machdep.c revision 251039
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 251039 2013-05-27 18:39:39Z kib $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_perfmon.h"
56#include "opt_platform.h"
57#include "opt_sched.h"
58#include "opt_kdtrace.h"
59
60#include <sys/param.h>
61#include <sys/proc.h>
62#include <sys/systm.h>
63#include <sys/bio.h>
64#include <sys/buf.h>
65#include <sys/bus.h>
66#include <sys/callout.h>
67#include <sys/cons.h>
68#include <sys/cpu.h>
69#include <sys/eventhandler.h>
70#include <sys/exec.h>
71#include <sys/imgact.h>
72#include <sys/kdb.h>
73#include <sys/kernel.h>
74#include <sys/ktr.h>
75#include <sys/linker.h>
76#include <sys/lock.h>
77#include <sys/malloc.h>
78#include <sys/memrange.h>
79#include <sys/msgbuf.h>
80#include <sys/mutex.h>
81#include <sys/pcpu.h>
82#include <sys/ptrace.h>
83#include <sys/reboot.h>
84#include <sys/rwlock.h>
85#include <sys/sched.h>
86#include <sys/signalvar.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90#include <sys/syscallsubr.h>
91#include <sys/sysctl.h>
92#include <sys/sysent.h>
93#include <sys/sysproto.h>
94#include <sys/ucontext.h>
95#include <sys/vmmeter.h>
96
97#include <vm/vm.h>
98#include <vm/vm_extern.h>
99#include <vm/vm_kern.h>
100#include <vm/vm_page.h>
101#include <vm/vm_map.h>
102#include <vm/vm_object.h>
103#include <vm/vm_pager.h>
104#include <vm/vm_param.h>
105
106#ifdef DDB
107#ifndef KDB
108#error KDB must be enabled in order for DDB to work!
109#endif
110#include <ddb/ddb.h>
111#include <ddb/db_sym.h>
112#endif
113
114#include <net/netisr.h>
115
116#include <machine/clock.h>
117#include <machine/cpu.h>
118#include <machine/cputypes.h>
119#include <machine/intr_machdep.h>
120#include <x86/mca.h>
121#include <machine/md_var.h>
122#include <machine/metadata.h>
123#include <machine/mp_watchdog.h>
124#include <machine/pc/bios.h>
125#include <machine/pcb.h>
126#include <machine/proc.h>
127#include <machine/reg.h>
128#include <machine/sigframe.h>
129#include <machine/specialreg.h>
130#ifdef PERFMON
131#include <machine/perfmon.h>
132#endif
133#include <machine/tss.h>
134#ifdef SMP
135#include <machine/smp.h>
136#endif
137#ifdef FDT
138#include <x86/fdt.h>
139#endif
140
141#ifdef DEV_ATPIC
142#include <x86/isa/icu.h>
143#else
144#include <machine/apicvar.h>
145#endif
146
147#include <isa/isareg.h>
148#include <isa/rtc.h>
149
150/* Sanity check for __curthread() */
151CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
152
153extern u_int64_t hammer_time(u_int64_t, u_int64_t);
154
155extern void printcpuinfo(void);	/* XXX header file */
156extern void identify_cpu(void);
157extern void panicifcpuunsupported(void);
158
159#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
160#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
161
162static void cpu_startup(void *);
163static void get_fpcontext(struct thread *td, mcontext_t *mcp,
164    char *xfpusave, size_t xfpusave_len);
165static int  set_fpcontext(struct thread *td, const mcontext_t *mcp,
166    char *xfpustate, size_t xfpustate_len);
167SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
168
169/*
170 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
171 * the physical address at which the kernel is loaded.
172 */
173extern char kernphys[];
174#ifdef DDB
175extern vm_offset_t ksym_start, ksym_end;
176#endif
177
178struct msgbuf *msgbufp;
179
180/* Intel ICH registers */
181#define ICH_PMBASE	0x400
182#define ICH_SMI_EN	ICH_PMBASE + 0x30
183
184int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
185
186int cold = 1;
187
188long Maxmem = 0;
189long realmem = 0;
190
191/*
192 * The number of PHYSMAP entries must be one less than the number of
193 * PHYSSEG entries because the PHYSMAP entry that spans the largest
194 * physical address that is accessible by ISA DMA is split into two
195 * PHYSSEG entries.
196 */
197#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
198
199vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
200vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
201
202/* must be 2 less so 0 0 can signal end of chunks */
203#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
204#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
205
206struct kva_md_info kmi;
207
208static struct trapframe proc0_tf;
209struct region_descriptor r_gdt, r_idt;
210
211struct pcpu __pcpu[MAXCPU];
212
213struct mtx icu_lock;
214
215struct mem_range_softc mem_range_softc;
216
217struct mtx dt_lock;	/* lock for GDT and LDT */
218
219static void
220cpu_startup(dummy)
221	void *dummy;
222{
223	uintmax_t memsize;
224	char *sysenv;
225
226	/*
227	 * On MacBooks, we need to disallow the legacy USB circuit to
228	 * generate an SMI# because this can cause several problems,
229	 * namely: incorrect CPU frequency detection and failure to
230	 * start the APs.
231	 * We do this by disabling a bit in the SMI_EN (SMI Control and
232	 * Enable register) of the Intel ICH LPC Interface Bridge.
233	 */
234	sysenv = getenv("smbios.system.product");
235	if (sysenv != NULL) {
236		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
237		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
238		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
239		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
240		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
241		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
242			if (bootverbose)
243				printf("Disabling LEGACY_USB_EN bit on "
244				    "Intel ICH.\n");
245			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
246		}
247		freeenv(sysenv);
248	}
249
250	/*
251	 * Good {morning,afternoon,evening,night}.
252	 */
253	startrtclock();
254	printcpuinfo();
255	panicifcpuunsupported();
256#ifdef PERFMON
257	perfmon_init();
258#endif
259	realmem = Maxmem;
260
261	/*
262	 * Display physical memory if SMBIOS reports reasonable amount.
263	 */
264	memsize = 0;
265	sysenv = getenv("smbios.memory.enabled");
266	if (sysenv != NULL) {
267		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
268		freeenv(sysenv);
269	}
270	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
271		memsize = ptoa((uintmax_t)Maxmem);
272	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
273
274	/*
275	 * Display any holes after the first chunk of extended memory.
276	 */
277	if (bootverbose) {
278		int indx;
279
280		printf("Physical memory chunk(s):\n");
281		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
282			vm_paddr_t size;
283
284			size = phys_avail[indx + 1] - phys_avail[indx];
285			printf(
286			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
287			    (uintmax_t)phys_avail[indx],
288			    (uintmax_t)phys_avail[indx + 1] - 1,
289			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
290		}
291	}
292
293	vm_ksubmap_init(&kmi);
294
295	printf("avail memory = %ju (%ju MB)\n",
296	    ptoa((uintmax_t)cnt.v_free_count),
297	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
298
299	/*
300	 * Set up buffers, so they can be used to read disk labels.
301	 */
302	bufinit();
303	vm_pager_bufferinit();
304
305	cpu_setregs();
306}
307
308/*
309 * Send an interrupt to process.
310 *
311 * Stack is set up to allow sigcode stored
312 * at top to call routine, followed by call
313 * to sigreturn routine below.  After sigreturn
314 * resets the signal mask, the stack, and the
315 * frame pointer, it returns to the user
316 * specified pc, psl.
317 */
318void
319sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
320{
321	struct sigframe sf, *sfp;
322	struct pcb *pcb;
323	struct proc *p;
324	struct thread *td;
325	struct sigacts *psp;
326	char *sp;
327	struct trapframe *regs;
328	char *xfpusave;
329	size_t xfpusave_len;
330	int sig;
331	int oonstack;
332
333	td = curthread;
334	pcb = td->td_pcb;
335	p = td->td_proc;
336	PROC_LOCK_ASSERT(p, MA_OWNED);
337	sig = ksi->ksi_signo;
338	psp = p->p_sigacts;
339	mtx_assert(&psp->ps_mtx, MA_OWNED);
340	regs = td->td_frame;
341	oonstack = sigonstack(regs->tf_rsp);
342
343	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
344		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
345		xfpusave = __builtin_alloca(xfpusave_len);
346	} else {
347		xfpusave_len = 0;
348		xfpusave = NULL;
349	}
350
351	/* Save user context. */
352	bzero(&sf, sizeof(sf));
353	sf.sf_uc.uc_sigmask = *mask;
354	sf.sf_uc.uc_stack = td->td_sigstk;
355	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
356	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
357	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
358	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
359	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
360	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
361	fpstate_drop(td);
362	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
363	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
364	bzero(sf.sf_uc.uc_mcontext.mc_spare,
365	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
366	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
367
368	/* Allocate space for the signal handler context. */
369	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
370	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
371		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
372#if defined(COMPAT_43)
373		td->td_sigstk.ss_flags |= SS_ONSTACK;
374#endif
375	} else
376		sp = (char *)regs->tf_rsp - 128;
377	if (xfpusave != NULL) {
378		sp -= xfpusave_len;
379		sp = (char *)((unsigned long)sp & ~0x3Ful);
380		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
381	}
382	sp -= sizeof(struct sigframe);
383	/* Align to 16 bytes. */
384	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
385
386	/* Translate the signal if appropriate. */
387	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
388		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
389
390	/* Build the argument list for the signal handler. */
391	regs->tf_rdi = sig;			/* arg 1 in %rdi */
392	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
393	bzero(&sf.sf_si, sizeof(sf.sf_si));
394	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
395		/* Signal handler installed with SA_SIGINFO. */
396		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
397		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
398
399		/* Fill in POSIX parts */
400		sf.sf_si = ksi->ksi_info;
401		sf.sf_si.si_signo = sig; /* maybe a translated signal */
402		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
403	} else {
404		/* Old FreeBSD-style arguments. */
405		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
406		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
407		sf.sf_ahu.sf_handler = catcher;
408	}
409	mtx_unlock(&psp->ps_mtx);
410	PROC_UNLOCK(p);
411
412	/*
413	 * Copy the sigframe out to the user's stack.
414	 */
415	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
416	    (xfpusave != NULL && copyout(xfpusave,
417	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
418	    != 0)) {
419#ifdef DEBUG
420		printf("process %ld has trashed its stack\n", (long)p->p_pid);
421#endif
422		PROC_LOCK(p);
423		sigexit(td, SIGILL);
424	}
425
426	regs->tf_rsp = (long)sfp;
427	regs->tf_rip = p->p_sysent->sv_sigcode_base;
428	regs->tf_rflags &= ~(PSL_T | PSL_D);
429	regs->tf_cs = _ucodesel;
430	regs->tf_ds = _udatasel;
431	regs->tf_es = _udatasel;
432	regs->tf_fs = _ufssel;
433	regs->tf_gs = _ugssel;
434	regs->tf_flags = TF_HASSEGS;
435	set_pcb_flags(pcb, PCB_FULL_IRET);
436	PROC_LOCK(p);
437	mtx_lock(&psp->ps_mtx);
438}
439
440/*
441 * System call to cleanup state after a signal
442 * has been taken.  Reset signal mask and
443 * stack state from context left by sendsig (above).
444 * Return to previous pc and psl as specified by
445 * context left by sendsig. Check carefully to
446 * make sure that the user has not modified the
447 * state to gain improper privileges.
448 *
449 * MPSAFE
450 */
451int
452sys_sigreturn(td, uap)
453	struct thread *td;
454	struct sigreturn_args /* {
455		const struct __ucontext *sigcntxp;
456	} */ *uap;
457{
458	ucontext_t uc;
459	struct pcb *pcb;
460	struct proc *p;
461	struct trapframe *regs;
462	ucontext_t *ucp;
463	char *xfpustate;
464	size_t xfpustate_len;
465	long rflags;
466	int cs, error, ret;
467	ksiginfo_t ksi;
468
469	pcb = td->td_pcb;
470	p = td->td_proc;
471
472	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
473	if (error != 0) {
474		uprintf("pid %d (%s): sigreturn copyin failed\n",
475		    p->p_pid, td->td_name);
476		return (error);
477	}
478	ucp = &uc;
479	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
480		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
481		    td->td_name, ucp->uc_mcontext.mc_flags);
482		return (EINVAL);
483	}
484	regs = td->td_frame;
485	rflags = ucp->uc_mcontext.mc_rflags;
486	/*
487	 * Don't allow users to change privileged or reserved flags.
488	 */
489	/*
490	 * XXX do allow users to change the privileged flag PSL_RF.
491	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
492	 * should sometimes set it there too.  tf_rflags is kept in
493	 * the signal context during signal handling and there is no
494	 * other place to remember it, so the PSL_RF bit may be
495	 * corrupted by the signal handler without us knowing.
496	 * Corruption of the PSL_RF bit at worst causes one more or
497	 * one less debugger trap, so allowing it is fairly harmless.
498	 */
499	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
500		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
501		    td->td_name, rflags);
502		return (EINVAL);
503	}
504
505	/*
506	 * Don't allow users to load a valid privileged %cs.  Let the
507	 * hardware check for invalid selectors, excess privilege in
508	 * other selectors, invalid %eip's and invalid %esp's.
509	 */
510	cs = ucp->uc_mcontext.mc_cs;
511	if (!CS_SECURE(cs)) {
512		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
513		    td->td_name, cs);
514		ksiginfo_init_trap(&ksi);
515		ksi.ksi_signo = SIGBUS;
516		ksi.ksi_code = BUS_OBJERR;
517		ksi.ksi_trapno = T_PROTFLT;
518		ksi.ksi_addr = (void *)regs->tf_rip;
519		trapsignal(td, &ksi);
520		return (EINVAL);
521	}
522
523	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
524		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
525		if (xfpustate_len > cpu_max_ext_state_size -
526		    sizeof(struct savefpu)) {
527			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
528			    p->p_pid, td->td_name, xfpustate_len);
529			return (EINVAL);
530		}
531		xfpustate = __builtin_alloca(xfpustate_len);
532		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
533		    xfpustate, xfpustate_len);
534		if (error != 0) {
535			uprintf(
536	"pid %d (%s): sigreturn copying xfpustate failed\n",
537			    p->p_pid, td->td_name);
538			return (error);
539		}
540	} else {
541		xfpustate = NULL;
542		xfpustate_len = 0;
543	}
544	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
545	if (ret != 0) {
546		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
547		    p->p_pid, td->td_name, ret);
548		return (ret);
549	}
550	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
551	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
552	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
553
554#if defined(COMPAT_43)
555	if (ucp->uc_mcontext.mc_onstack & 1)
556		td->td_sigstk.ss_flags |= SS_ONSTACK;
557	else
558		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
559#endif
560
561	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
562	set_pcb_flags(pcb, PCB_FULL_IRET);
563	return (EJUSTRETURN);
564}
565
566#ifdef COMPAT_FREEBSD4
567int
568freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
569{
570
571	return sys_sigreturn(td, (struct sigreturn_args *)uap);
572}
573#endif
574
575
576/*
577 * Machine dependent boot() routine
578 *
579 * I haven't seen anything to put here yet
580 * Possibly some stuff might be grafted back here from boot()
581 */
582void
583cpu_boot(int howto)
584{
585}
586
587/*
588 * Flush the D-cache for non-DMA I/O so that the I-cache can
589 * be made coherent later.
590 */
591void
592cpu_flush_dcache(void *ptr, size_t len)
593{
594	/* Not applicable */
595}
596
597/* Get current clock frequency for the given cpu id. */
598int
599cpu_est_clockrate(int cpu_id, uint64_t *rate)
600{
601	uint64_t tsc1, tsc2;
602	uint64_t acnt, mcnt, perf;
603	register_t reg;
604
605	if (pcpu_find(cpu_id) == NULL || rate == NULL)
606		return (EINVAL);
607
608	/*
609	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
610	 * DELAY(9) based logic fails.
611	 */
612	if (tsc_is_invariant && !tsc_perf_stat)
613		return (EOPNOTSUPP);
614
615#ifdef SMP
616	if (smp_cpus > 1) {
617		/* Schedule ourselves on the indicated cpu. */
618		thread_lock(curthread);
619		sched_bind(curthread, cpu_id);
620		thread_unlock(curthread);
621	}
622#endif
623
624	/* Calibrate by measuring a short delay. */
625	reg = intr_disable();
626	if (tsc_is_invariant) {
627		wrmsr(MSR_MPERF, 0);
628		wrmsr(MSR_APERF, 0);
629		tsc1 = rdtsc();
630		DELAY(1000);
631		mcnt = rdmsr(MSR_MPERF);
632		acnt = rdmsr(MSR_APERF);
633		tsc2 = rdtsc();
634		intr_restore(reg);
635		perf = 1000 * acnt / mcnt;
636		*rate = (tsc2 - tsc1) * perf;
637	} else {
638		tsc1 = rdtsc();
639		DELAY(1000);
640		tsc2 = rdtsc();
641		intr_restore(reg);
642		*rate = (tsc2 - tsc1) * 1000;
643	}
644
645#ifdef SMP
646	if (smp_cpus > 1) {
647		thread_lock(curthread);
648		sched_unbind(curthread);
649		thread_unlock(curthread);
650	}
651#endif
652
653	return (0);
654}
655
656/*
657 * Shutdown the CPU as much as possible
658 */
659void
660cpu_halt(void)
661{
662	for (;;)
663		halt();
664}
665
666void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
667static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
668static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
669TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
670SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
671    0, "Use MONITOR/MWAIT for short idle");
672
673#define	STATE_RUNNING	0x0
674#define	STATE_MWAIT	0x1
675#define	STATE_SLEEPING	0x2
676
677static void
678cpu_idle_acpi(sbintime_t sbt)
679{
680	int *state;
681
682	state = (int *)PCPU_PTR(monitorbuf);
683	*state = STATE_SLEEPING;
684
685	/* See comments in cpu_idle_hlt(). */
686	disable_intr();
687	if (sched_runnable())
688		enable_intr();
689	else if (cpu_idle_hook)
690		cpu_idle_hook(sbt);
691	else
692		__asm __volatile("sti; hlt");
693	*state = STATE_RUNNING;
694}
695
696static void
697cpu_idle_hlt(sbintime_t sbt)
698{
699	int *state;
700
701	state = (int *)PCPU_PTR(monitorbuf);
702	*state = STATE_SLEEPING;
703
704	/*
705	 * Since we may be in a critical section from cpu_idle(), if
706	 * an interrupt fires during that critical section we may have
707	 * a pending preemption.  If the CPU halts, then that thread
708	 * may not execute until a later interrupt awakens the CPU.
709	 * To handle this race, check for a runnable thread after
710	 * disabling interrupts and immediately return if one is
711	 * found.  Also, we must absolutely guarentee that hlt is
712	 * the next instruction after sti.  This ensures that any
713	 * interrupt that fires after the call to disable_intr() will
714	 * immediately awaken the CPU from hlt.  Finally, please note
715	 * that on x86 this works fine because of interrupts enabled only
716	 * after the instruction following sti takes place, while IF is set
717	 * to 1 immediately, allowing hlt instruction to acknowledge the
718	 * interrupt.
719	 */
720	disable_intr();
721	if (sched_runnable())
722		enable_intr();
723	else
724		__asm __volatile("sti; hlt");
725	*state = STATE_RUNNING;
726}
727
728/*
729 * MWAIT cpu power states.  Lower 4 bits are sub-states.
730 */
731#define	MWAIT_C0	0xf0
732#define	MWAIT_C1	0x00
733#define	MWAIT_C2	0x10
734#define	MWAIT_C3	0x20
735#define	MWAIT_C4	0x30
736
737static void
738cpu_idle_mwait(sbintime_t sbt)
739{
740	int *state;
741
742	state = (int *)PCPU_PTR(monitorbuf);
743	*state = STATE_MWAIT;
744
745	/* See comments in cpu_idle_hlt(). */
746	disable_intr();
747	if (sched_runnable()) {
748		enable_intr();
749		*state = STATE_RUNNING;
750		return;
751	}
752	cpu_monitor(state, 0, 0);
753	if (*state == STATE_MWAIT)
754		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
755	else
756		enable_intr();
757	*state = STATE_RUNNING;
758}
759
760static void
761cpu_idle_spin(sbintime_t sbt)
762{
763	int *state;
764	int i;
765
766	state = (int *)PCPU_PTR(monitorbuf);
767	*state = STATE_RUNNING;
768
769	/*
770	 * The sched_runnable() call is racy but as long as there is
771	 * a loop missing it one time will have just a little impact if any
772	 * (and it is much better than missing the check at all).
773	 */
774	for (i = 0; i < 1000; i++) {
775		if (sched_runnable())
776			return;
777		cpu_spinwait();
778	}
779}
780
781/*
782 * C1E renders the local APIC timer dead, so we disable it by
783 * reading the Interrupt Pending Message register and clearing
784 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
785 *
786 * Reference:
787 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
788 *   #32559 revision 3.00+
789 */
790#define	MSR_AMDK8_IPM		0xc0010055
791#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
792#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
793#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
794
795static void
796cpu_probe_amdc1e(void)
797{
798
799	/*
800	 * Detect the presence of C1E capability mostly on latest
801	 * dual-cores (or future) k8 family.
802	 */
803	if (cpu_vendor_id == CPU_VENDOR_AMD &&
804	    (cpu_id & 0x00000f00) == 0x00000f00 &&
805	    (cpu_id & 0x0fff0000) >=  0x00040000) {
806		cpu_ident_amdc1e = 1;
807	}
808}
809
810void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
811
812void
813cpu_idle(int busy)
814{
815	uint64_t msr;
816	sbintime_t sbt = -1;
817
818	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
819	    busy, curcpu);
820#ifdef MP_WATCHDOG
821	ap_watchdog(PCPU_GET(cpuid));
822#endif
823	/* If we are busy - try to use fast methods. */
824	if (busy) {
825		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
826			cpu_idle_mwait(busy);
827			goto out;
828		}
829	}
830
831	/* If we have time - switch timers into idle mode. */
832	if (!busy) {
833		critical_enter();
834		sbt = cpu_idleclock();
835	}
836
837	/* Apply AMD APIC timer C1E workaround. */
838	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
839		msr = rdmsr(MSR_AMDK8_IPM);
840		if (msr & AMDK8_CMPHALT)
841			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
842	}
843
844	/* Call main idle method. */
845	cpu_idle_fn(sbt);
846
847	/* Switch timers mack into active mode. */
848	if (!busy) {
849		cpu_activeclock();
850		critical_exit();
851	}
852out:
853	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
854	    busy, curcpu);
855}
856
857int
858cpu_idle_wakeup(int cpu)
859{
860	struct pcpu *pcpu;
861	int *state;
862
863	pcpu = pcpu_find(cpu);
864	state = (int *)pcpu->pc_monitorbuf;
865	/*
866	 * This doesn't need to be atomic since missing the race will
867	 * simply result in unnecessary IPIs.
868	 */
869	if (*state == STATE_SLEEPING)
870		return (0);
871	if (*state == STATE_MWAIT)
872		*state = STATE_RUNNING;
873	return (1);
874}
875
876/*
877 * Ordered by speed/power consumption.
878 */
879struct {
880	void	*id_fn;
881	char	*id_name;
882} idle_tbl[] = {
883	{ cpu_idle_spin, "spin" },
884	{ cpu_idle_mwait, "mwait" },
885	{ cpu_idle_hlt, "hlt" },
886	{ cpu_idle_acpi, "acpi" },
887	{ NULL, NULL }
888};
889
890static int
891idle_sysctl_available(SYSCTL_HANDLER_ARGS)
892{
893	char *avail, *p;
894	int error;
895	int i;
896
897	avail = malloc(256, M_TEMP, M_WAITOK);
898	p = avail;
899	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
900		if (strstr(idle_tbl[i].id_name, "mwait") &&
901		    (cpu_feature2 & CPUID2_MON) == 0)
902			continue;
903		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
904		    cpu_idle_hook == NULL)
905			continue;
906		p += sprintf(p, "%s%s", p != avail ? ", " : "",
907		    idle_tbl[i].id_name);
908	}
909	error = sysctl_handle_string(oidp, avail, 0, req);
910	free(avail, M_TEMP);
911	return (error);
912}
913
914SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
915    0, 0, idle_sysctl_available, "A", "list of available idle functions");
916
917static int
918idle_sysctl(SYSCTL_HANDLER_ARGS)
919{
920	char buf[16];
921	int error;
922	char *p;
923	int i;
924
925	p = "unknown";
926	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
927		if (idle_tbl[i].id_fn == cpu_idle_fn) {
928			p = idle_tbl[i].id_name;
929			break;
930		}
931	}
932	strncpy(buf, p, sizeof(buf));
933	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
934	if (error != 0 || req->newptr == NULL)
935		return (error);
936	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
937		if (strstr(idle_tbl[i].id_name, "mwait") &&
938		    (cpu_feature2 & CPUID2_MON) == 0)
939			continue;
940		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
941		    cpu_idle_hook == NULL)
942			continue;
943		if (strcmp(idle_tbl[i].id_name, buf))
944			continue;
945		cpu_idle_fn = idle_tbl[i].id_fn;
946		return (0);
947	}
948	return (EINVAL);
949}
950
951SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
952    idle_sysctl, "A", "currently selected idle function");
953
954/*
955 * Reset registers to default values on exec.
956 */
957void
958exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
959{
960	struct trapframe *regs = td->td_frame;
961	struct pcb *pcb = td->td_pcb;
962
963	mtx_lock(&dt_lock);
964	if (td->td_proc->p_md.md_ldt != NULL)
965		user_ldt_free(td);
966	else
967		mtx_unlock(&dt_lock);
968
969	pcb->pcb_fsbase = 0;
970	pcb->pcb_gsbase = 0;
971	clear_pcb_flags(pcb, PCB_32BIT);
972	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
973	set_pcb_flags(pcb, PCB_FULL_IRET);
974
975	bzero((char *)regs, sizeof(struct trapframe));
976	regs->tf_rip = imgp->entry_addr;
977	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
978	regs->tf_rdi = stack;		/* argv */
979	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
980	regs->tf_ss = _udatasel;
981	regs->tf_cs = _ucodesel;
982	regs->tf_ds = _udatasel;
983	regs->tf_es = _udatasel;
984	regs->tf_fs = _ufssel;
985	regs->tf_gs = _ugssel;
986	regs->tf_flags = TF_HASSEGS;
987	td->td_retval[1] = 0;
988
989	/*
990	 * Reset the hardware debug registers if they were in use.
991	 * They won't have any meaning for the newly exec'd process.
992	 */
993	if (pcb->pcb_flags & PCB_DBREGS) {
994		pcb->pcb_dr0 = 0;
995		pcb->pcb_dr1 = 0;
996		pcb->pcb_dr2 = 0;
997		pcb->pcb_dr3 = 0;
998		pcb->pcb_dr6 = 0;
999		pcb->pcb_dr7 = 0;
1000		if (pcb == curpcb) {
1001			/*
1002			 * Clear the debug registers on the running
1003			 * CPU, otherwise they will end up affecting
1004			 * the next process we switch to.
1005			 */
1006			reset_dbregs();
1007		}
1008		clear_pcb_flags(pcb, PCB_DBREGS);
1009	}
1010
1011	/*
1012	 * Drop the FP state if we hold it, so that the process gets a
1013	 * clean FP state if it uses the FPU again.
1014	 */
1015	fpstate_drop(td);
1016}
1017
1018void
1019cpu_setregs(void)
1020{
1021	register_t cr0;
1022
1023	cr0 = rcr0();
1024	/*
1025	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
1026	 * BSP.  See the comments there about why we set them.
1027	 */
1028	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1029	load_cr0(cr0);
1030}
1031
1032/*
1033 * Initialize amd64 and configure to run kernel
1034 */
1035
1036/*
1037 * Initialize segments & interrupt table
1038 */
1039
1040struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
1041static struct gate_descriptor idt0[NIDT];
1042struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1043
1044static char dblfault_stack[PAGE_SIZE] __aligned(16);
1045
1046static char nmi0_stack[PAGE_SIZE] __aligned(16);
1047CTASSERT(sizeof(struct nmi_pcpu) == 16);
1048
1049struct amd64tss common_tss[MAXCPU];
1050
1051/*
1052 * Software prototypes -- in more palatable form.
1053 *
1054 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
1055 * slots as corresponding segments for i386 kernel.
1056 */
1057struct soft_segment_descriptor gdt_segs[] = {
1058/* GNULL_SEL	0 Null Descriptor */
1059{	.ssd_base = 0x0,
1060	.ssd_limit = 0x0,
1061	.ssd_type = 0,
1062	.ssd_dpl = 0,
1063	.ssd_p = 0,
1064	.ssd_long = 0,
1065	.ssd_def32 = 0,
1066	.ssd_gran = 0		},
1067/* GNULL2_SEL	1 Null Descriptor */
1068{	.ssd_base = 0x0,
1069	.ssd_limit = 0x0,
1070	.ssd_type = 0,
1071	.ssd_dpl = 0,
1072	.ssd_p = 0,
1073	.ssd_long = 0,
1074	.ssd_def32 = 0,
1075	.ssd_gran = 0		},
1076/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
1077{	.ssd_base = 0x0,
1078	.ssd_limit = 0xfffff,
1079	.ssd_type = SDT_MEMRWA,
1080	.ssd_dpl = SEL_UPL,
1081	.ssd_p = 1,
1082	.ssd_long = 0,
1083	.ssd_def32 = 1,
1084	.ssd_gran = 1		},
1085/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1086{	.ssd_base = 0x0,
1087	.ssd_limit = 0xfffff,
1088	.ssd_type = SDT_MEMRWA,
1089	.ssd_dpl = SEL_UPL,
1090	.ssd_p = 1,
1091	.ssd_long = 0,
1092	.ssd_def32 = 1,
1093	.ssd_gran = 1		},
1094/* GCODE_SEL	4 Code Descriptor for kernel */
1095{	.ssd_base = 0x0,
1096	.ssd_limit = 0xfffff,
1097	.ssd_type = SDT_MEMERA,
1098	.ssd_dpl = SEL_KPL,
1099	.ssd_p = 1,
1100	.ssd_long = 1,
1101	.ssd_def32 = 0,
1102	.ssd_gran = 1		},
1103/* GDATA_SEL	5 Data Descriptor for kernel */
1104{	.ssd_base = 0x0,
1105	.ssd_limit = 0xfffff,
1106	.ssd_type = SDT_MEMRWA,
1107	.ssd_dpl = SEL_KPL,
1108	.ssd_p = 1,
1109	.ssd_long = 1,
1110	.ssd_def32 = 0,
1111	.ssd_gran = 1		},
1112/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1113{	.ssd_base = 0x0,
1114	.ssd_limit = 0xfffff,
1115	.ssd_type = SDT_MEMERA,
1116	.ssd_dpl = SEL_UPL,
1117	.ssd_p = 1,
1118	.ssd_long = 0,
1119	.ssd_def32 = 1,
1120	.ssd_gran = 1		},
1121/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1122{	.ssd_base = 0x0,
1123	.ssd_limit = 0xfffff,
1124	.ssd_type = SDT_MEMRWA,
1125	.ssd_dpl = SEL_UPL,
1126	.ssd_p = 1,
1127	.ssd_long = 0,
1128	.ssd_def32 = 1,
1129	.ssd_gran = 1		},
1130/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1131{	.ssd_base = 0x0,
1132	.ssd_limit = 0xfffff,
1133	.ssd_type = SDT_MEMERA,
1134	.ssd_dpl = SEL_UPL,
1135	.ssd_p = 1,
1136	.ssd_long = 1,
1137	.ssd_def32 = 0,
1138	.ssd_gran = 1		},
1139/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1140{	.ssd_base = 0x0,
1141	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1142	.ssd_type = SDT_SYSTSS,
1143	.ssd_dpl = SEL_KPL,
1144	.ssd_p = 1,
1145	.ssd_long = 0,
1146	.ssd_def32 = 0,
1147	.ssd_gran = 0		},
1148/* Actually, the TSS is a system descriptor which is double size */
1149{	.ssd_base = 0x0,
1150	.ssd_limit = 0x0,
1151	.ssd_type = 0,
1152	.ssd_dpl = 0,
1153	.ssd_p = 0,
1154	.ssd_long = 0,
1155	.ssd_def32 = 0,
1156	.ssd_gran = 0		},
1157/* GUSERLDT_SEL	11 LDT Descriptor */
1158{	.ssd_base = 0x0,
1159	.ssd_limit = 0x0,
1160	.ssd_type = 0,
1161	.ssd_dpl = 0,
1162	.ssd_p = 0,
1163	.ssd_long = 0,
1164	.ssd_def32 = 0,
1165	.ssd_gran = 0		},
1166/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1167{	.ssd_base = 0x0,
1168	.ssd_limit = 0x0,
1169	.ssd_type = 0,
1170	.ssd_dpl = 0,
1171	.ssd_p = 0,
1172	.ssd_long = 0,
1173	.ssd_def32 = 0,
1174	.ssd_gran = 0		},
1175};
1176
1177void
1178setidt(idx, func, typ, dpl, ist)
1179	int idx;
1180	inthand_t *func;
1181	int typ;
1182	int dpl;
1183	int ist;
1184{
1185	struct gate_descriptor *ip;
1186
1187	ip = idt + idx;
1188	ip->gd_looffset = (uintptr_t)func;
1189	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1190	ip->gd_ist = ist;
1191	ip->gd_xx = 0;
1192	ip->gd_type = typ;
1193	ip->gd_dpl = dpl;
1194	ip->gd_p = 1;
1195	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1196}
1197
1198extern inthand_t
1199	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1200	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1201	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1202	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1203	IDTVEC(xmm), IDTVEC(dblfault),
1204#ifdef KDTRACE_HOOKS
1205	IDTVEC(dtrace_ret),
1206#endif
1207	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1208
1209#ifdef DDB
1210/*
1211 * Display the index and function name of any IDT entries that don't use
1212 * the default 'rsvd' entry point.
1213 */
1214DB_SHOW_COMMAND(idt, db_show_idt)
1215{
1216	struct gate_descriptor *ip;
1217	int idx;
1218	uintptr_t func;
1219
1220	ip = idt;
1221	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1222		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1223		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1224			db_printf("%3d\t", idx);
1225			db_printsym(func, DB_STGY_PROC);
1226			db_printf("\n");
1227		}
1228		ip++;
1229	}
1230}
1231#endif
1232
1233void
1234sdtossd(sd, ssd)
1235	struct user_segment_descriptor *sd;
1236	struct soft_segment_descriptor *ssd;
1237{
1238
1239	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1240	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1241	ssd->ssd_type  = sd->sd_type;
1242	ssd->ssd_dpl   = sd->sd_dpl;
1243	ssd->ssd_p     = sd->sd_p;
1244	ssd->ssd_long  = sd->sd_long;
1245	ssd->ssd_def32 = sd->sd_def32;
1246	ssd->ssd_gran  = sd->sd_gran;
1247}
1248
1249void
1250ssdtosd(ssd, sd)
1251	struct soft_segment_descriptor *ssd;
1252	struct user_segment_descriptor *sd;
1253{
1254
1255	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1256	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1257	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1258	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1259	sd->sd_type  = ssd->ssd_type;
1260	sd->sd_dpl   = ssd->ssd_dpl;
1261	sd->sd_p     = ssd->ssd_p;
1262	sd->sd_long  = ssd->ssd_long;
1263	sd->sd_def32 = ssd->ssd_def32;
1264	sd->sd_gran  = ssd->ssd_gran;
1265}
1266
1267void
1268ssdtosyssd(ssd, sd)
1269	struct soft_segment_descriptor *ssd;
1270	struct system_segment_descriptor *sd;
1271{
1272
1273	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1274	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1275	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1276	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1277	sd->sd_type  = ssd->ssd_type;
1278	sd->sd_dpl   = ssd->ssd_dpl;
1279	sd->sd_p     = ssd->ssd_p;
1280	sd->sd_gran  = ssd->ssd_gran;
1281}
1282
1283#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1284#include <isa/isavar.h>
1285#include <isa/isareg.h>
1286/*
1287 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1288 * and is only suitable for use at probe time.
1289 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1290 * It shouldn't be here.  There should probably be an APIC centric
1291 * implementation in the apic driver code, if at all.
1292 */
1293intrmask_t
1294isa_irq_pending(void)
1295{
1296	u_char irr1;
1297	u_char irr2;
1298
1299	irr1 = inb(IO_ICU1);
1300	irr2 = inb(IO_ICU2);
1301	return ((irr2 << 8) | irr1);
1302}
1303#endif
1304
1305u_int basemem;
1306
1307static int
1308add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1309{
1310	int i, insert_idx, physmap_idx;
1311
1312	physmap_idx = *physmap_idxp;
1313
1314	if (boothowto & RB_VERBOSE)
1315		printf("SMAP type=%02x base=%016lx len=%016lx\n",
1316		    smap->type, smap->base, smap->length);
1317
1318	if (smap->type != SMAP_TYPE_MEMORY)
1319		return (1);
1320
1321	if (smap->length == 0)
1322		return (0);
1323
1324	/*
1325	 * Find insertion point while checking for overlap.  Start off by
1326	 * assuming the new entry will be added to the end.
1327	 */
1328	insert_idx = physmap_idx + 2;
1329	for (i = 0; i <= physmap_idx; i += 2) {
1330		if (smap->base < physmap[i + 1]) {
1331			if (smap->base + smap->length <= physmap[i]) {
1332				insert_idx = i;
1333				break;
1334			}
1335			if (boothowto & RB_VERBOSE)
1336				printf(
1337		    "Overlapping memory regions, ignoring second region\n");
1338			return (1);
1339		}
1340	}
1341
1342	/* See if we can prepend to the next entry. */
1343	if (insert_idx <= physmap_idx &&
1344	    smap->base + smap->length == physmap[insert_idx]) {
1345		physmap[insert_idx] = smap->base;
1346		return (1);
1347	}
1348
1349	/* See if we can append to the previous entry. */
1350	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
1351		physmap[insert_idx - 1] += smap->length;
1352		return (1);
1353	}
1354
1355	physmap_idx += 2;
1356	*physmap_idxp = physmap_idx;
1357	if (physmap_idx == PHYSMAP_SIZE) {
1358		printf(
1359		"Too many segments in the physical address map, giving up\n");
1360		return (0);
1361	}
1362
1363	/*
1364	 * Move the last 'N' entries down to make room for the new
1365	 * entry if needed.
1366	 */
1367	for (i = physmap_idx; i > insert_idx; i -= 2) {
1368		physmap[i] = physmap[i - 2];
1369		physmap[i + 1] = physmap[i - 1];
1370	}
1371
1372	/* Insert the new entry. */
1373	physmap[insert_idx] = smap->base;
1374	physmap[insert_idx + 1] = smap->base + smap->length;
1375	return (1);
1376}
1377
1378/*
1379 * Populate the (physmap) array with base/bound pairs describing the
1380 * available physical memory in the system, then test this memory and
1381 * build the phys_avail array describing the actually-available memory.
1382 *
1383 * Total memory size may be set by the kernel environment variable
1384 * hw.physmem or the compile-time define MAXMEM.
1385 *
1386 * XXX first should be vm_paddr_t.
1387 */
1388static void
1389getmemsize(caddr_t kmdp, u_int64_t first)
1390{
1391	int i, physmap_idx, pa_indx, da_indx;
1392	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1393	u_long physmem_start, physmem_tunable, memtest;
1394	pt_entry_t *pte;
1395	struct bios_smap *smapbase, *smap, *smapend;
1396	u_int32_t smapsize;
1397	quad_t dcons_addr, dcons_size;
1398
1399	bzero(physmap, sizeof(physmap));
1400	basemem = 0;
1401	physmap_idx = 0;
1402
1403	/*
1404	 * get memory map from INT 15:E820, kindly supplied by the loader.
1405	 *
1406	 * subr_module.c says:
1407	 * "Consumer may safely assume that size value precedes data."
1408	 * ie: an int32_t immediately precedes smap.
1409	 */
1410	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1411	    MODINFO_METADATA | MODINFOMD_SMAP);
1412	if (smapbase == NULL)
1413		panic("No BIOS smap info from loader!");
1414
1415	smapsize = *((u_int32_t *)smapbase - 1);
1416	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1417
1418	for (smap = smapbase; smap < smapend; smap++)
1419		if (!add_smap_entry(smap, physmap, &physmap_idx))
1420			break;
1421
1422	/*
1423	 * Find the 'base memory' segment for SMP
1424	 */
1425	basemem = 0;
1426	for (i = 0; i <= physmap_idx; i += 2) {
1427		if (physmap[i] == 0x00000000) {
1428			basemem = physmap[i + 1] / 1024;
1429			break;
1430		}
1431	}
1432	if (basemem == 0)
1433		panic("BIOS smap did not include a basemem segment!");
1434
1435#ifdef SMP
1436	/* make hole for AP bootstrap code */
1437	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1438#endif
1439
1440	/*
1441	 * Maxmem isn't the "maximum memory", it's one larger than the
1442	 * highest page of the physical address space.  It should be
1443	 * called something like "Maxphyspage".  We may adjust this
1444	 * based on ``hw.physmem'' and the results of the memory test.
1445	 */
1446	Maxmem = atop(physmap[physmap_idx + 1]);
1447
1448#ifdef MAXMEM
1449	Maxmem = MAXMEM / 4;
1450#endif
1451
1452	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1453		Maxmem = atop(physmem_tunable);
1454
1455	/*
1456	 * By default enable the memory test on real hardware, and disable
1457	 * it if we appear to be running in a VM.  This avoids touching all
1458	 * pages unnecessarily, which doesn't matter on real hardware but is
1459	 * bad for shared VM hosts.  Use a general name so that
1460	 * one could eventually do more with the code than just disable it.
1461	 */
1462	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
1463	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1464
1465	/*
1466	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1467	 * in the system.
1468	 */
1469	if (Maxmem > atop(physmap[physmap_idx + 1]))
1470		Maxmem = atop(physmap[physmap_idx + 1]);
1471
1472	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1473	    (boothowto & RB_VERBOSE))
1474		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1475
1476	/* call pmap initialization to make new kernel address space */
1477	pmap_bootstrap(&first);
1478
1479	/*
1480	 * Size up each available chunk of physical memory.
1481	 *
1482	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1483	 * By default, mask off the first 16 pages unless we appear to be
1484	 * running in a VM.
1485	 */
1486	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1487	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1488	if (physmem_start < PAGE_SIZE)
1489		physmap[0] = PAGE_SIZE;
1490	else if (physmem_start >= physmap[1])
1491		physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1492	else
1493		physmap[0] = round_page(physmem_start);
1494	pa_indx = 0;
1495	da_indx = 1;
1496	phys_avail[pa_indx++] = physmap[0];
1497	phys_avail[pa_indx] = physmap[0];
1498	dump_avail[da_indx] = physmap[0];
1499	pte = CMAP1;
1500
1501	/*
1502	 * Get dcons buffer address
1503	 */
1504	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1505	    getenv_quad("dcons.size", &dcons_size) == 0)
1506		dcons_addr = 0;
1507
1508	/*
1509	 * physmap is in bytes, so when converting to page boundaries,
1510	 * round up the start address and round down the end address.
1511	 */
1512	for (i = 0; i <= physmap_idx; i += 2) {
1513		vm_paddr_t end;
1514
1515		end = ptoa((vm_paddr_t)Maxmem);
1516		if (physmap[i + 1] < end)
1517			end = trunc_page(physmap[i + 1]);
1518		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1519			int tmp, page_bad, full;
1520			int *ptr = (int *)CADDR1;
1521
1522			full = FALSE;
1523			/*
1524			 * block out kernel memory as not available.
1525			 */
1526			if (pa >= (vm_paddr_t)kernphys && pa < first)
1527				goto do_dump_avail;
1528
1529			/*
1530			 * block out dcons buffer
1531			 */
1532			if (dcons_addr > 0
1533			    && pa >= trunc_page(dcons_addr)
1534			    && pa < dcons_addr + dcons_size)
1535				goto do_dump_avail;
1536
1537			page_bad = FALSE;
1538			if (memtest == 0)
1539				goto skip_memtest;
1540
1541			/*
1542			 * map page into kernel: valid, read/write,non-cacheable
1543			 */
1544			*pte = pa | PG_V | PG_RW | PG_N;
1545			invltlb();
1546
1547			tmp = *(int *)ptr;
1548			/*
1549			 * Test for alternating 1's and 0's
1550			 */
1551			*(volatile int *)ptr = 0xaaaaaaaa;
1552			if (*(volatile int *)ptr != 0xaaaaaaaa)
1553				page_bad = TRUE;
1554			/*
1555			 * Test for alternating 0's and 1's
1556			 */
1557			*(volatile int *)ptr = 0x55555555;
1558			if (*(volatile int *)ptr != 0x55555555)
1559				page_bad = TRUE;
1560			/*
1561			 * Test for all 1's
1562			 */
1563			*(volatile int *)ptr = 0xffffffff;
1564			if (*(volatile int *)ptr != 0xffffffff)
1565				page_bad = TRUE;
1566			/*
1567			 * Test for all 0's
1568			 */
1569			*(volatile int *)ptr = 0x0;
1570			if (*(volatile int *)ptr != 0x0)
1571				page_bad = TRUE;
1572			/*
1573			 * Restore original value.
1574			 */
1575			*(int *)ptr = tmp;
1576
1577skip_memtest:
1578			/*
1579			 * Adjust array of valid/good pages.
1580			 */
1581			if (page_bad == TRUE)
1582				continue;
1583			/*
1584			 * If this good page is a continuation of the
1585			 * previous set of good pages, then just increase
1586			 * the end pointer. Otherwise start a new chunk.
1587			 * Note that "end" points one higher than end,
1588			 * making the range >= start and < end.
1589			 * If we're also doing a speculative memory
1590			 * test and we at or past the end, bump up Maxmem
1591			 * so that we keep going. The first bad page
1592			 * will terminate the loop.
1593			 */
1594			if (phys_avail[pa_indx] == pa) {
1595				phys_avail[pa_indx] += PAGE_SIZE;
1596			} else {
1597				pa_indx++;
1598				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1599					printf(
1600		"Too many holes in the physical address space, giving up\n");
1601					pa_indx--;
1602					full = TRUE;
1603					goto do_dump_avail;
1604				}
1605				phys_avail[pa_indx++] = pa;	/* start */
1606				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1607			}
1608			physmem++;
1609do_dump_avail:
1610			if (dump_avail[da_indx] == pa) {
1611				dump_avail[da_indx] += PAGE_SIZE;
1612			} else {
1613				da_indx++;
1614				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1615					da_indx--;
1616					goto do_next;
1617				}
1618				dump_avail[da_indx++] = pa; /* start */
1619				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1620			}
1621do_next:
1622			if (full)
1623				break;
1624		}
1625	}
1626	*pte = 0;
1627	invltlb();
1628
1629	/*
1630	 * XXX
1631	 * The last chunk must contain at least one page plus the message
1632	 * buffer to avoid complicating other code (message buffer address
1633	 * calculation, etc.).
1634	 */
1635	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1636	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1637		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1638		phys_avail[pa_indx--] = 0;
1639		phys_avail[pa_indx--] = 0;
1640	}
1641
1642	Maxmem = atop(phys_avail[pa_indx]);
1643
1644	/* Trim off space for the message buffer. */
1645	phys_avail[pa_indx] -= round_page(msgbufsize);
1646
1647	/* Map the message buffer. */
1648	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1649}
1650
1651u_int64_t
1652hammer_time(u_int64_t modulep, u_int64_t physfree)
1653{
1654	caddr_t kmdp;
1655	int gsel_tss, x;
1656	struct pcpu *pc;
1657	struct nmi_pcpu *np;
1658	struct xstate_hdr *xhdr;
1659	u_int64_t msr;
1660	char *env;
1661	size_t kstack0_sz;
1662
1663	thread0.td_kstack = physfree + KERNBASE;
1664	thread0.td_kstack_pages = KSTACK_PAGES;
1665	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1666	bzero((void *)thread0.td_kstack, kstack0_sz);
1667	physfree += kstack0_sz;
1668
1669	/*
1670 	 * This may be done better later if it gets more high level
1671 	 * components in it. If so just link td->td_proc here.
1672	 */
1673	proc_linkup0(&proc0, &thread0);
1674
1675	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1676	preload_bootstrap_relocate(KERNBASE);
1677	kmdp = preload_search_by_type("elf kernel");
1678	if (kmdp == NULL)
1679		kmdp = preload_search_by_type("elf64 kernel");
1680	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1681	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1682#ifdef DDB
1683	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1684	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1685#endif
1686
1687	/* Init basic tunables, hz etc */
1688	init_param1();
1689
1690	/*
1691	 * make gdt memory segments
1692	 */
1693	for (x = 0; x < NGDT; x++) {
1694		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1695		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1696			ssdtosd(&gdt_segs[x], &gdt[x]);
1697	}
1698	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1699	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1700	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1701
1702	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1703	r_gdt.rd_base =  (long) gdt;
1704	lgdt(&r_gdt);
1705	pc = &__pcpu[0];
1706
1707	wrmsr(MSR_FSBASE, 0);		/* User value */
1708	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1709	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1710
1711	pcpu_init(pc, 0, sizeof(struct pcpu));
1712	dpcpu_init((void *)(physfree + KERNBASE), 0);
1713	physfree += DPCPU_SIZE;
1714	PCPU_SET(prvspace, pc);
1715	PCPU_SET(curthread, &thread0);
1716	PCPU_SET(tssp, &common_tss[0]);
1717	PCPU_SET(commontssp, &common_tss[0]);
1718	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1719	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1720	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1721	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1722
1723	/*
1724	 * Initialize mutexes.
1725	 *
1726	 * icu_lock: in order to allow an interrupt to occur in a critical
1727	 * 	     section, to set pcpu->ipending (etc...) properly, we
1728	 *	     must be able to get the icu lock, so it can't be
1729	 *	     under witness.
1730	 */
1731	mutex_init();
1732	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1733	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1734
1735	/* exceptions */
1736	for (x = 0; x < NIDT; x++)
1737		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1738	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1739	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1740	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1741 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1742	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1743	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1744	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1745	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1746	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1747	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1748	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1749	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1750	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1751	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1752	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1753	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1754	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1755	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1756	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1757#ifdef KDTRACE_HOOKS
1758	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1759#endif
1760
1761	r_idt.rd_limit = sizeof(idt0) - 1;
1762	r_idt.rd_base = (long) idt;
1763	lidt(&r_idt);
1764
1765	/*
1766	 * Initialize the i8254 before the console so that console
1767	 * initialization can use DELAY().
1768	 */
1769	i8254_init();
1770
1771	/*
1772	 * Initialize the console before we print anything out.
1773	 */
1774	cninit();
1775
1776#ifdef DEV_ISA
1777#ifdef DEV_ATPIC
1778	elcr_probe();
1779	atpic_startup();
1780#else
1781	/* Reset and mask the atpics and leave them shut down. */
1782	atpic_reset();
1783
1784	/*
1785	 * Point the ICU spurious interrupt vectors at the APIC spurious
1786	 * interrupt handler.
1787	 */
1788	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1789	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1790#endif
1791#else
1792#error "have you forgotten the isa device?";
1793#endif
1794
1795	kdb_init();
1796
1797#ifdef KDB
1798	if (boothowto & RB_KDB)
1799		kdb_enter(KDB_WHY_BOOTFLAGS,
1800		    "Boot flags requested debugger");
1801#endif
1802
1803	identify_cpu();		/* Final stage of CPU initialization */
1804	initializecpu();	/* Initialize CPU registers */
1805	initializecpucache();
1806
1807	/* doublefault stack space, runs on ist1 */
1808	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1809
1810	/*
1811	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1812	 * above the start of the ist2 stack.
1813	 */
1814	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1815	np->np_pcpu = (register_t) pc;
1816	common_tss[0].tss_ist2 = (long) np;
1817
1818	/* Set the IO permission bitmap (empty due to tss seg limit) */
1819	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1820	    IOPAGES * PAGE_SIZE;
1821
1822	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1823	ltr(gsel_tss);
1824
1825	/* Set up the fast syscall stuff */
1826	msr = rdmsr(MSR_EFER) | EFER_SCE;
1827	wrmsr(MSR_EFER, msr);
1828	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1829	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1830	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1831	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1832	wrmsr(MSR_STAR, msr);
1833	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1834
1835	getmemsize(kmdp, physfree);
1836	init_param2(physmem);
1837
1838	/* now running on new page tables, configured,and u/iom is accessible */
1839
1840	msgbufinit(msgbufp, msgbufsize);
1841	fpuinit();
1842
1843	/*
1844	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
1845	 * area size.  Zero out the extended state header in fpu save
1846	 * area.
1847	 */
1848	thread0.td_pcb = get_pcb_td(&thread0);
1849	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1850	if (use_xsave) {
1851		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1852		    1);
1853		xhdr->xstate_bv = xsave_mask;
1854	}
1855	/* make an initial tss so cpu can get interrupt stack on syscall! */
1856	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
1857	/* Ensure the stack is aligned to 16 bytes */
1858	common_tss[0].tss_rsp0 &= ~0xFul;
1859	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1860	PCPU_SET(curpcb, thread0.td_pcb);
1861
1862	/* transfer to user mode */
1863
1864	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1865	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1866	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1867	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1868	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1869
1870	load_ds(_udatasel);
1871	load_es(_udatasel);
1872	load_fs(_ufssel);
1873
1874	/* setup proc 0's pcb */
1875	thread0.td_pcb->pcb_flags = 0;
1876	thread0.td_pcb->pcb_cr3 = KPML4phys;
1877	thread0.td_frame = &proc0_tf;
1878
1879        env = getenv("kernelname");
1880	if (env != NULL)
1881		strlcpy(kernelname, env, sizeof(kernelname));
1882
1883#ifdef XENHVM
1884	if (inw(0x10) == 0x49d2) {
1885		if (bootverbose)
1886			printf("Xen detected: disabling emulated block and network devices\n");
1887		outw(0x10, 3);
1888	}
1889#endif
1890
1891	cpu_probe_amdc1e();
1892
1893#ifdef FDT
1894	x86_init_fdt();
1895#endif
1896
1897	/* Location of kernel stack for locore */
1898	return ((u_int64_t)thread0.td_pcb);
1899}
1900
1901void
1902cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1903{
1904
1905	pcpu->pc_acpi_id = 0xffffffff;
1906}
1907
1908void
1909spinlock_enter(void)
1910{
1911	struct thread *td;
1912	register_t flags;
1913
1914	td = curthread;
1915	if (td->td_md.md_spinlock_count == 0) {
1916		flags = intr_disable();
1917		td->td_md.md_spinlock_count = 1;
1918		td->td_md.md_saved_flags = flags;
1919	} else
1920		td->td_md.md_spinlock_count++;
1921	critical_enter();
1922}
1923
1924void
1925spinlock_exit(void)
1926{
1927	struct thread *td;
1928	register_t flags;
1929
1930	td = curthread;
1931	critical_exit();
1932	flags = td->td_md.md_saved_flags;
1933	td->td_md.md_spinlock_count--;
1934	if (td->td_md.md_spinlock_count == 0)
1935		intr_restore(flags);
1936}
1937
1938/*
1939 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1940 * we want to start a backtrace from the function that caused us to enter
1941 * the debugger. We have the context in the trapframe, but base the trace
1942 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1943 * enough for a backtrace.
1944 */
1945void
1946makectx(struct trapframe *tf, struct pcb *pcb)
1947{
1948
1949	pcb->pcb_r12 = tf->tf_r12;
1950	pcb->pcb_r13 = tf->tf_r13;
1951	pcb->pcb_r14 = tf->tf_r14;
1952	pcb->pcb_r15 = tf->tf_r15;
1953	pcb->pcb_rbp = tf->tf_rbp;
1954	pcb->pcb_rbx = tf->tf_rbx;
1955	pcb->pcb_rip = tf->tf_rip;
1956	pcb->pcb_rsp = tf->tf_rsp;
1957}
1958
1959int
1960ptrace_set_pc(struct thread *td, unsigned long addr)
1961{
1962	td->td_frame->tf_rip = addr;
1963	return (0);
1964}
1965
1966int
1967ptrace_single_step(struct thread *td)
1968{
1969	td->td_frame->tf_rflags |= PSL_T;
1970	return (0);
1971}
1972
1973int
1974ptrace_clear_single_step(struct thread *td)
1975{
1976	td->td_frame->tf_rflags &= ~PSL_T;
1977	return (0);
1978}
1979
1980int
1981fill_regs(struct thread *td, struct reg *regs)
1982{
1983	struct trapframe *tp;
1984
1985	tp = td->td_frame;
1986	return (fill_frame_regs(tp, regs));
1987}
1988
1989int
1990fill_frame_regs(struct trapframe *tp, struct reg *regs)
1991{
1992	regs->r_r15 = tp->tf_r15;
1993	regs->r_r14 = tp->tf_r14;
1994	regs->r_r13 = tp->tf_r13;
1995	regs->r_r12 = tp->tf_r12;
1996	regs->r_r11 = tp->tf_r11;
1997	regs->r_r10 = tp->tf_r10;
1998	regs->r_r9  = tp->tf_r9;
1999	regs->r_r8  = tp->tf_r8;
2000	regs->r_rdi = tp->tf_rdi;
2001	regs->r_rsi = tp->tf_rsi;
2002	regs->r_rbp = tp->tf_rbp;
2003	regs->r_rbx = tp->tf_rbx;
2004	regs->r_rdx = tp->tf_rdx;
2005	regs->r_rcx = tp->tf_rcx;
2006	regs->r_rax = tp->tf_rax;
2007	regs->r_rip = tp->tf_rip;
2008	regs->r_cs = tp->tf_cs;
2009	regs->r_rflags = tp->tf_rflags;
2010	regs->r_rsp = tp->tf_rsp;
2011	regs->r_ss = tp->tf_ss;
2012	if (tp->tf_flags & TF_HASSEGS) {
2013		regs->r_ds = tp->tf_ds;
2014		regs->r_es = tp->tf_es;
2015		regs->r_fs = tp->tf_fs;
2016		regs->r_gs = tp->tf_gs;
2017	} else {
2018		regs->r_ds = 0;
2019		regs->r_es = 0;
2020		regs->r_fs = 0;
2021		regs->r_gs = 0;
2022	}
2023	return (0);
2024}
2025
2026int
2027set_regs(struct thread *td, struct reg *regs)
2028{
2029	struct trapframe *tp;
2030	register_t rflags;
2031
2032	tp = td->td_frame;
2033	rflags = regs->r_rflags & 0xffffffff;
2034	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
2035		return (EINVAL);
2036	tp->tf_r15 = regs->r_r15;
2037	tp->tf_r14 = regs->r_r14;
2038	tp->tf_r13 = regs->r_r13;
2039	tp->tf_r12 = regs->r_r12;
2040	tp->tf_r11 = regs->r_r11;
2041	tp->tf_r10 = regs->r_r10;
2042	tp->tf_r9  = regs->r_r9;
2043	tp->tf_r8  = regs->r_r8;
2044	tp->tf_rdi = regs->r_rdi;
2045	tp->tf_rsi = regs->r_rsi;
2046	tp->tf_rbp = regs->r_rbp;
2047	tp->tf_rbx = regs->r_rbx;
2048	tp->tf_rdx = regs->r_rdx;
2049	tp->tf_rcx = regs->r_rcx;
2050	tp->tf_rax = regs->r_rax;
2051	tp->tf_rip = regs->r_rip;
2052	tp->tf_cs = regs->r_cs;
2053	tp->tf_rflags = rflags;
2054	tp->tf_rsp = regs->r_rsp;
2055	tp->tf_ss = regs->r_ss;
2056	if (0) {	/* XXXKIB */
2057		tp->tf_ds = regs->r_ds;
2058		tp->tf_es = regs->r_es;
2059		tp->tf_fs = regs->r_fs;
2060		tp->tf_gs = regs->r_gs;
2061		tp->tf_flags = TF_HASSEGS;
2062		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2063	}
2064	return (0);
2065}
2066
2067/* XXX check all this stuff! */
2068/* externalize from sv_xmm */
2069static void
2070fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
2071{
2072	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2073	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2074	int i;
2075
2076	/* pcb -> fpregs */
2077	bzero(fpregs, sizeof(*fpregs));
2078
2079	/* FPU control/status */
2080	penv_fpreg->en_cw = penv_xmm->en_cw;
2081	penv_fpreg->en_sw = penv_xmm->en_sw;
2082	penv_fpreg->en_tw = penv_xmm->en_tw;
2083	penv_fpreg->en_opcode = penv_xmm->en_opcode;
2084	penv_fpreg->en_rip = penv_xmm->en_rip;
2085	penv_fpreg->en_rdp = penv_xmm->en_rdp;
2086	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
2087	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
2088
2089	/* FPU registers */
2090	for (i = 0; i < 8; ++i)
2091		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2092
2093	/* SSE registers */
2094	for (i = 0; i < 16; ++i)
2095		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2096}
2097
2098/* internalize from fpregs into sv_xmm */
2099static void
2100set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2101{
2102	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2103	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2104	int i;
2105
2106	/* fpregs -> pcb */
2107	/* FPU control/status */
2108	penv_xmm->en_cw = penv_fpreg->en_cw;
2109	penv_xmm->en_sw = penv_fpreg->en_sw;
2110	penv_xmm->en_tw = penv_fpreg->en_tw;
2111	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2112	penv_xmm->en_rip = penv_fpreg->en_rip;
2113	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2114	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2115	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2116
2117	/* FPU registers */
2118	for (i = 0; i < 8; ++i)
2119		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2120
2121	/* SSE registers */
2122	for (i = 0; i < 16; ++i)
2123		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2124}
2125
2126/* externalize from td->pcb */
2127int
2128fill_fpregs(struct thread *td, struct fpreg *fpregs)
2129{
2130
2131	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2132	    P_SHOULDSTOP(td->td_proc),
2133	    ("not suspended thread %p", td));
2134	fpugetregs(td);
2135	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2136	return (0);
2137}
2138
2139/* internalize to td->pcb */
2140int
2141set_fpregs(struct thread *td, struct fpreg *fpregs)
2142{
2143
2144	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2145	fpuuserinited(td);
2146	return (0);
2147}
2148
2149/*
2150 * Get machine context.
2151 */
2152int
2153get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2154{
2155	struct pcb *pcb;
2156	struct trapframe *tp;
2157
2158	pcb = td->td_pcb;
2159	tp = td->td_frame;
2160	PROC_LOCK(curthread->td_proc);
2161	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2162	PROC_UNLOCK(curthread->td_proc);
2163	mcp->mc_r15 = tp->tf_r15;
2164	mcp->mc_r14 = tp->tf_r14;
2165	mcp->mc_r13 = tp->tf_r13;
2166	mcp->mc_r12 = tp->tf_r12;
2167	mcp->mc_r11 = tp->tf_r11;
2168	mcp->mc_r10 = tp->tf_r10;
2169	mcp->mc_r9  = tp->tf_r9;
2170	mcp->mc_r8  = tp->tf_r8;
2171	mcp->mc_rdi = tp->tf_rdi;
2172	mcp->mc_rsi = tp->tf_rsi;
2173	mcp->mc_rbp = tp->tf_rbp;
2174	mcp->mc_rbx = tp->tf_rbx;
2175	mcp->mc_rcx = tp->tf_rcx;
2176	mcp->mc_rflags = tp->tf_rflags;
2177	if (flags & GET_MC_CLEAR_RET) {
2178		mcp->mc_rax = 0;
2179		mcp->mc_rdx = 0;
2180		mcp->mc_rflags &= ~PSL_C;
2181	} else {
2182		mcp->mc_rax = tp->tf_rax;
2183		mcp->mc_rdx = tp->tf_rdx;
2184	}
2185	mcp->mc_rip = tp->tf_rip;
2186	mcp->mc_cs = tp->tf_cs;
2187	mcp->mc_rsp = tp->tf_rsp;
2188	mcp->mc_ss = tp->tf_ss;
2189	mcp->mc_ds = tp->tf_ds;
2190	mcp->mc_es = tp->tf_es;
2191	mcp->mc_fs = tp->tf_fs;
2192	mcp->mc_gs = tp->tf_gs;
2193	mcp->mc_flags = tp->tf_flags;
2194	mcp->mc_len = sizeof(*mcp);
2195	get_fpcontext(td, mcp, NULL, 0);
2196	mcp->mc_fsbase = pcb->pcb_fsbase;
2197	mcp->mc_gsbase = pcb->pcb_gsbase;
2198	mcp->mc_xfpustate = 0;
2199	mcp->mc_xfpustate_len = 0;
2200	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2201	return (0);
2202}
2203
2204/*
2205 * Set machine context.
2206 *
2207 * However, we don't set any but the user modifiable flags, and we won't
2208 * touch the cs selector.
2209 */
2210int
2211set_mcontext(struct thread *td, const mcontext_t *mcp)
2212{
2213	struct pcb *pcb;
2214	struct trapframe *tp;
2215	char *xfpustate;
2216	long rflags;
2217	int ret;
2218
2219	pcb = td->td_pcb;
2220	tp = td->td_frame;
2221	if (mcp->mc_len != sizeof(*mcp) ||
2222	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2223		return (EINVAL);
2224	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2225	    (tp->tf_rflags & ~PSL_USERCHANGE);
2226	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2227		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2228		    sizeof(struct savefpu))
2229			return (EINVAL);
2230		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2231		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2232		    mcp->mc_xfpustate_len);
2233		if (ret != 0)
2234			return (ret);
2235	} else
2236		xfpustate = NULL;
2237	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2238	if (ret != 0)
2239		return (ret);
2240	tp->tf_r15 = mcp->mc_r15;
2241	tp->tf_r14 = mcp->mc_r14;
2242	tp->tf_r13 = mcp->mc_r13;
2243	tp->tf_r12 = mcp->mc_r12;
2244	tp->tf_r11 = mcp->mc_r11;
2245	tp->tf_r10 = mcp->mc_r10;
2246	tp->tf_r9  = mcp->mc_r9;
2247	tp->tf_r8  = mcp->mc_r8;
2248	tp->tf_rdi = mcp->mc_rdi;
2249	tp->tf_rsi = mcp->mc_rsi;
2250	tp->tf_rbp = mcp->mc_rbp;
2251	tp->tf_rbx = mcp->mc_rbx;
2252	tp->tf_rdx = mcp->mc_rdx;
2253	tp->tf_rcx = mcp->mc_rcx;
2254	tp->tf_rax = mcp->mc_rax;
2255	tp->tf_rip = mcp->mc_rip;
2256	tp->tf_rflags = rflags;
2257	tp->tf_rsp = mcp->mc_rsp;
2258	tp->tf_ss = mcp->mc_ss;
2259	tp->tf_flags = mcp->mc_flags;
2260	if (tp->tf_flags & TF_HASSEGS) {
2261		tp->tf_ds = mcp->mc_ds;
2262		tp->tf_es = mcp->mc_es;
2263		tp->tf_fs = mcp->mc_fs;
2264		tp->tf_gs = mcp->mc_gs;
2265	}
2266	if (mcp->mc_flags & _MC_HASBASES) {
2267		pcb->pcb_fsbase = mcp->mc_fsbase;
2268		pcb->pcb_gsbase = mcp->mc_gsbase;
2269	}
2270	set_pcb_flags(pcb, PCB_FULL_IRET);
2271	return (0);
2272}
2273
2274static void
2275get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2276    size_t xfpusave_len)
2277{
2278	size_t max_len, len;
2279
2280	mcp->mc_ownedfp = fpugetregs(td);
2281	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2282	    sizeof(mcp->mc_fpstate));
2283	mcp->mc_fpformat = fpuformat();
2284	if (!use_xsave || xfpusave_len == 0)
2285		return;
2286	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2287	len = xfpusave_len;
2288	if (len > max_len) {
2289		len = max_len;
2290		bzero(xfpusave + max_len, len - max_len);
2291	}
2292	mcp->mc_flags |= _MC_HASFPXSTATE;
2293	mcp->mc_xfpustate_len = len;
2294	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2295}
2296
2297static int
2298set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate,
2299    size_t xfpustate_len)
2300{
2301	struct savefpu *fpstate;
2302	int error;
2303
2304	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2305		return (0);
2306	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2307		return (EINVAL);
2308	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2309		/* We don't care what state is left in the FPU or PCB. */
2310		fpstate_drop(td);
2311		error = 0;
2312	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2313	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2314		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2315		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2316		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2317	} else
2318		return (EINVAL);
2319	return (error);
2320}
2321
2322void
2323fpstate_drop(struct thread *td)
2324{
2325
2326	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2327	critical_enter();
2328	if (PCPU_GET(fpcurthread) == td)
2329		fpudrop();
2330	/*
2331	 * XXX force a full drop of the fpu.  The above only drops it if we
2332	 * owned it.
2333	 *
2334	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2335	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2336	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2337	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2338	 * have too many layers.
2339	 */
2340	clear_pcb_flags(curthread->td_pcb,
2341	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2342	critical_exit();
2343}
2344
2345int
2346fill_dbregs(struct thread *td, struct dbreg *dbregs)
2347{
2348	struct pcb *pcb;
2349
2350	if (td == NULL) {
2351		dbregs->dr[0] = rdr0();
2352		dbregs->dr[1] = rdr1();
2353		dbregs->dr[2] = rdr2();
2354		dbregs->dr[3] = rdr3();
2355		dbregs->dr[6] = rdr6();
2356		dbregs->dr[7] = rdr7();
2357	} else {
2358		pcb = td->td_pcb;
2359		dbregs->dr[0] = pcb->pcb_dr0;
2360		dbregs->dr[1] = pcb->pcb_dr1;
2361		dbregs->dr[2] = pcb->pcb_dr2;
2362		dbregs->dr[3] = pcb->pcb_dr3;
2363		dbregs->dr[6] = pcb->pcb_dr6;
2364		dbregs->dr[7] = pcb->pcb_dr7;
2365	}
2366	dbregs->dr[4] = 0;
2367	dbregs->dr[5] = 0;
2368	dbregs->dr[8] = 0;
2369	dbregs->dr[9] = 0;
2370	dbregs->dr[10] = 0;
2371	dbregs->dr[11] = 0;
2372	dbregs->dr[12] = 0;
2373	dbregs->dr[13] = 0;
2374	dbregs->dr[14] = 0;
2375	dbregs->dr[15] = 0;
2376	return (0);
2377}
2378
2379int
2380set_dbregs(struct thread *td, struct dbreg *dbregs)
2381{
2382	struct pcb *pcb;
2383	int i;
2384
2385	if (td == NULL) {
2386		load_dr0(dbregs->dr[0]);
2387		load_dr1(dbregs->dr[1]);
2388		load_dr2(dbregs->dr[2]);
2389		load_dr3(dbregs->dr[3]);
2390		load_dr6(dbregs->dr[6]);
2391		load_dr7(dbregs->dr[7]);
2392	} else {
2393		/*
2394		 * Don't let an illegal value for dr7 get set.  Specifically,
2395		 * check for undefined settings.  Setting these bit patterns
2396		 * result in undefined behaviour and can lead to an unexpected
2397		 * TRCTRAP or a general protection fault right here.
2398		 * Upper bits of dr6 and dr7 must not be set
2399		 */
2400		for (i = 0; i < 4; i++) {
2401			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2402				return (EINVAL);
2403			if (td->td_frame->tf_cs == _ucode32sel &&
2404			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2405				return (EINVAL);
2406		}
2407		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2408		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2409			return (EINVAL);
2410
2411		pcb = td->td_pcb;
2412
2413		/*
2414		 * Don't let a process set a breakpoint that is not within the
2415		 * process's address space.  If a process could do this, it
2416		 * could halt the system by setting a breakpoint in the kernel
2417		 * (if ddb was enabled).  Thus, we need to check to make sure
2418		 * that no breakpoints are being enabled for addresses outside
2419		 * process's address space.
2420		 *
2421		 * XXX - what about when the watched area of the user's
2422		 * address space is written into from within the kernel
2423		 * ... wouldn't that still cause a breakpoint to be generated
2424		 * from within kernel mode?
2425		 */
2426
2427		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2428			/* dr0 is enabled */
2429			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2430				return (EINVAL);
2431		}
2432		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2433			/* dr1 is enabled */
2434			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2435				return (EINVAL);
2436		}
2437		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2438			/* dr2 is enabled */
2439			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2440				return (EINVAL);
2441		}
2442		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2443			/* dr3 is enabled */
2444			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2445				return (EINVAL);
2446		}
2447
2448		pcb->pcb_dr0 = dbregs->dr[0];
2449		pcb->pcb_dr1 = dbregs->dr[1];
2450		pcb->pcb_dr2 = dbregs->dr[2];
2451		pcb->pcb_dr3 = dbregs->dr[3];
2452		pcb->pcb_dr6 = dbregs->dr[6];
2453		pcb->pcb_dr7 = dbregs->dr[7];
2454
2455		set_pcb_flags(pcb, PCB_DBREGS);
2456	}
2457
2458	return (0);
2459}
2460
2461void
2462reset_dbregs(void)
2463{
2464
2465	load_dr7(0);	/* Turn off the control bits first */
2466	load_dr0(0);
2467	load_dr1(0);
2468	load_dr2(0);
2469	load_dr3(0);
2470	load_dr6(0);
2471}
2472
2473/*
2474 * Return > 0 if a hardware breakpoint has been hit, and the
2475 * breakpoint was in user space.  Return 0, otherwise.
2476 */
2477int
2478user_dbreg_trap(void)
2479{
2480        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2481        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2482        int nbp;            /* number of breakpoints that triggered */
2483        caddr_t addr[4];    /* breakpoint addresses */
2484        int i;
2485
2486        dr7 = rdr7();
2487        if ((dr7 & 0x000000ff) == 0) {
2488                /*
2489                 * all GE and LE bits in the dr7 register are zero,
2490                 * thus the trap couldn't have been caused by the
2491                 * hardware debug registers
2492                 */
2493                return 0;
2494        }
2495
2496        nbp = 0;
2497        dr6 = rdr6();
2498        bp = dr6 & 0x0000000f;
2499
2500        if (!bp) {
2501                /*
2502                 * None of the breakpoint bits are set meaning this
2503                 * trap was not caused by any of the debug registers
2504                 */
2505                return 0;
2506        }
2507
2508        /*
2509         * at least one of the breakpoints were hit, check to see
2510         * which ones and if any of them are user space addresses
2511         */
2512
2513        if (bp & 0x01) {
2514                addr[nbp++] = (caddr_t)rdr0();
2515        }
2516        if (bp & 0x02) {
2517                addr[nbp++] = (caddr_t)rdr1();
2518        }
2519        if (bp & 0x04) {
2520                addr[nbp++] = (caddr_t)rdr2();
2521        }
2522        if (bp & 0x08) {
2523                addr[nbp++] = (caddr_t)rdr3();
2524        }
2525
2526        for (i = 0; i < nbp; i++) {
2527                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2528                        /*
2529                         * addr[i] is in user space
2530                         */
2531                        return nbp;
2532                }
2533        }
2534
2535        /*
2536         * None of the breakpoints are in user space.
2537         */
2538        return 0;
2539}
2540
2541#ifdef KDB
2542
2543/*
2544 * Provide inb() and outb() as functions.  They are normally only available as
2545 * inline functions, thus cannot be called from the debugger.
2546 */
2547
2548/* silence compiler warnings */
2549u_char inb_(u_short);
2550void outb_(u_short, u_char);
2551
2552u_char
2553inb_(u_short port)
2554{
2555	return inb(port);
2556}
2557
2558void
2559outb_(u_short port, u_char data)
2560{
2561	outb(port, data);
2562}
2563
2564#endif /* KDB */
2565