf kernel");
1705	if (kmdp == NULL)
1706		kmdp = preload_search_by_type("elf64 kernel");
1707	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1708	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1709#ifdef DDB
1710	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1711	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1712#endif
1713
1714	return (kmdp);
1715}
1716
1717u_int64_t
1718hammer_time(u_int64_t modulep, u_int64_t physfree)
1719{
1720	caddr_t kmdp;
1721	int gsel_tss, x;
1722	struct pcpu *pc;
1723	struct nmi_pcpu *np;
1724	struct xstate_hdr *xhdr;
1725	u_int64_t msr;
1726	char *env;
1727	size_t kstack0_sz;
1728
1729	thread0.td_kstack = physfree + KERNBASE;
1730	thread0.td_kstack_pages = KSTACK_PAGES;
1731	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1732	bzero((void *)thread0.td_kstack, kstack0_sz);
1733	physfree += kstack0_sz;
1734
1735	/*
1736 	 * This may be done better later if it gets more high level
1737 	 * components in it. If so just link td->td_proc here.
1738	 */
1739	proc_linkup0(&proc0, &thread0);
1740
1741	kmdp = init_ops.parse_preload_data(modulep);
1742
1743	/* Init basic tunables, hz etc */
1744	init_param1();
1745
1746	/*
1747	 * make gdt memory segments
1748	 */
1749	for (x = 0; x < NGDT; x++) {
1750		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1751		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1752			ssdtosd(&gdt_segs[x], &gdt[x]);
1753	}
1754	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1755	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1756	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1757
1758	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1759	r_gdt.rd_base =  (long) gdt;
1760	lgdt(&r_gdt);
1761	pc = &__pcpu[0];
1762
1763	wrmsr(MSR_FSBASE, 0);		/* User value */
1764	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1765	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1766
1767	pcpu_init(pc, 0, sizeof(struct pcpu));
1768	dpcpu_init((void *)(physfree + KERNBASE), 0);
1769	physfree += DPCPU_SIZE;
1770	PCPU_SET(prvspace, pc);
1771	PCPU_SET(curthread, &thread0);
1772	PCPU_SET(tssp, &common_tss[0]);
1773	PCPU_SET(commontssp, &common_tss[0]);
1774	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1775	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1776	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1777	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1778
1779	/*
1780	 * Initialize mutexes.
1781	 *
1782	 * icu_lock: in order to allow an interrupt to occur in a critical
1783	 * 	     section, to set pcpu->ipending (etc...) properly, we
1784	 *	     must be able to get the icu lock, so it can't be
1785	 *	     under witness.
1786	 */
1787	mutex_init();
1788	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1789	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1790
1791	/* exceptions */
1792	for (x = 0; x < NIDT; x++)
1793		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1794	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1795	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1796	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1797 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1798	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1799	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1800	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1801	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1802	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1803	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1804	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1805	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1806	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1807	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1808	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1809	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1810	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1811	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1812	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1813#ifdef KDTRACE_HOOKS
1814	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1815#endif
1816#ifdef XENHVM
1817	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
1818#endif
1819
1820	r_idt.rd_limit = sizeof(idt0) - 1;
1821	r_idt.rd_base = (long) idt;
1822	lidt(&r_idt);
1823
1824	/*
1825	 * Initialize the i8254 before the console so that console
1826	 * initialization can use DELAY().
1827	 */
1828	i8254_init();
1829
1830	/*
1831	 * Initialize the console before we print anything out.
1832	 */
1833	cninit();
1834
1835#ifdef DEV_ISA
1836#ifdef DEV_ATPIC
1837	elcr_probe();
1838	atpic_startup();
1839#else
1840	/* Reset and mask the atpics and leave them shut down. */
1841	atpic_reset();
1842
1843	/*
1844	 * Point the ICU spurious interrupt vectors at the APIC spurious
1845	 * interrupt handler.
1846	 */
1847	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1848	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1849#endif
1850#else
1851#error "have you forgotten the isa device?";
1852#endif
1853
1854	kdb_init();
1855
1856#ifdef KDB
1857	if (boothowto & RB_KDB)
1858		kdb_enter(KDB_WHY_BOOTFLAGS,
1859		    "Boot flags requested debugger");
1860#endif
1861
1862	identify_cpu();		/* Final stage of CPU initialization */
1863	initializecpu();	/* Initialize CPU registers */
1864	initializecpucache();
1865
1866	/* doublefault stack space, runs on ist1 */
1867	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1868
1869	/*
1870	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1871	 * above the start of the ist2 stack.
1872	 */
1873	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1874	np->np_pcpu = (register_t) pc;
1875	common_tss[0].tss_ist2 = (long) np;
1876
1877	/* Set the IO permission bitmap (empty due to tss seg limit) */
1878	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1879	    IOPAGES * PAGE_SIZE;
1880
1881	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1882	ltr(gsel_tss);
1883
1884	/* Set up the fast syscall stuff */
1885	msr = rdmsr(MSR_EFER) | EFER_SCE;
1886	wrmsr(MSR_EFER, msr);
1887	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1888	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1889	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1890	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1891	wrmsr(MSR_STAR, msr);
1892	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1893
1894	getmemsize(kmdp, physfree);
1895	init_param2(physmem);
1896
1897	/* now running on new page tables, configured,and u/iom is accessible */
1898
1899	msgbufinit(msgbufp, msgbufsize);
1900	fpuinit();
1901
1902	/*
1903	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
1904	 * area size.  Zero out the extended state header in fpu save
1905	 * area.
1906	 */
1907	thread0.td_pcb = get_pcb_td(&thread0);
1908	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1909	if (use_xsave) {
1910		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1911		    1);
1912		xhdr->xstate_bv = xsave_mask;
1913	}
1914	/* make an initial tss so cpu can get interrupt stack on syscall! */
1915	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
1916	/* Ensure the stack is aligned to 16 bytes */
1917	common_tss[0].tss_rsp0 &= ~0xFul;
1918	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1919	PCPU_SET(curpcb, thread0.td_pcb);
1920
1921	/* transfer to user mode */
1922
1923	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1924	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1925	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1926	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1927	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1928
1929	load_ds(_udatasel);
1930	load_es(_udatasel);
1931	load_fs(_ufssel);
1932
1933	/* setup proc 0's pcb */
1934	thread0.td_pcb->pcb_flags = 0;
1935	thread0.td_pcb->pcb_cr3 = KPML4phys; /* PCID 0 is reserved for kernel */
1936	thread0.td_frame = &proc0_tf;
1937
1938        env = getenv("kernelname");
1939	if (env != NULL)
1940		strlcpy(kernelname, env, sizeof(kernelname));
1941
1942	cpu_probe_amdc1e();
1943
1944#ifdef FDT
1945	x86_init_fdt();
1946#endif
1947
1948	/* Location of kernel stack for locore */
1949	return ((u_int64_t)thread0.td_pcb);
1950}
1951
1952void
1953cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1954{
1955
1956	pcpu->pc_acpi_id = 0xffffffff;
1957}
1958
1959void
1960spinlock_enter(void)
1961{
1962	struct thread *td;
1963	register_t flags;
1964
1965	td = curthread;
1966	if (td->td_md.md_spinlock_count == 0) {
1967		flags = intr_disable();
1968		td->td_md.md_spinlock_count = 1;
1969		td->td_md.md_saved_flags = flags;
1970	} else
1971		td->td_md.md_spinlock_count++;
1972	critical_enter();
1973}
1974
1975void
1976spinlock_exit(void)
1977{
1978	struct thread *td;
1979	register_t flags;
1980
1981	td = curthread;
1982	critical_exit();
1983	flags = td->td_md.md_saved_flags;
1984	td->td_md.md_spinlock_count--;
1985	if (td->td_md.md_spinlock_count == 0)
1986		intr_restore(flags);
1987}
1988
1989/*
1990 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1991 * we want to start a backtrace from the function that caused us to enter
1992 * the debugger. We have the context in the trapframe, but base the trace
1993 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1994 * enough for a backtrace.
1995 */
1996void
1997makectx(struct trapframe *tf, struct pcb *pcb)
1998{
1999
2000	pcb->pcb_r12 = tf->tf_r12;
2001	pcb->pcb_r13 = tf->tf_r13;
2002	pcb->pcb_r14 = tf->tf_r14;
2003	pcb->pcb_r15 = tf->tf_r15;
2004	pcb->pcb_rbp = tf->tf_rbp;
2005	pcb->pcb_rbx = tf->tf_rbx;
2006	pcb->pcb_rip = tf->tf_rip;
2007	pcb->pcb_rsp = tf->tf_rsp;
2008}
2009
2010int
2011ptrace_set_pc(struct thread *td, unsigned long addr)
2012{
2013	td->td_frame->tf_rip = addr;
2014	return (0);
2015}
2016
2017int
2018ptrace_single_step(struct thread *td)
2019{
2020	td->td_frame->tf_rflags |= PSL_T;
2021	return (0);
2022}
2023
2024int
2025ptrace_clear_single_step(struct thread *td)
2026{
2027	td->td_frame->tf_rflags &= ~PSL_T;
2028	return (0);
2029}
2030
2031int
2032fill_regs(struct thread *td, struct reg *regs)
2033{
2034	struct trapframe *tp;
2035
2036	tp = td->td_frame;
2037	return (fill_frame_regs(tp, regs));
2038}
2039
2040int
2041fill_frame_regs(struct trapframe *tp, struct reg *regs)
2042{
2043	regs->r_r15 = tp->tf_r15;
2044	regs->r_r14 = tp->tf_r14;
2045	regs->r_r13 = tp->tf_r13;
2046	regs->r_r12 = tp->tf_r12;
2047	regs->r_r11 = tp->tf_r11;
2048	regs->r_r10 = tp->tf_r10;
2049	regs->r_r9  = tp->tf_r9;
2050	regs->r_r8  = tp->tf_r8;
2051	regs->r_rdi = tp->tf_rdi;
2052	regs->r_rsi = tp->tf_rsi;
2053	regs->r_rbp = tp->tf_rbp;
2054	regs->r_rbx = tp->tf_rbx;
2055	regs->r_rdx = tp->tf_rdx;
2056	regs->r_rcx = tp->tf_rcx;
2057	regs->r_rax = tp->tf_rax;
2058	regs->r_rip = tp->tf_rip;
2059	regs->r_cs = tp->tf_cs;
2060	regs->r_rflags = tp->tf_rflags;
2061	regs->r_rsp = tp->tf_rsp;
2062	regs->r_ss = tp->tf_ss;
2063	if (tp->tf_flags & TF_HASSEGS) {
2064		regs->r_ds = tp->tf_ds;
2065		regs->r_es = tp->tf_es;
2066		regs->r_fs = tp->tf_fs;
2067		regs->r_gs = tp->tf_gs;
2068	} else {
2069		regs->r_ds = 0;
2070		regs->r_es = 0;
2071		regs->r_fs = 0;
2072		regs->r_gs = 0;
2073	}
2074	return (0);
2075}
2076
2077int
2078set_regs(struct thread *td, struct reg *regs)
2079{
2080	struct trapframe *tp;
2081	register_t rflags;
2082
2083	tp = td->td_frame;
2084	rflags = regs->r_rflags & 0xffffffff;
2085	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
2086		return (EINVAL);
2087	tp->tf_r15 = regs->r_r15;
2088	tp->tf_r14 = regs->r_r14;
2089	tp->tf_r13 = regs->r_r13;
2090	tp->tf_r12 = regs->r_r12;
2091	tp->tf_r11 = regs->r_r11;
2092	tp->tf_r10 = regs->r_r10;
2093	tp->tf_r9  = regs->r_r9;
2094	tp->tf_r8  = regs->r_r8;
2095	tp->tf_rdi = regs->r_rdi;
2096	tp->tf_rsi = regs->r_rsi;
2097	tp->tf_rbp = regs->r_rbp;
2098	tp->tf_rbx = regs->r_rbx;
2099	tp->tf_rdx = regs->r_rdx;
2100	tp->tf_rcx = regs->r_rcx;
2101	tp->tf_rax = regs->r_rax;
2102	tp->tf_rip = regs->r_rip;
2103	tp->tf_cs = regs->r_cs;
2104	tp->tf_rflags = rflags;
2105	tp->tf_rsp = regs->r_rsp;
2106	tp->tf_ss = regs->r_ss;
2107	if (0) {	/* XXXKIB */
2108		tp->tf_ds = regs->r_ds;
2109		tp->tf_es = regs->r_es;
2110		tp->tf_fs = regs->r_fs;
2111		tp->tf_gs = regs->r_gs;
2112		tp->tf_flags = TF_HASSEGS;
2113		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2114	}
2115	return (0);
2116}
2117
2118/* XXX check all this stuff! */
2119/* externalize from sv_xmm */
2120static void
2121fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
2122{
2123	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2124	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2125	int i;
2126
2127	/* pcb -> fpregs */
2128	bzero(fpregs, sizeof(*fpregs));
2129
2130	/* FPU control/status */
2131	penv_fpreg->en_cw = penv_xmm->en_cw;
2132	penv_fpreg->en_sw = penv_xmm->en_sw;
2133	penv_fpreg->en_tw = penv_xmm->en_tw;
2134	penv_fpreg->en_opcode = penv_xmm->en_opcode;
2135	penv_fpreg->en_rip = penv_xmm->en_rip;
2136	penv_fpreg->en_rdp = penv_xmm->en_rdp;
2137	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
2138	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
2139
2140	/* FPU registers */
2141	for (i = 0; i < 8; ++i)
2142		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2143
2144	/* SSE registers */
2145	for (i = 0; i < 16; ++i)
2146		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2147}
2148
2149/* internalize from fpregs into sv_xmm */
2150static void
2151set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2152{
2153	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2154	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2155	int i;
2156
2157	/* fpregs -> pcb */
2158	/* FPU control/status */
2159	penv_xmm->en_cw = penv_fpreg->en_cw;
2160	penv_xmm->en_sw = penv_fpreg->en_sw;
2161	penv_xmm->en_tw = penv_fpreg->en_tw;
2162	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2163	penv_xmm->en_rip = penv_fpreg->en_rip;
2164	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2165	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2166	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2167
2168	/* FPU registers */
2169	for (i = 0; i < 8; ++i)
2170		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2171
2172	/* SSE registers */
2173	for (i = 0; i < 16; ++i)
2174		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2175}
2176
2177/* externalize from td->pcb */
2178int
2179fill_fpregs(struct thread *td, struct fpreg *fpregs)
2180{
2181
2182	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2183	    P_SHOULDSTOP(td->td_proc),
2184	    ("not suspended thread %p", td));
2185	fpugetregs(td);
2186	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2187	return (0);
2188}
2189
2190/* internalize to td->pcb */
2191int
2192set_fpregs(struct thread *td, struct fpreg *fpregs)
2193{
2194
2195	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2196	fpuuserinited(td);
2197	return (0);
2198}
2199
2200/*
2201 * Get machine context.
2202 */
2203int
2204get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2205{
2206	struct pcb *pcb;
2207	struct trapframe *tp;
2208
2209	pcb = td->td_pcb;
2210	tp = td->td_frame;
2211	PROC_LOCK(curthread->td_proc);
2212	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2213	PROC_UNLOCK(curthread->td_proc);
2214	mcp->mc_r15 = tp->tf_r15;
2215	mcp->mc_r14 = tp->tf_r14;
2216	mcp->mc_r13 = tp->tf_r13;
2217	mcp->mc_r12 = tp->tf_r12;
2218	mcp->mc_r11 = tp->tf_r11;
2219	mcp->mc_r10 = tp->tf_r10;
2220	mcp->mc_r9  = tp->tf_r9;
2221	mcp->mc_r8  = tp->tf_r8;
2222	mcp->mc_rdi = tp->tf_rdi;
2223	mcp->mc_rsi = tp->tf_rsi;
2224	mcp->mc_rbp = tp->tf_rbp;
2225	mcp->mc_rbx = tp->tf_rbx;
2226	mcp->mc_rcx = tp->tf_rcx;
2227	mcp->mc_rflags = tp->tf_rflags;
2228	if (flags & GET_MC_CLEAR_RET) {
2229		mcp->mc_rax = 0;
2230		mcp->mc_rdx = 0;
2231		mcp->mc_rflags &= ~PSL_C;
2232	} else {
2233		mcp->mc_rax = tp->tf_rax;
2234		mcp->mc_rdx = tp->tf_rdx;
2235	}
2236	mcp->mc_rip = tp->tf_rip;
2237	mcp->mc_cs = tp->tf_cs;
2238	mcp->mc_rsp = tp->tf_rsp;
2239	mcp->mc_ss = tp->tf_ss;
2240	mcp->mc_ds = tp->tf_ds;
2241	mcp->mc_es = tp->tf_es;
2242	mcp->mc_fs = tp->tf_fs;
2243	mcp->mc_gs = tp->tf_gs;
2244	mcp->mc_flags = tp->tf_flags;
2245	mcp->mc_len = sizeof(*mcp);
2246	get_fpcontext(td, mcp, NULL, 0);
2247	mcp->mc_fsbase = pcb->pcb_fsbase;
2248	mcp->mc_gsbase = pcb->pcb_gsbase;
2249	mcp->mc_xfpustate = 0;
2250	mcp->mc_xfpustate_len = 0;
2251	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2252	return (0);
2253}
2254
2255/*
2256 * Set machine context.
2257 *
2258 * However, we don't set any but the user modifiable flags, and we won't
2259 * touch the cs selector.
2260 */
2261int
2262set_mcontext(struct thread *td, const mcontext_t *mcp)
2263{
2264	struct pcb *pcb;
2265	struct trapframe *tp;
2266	char *xfpustate;
2267	long rflags;
2268	int ret;
2269
2270	pcb = td->td_pcb;
2271	tp = td->td_frame;
2272	if (mcp->mc_len != sizeof(*mcp) ||
2273	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2274		return (EINVAL);
2275	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2276	    (tp->tf_rflags & ~PSL_USERCHANGE);
2277	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2278		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2279		    sizeof(struct savefpu))
2280			return (EINVAL);
2281		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2282		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2283		    mcp->mc_xfpustate_len);
2284		if (ret != 0)
2285			return (ret);
2286	} else
2287		xfpustate = NULL;
2288	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2289	if (ret != 0)
2290		return (ret);
2291	tp->tf_r15 = mcp->mc_r15;
2292	tp->tf_r14 = mcp->mc_r14;
2293	tp->tf_r13 = mcp->mc_r13;
2294	tp->tf_r12 = mcp->mc_r12;
2295	tp->tf_r11 = mcp->mc_r11;
2296	tp->tf_r10 = mcp->mc_r10;
2297	tp->tf_r9  = mcp->mc_r9;
2298	tp->tf_r8  = mcp->mc_r8;
2299	tp->tf_rdi = mcp->mc_rdi;
2300	tp->tf_rsi = mcp->mc_rsi;
2301	tp->tf_rbp = mcp->mc_rbp;
2302	tp->tf_rbx = mcp->mc_rbx;
2303	tp->tf_rdx = mcp->mc_rdx;
2304	tp->tf_rcx = mcp->mc_rcx;
2305	tp->tf_rax = mcp->mc_rax;
2306	tp->tf_rip = mcp->mc_rip;
2307	tp->tf_rflags = rflags;
2308	tp->tf_rsp = mcp->mc_rsp;
2309	tp->tf_ss = mcp->mc_ss;
2310	tp->tf_flags = mcp->mc_flags;
2311	if (tp->tf_flags & TF_HASSEGS) {
2312		tp->tf_ds = mcp->mc_ds;
2313		tp->tf_es = mcp->mc_es;
2314		tp->tf_fs = mcp->mc_fs;
2315		tp->tf_gs = mcp->mc_gs;
2316	}
2317	if (mcp->mc_flags & _MC_HASBASES) {
2318		pcb->pcb_fsbase = mcp->mc_fsbase;
2319		pcb->pcb_gsbase = mcp->mc_gsbase;
2320	}
2321	set_pcb_flags(pcb, PCB_FULL_IRET);
2322	return (0);
2323}
2324
2325static void
2326get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2327    size_t xfpusave_len)
2328{
2329	size_t max_len, len;
2330
2331	mcp->mc_ownedfp = fpugetregs(td);
2332	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2333	    sizeof(mcp->mc_fpstate));
2334	mcp->mc_fpformat = fpuformat();
2335	if (!use_xsave || xfpusave_len == 0)
2336		return;
2337	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2338	len = xfpusave_len;
2339	if (len > max_len) {
2340		len = max_len;
2341		bzero(xfpusave + max_len, len - max_len);
2342	}
2343	mcp->mc_flags |= _MC_HASFPXSTATE;
2344	mcp->mc_xfpustate_len = len;
2345	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2346}
2347
2348static int
2349set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate,
2350    size_t xfpustate_len)
2351{
2352	struct savefpu *fpstate;
2353	int error;
2354
2355	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2356		return (0);
2357	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2358		return (EINVAL);
2359	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2360		/* We don't care what state is left in the FPU or PCB. */
2361		fpstate_drop(td);
2362		error = 0;
2363	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2364	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2365		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2366		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2367		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2368	} else
2369		return (EINVAL);
2370	return (error);
2371}
2372
2373void
2374fpstate_drop(struct thread *td)
2375{
2376
2377	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2378	critical_enter();
2379	if (PCPU_GET(fpcurthread) == td)
2380		fpudrop();
2381	/*
2382	 * XXX force a full drop of the fpu.  The above only drops it if we
2383	 * owned it.
2384	 *
2385	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2386	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2387	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2388	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2389	 * have too many layers.
2390	 */
2391	clear_pcb_flags(curthread->td_pcb,
2392	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2393	critical_exit();
2394}
2395
2396int
2397fill_dbregs(struct thread *td, struct dbreg *dbregs)
2398{
2399	struct pcb *pcb;
2400
2401	if (td == NULL) {
2402		dbregs->dr[0] = rdr0();
2403		dbregs->dr[1] = rdr1();
2404		dbregs->dr[2] = rdr2();
2405		dbregs->dr[3] = rdr3();
2406		dbregs->dr[6] = rdr6();
2407		dbregs->dr[7] = rdr7();
2408	} else {
2409		pcb = td->td_pcb;
2410		dbregs->dr[0] = pcb->pcb_dr0;
2411		dbregs->dr[1] = pcb->pcb_dr1;
2412		dbregs->dr[2] = pcb->pcb_dr2;
2413		dbregs->dr[3] = pcb->pcb_dr3;
2414		dbregs->dr[6] = pcb->pcb_dr6;
2415		dbregs->dr[7] = pcb->pcb_dr7;
2416	}
2417	dbregs->dr[4] = 0;
2418	dbregs->dr[5] = 0;
2419	dbregs->dr[8] = 0;
2420	dbregs->dr[9] = 0;
2421	dbregs->dr[10] = 0;
2422	dbregs->dr[11] = 0;
2423	dbregs->dr[12] = 0;
2424	dbregs->dr[13] = 0;
2425	dbregs->dr[14] = 0;
2426	dbregs->dr[15] = 0;
2427	return (0);
2428}
2429
2430int
2431set_dbregs(struct thread *td, struct dbreg *dbregs)
2432{
2433	struct pcb *pcb;
2434	int i;
2435
2436	if (td == NULL) {
2437		load_dr0(dbregs->dr[0]);
2438		load_dr1(dbregs->dr[1]);
2439		load_dr2(dbregs->dr[2]);
2440		load_dr3(dbregs->dr[3]);
2441		load_dr6(dbregs->dr[6]);
2442		load_dr7(dbregs->dr[7]);
2443	} else {
2444		/*
2445		 * Don't let an illegal value for dr7 get set.  Specifically,
2446		 * check for undefined settings.  Setting these bit patterns
2447		 * result in undefined behaviour and can lead to an unexpected
2448		 * TRCTRAP or a general protection fault right here.
2449		 * Upper bits of dr6 and dr7 must not be set
2450		 */
2451		for (i = 0; i < 4; i++) {
2452			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2453				return (EINVAL);
2454			if (td->td_frame->tf_cs == _ucode32sel &&
2455			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2456				return (EINVAL);
2457		}
2458		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2459		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2460			return (EINVAL);
2461
2462		pcb = td->td_pcb;
2463
2464		/*
2465		 * Don't let a process set a breakpoint that is not within the
2466		 * process's address space.  If a process could do this, it
2467		 * could halt the system by setting a breakpoint in the kernel
2468		 * (if ddb was enabled).  Thus, we need to check to make sure
2469		 * that no breakpoints are being enabled for addresses outside
2470		 * process's address space.
2471		 *
2472		 * XXX - what about when the watched area of the user's
2473		 * address space is written into from within the kernel
2474		 * ... wouldn't that still cause a breakpoint to be generated
2475		 * from within kernel mode?
2476		 */
2477
2478		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2479			/* dr0 is enabled */
2480			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2481				return (EINVAL);
2482		}
2483		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2484			/* dr1 is enabled */
2485			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2486				return (EINVAL);
2487		}
2488		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2489			/* dr2 is enabled */
2490			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2491				return (EINVAL);
2492		}
2493		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2494			/* dr3 is enabled */
2495			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2496				return (EINVAL);
2497		}
2498
2499		pcb->pcb_dr0 = dbregs->dr[0];
2500		pcb->pcb_dr1 = dbregs->dr[1];
2501		pcb->pcb_dr2 = dbregs->dr[2];
2502		pcb->pcb_dr3 = dbregs->dr[3];
2503		pcb->pcb_dr6 = dbregs->dr[6];
2504		pcb->pcb_dr7 = dbregs->dr[7];
2505
2506		set_pcb_flags(pcb, PCB_DBREGS);
2507	}
2508
2509	return (0);
2510}
2511
2512void
2513reset_dbregs(void)
2514{
2515
2516	load_dr7(0);	/* Turn off the control bits first */
2517	load_dr0(0);
2518	load_dr1(0);
2519	load_dr2(0);
2520	load_dr3(0);
2521	load_dr6(0);
2522}
2523
2524/*
2525 * Return > 0 if a hardware breakpoint has been hit, and the
2526 * breakpoint was in user space.  Return 0, otherwise.
2527 */
2528int
2529user_dbreg_trap(void)
2530{
2531        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2532        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2533        int nbp;            /* number of breakpoints that triggered */
2534        caddr_t addr[4];    /* breakpoint addresses */
2535        int i;
2536
2537        dr7 = rdr7();
2538        if ((dr7 & 0x000000ff) == 0) {
2539                /*
2540                 * all GE and LE bits in the dr7 register are zero,
2541                 * thus the trap couldn't have been caused by the
2542                 * hardware debug registers
2543                 */
2544                return 0;
2545        }
2546
2547        nbp = 0;
2548        dr6 = rdr6();
2549        bp = dr6 & 0x0000000f;
2550
2551        if (!bp) {
2552                /*
2553                 * None of the breakpoint bits are set meaning this
2554                 * trap was not caused by any of the debug registers
2555                 */
2556                return 0;
2557        }
2558
2559        /*
2560         * at least one of the breakpoints were hit, check to see
2561         * which ones and if any of them are user space addresses
2562         */
2563
2564        if (bp & 0x01) {
2565                addr[nbp++] = (caddr_t)rdr0();
2566        }
2567        if (bp & 0x02) {
2568                addr[nbp++] = (caddr_t)rdr1();
2569        }
2570        if (bp & 0x04) {
2571                addr[nbp++] = (caddr_t)rdr2();
2572        }
2573        if (bp & 0x08) {
2574                addr[nbp++] = (caddr_t)rdr3();
2575        }
2576
2577        for (i = 0; i < nbp; i++) {
2578                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2579                        /*
2580                         * addr[i] is in user space
2581                         */
2582                        return nbp;
2583                }
2584        }
2585
2586        /*
2587         * None of the breakpoints are in user space.
2588         */
2589        return 0;
2590}
2591
2592#ifdef KDB
2593
2594/*
2595 * Provide inb() and outb() as functions.  They are normally only available as
2596 * inline functions, thus cannot be called from the debugger.
2597 */
2598
2599/* silence compiler warnings */
2600u_char inb_(u_short);
2601void outb_(u_short, u_char);
2602
2603u_char
2604inb_(u_short port)
2605{
2606	return inb(port);
2607}
2608
2609void
2610outb_(u_short port, u_char data)
2611{
2612	outb(port, data);
2613}
2614
2615#endif /* KDB */
2616