machdep.c revision 250423
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 250423 2013-05-09 21:42:43Z dchagin $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_perfmon.h"
56#include "opt_sched.h"
57#include "opt_kdtrace.h"
58
59#include <sys/param.h>
60#include <sys/proc.h>
61#include <sys/systm.h>
62#include <sys/bio.h>
63#include <sys/buf.h>
64#include <sys/bus.h>
65#include <sys/callout.h>
66#include <sys/cons.h>
67#include <sys/cpu.h>
68#include <sys/eventhandler.h>
69#include <sys/exec.h>
70#include <sys/imgact.h>
71#include <sys/kdb.h>
72#include <sys/kernel.h>
73#include <sys/ktr.h>
74#include <sys/linker.h>
75#include <sys/lock.h>
76#include <sys/malloc.h>
77#include <sys/memrange.h>
78#include <sys/msgbuf.h>
79#include <sys/mutex.h>
80#include <sys/pcpu.h>
81#include <sys/ptrace.h>
82#include <sys/reboot.h>
83#include <sys/rwlock.h>
84#include <sys/sched.h>
85#include <sys/signalvar.h>
86#ifdef SMP
87#include <sys/smp.h>
88#endif
89#include <sys/syscallsubr.h>
90#include <sys/sysctl.h>
91#include <sys/sysent.h>
92#include <sys/sysproto.h>
93#include <sys/ucontext.h>
94#include <sys/vmmeter.h>
95
96#include <vm/vm.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_kern.h>
99#include <vm/vm_page.h>
100#include <vm/vm_map.h>
101#include <vm/vm_object.h>
102#include <vm/vm_pager.h>
103#include <vm/vm_param.h>
104
105#ifdef DDB
106#ifndef KDB
107#error KDB must be enabled in order for DDB to work!
108#endif
109#include <ddb/ddb.h>
110#include <ddb/db_sym.h>
111#endif
112
113#include <net/netisr.h>
114
115#include <machine/clock.h>
116#include <machine/cpu.h>
117#include <machine/cputypes.h>
118#include <machine/intr_machdep.h>
119#include <x86/mca.h>
120#include <machine/md_var.h>
121#include <machine/metadata.h>
122#include <machine/mp_watchdog.h>
123#include <machine/pc/bios.h>
124#include <machine/pcb.h>
125#include <machine/proc.h>
126#include <machine/reg.h>
127#include <machine/sigframe.h>
128#include <machine/specialreg.h>
129#ifdef PERFMON
130#include <machine/perfmon.h>
131#endif
132#include <machine/tss.h>
133#ifdef SMP
134#include <machine/smp.h>
135#endif
136
137#ifdef DEV_ATPIC
138#include <x86/isa/icu.h>
139#else
140#include <machine/apicvar.h>
141#endif
142
143#include <isa/isareg.h>
144#include <isa/rtc.h>
145
146/* Sanity check for __curthread() */
147CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
148
149extern u_int64_t hammer_time(u_int64_t, u_int64_t);
150
151extern void printcpuinfo(void);	/* XXX header file */
152extern void identify_cpu(void);
153extern void panicifcpuunsupported(void);
154
155#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
156#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
157
158static void cpu_startup(void *);
159static void get_fpcontext(struct thread *td, mcontext_t *mcp,
160    char *xfpusave, size_t xfpusave_len);
161static int  set_fpcontext(struct thread *td, const mcontext_t *mcp,
162    char *xfpustate, size_t xfpustate_len);
163SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
164
165/*
166 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
167 * the physical address at which the kernel is loaded.
168 */
169extern char kernphys[];
170#ifdef DDB
171extern vm_offset_t ksym_start, ksym_end;
172#endif
173
174struct msgbuf *msgbufp;
175
176/* Intel ICH registers */
177#define ICH_PMBASE	0x400
178#define ICH_SMI_EN	ICH_PMBASE + 0x30
179
180int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
181
182int cold = 1;
183
184long Maxmem = 0;
185long realmem = 0;
186
187/*
188 * The number of PHYSMAP entries must be one less than the number of
189 * PHYSSEG entries because the PHYSMAP entry that spans the largest
190 * physical address that is accessible by ISA DMA is split into two
191 * PHYSSEG entries.
192 */
193#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
194
195vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
196vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
197
198/* must be 2 less so 0 0 can signal end of chunks */
199#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
200#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
201
202struct kva_md_info kmi;
203
204static struct trapframe proc0_tf;
205struct region_descriptor r_gdt, r_idt;
206
207struct pcpu __pcpu[MAXCPU];
208
209struct mtx icu_lock;
210
211struct mem_range_softc mem_range_softc;
212
213struct mtx dt_lock;	/* lock for GDT and LDT */
214
215static void
216cpu_startup(dummy)
217	void *dummy;
218{
219	uintmax_t memsize;
220	char *sysenv;
221
222	/*
223	 * On MacBooks, we need to disallow the legacy USB circuit to
224	 * generate an SMI# because this can cause several problems,
225	 * namely: incorrect CPU frequency detection and failure to
226	 * start the APs.
227	 * We do this by disabling a bit in the SMI_EN (SMI Control and
228	 * Enable register) of the Intel ICH LPC Interface Bridge.
229	 */
230	sysenv = getenv("smbios.system.product");
231	if (sysenv != NULL) {
232		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
233		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
234		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
235		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
236		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
237		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
238			if (bootverbose)
239				printf("Disabling LEGACY_USB_EN bit on "
240				    "Intel ICH.\n");
241			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
242		}
243		freeenv(sysenv);
244	}
245
246	/*
247	 * Good {morning,afternoon,evening,night}.
248	 */
249	startrtclock();
250	printcpuinfo();
251	panicifcpuunsupported();
252#ifdef PERFMON
253	perfmon_init();
254#endif
255	realmem = Maxmem;
256
257	/*
258	 * Display physical memory if SMBIOS reports reasonable amount.
259	 */
260	memsize = 0;
261	sysenv = getenv("smbios.memory.enabled");
262	if (sysenv != NULL) {
263		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
264		freeenv(sysenv);
265	}
266	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
267		memsize = ptoa((uintmax_t)Maxmem);
268	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
269
270	/*
271	 * Display any holes after the first chunk of extended memory.
272	 */
273	if (bootverbose) {
274		int indx;
275
276		printf("Physical memory chunk(s):\n");
277		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
278			vm_paddr_t size;
279
280			size = phys_avail[indx + 1] - phys_avail[indx];
281			printf(
282			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
283			    (uintmax_t)phys_avail[indx],
284			    (uintmax_t)phys_avail[indx + 1] - 1,
285			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
286		}
287	}
288
289	vm_ksubmap_init(&kmi);
290
291	printf("avail memory = %ju (%ju MB)\n",
292	    ptoa((uintmax_t)cnt.v_free_count),
293	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
294
295	/*
296	 * Set up buffers, so they can be used to read disk labels.
297	 */
298	bufinit();
299	vm_pager_bufferinit();
300
301	cpu_setregs();
302}
303
304/*
305 * Send an interrupt to process.
306 *
307 * Stack is set up to allow sigcode stored
308 * at top to call routine, followed by call
309 * to sigreturn routine below.  After sigreturn
310 * resets the signal mask, the stack, and the
311 * frame pointer, it returns to the user
312 * specified pc, psl.
313 */
314void
315sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
316{
317	struct sigframe sf, *sfp;
318	struct pcb *pcb;
319	struct proc *p;
320	struct thread *td;
321	struct sigacts *psp;
322	char *sp;
323	struct trapframe *regs;
324	char *xfpusave;
325	size_t xfpusave_len;
326	int sig;
327	int oonstack;
328
329	td = curthread;
330	pcb = td->td_pcb;
331	p = td->td_proc;
332	PROC_LOCK_ASSERT(p, MA_OWNED);
333	sig = ksi->ksi_signo;
334	psp = p->p_sigacts;
335	mtx_assert(&psp->ps_mtx, MA_OWNED);
336	regs = td->td_frame;
337	oonstack = sigonstack(regs->tf_rsp);
338
339	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
340		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
341		xfpusave = __builtin_alloca(xfpusave_len);
342	} else {
343		xfpusave_len = 0;
344		xfpusave = NULL;
345	}
346
347	/* Save user context. */
348	bzero(&sf, sizeof(sf));
349	sf.sf_uc.uc_sigmask = *mask;
350	sf.sf_uc.uc_stack = td->td_sigstk;
351	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
352	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
353	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
354	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
355	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
356	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
357	fpstate_drop(td);
358	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
359	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
360	bzero(sf.sf_uc.uc_mcontext.mc_spare,
361	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
362	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
363
364	/* Allocate space for the signal handler context. */
365	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
366	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
367		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
368#if defined(COMPAT_43)
369		td->td_sigstk.ss_flags |= SS_ONSTACK;
370#endif
371	} else
372		sp = (char *)regs->tf_rsp - 128;
373	if (xfpusave != NULL) {
374		sp -= xfpusave_len;
375		sp = (char *)((unsigned long)sp & ~0x3Ful);
376		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
377	}
378	sp -= sizeof(struct sigframe);
379	/* Align to 16 bytes. */
380	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
381
382	/* Translate the signal if appropriate. */
383	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
384		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
385
386	/* Build the argument list for the signal handler. */
387	regs->tf_rdi = sig;			/* arg 1 in %rdi */
388	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
389	bzero(&sf.sf_si, sizeof(sf.sf_si));
390	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
391		/* Signal handler installed with SA_SIGINFO. */
392		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
393		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
394
395		/* Fill in POSIX parts */
396		sf.sf_si = ksi->ksi_info;
397		sf.sf_si.si_signo = sig; /* maybe a translated signal */
398		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
399	} else {
400		/* Old FreeBSD-style arguments. */
401		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
402		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
403		sf.sf_ahu.sf_handler = catcher;
404	}
405	mtx_unlock(&psp->ps_mtx);
406	PROC_UNLOCK(p);
407
408	/*
409	 * Copy the sigframe out to the user's stack.
410	 */
411	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
412	    (xfpusave != NULL && copyout(xfpusave,
413	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
414	    != 0)) {
415#ifdef DEBUG
416		printf("process %ld has trashed its stack\n", (long)p->p_pid);
417#endif
418		PROC_LOCK(p);
419		sigexit(td, SIGILL);
420	}
421
422	regs->tf_rsp = (long)sfp;
423	regs->tf_rip = p->p_sysent->sv_sigcode_base;
424	regs->tf_rflags &= ~(PSL_T | PSL_D);
425	regs->tf_cs = _ucodesel;
426	regs->tf_ds = _udatasel;
427	regs->tf_es = _udatasel;
428	regs->tf_fs = _ufssel;
429	regs->tf_gs = _ugssel;
430	regs->tf_flags = TF_HASSEGS;
431	set_pcb_flags(pcb, PCB_FULL_IRET);
432	PROC_LOCK(p);
433	mtx_lock(&psp->ps_mtx);
434}
435
436/*
437 * System call to cleanup state after a signal
438 * has been taken.  Reset signal mask and
439 * stack state from context left by sendsig (above).
440 * Return to previous pc and psl as specified by
441 * context left by sendsig. Check carefully to
442 * make sure that the user has not modified the
443 * state to gain improper privileges.
444 *
445 * MPSAFE
446 */
447int
448sys_sigreturn(td, uap)
449	struct thread *td;
450	struct sigreturn_args /* {
451		const struct __ucontext *sigcntxp;
452	} */ *uap;
453{
454	ucontext_t uc;
455	struct pcb *pcb;
456	struct proc *p;
457	struct trapframe *regs;
458	ucontext_t *ucp;
459	char *xfpustate;
460	size_t xfpustate_len;
461	long rflags;
462	int cs, error, ret;
463	ksiginfo_t ksi;
464
465	pcb = td->td_pcb;
466	p = td->td_proc;
467
468	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
469	if (error != 0) {
470		uprintf("pid %d (%s): sigreturn copyin failed\n",
471		    p->p_pid, td->td_name);
472		return (error);
473	}
474	ucp = &uc;
475	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
476		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
477		    td->td_name, ucp->uc_mcontext.mc_flags);
478		return (EINVAL);
479	}
480	regs = td->td_frame;
481	rflags = ucp->uc_mcontext.mc_rflags;
482	/*
483	 * Don't allow users to change privileged or reserved flags.
484	 */
485	/*
486	 * XXX do allow users to change the privileged flag PSL_RF.
487	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
488	 * should sometimes set it there too.  tf_rflags is kept in
489	 * the signal context during signal handling and there is no
490	 * other place to remember it, so the PSL_RF bit may be
491	 * corrupted by the signal handler without us knowing.
492	 * Corruption of the PSL_RF bit at worst causes one more or
493	 * one less debugger trap, so allowing it is fairly harmless.
494	 */
495	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
496		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
497		    td->td_name, rflags);
498		return (EINVAL);
499	}
500
501	/*
502	 * Don't allow users to load a valid privileged %cs.  Let the
503	 * hardware check for invalid selectors, excess privilege in
504	 * other selectors, invalid %eip's and invalid %esp's.
505	 */
506	cs = ucp->uc_mcontext.mc_cs;
507	if (!CS_SECURE(cs)) {
508		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
509		    td->td_name, cs);
510		ksiginfo_init_trap(&ksi);
511		ksi.ksi_signo = SIGBUS;
512		ksi.ksi_code = BUS_OBJERR;
513		ksi.ksi_trapno = T_PROTFLT;
514		ksi.ksi_addr = (void *)regs->tf_rip;
515		trapsignal(td, &ksi);
516		return (EINVAL);
517	}
518
519	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
520		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
521		if (xfpustate_len > cpu_max_ext_state_size -
522		    sizeof(struct savefpu)) {
523			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
524			    p->p_pid, td->td_name, xfpustate_len);
525			return (EINVAL);
526		}
527		xfpustate = __builtin_alloca(xfpustate_len);
528		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
529		    xfpustate, xfpustate_len);
530		if (error != 0) {
531			uprintf(
532	"pid %d (%s): sigreturn copying xfpustate failed\n",
533			    p->p_pid, td->td_name);
534			return (error);
535		}
536	} else {
537		xfpustate = NULL;
538		xfpustate_len = 0;
539	}
540	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
541	if (ret != 0) {
542		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
543		    p->p_pid, td->td_name, ret);
544		return (ret);
545	}
546	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
547	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
548	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
549
550#if defined(COMPAT_43)
551	if (ucp->uc_mcontext.mc_onstack & 1)
552		td->td_sigstk.ss_flags |= SS_ONSTACK;
553	else
554		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
555#endif
556
557	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
558	set_pcb_flags(pcb, PCB_FULL_IRET);
559	return (EJUSTRETURN);
560}
561
562#ifdef COMPAT_FREEBSD4
563int
564freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
565{
566
567	return sys_sigreturn(td, (struct sigreturn_args *)uap);
568}
569#endif
570
571
572/*
573 * Machine dependent boot() routine
574 *
575 * I haven't seen anything to put here yet
576 * Possibly some stuff might be grafted back here from boot()
577 */
578void
579cpu_boot(int howto)
580{
581}
582
583/*
584 * Flush the D-cache for non-DMA I/O so that the I-cache can
585 * be made coherent later.
586 */
587void
588cpu_flush_dcache(void *ptr, size_t len)
589{
590	/* Not applicable */
591}
592
593/* Get current clock frequency for the given cpu id. */
594int
595cpu_est_clockrate(int cpu_id, uint64_t *rate)
596{
597	uint64_t tsc1, tsc2;
598	uint64_t acnt, mcnt, perf;
599	register_t reg;
600
601	if (pcpu_find(cpu_id) == NULL || rate == NULL)
602		return (EINVAL);
603
604	/*
605	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
606	 * DELAY(9) based logic fails.
607	 */
608	if (tsc_is_invariant && !tsc_perf_stat)
609		return (EOPNOTSUPP);
610
611#ifdef SMP
612	if (smp_cpus > 1) {
613		/* Schedule ourselves on the indicated cpu. */
614		thread_lock(curthread);
615		sched_bind(curthread, cpu_id);
616		thread_unlock(curthread);
617	}
618#endif
619
620	/* Calibrate by measuring a short delay. */
621	reg = intr_disable();
622	if (tsc_is_invariant) {
623		wrmsr(MSR_MPERF, 0);
624		wrmsr(MSR_APERF, 0);
625		tsc1 = rdtsc();
626		DELAY(1000);
627		mcnt = rdmsr(MSR_MPERF);
628		acnt = rdmsr(MSR_APERF);
629		tsc2 = rdtsc();
630		intr_restore(reg);
631		perf = 1000 * acnt / mcnt;
632		*rate = (tsc2 - tsc1) * perf;
633	} else {
634		tsc1 = rdtsc();
635		DELAY(1000);
636		tsc2 = rdtsc();
637		intr_restore(reg);
638		*rate = (tsc2 - tsc1) * 1000;
639	}
640
641#ifdef SMP
642	if (smp_cpus > 1) {
643		thread_lock(curthread);
644		sched_unbind(curthread);
645		thread_unlock(curthread);
646	}
647#endif
648
649	return (0);
650}
651
652/*
653 * Shutdown the CPU as much as possible
654 */
655void
656cpu_halt(void)
657{
658	for (;;)
659		halt();
660}
661
662void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
663static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
664static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
665TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
666SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
667    0, "Use MONITOR/MWAIT for short idle");
668
669#define	STATE_RUNNING	0x0
670#define	STATE_MWAIT	0x1
671#define	STATE_SLEEPING	0x2
672
673static void
674cpu_idle_acpi(sbintime_t sbt)
675{
676	int *state;
677
678	state = (int *)PCPU_PTR(monitorbuf);
679	*state = STATE_SLEEPING;
680
681	/* See comments in cpu_idle_hlt(). */
682	disable_intr();
683	if (sched_runnable())
684		enable_intr();
685	else if (cpu_idle_hook)
686		cpu_idle_hook(sbt);
687	else
688		__asm __volatile("sti; hlt");
689	*state = STATE_RUNNING;
690}
691
692static void
693cpu_idle_hlt(sbintime_t sbt)
694{
695	int *state;
696
697	state = (int *)PCPU_PTR(monitorbuf);
698	*state = STATE_SLEEPING;
699
700	/*
701	 * Since we may be in a critical section from cpu_idle(), if
702	 * an interrupt fires during that critical section we may have
703	 * a pending preemption.  If the CPU halts, then that thread
704	 * may not execute until a later interrupt awakens the CPU.
705	 * To handle this race, check for a runnable thread after
706	 * disabling interrupts and immediately return if one is
707	 * found.  Also, we must absolutely guarentee that hlt is
708	 * the next instruction after sti.  This ensures that any
709	 * interrupt that fires after the call to disable_intr() will
710	 * immediately awaken the CPU from hlt.  Finally, please note
711	 * that on x86 this works fine because of interrupts enabled only
712	 * after the instruction following sti takes place, while IF is set
713	 * to 1 immediately, allowing hlt instruction to acknowledge the
714	 * interrupt.
715	 */
716	disable_intr();
717	if (sched_runnable())
718		enable_intr();
719	else
720		__asm __volatile("sti; hlt");
721	*state = STATE_RUNNING;
722}
723
724/*
725 * MWAIT cpu power states.  Lower 4 bits are sub-states.
726 */
727#define	MWAIT_C0	0xf0
728#define	MWAIT_C1	0x00
729#define	MWAIT_C2	0x10
730#define	MWAIT_C3	0x20
731#define	MWAIT_C4	0x30
732
733static void
734cpu_idle_mwait(sbintime_t sbt)
735{
736	int *state;
737
738	state = (int *)PCPU_PTR(monitorbuf);
739	*state = STATE_MWAIT;
740
741	/* See comments in cpu_idle_hlt(). */
742	disable_intr();
743	if (sched_runnable()) {
744		enable_intr();
745		*state = STATE_RUNNING;
746		return;
747	}
748	cpu_monitor(state, 0, 0);
749	if (*state == STATE_MWAIT)
750		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
751	else
752		enable_intr();
753	*state = STATE_RUNNING;
754}
755
756static void
757cpu_idle_spin(sbintime_t sbt)
758{
759	int *state;
760	int i;
761
762	state = (int *)PCPU_PTR(monitorbuf);
763	*state = STATE_RUNNING;
764
765	/*
766	 * The sched_runnable() call is racy but as long as there is
767	 * a loop missing it one time will have just a little impact if any
768	 * (and it is much better than missing the check at all).
769	 */
770	for (i = 0; i < 1000; i++) {
771		if (sched_runnable())
772			return;
773		cpu_spinwait();
774	}
775}
776
777/*
778 * C1E renders the local APIC timer dead, so we disable it by
779 * reading the Interrupt Pending Message register and clearing
780 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
781 *
782 * Reference:
783 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
784 *   #32559 revision 3.00+
785 */
786#define	MSR_AMDK8_IPM		0xc0010055
787#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
788#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
789#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
790
791static void
792cpu_probe_amdc1e(void)
793{
794
795	/*
796	 * Detect the presence of C1E capability mostly on latest
797	 * dual-cores (or future) k8 family.
798	 */
799	if (cpu_vendor_id == CPU_VENDOR_AMD &&
800	    (cpu_id & 0x00000f00) == 0x00000f00 &&
801	    (cpu_id & 0x0fff0000) >=  0x00040000) {
802		cpu_ident_amdc1e = 1;
803	}
804}
805
806void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
807
808void
809cpu_idle(int busy)
810{
811	uint64_t msr;
812	sbintime_t sbt = -1;
813
814	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
815	    busy, curcpu);
816#ifdef MP_WATCHDOG
817	ap_watchdog(PCPU_GET(cpuid));
818#endif
819	/* If we are busy - try to use fast methods. */
820	if (busy) {
821		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
822			cpu_idle_mwait(busy);
823			goto out;
824		}
825	}
826
827	/* If we have time - switch timers into idle mode. */
828	if (!busy) {
829		critical_enter();
830		sbt = cpu_idleclock();
831	}
832
833	/* Apply AMD APIC timer C1E workaround. */
834	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
835		msr = rdmsr(MSR_AMDK8_IPM);
836		if (msr & AMDK8_CMPHALT)
837			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
838	}
839
840	/* Call main idle method. */
841	cpu_idle_fn(sbt);
842
843	/* Switch timers mack into active mode. */
844	if (!busy) {
845		cpu_activeclock();
846		critical_exit();
847	}
848out:
849	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
850	    busy, curcpu);
851}
852
853int
854cpu_idle_wakeup(int cpu)
855{
856	struct pcpu *pcpu;
857	int *state;
858
859	pcpu = pcpu_find(cpu);
860	state = (int *)pcpu->pc_monitorbuf;
861	/*
862	 * This doesn't need to be atomic since missing the race will
863	 * simply result in unnecessary IPIs.
864	 */
865	if (*state == STATE_SLEEPING)
866		return (0);
867	if (*state == STATE_MWAIT)
868		*state = STATE_RUNNING;
869	return (1);
870}
871
872/*
873 * Ordered by speed/power consumption.
874 */
875struct {
876	void	*id_fn;
877	char	*id_name;
878} idle_tbl[] = {
879	{ cpu_idle_spin, "spin" },
880	{ cpu_idle_mwait, "mwait" },
881	{ cpu_idle_hlt, "hlt" },
882	{ cpu_idle_acpi, "acpi" },
883	{ NULL, NULL }
884};
885
886static int
887idle_sysctl_available(SYSCTL_HANDLER_ARGS)
888{
889	char *avail, *p;
890	int error;
891	int i;
892
893	avail = malloc(256, M_TEMP, M_WAITOK);
894	p = avail;
895	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
896		if (strstr(idle_tbl[i].id_name, "mwait") &&
897		    (cpu_feature2 & CPUID2_MON) == 0)
898			continue;
899		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
900		    cpu_idle_hook == NULL)
901			continue;
902		p += sprintf(p, "%s%s", p != avail ? ", " : "",
903		    idle_tbl[i].id_name);
904	}
905	error = sysctl_handle_string(oidp, avail, 0, req);
906	free(avail, M_TEMP);
907	return (error);
908}
909
910SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
911    0, 0, idle_sysctl_available, "A", "list of available idle functions");
912
913static int
914idle_sysctl(SYSCTL_HANDLER_ARGS)
915{
916	char buf[16];
917	int error;
918	char *p;
919	int i;
920
921	p = "unknown";
922	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
923		if (idle_tbl[i].id_fn == cpu_idle_fn) {
924			p = idle_tbl[i].id_name;
925			break;
926		}
927	}
928	strncpy(buf, p, sizeof(buf));
929	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
930	if (error != 0 || req->newptr == NULL)
931		return (error);
932	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
933		if (strstr(idle_tbl[i].id_name, "mwait") &&
934		    (cpu_feature2 & CPUID2_MON) == 0)
935			continue;
936		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
937		    cpu_idle_hook == NULL)
938			continue;
939		if (strcmp(idle_tbl[i].id_name, buf))
940			continue;
941		cpu_idle_fn = idle_tbl[i].id_fn;
942		return (0);
943	}
944	return (EINVAL);
945}
946
947SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
948    idle_sysctl, "A", "currently selected idle function");
949
950/*
951 * Reset registers to default values on exec.
952 */
953void
954exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
955{
956	struct trapframe *regs = td->td_frame;
957	struct pcb *pcb = td->td_pcb;
958
959	mtx_lock(&dt_lock);
960	if (td->td_proc->p_md.md_ldt != NULL)
961		user_ldt_free(td);
962	else
963		mtx_unlock(&dt_lock);
964
965	pcb->pcb_fsbase = 0;
966	pcb->pcb_gsbase = 0;
967	clear_pcb_flags(pcb, PCB_32BIT);
968	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
969	set_pcb_flags(pcb, PCB_FULL_IRET);
970
971	bzero((char *)regs, sizeof(struct trapframe));
972	regs->tf_rip = imgp->entry_addr;
973	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
974	regs->tf_rdi = stack;		/* argv */
975	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
976	regs->tf_ss = _udatasel;
977	regs->tf_cs = _ucodesel;
978	regs->tf_ds = _udatasel;
979	regs->tf_es = _udatasel;
980	regs->tf_fs = _ufssel;
981	regs->tf_gs = _ugssel;
982	regs->tf_flags = TF_HASSEGS;
983	td->td_retval[1] = 0;
984
985	/*
986	 * Reset the hardware debug registers if they were in use.
987	 * They won't have any meaning for the newly exec'd process.
988	 */
989	if (pcb->pcb_flags & PCB_DBREGS) {
990		pcb->pcb_dr0 = 0;
991		pcb->pcb_dr1 = 0;
992		pcb->pcb_dr2 = 0;
993		pcb->pcb_dr3 = 0;
994		pcb->pcb_dr6 = 0;
995		pcb->pcb_dr7 = 0;
996		if (pcb == curpcb) {
997			/*
998			 * Clear the debug registers on the running
999			 * CPU, otherwise they will end up affecting
1000			 * the next process we switch to.
1001			 */
1002			reset_dbregs();
1003		}
1004		clear_pcb_flags(pcb, PCB_DBREGS);
1005	}
1006
1007	/*
1008	 * Drop the FP state if we hold it, so that the process gets a
1009	 * clean FP state if it uses the FPU again.
1010	 */
1011	fpstate_drop(td);
1012}
1013
1014void
1015cpu_setregs(void)
1016{
1017	register_t cr0;
1018
1019	cr0 = rcr0();
1020	/*
1021	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
1022	 * BSP.  See the comments there about why we set them.
1023	 */
1024	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1025	load_cr0(cr0);
1026}
1027
1028/*
1029 * Initialize amd64 and configure to run kernel
1030 */
1031
1032/*
1033 * Initialize segments & interrupt table
1034 */
1035
1036struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
1037static struct gate_descriptor idt0[NIDT];
1038struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1039
1040static char dblfault_stack[PAGE_SIZE] __aligned(16);
1041
1042static char nmi0_stack[PAGE_SIZE] __aligned(16);
1043CTASSERT(sizeof(struct nmi_pcpu) == 16);
1044
1045struct amd64tss common_tss[MAXCPU];
1046
1047/*
1048 * Software prototypes -- in more palatable form.
1049 *
1050 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
1051 * slots as corresponding segments for i386 kernel.
1052 */
1053struct soft_segment_descriptor gdt_segs[] = {
1054/* GNULL_SEL	0 Null Descriptor */
1055{	.ssd_base = 0x0,
1056	.ssd_limit = 0x0,
1057	.ssd_type = 0,
1058	.ssd_dpl = 0,
1059	.ssd_p = 0,
1060	.ssd_long = 0,
1061	.ssd_def32 = 0,
1062	.ssd_gran = 0		},
1063/* GNULL2_SEL	1 Null Descriptor */
1064{	.ssd_base = 0x0,
1065	.ssd_limit = 0x0,
1066	.ssd_type = 0,
1067	.ssd_dpl = 0,
1068	.ssd_p = 0,
1069	.ssd_long = 0,
1070	.ssd_def32 = 0,
1071	.ssd_gran = 0		},
1072/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
1073{	.ssd_base = 0x0,
1074	.ssd_limit = 0xfffff,
1075	.ssd_type = SDT_MEMRWA,
1076	.ssd_dpl = SEL_UPL,
1077	.ssd_p = 1,
1078	.ssd_long = 0,
1079	.ssd_def32 = 1,
1080	.ssd_gran = 1		},
1081/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1082{	.ssd_base = 0x0,
1083	.ssd_limit = 0xfffff,
1084	.ssd_type = SDT_MEMRWA,
1085	.ssd_dpl = SEL_UPL,
1086	.ssd_p = 1,
1087	.ssd_long = 0,
1088	.ssd_def32 = 1,
1089	.ssd_gran = 1		},
1090/* GCODE_SEL	4 Code Descriptor for kernel */
1091{	.ssd_base = 0x0,
1092	.ssd_limit = 0xfffff,
1093	.ssd_type = SDT_MEMERA,
1094	.ssd_dpl = SEL_KPL,
1095	.ssd_p = 1,
1096	.ssd_long = 1,
1097	.ssd_def32 = 0,
1098	.ssd_gran = 1		},
1099/* GDATA_SEL	5 Data Descriptor for kernel */
1100{	.ssd_base = 0x0,
1101	.ssd_limit = 0xfffff,
1102	.ssd_type = SDT_MEMRWA,
1103	.ssd_dpl = SEL_KPL,
1104	.ssd_p = 1,
1105	.ssd_long = 1,
1106	.ssd_def32 = 0,
1107	.ssd_gran = 1		},
1108/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1109{	.ssd_base = 0x0,
1110	.ssd_limit = 0xfffff,
1111	.ssd_type = SDT_MEMERA,
1112	.ssd_dpl = SEL_UPL,
1113	.ssd_p = 1,
1114	.ssd_long = 0,
1115	.ssd_def32 = 1,
1116	.ssd_gran = 1		},
1117/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1118{	.ssd_base = 0x0,
1119	.ssd_limit = 0xfffff,
1120	.ssd_type = SDT_MEMRWA,
1121	.ssd_dpl = SEL_UPL,
1122	.ssd_p = 1,
1123	.ssd_long = 0,
1124	.ssd_def32 = 1,
1125	.ssd_gran = 1		},
1126/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1127{	.ssd_base = 0x0,
1128	.ssd_limit = 0xfffff,
1129	.ssd_type = SDT_MEMERA,
1130	.ssd_dpl = SEL_UPL,
1131	.ssd_p = 1,
1132	.ssd_long = 1,
1133	.ssd_def32 = 0,
1134	.ssd_gran = 1		},
1135/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1136{	.ssd_base = 0x0,
1137	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1138	.ssd_type = SDT_SYSTSS,
1139	.ssd_dpl = SEL_KPL,
1140	.ssd_p = 1,
1141	.ssd_long = 0,
1142	.ssd_def32 = 0,
1143	.ssd_gran = 0		},
1144/* Actually, the TSS is a system descriptor which is double size */
1145{	.ssd_base = 0x0,
1146	.ssd_limit = 0x0,
1147	.ssd_type = 0,
1148	.ssd_dpl = 0,
1149	.ssd_p = 0,
1150	.ssd_long = 0,
1151	.ssd_def32 = 0,
1152	.ssd_gran = 0		},
1153/* GUSERLDT_SEL	11 LDT Descriptor */
1154{	.ssd_base = 0x0,
1155	.ssd_limit = 0x0,
1156	.ssd_type = 0,
1157	.ssd_dpl = 0,
1158	.ssd_p = 0,
1159	.ssd_long = 0,
1160	.ssd_def32 = 0,
1161	.ssd_gran = 0		},
1162/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1163{	.ssd_base = 0x0,
1164	.ssd_limit = 0x0,
1165	.ssd_type = 0,
1166	.ssd_dpl = 0,
1167	.ssd_p = 0,
1168	.ssd_long = 0,
1169	.ssd_def32 = 0,
1170	.ssd_gran = 0		},
1171};
1172
1173void
1174setidt(idx, func, typ, dpl, ist)
1175	int idx;
1176	inthand_t *func;
1177	int typ;
1178	int dpl;
1179	int ist;
1180{
1181	struct gate_descriptor *ip;
1182
1183	ip = idt + idx;
1184	ip->gd_looffset = (uintptr_t)func;
1185	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1186	ip->gd_ist = ist;
1187	ip->gd_xx = 0;
1188	ip->gd_type = typ;
1189	ip->gd_dpl = dpl;
1190	ip->gd_p = 1;
1191	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1192}
1193
1194extern inthand_t
1195	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1196	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1197	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1198	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1199	IDTVEC(xmm), IDTVEC(dblfault),
1200#ifdef KDTRACE_HOOKS
1201	IDTVEC(dtrace_ret),
1202#endif
1203	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1204
1205#ifdef DDB
1206/*
1207 * Display the index and function name of any IDT entries that don't use
1208 * the default 'rsvd' entry point.
1209 */
1210DB_SHOW_COMMAND(idt, db_show_idt)
1211{
1212	struct gate_descriptor *ip;
1213	int idx;
1214	uintptr_t func;
1215
1216	ip = idt;
1217	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1218		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1219		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1220			db_printf("%3d\t", idx);
1221			db_printsym(func, DB_STGY_PROC);
1222			db_printf("\n");
1223		}
1224		ip++;
1225	}
1226}
1227#endif
1228
1229void
1230sdtossd(sd, ssd)
1231	struct user_segment_descriptor *sd;
1232	struct soft_segment_descriptor *ssd;
1233{
1234
1235	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1236	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1237	ssd->ssd_type  = sd->sd_type;
1238	ssd->ssd_dpl   = sd->sd_dpl;
1239	ssd->ssd_p     = sd->sd_p;
1240	ssd->ssd_long  = sd->sd_long;
1241	ssd->ssd_def32 = sd->sd_def32;
1242	ssd->ssd_gran  = sd->sd_gran;
1243}
1244
1245void
1246ssdtosd(ssd, sd)
1247	struct soft_segment_descriptor *ssd;
1248	struct user_segment_descriptor *sd;
1249{
1250
1251	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1252	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1253	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1254	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1255	sd->sd_type  = ssd->ssd_type;
1256	sd->sd_dpl   = ssd->ssd_dpl;
1257	sd->sd_p     = ssd->ssd_p;
1258	sd->sd_long  = ssd->ssd_long;
1259	sd->sd_def32 = ssd->ssd_def32;
1260	sd->sd_gran  = ssd->ssd_gran;
1261}
1262
1263void
1264ssdtosyssd(ssd, sd)
1265	struct soft_segment_descriptor *ssd;
1266	struct system_segment_descriptor *sd;
1267{
1268
1269	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1270	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1271	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1272	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1273	sd->sd_type  = ssd->ssd_type;
1274	sd->sd_dpl   = ssd->ssd_dpl;
1275	sd->sd_p     = ssd->ssd_p;
1276	sd->sd_gran  = ssd->ssd_gran;
1277}
1278
1279#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1280#include <isa/isavar.h>
1281#include <isa/isareg.h>
1282/*
1283 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1284 * and is only suitable for use at probe time.
1285 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1286 * It shouldn't be here.  There should probably be an APIC centric
1287 * implementation in the apic driver code, if at all.
1288 */
1289intrmask_t
1290isa_irq_pending(void)
1291{
1292	u_char irr1;
1293	u_char irr2;
1294
1295	irr1 = inb(IO_ICU1);
1296	irr2 = inb(IO_ICU2);
1297	return ((irr2 << 8) | irr1);
1298}
1299#endif
1300
1301u_int basemem;
1302
1303static int
1304add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1305{
1306	int i, insert_idx, physmap_idx;
1307
1308	physmap_idx = *physmap_idxp;
1309
1310	if (boothowto & RB_VERBOSE)
1311		printf("SMAP type=%02x base=%016lx len=%016lx\n",
1312		    smap->type, smap->base, smap->length);
1313
1314	if (smap->type != SMAP_TYPE_MEMORY)
1315		return (1);
1316
1317	if (smap->length == 0)
1318		return (0);
1319
1320	/*
1321	 * Find insertion point while checking for overlap.  Start off by
1322	 * assuming the new entry will be added to the end.
1323	 */
1324	insert_idx = physmap_idx + 2;
1325	for (i = 0; i <= physmap_idx; i += 2) {
1326		if (smap->base < physmap[i + 1]) {
1327			if (smap->base + smap->length <= physmap[i]) {
1328				insert_idx = i;
1329				break;
1330			}
1331			if (boothowto & RB_VERBOSE)
1332				printf(
1333		    "Overlapping memory regions, ignoring second region\n");
1334			return (1);
1335		}
1336	}
1337
1338	/* See if we can prepend to the next entry. */
1339	if (insert_idx <= physmap_idx &&
1340	    smap->base + smap->length == physmap[insert_idx]) {
1341		physmap[insert_idx] = smap->base;
1342		return (1);
1343	}
1344
1345	/* See if we can append to the previous entry. */
1346	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
1347		physmap[insert_idx - 1] += smap->length;
1348		return (1);
1349	}
1350
1351	physmap_idx += 2;
1352	*physmap_idxp = physmap_idx;
1353	if (physmap_idx == PHYSMAP_SIZE) {
1354		printf(
1355		"Too many segments in the physical address map, giving up\n");
1356		return (0);
1357	}
1358
1359	/*
1360	 * Move the last 'N' entries down to make room for the new
1361	 * entry if needed.
1362	 */
1363	for (i = physmap_idx; i > insert_idx; i -= 2) {
1364		physmap[i] = physmap[i - 2];
1365		physmap[i + 1] = physmap[i - 1];
1366	}
1367
1368	/* Insert the new entry. */
1369	physmap[insert_idx] = smap->base;
1370	physmap[insert_idx + 1] = smap->base + smap->length;
1371	return (1);
1372}
1373
1374/*
1375 * Populate the (physmap) array with base/bound pairs describing the
1376 * available physical memory in the system, then test this memory and
1377 * build the phys_avail array describing the actually-available memory.
1378 *
1379 * Total memory size may be set by the kernel environment variable
1380 * hw.physmem or the compile-time define MAXMEM.
1381 *
1382 * XXX first should be vm_paddr_t.
1383 */
1384static void
1385getmemsize(caddr_t kmdp, u_int64_t first)
1386{
1387	int i, physmap_idx, pa_indx, da_indx;
1388	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1389	u_long physmem_start, physmem_tunable, memtest;
1390	pt_entry_t *pte;
1391	struct bios_smap *smapbase, *smap, *smapend;
1392	u_int32_t smapsize;
1393	quad_t dcons_addr, dcons_size;
1394
1395	bzero(physmap, sizeof(physmap));
1396	basemem = 0;
1397	physmap_idx = 0;
1398
1399	/*
1400	 * get memory map from INT 15:E820, kindly supplied by the loader.
1401	 *
1402	 * subr_module.c says:
1403	 * "Consumer may safely assume that size value precedes data."
1404	 * ie: an int32_t immediately precedes smap.
1405	 */
1406	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1407	    MODINFO_METADATA | MODINFOMD_SMAP);
1408	if (smapbase == NULL)
1409		panic("No BIOS smap info from loader!");
1410
1411	smapsize = *((u_int32_t *)smapbase - 1);
1412	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1413
1414	for (smap = smapbase; smap < smapend; smap++)
1415		if (!add_smap_entry(smap, physmap, &physmap_idx))
1416			break;
1417
1418	/*
1419	 * Find the 'base memory' segment for SMP
1420	 */
1421	basemem = 0;
1422	for (i = 0; i <= physmap_idx; i += 2) {
1423		if (physmap[i] == 0x00000000) {
1424			basemem = physmap[i + 1] / 1024;
1425			break;
1426		}
1427	}
1428	if (basemem == 0)
1429		panic("BIOS smap did not include a basemem segment!");
1430
1431#ifdef SMP
1432	/* make hole for AP bootstrap code */
1433	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1434#endif
1435
1436	/*
1437	 * Maxmem isn't the "maximum memory", it's one larger than the
1438	 * highest page of the physical address space.  It should be
1439	 * called something like "Maxphyspage".  We may adjust this
1440	 * based on ``hw.physmem'' and the results of the memory test.
1441	 */
1442	Maxmem = atop(physmap[physmap_idx + 1]);
1443
1444#ifdef MAXMEM
1445	Maxmem = MAXMEM / 4;
1446#endif
1447
1448	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1449		Maxmem = atop(physmem_tunable);
1450
1451	/*
1452	 * By default enable the memory test on real hardware, and disable
1453	 * it if we appear to be running in a VM.  This avoids touching all
1454	 * pages unnecessarily, which doesn't matter on real hardware but is
1455	 * bad for shared VM hosts.  Use a general name so that
1456	 * one could eventually do more with the code than just disable it.
1457	 */
1458	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
1459	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1460
1461	/*
1462	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1463	 * in the system.
1464	 */
1465	if (Maxmem > atop(physmap[physmap_idx + 1]))
1466		Maxmem = atop(physmap[physmap_idx + 1]);
1467
1468	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1469	    (boothowto & RB_VERBOSE))
1470		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1471
1472	/* call pmap initialization to make new kernel address space */
1473	pmap_bootstrap(&first);
1474
1475	/*
1476	 * Size up each available chunk of physical memory.
1477	 *
1478	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1479	 * By default, mask off the first 16 pages unless we appear to be
1480	 * running in a VM.
1481	 */
1482	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1483	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1484	if (physmem_start < PAGE_SIZE)
1485		physmap[0] = PAGE_SIZE;
1486	else if (physmem_start >= physmap[1])
1487		physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1488	else
1489		physmap[0] = round_page(physmem_start);
1490	pa_indx = 0;
1491	da_indx = 1;
1492	phys_avail[pa_indx++] = physmap[0];
1493	phys_avail[pa_indx] = physmap[0];
1494	dump_avail[da_indx] = physmap[0];
1495	pte = CMAP1;
1496
1497	/*
1498	 * Get dcons buffer address
1499	 */
1500	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1501	    getenv_quad("dcons.size", &dcons_size) == 0)
1502		dcons_addr = 0;
1503
1504	/*
1505	 * physmap is in bytes, so when converting to page boundaries,
1506	 * round up the start address and round down the end address.
1507	 */
1508	for (i = 0; i <= physmap_idx; i += 2) {
1509		vm_paddr_t end;
1510
1511		end = ptoa((vm_paddr_t)Maxmem);
1512		if (physmap[i + 1] < end)
1513			end = trunc_page(physmap[i + 1]);
1514		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1515			int tmp, page_bad, full;
1516			int *ptr = (int *)CADDR1;
1517
1518			full = FALSE;
1519			/*
1520			 * block out kernel memory as not available.
1521			 */
1522			if (pa >= (vm_paddr_t)kernphys && pa < first)
1523				goto do_dump_avail;
1524
1525			/*
1526			 * block out dcons buffer
1527			 */
1528			if (dcons_addr > 0
1529			    && pa >= trunc_page(dcons_addr)
1530			    && pa < dcons_addr + dcons_size)
1531				goto do_dump_avail;
1532
1533			page_bad = FALSE;
1534			if (memtest == 0)
1535				goto skip_memtest;
1536
1537			/*
1538			 * map page into kernel: valid, read/write,non-cacheable
1539			 */
1540			*pte = pa | PG_V | PG_RW | PG_N;
1541			invltlb();
1542
1543			tmp = *(int *)ptr;
1544			/*
1545			 * Test for alternating 1's and 0's
1546			 */
1547			*(volatile int *)ptr = 0xaaaaaaaa;
1548			if (*(volatile int *)ptr != 0xaaaaaaaa)
1549				page_bad = TRUE;
1550			/*
1551			 * Test for alternating 0's and 1's
1552			 */
1553			*(volatile int *)ptr = 0x55555555;
1554			if (*(volatile int *)ptr != 0x55555555)
1555				page_bad = TRUE;
1556			/*
1557			 * Test for all 1's
1558			 */
1559			*(volatile int *)ptr = 0xffffffff;
1560			if (*(volatile int *)ptr != 0xffffffff)
1561				page_bad = TRUE;
1562			/*
1563			 * Test for all 0's
1564			 */
1565			*(volatile int *)ptr = 0x0;
1566			if (*(volatile int *)ptr != 0x0)
1567				page_bad = TRUE;
1568			/*
1569			 * Restore original value.
1570			 */
1571			*(int *)ptr = tmp;
1572
1573skip_memtest:
1574			/*
1575			 * Adjust array of valid/good pages.
1576			 */
1577			if (page_bad == TRUE)
1578				continue;
1579			/*
1580			 * If this good page is a continuation of the
1581			 * previous set of good pages, then just increase
1582			 * the end pointer. Otherwise start a new chunk.
1583			 * Note that "end" points one higher than end,
1584			 * making the range >= start and < end.
1585			 * If we're also doing a speculative memory
1586			 * test and we at or past the end, bump up Maxmem
1587			 * so that we keep going. The first bad page
1588			 * will terminate the loop.
1589			 */
1590			if (phys_avail[pa_indx] == pa) {
1591				phys_avail[pa_indx] += PAGE_SIZE;
1592			} else {
1593				pa_indx++;
1594				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1595					printf(
1596		"Too many holes in the physical address space, giving up\n");
1597					pa_indx--;
1598					full = TRUE;
1599					goto do_dump_avail;
1600				}
1601				phys_avail[pa_indx++] = pa;	/* start */
1602				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1603			}
1604			physmem++;
1605do_dump_avail:
1606			if (dump_avail[da_indx] == pa) {
1607				dump_avail[da_indx] += PAGE_SIZE;
1608			} else {
1609				da_indx++;
1610				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1611					da_indx--;
1612					goto do_next;
1613				}
1614				dump_avail[da_indx++] = pa; /* start */
1615				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1616			}
1617do_next:
1618			if (full)
1619				break;
1620		}
1621	}
1622	*pte = 0;
1623	invltlb();
1624
1625	/*
1626	 * XXX
1627	 * The last chunk must contain at least one page plus the message
1628	 * buffer to avoid complicating other code (message buffer address
1629	 * calculation, etc.).
1630	 */
1631	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1632	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1633		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1634		phys_avail[pa_indx--] = 0;
1635		phys_avail[pa_indx--] = 0;
1636	}
1637
1638	Maxmem = atop(phys_avail[pa_indx]);
1639
1640	/* Trim off space for the message buffer. */
1641	phys_avail[pa_indx] -= round_page(msgbufsize);
1642
1643	/* Map the message buffer. */
1644	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1645}
1646
1647u_int64_t
1648hammer_time(u_int64_t modulep, u_int64_t physfree)
1649{
1650	caddr_t kmdp;
1651	int gsel_tss, x;
1652	struct pcpu *pc;
1653	struct nmi_pcpu *np;
1654	struct xstate_hdr *xhdr;
1655	u_int64_t msr;
1656	char *env;
1657	size_t kstack0_sz;
1658
1659	thread0.td_kstack = physfree + KERNBASE;
1660	thread0.td_kstack_pages = KSTACK_PAGES;
1661	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1662	bzero((void *)thread0.td_kstack, kstack0_sz);
1663	physfree += kstack0_sz;
1664
1665	/*
1666 	 * This may be done better later if it gets more high level
1667 	 * components in it. If so just link td->td_proc here.
1668	 */
1669	proc_linkup0(&proc0, &thread0);
1670
1671	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1672	preload_bootstrap_relocate(KERNBASE);
1673	kmdp = preload_search_by_type("elf kernel");
1674	if (kmdp == NULL)
1675		kmdp = preload_search_by_type("elf64 kernel");
1676	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1677	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1678#ifdef DDB
1679	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1680	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1681#endif
1682
1683	/* Init basic tunables, hz etc */
1684	init_param1();
1685
1686	/*
1687	 * make gdt memory segments
1688	 */
1689	for (x = 0; x < NGDT; x++) {
1690		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1691		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1692			ssdtosd(&gdt_segs[x], &gdt[x]);
1693	}
1694	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1695	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1696	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1697
1698	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1699	r_gdt.rd_base =  (long) gdt;
1700	lgdt(&r_gdt);
1701	pc = &__pcpu[0];
1702
1703	wrmsr(MSR_FSBASE, 0);		/* User value */
1704	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1705	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1706
1707	pcpu_init(pc, 0, sizeof(struct pcpu));
1708	dpcpu_init((void *)(physfree + KERNBASE), 0);
1709	physfree += DPCPU_SIZE;
1710	PCPU_SET(prvspace, pc);
1711	PCPU_SET(curthread, &thread0);
1712	PCPU_SET(tssp, &common_tss[0]);
1713	PCPU_SET(commontssp, &common_tss[0]);
1714	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1715	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1716	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1717	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1718
1719	/*
1720	 * Initialize mutexes.
1721	 *
1722	 * icu_lock: in order to allow an interrupt to occur in a critical
1723	 * 	     section, to set pcpu->ipending (etc...) properly, we
1724	 *	     must be able to get the icu lock, so it can't be
1725	 *	     under witness.
1726	 */
1727	mutex_init();
1728	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1729	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1730
1731	/* exceptions */
1732	for (x = 0; x < NIDT; x++)
1733		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1734	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1735	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1736	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1737 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1738	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1739	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1740	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1741	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1742	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1743	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1744	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1745	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1746	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1747	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1748	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1749	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1750	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1751	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1752	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1753#ifdef KDTRACE_HOOKS
1754	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1755#endif
1756
1757	r_idt.rd_limit = sizeof(idt0) - 1;
1758	r_idt.rd_base = (long) idt;
1759	lidt(&r_idt);
1760
1761	/*
1762	 * Initialize the i8254 before the console so that console
1763	 * initialization can use DELAY().
1764	 */
1765	i8254_init();
1766
1767	/*
1768	 * Initialize the console before we print anything out.
1769	 */
1770	cninit();
1771
1772#ifdef DEV_ISA
1773#ifdef DEV_ATPIC
1774	elcr_probe();
1775	atpic_startup();
1776#else
1777	/* Reset and mask the atpics and leave them shut down. */
1778	atpic_reset();
1779
1780	/*
1781	 * Point the ICU spurious interrupt vectors at the APIC spurious
1782	 * interrupt handler.
1783	 */
1784	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1785	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1786#endif
1787#else
1788#error "have you forgotten the isa device?";
1789#endif
1790
1791	kdb_init();
1792
1793#ifdef KDB
1794	if (boothowto & RB_KDB)
1795		kdb_enter(KDB_WHY_BOOTFLAGS,
1796		    "Boot flags requested debugger");
1797#endif
1798
1799	identify_cpu();		/* Final stage of CPU initialization */
1800	initializecpu();	/* Initialize CPU registers */
1801	initializecpucache();
1802
1803	/* doublefault stack space, runs on ist1 */
1804	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1805
1806	/*
1807	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1808	 * above the start of the ist2 stack.
1809	 */
1810	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1811	np->np_pcpu = (register_t) pc;
1812	common_tss[0].tss_ist2 = (long) np;
1813
1814	/* Set the IO permission bitmap (empty due to tss seg limit) */
1815	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1816	    IOPAGES * PAGE_SIZE;
1817
1818	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1819	ltr(gsel_tss);
1820
1821	/* Set up the fast syscall stuff */
1822	msr = rdmsr(MSR_EFER) | EFER_SCE;
1823	wrmsr(MSR_EFER, msr);
1824	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1825	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1826	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1827	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1828	wrmsr(MSR_STAR, msr);
1829	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1830
1831	getmemsize(kmdp, physfree);
1832	init_param2(physmem);
1833
1834	/* now running on new page tables, configured,and u/iom is accessible */
1835
1836	msgbufinit(msgbufp, msgbufsize);
1837	fpuinit();
1838
1839	/*
1840	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
1841	 * area size.  Zero out the extended state header in fpu save
1842	 * area.
1843	 */
1844	thread0.td_pcb = get_pcb_td(&thread0);
1845	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1846	if (use_xsave) {
1847		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1848		    1);
1849		xhdr->xstate_bv = xsave_mask;
1850	}
1851	/* make an initial tss so cpu can get interrupt stack on syscall! */
1852	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
1853	/* Ensure the stack is aligned to 16 bytes */
1854	common_tss[0].tss_rsp0 &= ~0xFul;
1855	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1856	PCPU_SET(curpcb, thread0.td_pcb);
1857
1858	/* transfer to user mode */
1859
1860	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1861	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1862	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1863	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1864	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1865
1866	load_ds(_udatasel);
1867	load_es(_udatasel);
1868	load_fs(_ufssel);
1869
1870	/* setup proc 0's pcb */
1871	thread0.td_pcb->pcb_flags = 0;
1872	thread0.td_pcb->pcb_cr3 = KPML4phys;
1873	thread0.td_frame = &proc0_tf;
1874
1875        env = getenv("kernelname");
1876	if (env != NULL)
1877		strlcpy(kernelname, env, sizeof(kernelname));
1878
1879#ifdef XENHVM
1880	if (inw(0x10) == 0x49d2) {
1881		if (bootverbose)
1882			printf("Xen detected: disabling emulated block and network devices\n");
1883		outw(0x10, 3);
1884	}
1885#endif
1886
1887	cpu_probe_amdc1e();
1888
1889	/* Location of kernel stack for locore */
1890	return ((u_int64_t)thread0.td_pcb);
1891}
1892
1893void
1894cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1895{
1896
1897	pcpu->pc_acpi_id = 0xffffffff;
1898}
1899
1900void
1901spinlock_enter(void)
1902{
1903	struct thread *td;
1904	register_t flags;
1905
1906	td = curthread;
1907	if (td->td_md.md_spinlock_count == 0) {
1908		flags = intr_disable();
1909		td->td_md.md_spinlock_count = 1;
1910		td->td_md.md_saved_flags = flags;
1911	} else
1912		td->td_md.md_spinlock_count++;
1913	critical_enter();
1914}
1915
1916void
1917spinlock_exit(void)
1918{
1919	struct thread *td;
1920	register_t flags;
1921
1922	td = curthread;
1923	critical_exit();
1924	flags = td->td_md.md_saved_flags;
1925	td->td_md.md_spinlock_count--;
1926	if (td->td_md.md_spinlock_count == 0)
1927		intr_restore(flags);
1928}
1929
1930/*
1931 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1932 * we want to start a backtrace from the function that caused us to enter
1933 * the debugger. We have the context in the trapframe, but base the trace
1934 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1935 * enough for a backtrace.
1936 */
1937void
1938makectx(struct trapframe *tf, struct pcb *pcb)
1939{
1940
1941	pcb->pcb_r12 = tf->tf_r12;
1942	pcb->pcb_r13 = tf->tf_r13;
1943	pcb->pcb_r14 = tf->tf_r14;
1944	pcb->pcb_r15 = tf->tf_r15;
1945	pcb->pcb_rbp = tf->tf_rbp;
1946	pcb->pcb_rbx = tf->tf_rbx;
1947	pcb->pcb_rip = tf->tf_rip;
1948	pcb->pcb_rsp = tf->tf_rsp;
1949}
1950
1951int
1952ptrace_set_pc(struct thread *td, unsigned long addr)
1953{
1954	td->td_frame->tf_rip = addr;
1955	return (0);
1956}
1957
1958int
1959ptrace_single_step(struct thread *td)
1960{
1961	td->td_frame->tf_rflags |= PSL_T;
1962	return (0);
1963}
1964
1965int
1966ptrace_clear_single_step(struct thread *td)
1967{
1968	td->td_frame->tf_rflags &= ~PSL_T;
1969	return (0);
1970}
1971
1972int
1973fill_regs(struct thread *td, struct reg *regs)
1974{
1975	struct trapframe *tp;
1976
1977	tp = td->td_frame;
1978	return (fill_frame_regs(tp, regs));
1979}
1980
1981int
1982fill_frame_regs(struct trapframe *tp, struct reg *regs)
1983{
1984	regs->r_r15 = tp->tf_r15;
1985	regs->r_r14 = tp->tf_r14;
1986	regs->r_r13 = tp->tf_r13;
1987	regs->r_r12 = tp->tf_r12;
1988	regs->r_r11 = tp->tf_r11;
1989	regs->r_r10 = tp->tf_r10;
1990	regs->r_r9  = tp->tf_r9;
1991	regs->r_r8  = tp->tf_r8;
1992	regs->r_rdi = tp->tf_rdi;
1993	regs->r_rsi = tp->tf_rsi;
1994	regs->r_rbp = tp->tf_rbp;
1995	regs->r_rbx = tp->tf_rbx;
1996	regs->r_rdx = tp->tf_rdx;
1997	regs->r_rcx = tp->tf_rcx;
1998	regs->r_rax = tp->tf_rax;
1999	regs->r_rip = tp->tf_rip;
2000	regs->r_cs = tp->tf_cs;
2001	regs->r_rflags = tp->tf_rflags;
2002	regs->r_rsp = tp->tf_rsp;
2003	regs->r_ss = tp->tf_ss;
2004	if (tp->tf_flags & TF_HASSEGS) {
2005		regs->r_ds = tp->tf_ds;
2006		regs->r_es = tp->tf_es;
2007		regs->r_fs = tp->tf_fs;
2008		regs->r_gs = tp->tf_gs;
2009	} else {
2010		regs->r_ds = 0;
2011		regs->r_es = 0;
2012		regs->r_fs = 0;
2013		regs->r_gs = 0;
2014	}
2015	return (0);
2016}
2017
2018int
2019set_regs(struct thread *td, struct reg *regs)
2020{
2021	struct trapframe *tp;
2022	register_t rflags;
2023
2024	tp = td->td_frame;
2025	rflags = regs->r_rflags & 0xffffffff;
2026	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
2027		return (EINVAL);
2028	tp->tf_r15 = regs->r_r15;
2029	tp->tf_r14 = regs->r_r14;
2030	tp->tf_r13 = regs->r_r13;
2031	tp->tf_r12 = regs->r_r12;
2032	tp->tf_r11 = regs->r_r11;
2033	tp->tf_r10 = regs->r_r10;
2034	tp->tf_r9  = regs->r_r9;
2035	tp->tf_r8  = regs->r_r8;
2036	tp->tf_rdi = regs->r_rdi;
2037	tp->tf_rsi = regs->r_rsi;
2038	tp->tf_rbp = regs->r_rbp;
2039	tp->tf_rbx = regs->r_rbx;
2040	tp->tf_rdx = regs->r_rdx;
2041	tp->tf_rcx = regs->r_rcx;
2042	tp->tf_rax = regs->r_rax;
2043	tp->tf_rip = regs->r_rip;
2044	tp->tf_cs = regs->r_cs;
2045	tp->tf_rflags = rflags;
2046	tp->tf_rsp = regs->r_rsp;
2047	tp->tf_ss = regs->r_ss;
2048	if (0) {	/* XXXKIB */
2049		tp->tf_ds = regs->r_ds;
2050		tp->tf_es = regs->r_es;
2051		tp->tf_fs = regs->r_fs;
2052		tp->tf_gs = regs->r_gs;
2053		tp->tf_flags = TF_HASSEGS;
2054		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2055	}
2056	return (0);
2057}
2058
2059/* XXX check all this stuff! */
2060/* externalize from sv_xmm */
2061static void
2062fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
2063{
2064	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2065	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2066	int i;
2067
2068	/* pcb -> fpregs */
2069	bzero(fpregs, sizeof(*fpregs));
2070
2071	/* FPU control/status */
2072	penv_fpreg->en_cw = penv_xmm->en_cw;
2073	penv_fpreg->en_sw = penv_xmm->en_sw;
2074	penv_fpreg->en_tw = penv_xmm->en_tw;
2075	penv_fpreg->en_opcode = penv_xmm->en_opcode;
2076	penv_fpreg->en_rip = penv_xmm->en_rip;
2077	penv_fpreg->en_rdp = penv_xmm->en_rdp;
2078	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
2079	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
2080
2081	/* FPU registers */
2082	for (i = 0; i < 8; ++i)
2083		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2084
2085	/* SSE registers */
2086	for (i = 0; i < 16; ++i)
2087		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2088}
2089
2090/* internalize from fpregs into sv_xmm */
2091static void
2092set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2093{
2094	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2095	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2096	int i;
2097
2098	/* fpregs -> pcb */
2099	/* FPU control/status */
2100	penv_xmm->en_cw = penv_fpreg->en_cw;
2101	penv_xmm->en_sw = penv_fpreg->en_sw;
2102	penv_xmm->en_tw = penv_fpreg->en_tw;
2103	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2104	penv_xmm->en_rip = penv_fpreg->en_rip;
2105	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2106	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2107	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2108
2109	/* FPU registers */
2110	for (i = 0; i < 8; ++i)
2111		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2112
2113	/* SSE registers */
2114	for (i = 0; i < 16; ++i)
2115		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2116}
2117
2118/* externalize from td->pcb */
2119int
2120fill_fpregs(struct thread *td, struct fpreg *fpregs)
2121{
2122
2123	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2124	    P_SHOULDSTOP(td->td_proc),
2125	    ("not suspended thread %p", td));
2126	fpugetregs(td);
2127	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2128	return (0);
2129}
2130
2131/* internalize to td->pcb */
2132int
2133set_fpregs(struct thread *td, struct fpreg *fpregs)
2134{
2135
2136	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2137	fpuuserinited(td);
2138	return (0);
2139}
2140
2141/*
2142 * Get machine context.
2143 */
2144int
2145get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2146{
2147	struct pcb *pcb;
2148	struct trapframe *tp;
2149
2150	pcb = td->td_pcb;
2151	tp = td->td_frame;
2152	PROC_LOCK(curthread->td_proc);
2153	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2154	PROC_UNLOCK(curthread->td_proc);
2155	mcp->mc_r15 = tp->tf_r15;
2156	mcp->mc_r14 = tp->tf_r14;
2157	mcp->mc_r13 = tp->tf_r13;
2158	mcp->mc_r12 = tp->tf_r12;
2159	mcp->mc_r11 = tp->tf_r11;
2160	mcp->mc_r10 = tp->tf_r10;
2161	mcp->mc_r9  = tp->tf_r9;
2162	mcp->mc_r8  = tp->tf_r8;
2163	mcp->mc_rdi = tp->tf_rdi;
2164	mcp->mc_rsi = tp->tf_rsi;
2165	mcp->mc_rbp = tp->tf_rbp;
2166	mcp->mc_rbx = tp->tf_rbx;
2167	mcp->mc_rcx = tp->tf_rcx;
2168	mcp->mc_rflags = tp->tf_rflags;
2169	if (flags & GET_MC_CLEAR_RET) {
2170		mcp->mc_rax = 0;
2171		mcp->mc_rdx = 0;
2172		mcp->mc_rflags &= ~PSL_C;
2173	} else {
2174		mcp->mc_rax = tp->tf_rax;
2175		mcp->mc_rdx = tp->tf_rdx;
2176	}
2177	mcp->mc_rip = tp->tf_rip;
2178	mcp->mc_cs = tp->tf_cs;
2179	mcp->mc_rsp = tp->tf_rsp;
2180	mcp->mc_ss = tp->tf_ss;
2181	mcp->mc_ds = tp->tf_ds;
2182	mcp->mc_es = tp->tf_es;
2183	mcp->mc_fs = tp->tf_fs;
2184	mcp->mc_gs = tp->tf_gs;
2185	mcp->mc_flags = tp->tf_flags;
2186	mcp->mc_len = sizeof(*mcp);
2187	get_fpcontext(td, mcp, NULL, 0);
2188	mcp->mc_fsbase = pcb->pcb_fsbase;
2189	mcp->mc_gsbase = pcb->pcb_gsbase;
2190	mcp->mc_xfpustate = 0;
2191	mcp->mc_xfpustate_len = 0;
2192	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2193	return (0);
2194}
2195
2196/*
2197 * Set machine context.
2198 *
2199 * However, we don't set any but the user modifiable flags, and we won't
2200 * touch the cs selector.
2201 */
2202int
2203set_mcontext(struct thread *td, const mcontext_t *mcp)
2204{
2205	struct pcb *pcb;
2206	struct trapframe *tp;
2207	char *xfpustate;
2208	long rflags;
2209	int ret;
2210
2211	pcb = td->td_pcb;
2212	tp = td->td_frame;
2213	if (mcp->mc_len != sizeof(*mcp) ||
2214	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2215		return (EINVAL);
2216	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2217	    (tp->tf_rflags & ~PSL_USERCHANGE);
2218	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2219		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2220		    sizeof(struct savefpu))
2221			return (EINVAL);
2222		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2223		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2224		    mcp->mc_xfpustate_len);
2225		if (ret != 0)
2226			return (ret);
2227	} else
2228		xfpustate = NULL;
2229	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2230	if (ret != 0)
2231		return (ret);
2232	tp->tf_r15 = mcp->mc_r15;
2233	tp->tf_r14 = mcp->mc_r14;
2234	tp->tf_r13 = mcp->mc_r13;
2235	tp->tf_r12 = mcp->mc_r12;
2236	tp->tf_r11 = mcp->mc_r11;
2237	tp->tf_r10 = mcp->mc_r10;
2238	tp->tf_r9  = mcp->mc_r9;
2239	tp->tf_r8  = mcp->mc_r8;
2240	tp->tf_rdi = mcp->mc_rdi;
2241	tp->tf_rsi = mcp->mc_rsi;
2242	tp->tf_rbp = mcp->mc_rbp;
2243	tp->tf_rbx = mcp->mc_rbx;
2244	tp->tf_rdx = mcp->mc_rdx;
2245	tp->tf_rcx = mcp->mc_rcx;
2246	tp->tf_rax = mcp->mc_rax;
2247	tp->tf_rip = mcp->mc_rip;
2248	tp->tf_rflags = rflags;
2249	tp->tf_rsp = mcp->mc_rsp;
2250	tp->tf_ss = mcp->mc_ss;
2251	tp->tf_flags = mcp->mc_flags;
2252	if (tp->tf_flags & TF_HASSEGS) {
2253		tp->tf_ds = mcp->mc_ds;
2254		tp->tf_es = mcp->mc_es;
2255		tp->tf_fs = mcp->mc_fs;
2256		tp->tf_gs = mcp->mc_gs;
2257	}
2258	if (mcp->mc_flags & _MC_HASBASES) {
2259		pcb->pcb_fsbase = mcp->mc_fsbase;
2260		pcb->pcb_gsbase = mcp->mc_gsbase;
2261	}
2262	set_pcb_flags(pcb, PCB_FULL_IRET);
2263	return (0);
2264}
2265
2266static void
2267get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2268    size_t xfpusave_len)
2269{
2270	size_t max_len, len;
2271
2272	mcp->mc_ownedfp = fpugetregs(td);
2273	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate,
2274	    sizeof(mcp->mc_fpstate));
2275	mcp->mc_fpformat = fpuformat();
2276	if (!use_xsave || xfpusave_len == 0)
2277		return;
2278	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2279	len = xfpusave_len;
2280	if (len > max_len) {
2281		len = max_len;
2282		bzero(xfpusave + max_len, len - max_len);
2283	}
2284	mcp->mc_flags |= _MC_HASFPXSTATE;
2285	mcp->mc_xfpustate_len = len;
2286	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2287}
2288
2289static int
2290set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate,
2291    size_t xfpustate_len)
2292{
2293	struct savefpu *fpstate;
2294	int error;
2295
2296	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2297		return (0);
2298	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2299		return (EINVAL);
2300	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2301		/* We don't care what state is left in the FPU or PCB. */
2302		fpstate_drop(td);
2303		error = 0;
2304	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2305	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2306		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2307		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2308		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2309	} else
2310		return (EINVAL);
2311	return (error);
2312}
2313
2314void
2315fpstate_drop(struct thread *td)
2316{
2317
2318	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2319	critical_enter();
2320	if (PCPU_GET(fpcurthread) == td)
2321		fpudrop();
2322	/*
2323	 * XXX force a full drop of the fpu.  The above only drops it if we
2324	 * owned it.
2325	 *
2326	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2327	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2328	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2329	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2330	 * have too many layers.
2331	 */
2332	clear_pcb_flags(curthread->td_pcb,
2333	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2334	critical_exit();
2335}
2336
2337int
2338fill_dbregs(struct thread *td, struct dbreg *dbregs)
2339{
2340	struct pcb *pcb;
2341
2342	if (td == NULL) {
2343		dbregs->dr[0] = rdr0();
2344		dbregs->dr[1] = rdr1();
2345		dbregs->dr[2] = rdr2();
2346		dbregs->dr[3] = rdr3();
2347		dbregs->dr[6] = rdr6();
2348		dbregs->dr[7] = rdr7();
2349	} else {
2350		pcb = td->td_pcb;
2351		dbregs->dr[0] = pcb->pcb_dr0;
2352		dbregs->dr[1] = pcb->pcb_dr1;
2353		dbregs->dr[2] = pcb->pcb_dr2;
2354		dbregs->dr[3] = pcb->pcb_dr3;
2355		dbregs->dr[6] = pcb->pcb_dr6;
2356		dbregs->dr[7] = pcb->pcb_dr7;
2357	}
2358	dbregs->dr[4] = 0;
2359	dbregs->dr[5] = 0;
2360	dbregs->dr[8] = 0;
2361	dbregs->dr[9] = 0;
2362	dbregs->dr[10] = 0;
2363	dbregs->dr[11] = 0;
2364	dbregs->dr[12] = 0;
2365	dbregs->dr[13] = 0;
2366	dbregs->dr[14] = 0;
2367	dbregs->dr[15] = 0;
2368	return (0);
2369}
2370
2371int
2372set_dbregs(struct thread *td, struct dbreg *dbregs)
2373{
2374	struct pcb *pcb;
2375	int i;
2376
2377	if (td == NULL) {
2378		load_dr0(dbregs->dr[0]);
2379		load_dr1(dbregs->dr[1]);
2380		load_dr2(dbregs->dr[2]);
2381		load_dr3(dbregs->dr[3]);
2382		load_dr6(dbregs->dr[6]);
2383		load_dr7(dbregs->dr[7]);
2384	} else {
2385		/*
2386		 * Don't let an illegal value for dr7 get set.  Specifically,
2387		 * check for undefined settings.  Setting these bit patterns
2388		 * result in undefined behaviour and can lead to an unexpected
2389		 * TRCTRAP or a general protection fault right here.
2390		 * Upper bits of dr6 and dr7 must not be set
2391		 */
2392		for (i = 0; i < 4; i++) {
2393			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2394				return (EINVAL);
2395			if (td->td_frame->tf_cs == _ucode32sel &&
2396			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2397				return (EINVAL);
2398		}
2399		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2400		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2401			return (EINVAL);
2402
2403		pcb = td->td_pcb;
2404
2405		/*
2406		 * Don't let a process set a breakpoint that is not within the
2407		 * process's address space.  If a process could do this, it
2408		 * could halt the system by setting a breakpoint in the kernel
2409		 * (if ddb was enabled).  Thus, we need to check to make sure
2410		 * that no breakpoints are being enabled for addresses outside
2411		 * process's address space.
2412		 *
2413		 * XXX - what about when the watched area of the user's
2414		 * address space is written into from within the kernel
2415		 * ... wouldn't that still cause a breakpoint to be generated
2416		 * from within kernel mode?
2417		 */
2418
2419		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2420			/* dr0 is enabled */
2421			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2422				return (EINVAL);
2423		}
2424		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2425			/* dr1 is enabled */
2426			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2427				return (EINVAL);
2428		}
2429		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2430			/* dr2 is enabled */
2431			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2432				return (EINVAL);
2433		}
2434		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2435			/* dr3 is enabled */
2436			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2437				return (EINVAL);
2438		}
2439
2440		pcb->pcb_dr0 = dbregs->dr[0];
2441		pcb->pcb_dr1 = dbregs->dr[1];
2442		pcb->pcb_dr2 = dbregs->dr[2];
2443		pcb->pcb_dr3 = dbregs->dr[3];
2444		pcb->pcb_dr6 = dbregs->dr[6];
2445		pcb->pcb_dr7 = dbregs->dr[7];
2446
2447		set_pcb_flags(pcb, PCB_DBREGS);
2448	}
2449
2450	return (0);
2451}
2452
2453void
2454reset_dbregs(void)
2455{
2456
2457	load_dr7(0);	/* Turn off the control bits first */
2458	load_dr0(0);
2459	load_dr1(0);
2460	load_dr2(0);
2461	load_dr3(0);
2462	load_dr6(0);
2463}
2464
2465/*
2466 * Return > 0 if a hardware breakpoint has been hit, and the
2467 * breakpoint was in user space.  Return 0, otherwise.
2468 */
2469int
2470user_dbreg_trap(void)
2471{
2472        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2473        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2474        int nbp;            /* number of breakpoints that triggered */
2475        caddr_t addr[4];    /* breakpoint addresses */
2476        int i;
2477
2478        dr7 = rdr7();
2479        if ((dr7 & 0x000000ff) == 0) {
2480                /*
2481                 * all GE and LE bits in the dr7 register are zero,
2482                 * thus the trap couldn't have been caused by the
2483                 * hardware debug registers
2484                 */
2485                return 0;
2486        }
2487
2488        nbp = 0;
2489        dr6 = rdr6();
2490        bp = dr6 & 0x0000000f;
2491
2492        if (!bp) {
2493                /*
2494                 * None of the breakpoint bits are set meaning this
2495                 * trap was not caused by any of the debug registers
2496                 */
2497                return 0;
2498        }
2499
2500        /*
2501         * at least one of the breakpoints were hit, check to see
2502         * which ones and if any of them are user space addresses
2503         */
2504
2505        if (bp & 0x01) {
2506                addr[nbp++] = (caddr_t)rdr0();
2507        }
2508        if (bp & 0x02) {
2509                addr[nbp++] = (caddr_t)rdr1();
2510        }
2511        if (bp & 0x04) {
2512                addr[nbp++] = (caddr_t)rdr2();
2513        }
2514        if (bp & 0x08) {
2515                addr[nbp++] = (caddr_t)rdr3();
2516        }
2517
2518        for (i = 0; i < nbp; i++) {
2519                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2520                        /*
2521                         * addr[i] is in user space
2522                         */
2523                        return nbp;
2524                }
2525        }
2526
2527        /*
2528         * None of the breakpoints are in user space.
2529         */
2530        return 0;
2531}
2532
2533#ifdef KDB
2534
2535/*
2536 * Provide inb() and outb() as functions.  They are normally only available as
2537 * inline functions, thus cannot be called from the debugger.
2538 */
2539
2540/* silence compiler warnings */
2541u_char inb_(u_short);
2542void outb_(u_short, u_char);
2543
2544u_char
2545inb_(u_short port)
2546{
2547	return inb(port);
2548}
2549
2550void
2551outb_(u_short port, u_char data)
2552{
2553	outb(port, data);
2554}
2555
2556#endif /* KDB */
2557