machdep.c revision 241850
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 241850 2012-10-22 03:16:39Z eadler $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_perfmon.h"
56#include "opt_sched.h"
57#include "opt_kdtrace.h"
58
59#include <sys/param.h>
60#include <sys/proc.h>
61#include <sys/systm.h>
62#include <sys/bio.h>
63#include <sys/buf.h>
64#include <sys/bus.h>
65#include <sys/callout.h>
66#include <sys/cons.h>
67#include <sys/cpu.h>
68#include <sys/eventhandler.h>
69#include <sys/exec.h>
70#include <sys/imgact.h>
71#include <sys/kdb.h>
72#include <sys/kernel.h>
73#include <sys/ktr.h>
74#include <sys/linker.h>
75#include <sys/lock.h>
76#include <sys/malloc.h>
77#include <sys/memrange.h>
78#include <sys/msgbuf.h>
79#include <sys/mutex.h>
80#include <sys/pcpu.h>
81#include <sys/ptrace.h>
82#include <sys/reboot.h>
83#include <sys/sched.h>
84#include <sys/signalvar.h>
85#ifdef SMP
86#include <sys/smp.h>
87#endif
88#include <sys/syscallsubr.h>
89#include <sys/sysctl.h>
90#include <sys/sysent.h>
91#include <sys/sysproto.h>
92#include <sys/ucontext.h>
93#include <sys/vmmeter.h>
94
95#include <vm/vm.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_kern.h>
98#include <vm/vm_page.h>
99#include <vm/vm_map.h>
100#include <vm/vm_object.h>
101#include <vm/vm_pager.h>
102#include <vm/vm_param.h>
103
104#ifdef DDB
105#ifndef KDB
106#error KDB must be enabled in order for DDB to work!
107#endif
108#include <ddb/ddb.h>
109#include <ddb/db_sym.h>
110#endif
111
112#include <net/netisr.h>
113
114#include <machine/clock.h>
115#include <machine/cpu.h>
116#include <machine/cputypes.h>
117#include <machine/intr_machdep.h>
118#include <x86/mca.h>
119#include <machine/md_var.h>
120#include <machine/metadata.h>
121#include <machine/mp_watchdog.h>
122#include <machine/pc/bios.h>
123#include <machine/pcb.h>
124#include <machine/proc.h>
125#include <machine/reg.h>
126#include <machine/sigframe.h>
127#include <machine/specialreg.h>
128#ifdef PERFMON
129#include <machine/perfmon.h>
130#endif
131#include <machine/tss.h>
132#ifdef SMP
133#include <machine/smp.h>
134#endif
135
136#ifdef DEV_ATPIC
137#include <x86/isa/icu.h>
138#else
139#include <machine/apicvar.h>
140#endif
141
142#include <isa/isareg.h>
143#include <isa/rtc.h>
144
145/* Sanity check for __curthread() */
146CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
147
148extern u_int64_t hammer_time(u_int64_t, u_int64_t);
149
150extern void printcpuinfo(void);	/* XXX header file */
151extern void identify_cpu(void);
152extern void panicifcpuunsupported(void);
153
154#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
155#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
156
157static void cpu_startup(void *);
158static void get_fpcontext(struct thread *td, mcontext_t *mcp,
159    char *xfpusave, size_t xfpusave_len);
160static int  set_fpcontext(struct thread *td, const mcontext_t *mcp,
161    char *xfpustate, size_t xfpustate_len);
162SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
163
164/*
165 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
166 * the physical address at which the kernel is loaded.
167 */
168extern char kernphys[];
169#ifdef DDB
170extern vm_offset_t ksym_start, ksym_end;
171#endif
172
173struct msgbuf *msgbufp;
174
175/* Intel ICH registers */
176#define ICH_PMBASE	0x400
177#define ICH_SMI_EN	ICH_PMBASE + 0x30
178
179int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
180
181int cold = 1;
182
183long Maxmem = 0;
184long realmem = 0;
185
186/*
187 * The number of PHYSMAP entries must be one less than the number of
188 * PHYSSEG entries because the PHYSMAP entry that spans the largest
189 * physical address that is accessible by ISA DMA is split into two
190 * PHYSSEG entries.
191 */
192#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
193
194vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
195vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
196
197/* must be 2 less so 0 0 can signal end of chunks */
198#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
199#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
200
201struct kva_md_info kmi;
202
203static struct trapframe proc0_tf;
204struct region_descriptor r_gdt, r_idt;
205
206struct pcpu __pcpu[MAXCPU];
207
208struct mtx icu_lock;
209
210struct mem_range_softc mem_range_softc;
211
212struct mtx dt_lock;	/* lock for GDT and LDT */
213
214static void
215cpu_startup(dummy)
216	void *dummy;
217{
218	uintmax_t memsize;
219	char *sysenv;
220
221	/*
222	 * On MacBooks, we need to disallow the legacy USB circuit to
223	 * generate an SMI# because this can cause several problems,
224	 * namely: incorrect CPU frequency detection and failure to
225	 * start the APs.
226	 * We do this by disabling a bit in the SMI_EN (SMI Control and
227	 * Enable register) of the Intel ICH LPC Interface Bridge.
228	 */
229	sysenv = getenv("smbios.system.product");
230	if (sysenv != NULL) {
231		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
232		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
233		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
234		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
235		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
236		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
237			if (bootverbose)
238				printf("Disabling LEGACY_USB_EN bit on "
239				    "Intel ICH.\n");
240			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
241		}
242		freeenv(sysenv);
243	}
244
245	/*
246	 * Good {morning,afternoon,evening,night}.
247	 */
248	startrtclock();
249	printcpuinfo();
250	panicifcpuunsupported();
251#ifdef PERFMON
252	perfmon_init();
253#endif
254	realmem = Maxmem;
255
256	/*
257	 * Display physical memory if SMBIOS reports reasonable amount.
258	 */
259	memsize = 0;
260	sysenv = getenv("smbios.memory.enabled");
261	if (sysenv != NULL) {
262		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
263		freeenv(sysenv);
264	}
265	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
266		memsize = ptoa((uintmax_t)Maxmem);
267	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
268
269	/*
270	 * Display any holes after the first chunk of extended memory.
271	 */
272	if (bootverbose) {
273		int indx;
274
275		printf("Physical memory chunk(s):\n");
276		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
277			vm_paddr_t size;
278
279			size = phys_avail[indx + 1] - phys_avail[indx];
280			printf(
281			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
282			    (uintmax_t)phys_avail[indx],
283			    (uintmax_t)phys_avail[indx + 1] - 1,
284			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
285		}
286	}
287
288	vm_ksubmap_init(&kmi);
289
290	printf("avail memory = %ju (%ju MB)\n",
291	    ptoa((uintmax_t)cnt.v_free_count),
292	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
293
294	/*
295	 * Set up buffers, so they can be used to read disk labels.
296	 */
297	bufinit();
298	vm_pager_bufferinit();
299
300	cpu_setregs();
301}
302
303/*
304 * Send an interrupt to process.
305 *
306 * Stack is set up to allow sigcode stored
307 * at top to call routine, followed by call
308 * to sigreturn routine below.  After sigreturn
309 * resets the signal mask, the stack, and the
310 * frame pointer, it returns to the user
311 * specified pc, psl.
312 */
313void
314sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
315{
316	struct sigframe sf, *sfp;
317	struct pcb *pcb;
318	struct proc *p;
319	struct thread *td;
320	struct sigacts *psp;
321	char *sp;
322	struct trapframe *regs;
323	char *xfpusave;
324	size_t xfpusave_len;
325	int sig;
326	int oonstack;
327
328	td = curthread;
329	pcb = td->td_pcb;
330	p = td->td_proc;
331	PROC_LOCK_ASSERT(p, MA_OWNED);
332	sig = ksi->ksi_signo;
333	psp = p->p_sigacts;
334	mtx_assert(&psp->ps_mtx, MA_OWNED);
335	regs = td->td_frame;
336	oonstack = sigonstack(regs->tf_rsp);
337
338	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
339		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
340		xfpusave = __builtin_alloca(xfpusave_len);
341	} else {
342		xfpusave_len = 0;
343		xfpusave = NULL;
344	}
345
346	/* Save user context. */
347	bzero(&sf, sizeof(sf));
348	sf.sf_uc.uc_sigmask = *mask;
349	sf.sf_uc.uc_stack = td->td_sigstk;
350	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
351	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
352	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
353	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
354	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
355	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
356	fpstate_drop(td);
357	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
358	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
359	bzero(sf.sf_uc.uc_mcontext.mc_spare,
360	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
361	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
362
363	/* Allocate space for the signal handler context. */
364	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
365	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
366		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
367#if defined(COMPAT_43)
368		td->td_sigstk.ss_flags |= SS_ONSTACK;
369#endif
370	} else
371		sp = (char *)regs->tf_rsp - 128;
372	if (xfpusave != NULL) {
373		sp -= xfpusave_len;
374		sp = (char *)((unsigned long)sp & ~0x3Ful);
375		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
376	}
377	sp -= sizeof(struct sigframe);
378	/* Align to 16 bytes. */
379	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
380
381	/* Translate the signal if appropriate. */
382	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
383		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
384
385	/* Build the argument list for the signal handler. */
386	regs->tf_rdi = sig;			/* arg 1 in %rdi */
387	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
388	bzero(&sf.sf_si, sizeof(sf.sf_si));
389	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
390		/* Signal handler installed with SA_SIGINFO. */
391		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
392		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
393
394		/* Fill in POSIX parts */
395		sf.sf_si = ksi->ksi_info;
396		sf.sf_si.si_signo = sig; /* maybe a translated signal */
397		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
398	} else {
399		/* Old FreeBSD-style arguments. */
400		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
401		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
402		sf.sf_ahu.sf_handler = catcher;
403	}
404	mtx_unlock(&psp->ps_mtx);
405	PROC_UNLOCK(p);
406
407	/*
408	 * Copy the sigframe out to the user's stack.
409	 */
410	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
411	    (xfpusave != NULL && copyout(xfpusave,
412	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
413	    != 0)) {
414#ifdef DEBUG
415		printf("process %ld has trashed its stack\n", (long)p->p_pid);
416#endif
417		PROC_LOCK(p);
418		sigexit(td, SIGILL);
419	}
420
421	regs->tf_rsp = (long)sfp;
422	regs->tf_rip = p->p_sysent->sv_sigcode_base;
423	regs->tf_rflags &= ~(PSL_T | PSL_D);
424	regs->tf_cs = _ucodesel;
425	regs->tf_ds = _udatasel;
426	regs->tf_es = _udatasel;
427	regs->tf_fs = _ufssel;
428	regs->tf_gs = _ugssel;
429	regs->tf_flags = TF_HASSEGS;
430	set_pcb_flags(pcb, PCB_FULL_IRET);
431	PROC_LOCK(p);
432	mtx_lock(&psp->ps_mtx);
433}
434
435/*
436 * System call to cleanup state after a signal
437 * has been taken.  Reset signal mask and
438 * stack state from context left by sendsig (above).
439 * Return to previous pc and psl as specified by
440 * context left by sendsig. Check carefully to
441 * make sure that the user has not modified the
442 * state to gain improper privileges.
443 *
444 * MPSAFE
445 */
446int
447sys_sigreturn(td, uap)
448	struct thread *td;
449	struct sigreturn_args /* {
450		const struct __ucontext *sigcntxp;
451	} */ *uap;
452{
453	ucontext_t uc;
454	struct pcb *pcb;
455	struct proc *p;
456	struct trapframe *regs;
457	ucontext_t *ucp;
458	char *xfpustate;
459	size_t xfpustate_len;
460	long rflags;
461	int cs, error, ret;
462	ksiginfo_t ksi;
463
464	pcb = td->td_pcb;
465	p = td->td_proc;
466
467	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
468	if (error != 0) {
469		uprintf("pid %d (%s): sigreturn copyin failed\n",
470		    p->p_pid, td->td_name);
471		return (error);
472	}
473	ucp = &uc;
474	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
475		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
476		    td->td_name, ucp->uc_mcontext.mc_flags);
477		return (EINVAL);
478	}
479	regs = td->td_frame;
480	rflags = ucp->uc_mcontext.mc_rflags;
481	/*
482	 * Don't allow users to change privileged or reserved flags.
483	 */
484	/*
485	 * XXX do allow users to change the privileged flag PSL_RF.
486	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
487	 * should sometimes set it there too.  tf_rflags is kept in
488	 * the signal context during signal handling and there is no
489	 * other place to remember it, so the PSL_RF bit may be
490	 * corrupted by the signal handler without us knowing.
491	 * Corruption of the PSL_RF bit at worst causes one more or
492	 * one less debugger trap, so allowing it is fairly harmless.
493	 */
494	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
495		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
496		    td->td_name, rflags);
497		return (EINVAL);
498	}
499
500	/*
501	 * Don't allow users to load a valid privileged %cs.  Let the
502	 * hardware check for invalid selectors, excess privilege in
503	 * other selectors, invalid %eip's and invalid %esp's.
504	 */
505	cs = ucp->uc_mcontext.mc_cs;
506	if (!CS_SECURE(cs)) {
507		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
508		    td->td_name, cs);
509		ksiginfo_init_trap(&ksi);
510		ksi.ksi_signo = SIGBUS;
511		ksi.ksi_code = BUS_OBJERR;
512		ksi.ksi_trapno = T_PROTFLT;
513		ksi.ksi_addr = (void *)regs->tf_rip;
514		trapsignal(td, &ksi);
515		return (EINVAL);
516	}
517
518	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
519		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
520		if (xfpustate_len > cpu_max_ext_state_size -
521		    sizeof(struct savefpu)) {
522			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
523			    p->p_pid, td->td_name, xfpustate_len);
524			return (EINVAL);
525		}
526		xfpustate = __builtin_alloca(xfpustate_len);
527		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
528		    xfpustate, xfpustate_len);
529		if (error != 0) {
530			uprintf(
531	"pid %d (%s): sigreturn copying xfpustate failed\n",
532			    p->p_pid, td->td_name);
533			return (error);
534		}
535	} else {
536		xfpustate = NULL;
537		xfpustate_len = 0;
538	}
539	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
540	if (ret != 0) {
541		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
542		    p->p_pid, td->td_name, ret);
543		return (ret);
544	}
545	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
546	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
547	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
548
549#if defined(COMPAT_43)
550	if (ucp->uc_mcontext.mc_onstack & 1)
551		td->td_sigstk.ss_flags |= SS_ONSTACK;
552	else
553		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
554#endif
555
556	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
557	set_pcb_flags(pcb, PCB_FULL_IRET);
558	return (EJUSTRETURN);
559}
560
561#ifdef COMPAT_FREEBSD4
562int
563freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
564{
565
566	return sys_sigreturn(td, (struct sigreturn_args *)uap);
567}
568#endif
569
570
571/*
572 * Machine dependent boot() routine
573 *
574 * I haven't seen anything to put here yet
575 * Possibly some stuff might be grafted back here from boot()
576 */
577void
578cpu_boot(int howto)
579{
580}
581
582/*
583 * Flush the D-cache for non-DMA I/O so that the I-cache can
584 * be made coherent later.
585 */
586void
587cpu_flush_dcache(void *ptr, size_t len)
588{
589	/* Not applicable */
590}
591
592/* Get current clock frequency for the given cpu id. */
593int
594cpu_est_clockrate(int cpu_id, uint64_t *rate)
595{
596	uint64_t tsc1, tsc2;
597	uint64_t acnt, mcnt, perf;
598	register_t reg;
599
600	if (pcpu_find(cpu_id) == NULL || rate == NULL)
601		return (EINVAL);
602
603	/*
604	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
605	 * DELAY(9) based logic fails.
606	 */
607	if (tsc_is_invariant && !tsc_perf_stat)
608		return (EOPNOTSUPP);
609
610#ifdef SMP
611	if (smp_cpus > 1) {
612		/* Schedule ourselves on the indicated cpu. */
613		thread_lock(curthread);
614		sched_bind(curthread, cpu_id);
615		thread_unlock(curthread);
616	}
617#endif
618
619	/* Calibrate by measuring a short delay. */
620	reg = intr_disable();
621	if (tsc_is_invariant) {
622		wrmsr(MSR_MPERF, 0);
623		wrmsr(MSR_APERF, 0);
624		tsc1 = rdtsc();
625		DELAY(1000);
626		mcnt = rdmsr(MSR_MPERF);
627		acnt = rdmsr(MSR_APERF);
628		tsc2 = rdtsc();
629		intr_restore(reg);
630		perf = 1000 * acnt / mcnt;
631		*rate = (tsc2 - tsc1) * perf;
632	} else {
633		tsc1 = rdtsc();
634		DELAY(1000);
635		tsc2 = rdtsc();
636		intr_restore(reg);
637		*rate = (tsc2 - tsc1) * 1000;
638	}
639
640#ifdef SMP
641	if (smp_cpus > 1) {
642		thread_lock(curthread);
643		sched_unbind(curthread);
644		thread_unlock(curthread);
645	}
646#endif
647
648	return (0);
649}
650
651/*
652 * Shutdown the CPU as much as possible
653 */
654void
655cpu_halt(void)
656{
657	for (;;)
658		halt();
659}
660
661void (*cpu_idle_hook)(void) = NULL;	/* ACPI idle hook. */
662static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
663static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
664TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
665SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
666    0, "Use MONITOR/MWAIT for short idle");
667
668#define	STATE_RUNNING	0x0
669#define	STATE_MWAIT	0x1
670#define	STATE_SLEEPING	0x2
671
672static void
673cpu_idle_acpi(int busy)
674{
675	int *state;
676
677	state = (int *)PCPU_PTR(monitorbuf);
678	*state = STATE_SLEEPING;
679
680	/* See comments in cpu_idle_hlt(). */
681	disable_intr();
682	if (sched_runnable())
683		enable_intr();
684	else if (cpu_idle_hook)
685		cpu_idle_hook();
686	else
687		__asm __volatile("sti; hlt");
688	*state = STATE_RUNNING;
689}
690
691static void
692cpu_idle_hlt(int busy)
693{
694	int *state;
695
696	state = (int *)PCPU_PTR(monitorbuf);
697	*state = STATE_SLEEPING;
698
699	/*
700	 * Since we may be in a critical section from cpu_idle(), if
701	 * an interrupt fires during that critical section we may have
702	 * a pending preemption.  If the CPU halts, then that thread
703	 * may not execute until a later interrupt awakens the CPU.
704	 * To handle this race, check for a runnable thread after
705	 * disabling interrupts and immediately return if one is
706	 * found.  Also, we must absolutely guarentee that hlt is
707	 * the next instruction after sti.  This ensures that any
708	 * interrupt that fires after the call to disable_intr() will
709	 * immediately awaken the CPU from hlt.  Finally, please note
710	 * that on x86 this works fine because of interrupts enabled only
711	 * after the instruction following sti takes place, while IF is set
712	 * to 1 immediately, allowing hlt instruction to acknowledge the
713	 * interrupt.
714	 */
715	disable_intr();
716	if (sched_runnable())
717		enable_intr();
718	else
719		__asm __volatile("sti; hlt");
720	*state = STATE_RUNNING;
721}
722
723/*
724 * MWAIT cpu power states.  Lower 4 bits are sub-states.
725 */
726#define	MWAIT_C0	0xf0
727#define	MWAIT_C1	0x00
728#define	MWAIT_C2	0x10
729#define	MWAIT_C3	0x20
730#define	MWAIT_C4	0x30
731
732static void
733cpu_idle_mwait(int busy)
734{
735	int *state;
736
737	state = (int *)PCPU_PTR(monitorbuf);
738	*state = STATE_MWAIT;
739
740	/* See comments in cpu_idle_hlt(). */
741	disable_intr();
742	if (sched_runnable()) {
743		enable_intr();
744		*state = STATE_RUNNING;
745		return;
746	}
747	cpu_monitor(state, 0, 0);
748	if (*state == STATE_MWAIT)
749		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
750	else
751		enable_intr();
752	*state = STATE_RUNNING;
753}
754
755static void
756cpu_idle_spin(int busy)
757{
758	int *state;
759	int i;
760
761	state = (int *)PCPU_PTR(monitorbuf);
762	*state = STATE_RUNNING;
763
764	/*
765	 * The sched_runnable() call is racy but as long as there is
766	 * a loop missing it one time will have just a little impact if any
767	 * (and it is much better than missing the check at all).
768	 */
769	for (i = 0; i < 1000; i++) {
770		if (sched_runnable())
771			return;
772		cpu_spinwait();
773	}
774}
775
776/*
777 * C1E renders the local APIC timer dead, so we disable it by
778 * reading the Interrupt Pending Message register and clearing
779 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
780 *
781 * Reference:
782 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
783 *   #32559 revision 3.00+
784 */
785#define	MSR_AMDK8_IPM		0xc0010055
786#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
787#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
788#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
789
790static void
791cpu_probe_amdc1e(void)
792{
793
794	/*
795	 * Detect the presence of C1E capability mostly on latest
796	 * dual-cores (or future) k8 family.
797	 */
798	if (cpu_vendor_id == CPU_VENDOR_AMD &&
799	    (cpu_id & 0x00000f00) == 0x00000f00 &&
800	    (cpu_id & 0x0fff0000) >=  0x00040000) {
801		cpu_ident_amdc1e = 1;
802	}
803}
804
805void (*cpu_idle_fn)(int) = cpu_idle_acpi;
806
807void
808cpu_idle(int busy)
809{
810	uint64_t msr;
811
812	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
813	    busy, curcpu);
814#ifdef MP_WATCHDOG
815	ap_watchdog(PCPU_GET(cpuid));
816#endif
817	/* If we are busy - try to use fast methods. */
818	if (busy) {
819		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
820			cpu_idle_mwait(busy);
821			goto out;
822		}
823	}
824
825	/* If we have time - switch timers into idle mode. */
826	if (!busy) {
827		critical_enter();
828		cpu_idleclock();
829	}
830
831	/* Apply AMD APIC timer C1E workaround. */
832	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
833		msr = rdmsr(MSR_AMDK8_IPM);
834		if (msr & AMDK8_CMPHALT)
835			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
836	}
837
838	/* Call main idle method. */
839	cpu_idle_fn(busy);
840
841	/* Switch timers mack into active mode. */
842	if (!busy) {
843		cpu_activeclock();
844		critical_exit();
845	}
846out:
847	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
848	    busy, curcpu);
849}
850
851int
852cpu_idle_wakeup(int cpu)
853{
854	struct pcpu *pcpu;
855	int *state;
856
857	pcpu = pcpu_find(cpu);
858	state = (int *)pcpu->pc_monitorbuf;
859	/*
860	 * This doesn't need to be atomic since missing the race will
861	 * simply result in unnecessary IPIs.
862	 */
863	if (*state == STATE_SLEEPING)
864		return (0);
865	if (*state == STATE_MWAIT)
866		*state = STATE_RUNNING;
867	return (1);
868}
869
870/*
871 * Ordered by speed/power consumption.
872 */
873struct {
874	void	*id_fn;
875	char	*id_name;
876} idle_tbl[] = {
877	{ cpu_idle_spin, "spin" },
878	{ cpu_idle_mwait, "mwait" },
879	{ cpu_idle_hlt, "hlt" },
880	{ cpu_idle_acpi, "acpi" },
881	{ NULL, NULL }
882};
883
884static int
885idle_sysctl_available(SYSCTL_HANDLER_ARGS)
886{
887	char *avail, *p;
888	int error;
889	int i;
890
891	avail = malloc(256, M_TEMP, M_WAITOK);
892	p = avail;
893	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
894		if (strstr(idle_tbl[i].id_name, "mwait") &&
895		    (cpu_feature2 & CPUID2_MON) == 0)
896			continue;
897		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
898		    cpu_idle_hook == NULL)
899			continue;
900		p += sprintf(p, "%s%s", p != avail ? ", " : "",
901		    idle_tbl[i].id_name);
902	}
903	error = sysctl_handle_string(oidp, avail, 0, req);
904	free(avail, M_TEMP);
905	return (error);
906}
907
908SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
909    0, 0, idle_sysctl_available, "A", "list of available idle functions");
910
911static int
912idle_sysctl(SYSCTL_HANDLER_ARGS)
913{
914	char buf[16];
915	int error;
916	char *p;
917	int i;
918
919	p = "unknown";
920	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
921		if (idle_tbl[i].id_fn == cpu_idle_fn) {
922			p = idle_tbl[i].id_name;
923			break;
924		}
925	}
926	strncpy(buf, p, sizeof(buf));
927	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
928	if (error != 0 || req->newptr == NULL)
929		return (error);
930	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
931		if (strstr(idle_tbl[i].id_name, "mwait") &&
932		    (cpu_feature2 & CPUID2_MON) == 0)
933			continue;
934		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
935		    cpu_idle_hook == NULL)
936			continue;
937		if (strcmp(idle_tbl[i].id_name, buf))
938			continue;
939		cpu_idle_fn = idle_tbl[i].id_fn;
940		return (0);
941	}
942	return (EINVAL);
943}
944
945SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
946    idle_sysctl, "A", "currently selected idle function");
947
948/*
949 * Reset registers to default values on exec.
950 */
951void
952exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
953{
954	struct trapframe *regs = td->td_frame;
955	struct pcb *pcb = td->td_pcb;
956
957	mtx_lock(&dt_lock);
958	if (td->td_proc->p_md.md_ldt != NULL)
959		user_ldt_free(td);
960	else
961		mtx_unlock(&dt_lock);
962
963	pcb->pcb_fsbase = 0;
964	pcb->pcb_gsbase = 0;
965	clear_pcb_flags(pcb, PCB_32BIT | PCB_GS32BIT);
966	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
967	set_pcb_flags(pcb, PCB_FULL_IRET);
968
969	bzero((char *)regs, sizeof(struct trapframe));
970	regs->tf_rip = imgp->entry_addr;
971	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
972	regs->tf_rdi = stack;		/* argv */
973	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
974	regs->tf_ss = _udatasel;
975	regs->tf_cs = _ucodesel;
976	regs->tf_ds = _udatasel;
977	regs->tf_es = _udatasel;
978	regs->tf_fs = _ufssel;
979	regs->tf_gs = _ugssel;
980	regs->tf_flags = TF_HASSEGS;
981	td->td_retval[1] = 0;
982
983	/*
984	 * Reset the hardware debug registers if they were in use.
985	 * They won't have any meaning for the newly exec'd process.
986	 */
987	if (pcb->pcb_flags & PCB_DBREGS) {
988		pcb->pcb_dr0 = 0;
989		pcb->pcb_dr1 = 0;
990		pcb->pcb_dr2 = 0;
991		pcb->pcb_dr3 = 0;
992		pcb->pcb_dr6 = 0;
993		pcb->pcb_dr7 = 0;
994		if (pcb == curpcb) {
995			/*
996			 * Clear the debug registers on the running
997			 * CPU, otherwise they will end up affecting
998			 * the next process we switch to.
999			 */
1000			reset_dbregs();
1001		}
1002		clear_pcb_flags(pcb, PCB_DBREGS);
1003	}
1004
1005	/*
1006	 * Drop the FP state if we hold it, so that the process gets a
1007	 * clean FP state if it uses the FPU again.
1008	 */
1009	fpstate_drop(td);
1010}
1011
1012void
1013cpu_setregs(void)
1014{
1015	register_t cr0;
1016
1017	cr0 = rcr0();
1018	/*
1019	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
1020	 * BSP.  See the comments there about why we set them.
1021	 */
1022	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1023	load_cr0(cr0);
1024}
1025
1026/*
1027 * Initialize amd64 and configure to run kernel
1028 */
1029
1030/*
1031 * Initialize segments & interrupt table
1032 */
1033
1034struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
1035static struct gate_descriptor idt0[NIDT];
1036struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1037
1038static char dblfault_stack[PAGE_SIZE] __aligned(16);
1039
1040static char nmi0_stack[PAGE_SIZE] __aligned(16);
1041CTASSERT(sizeof(struct nmi_pcpu) == 16);
1042
1043struct amd64tss common_tss[MAXCPU];
1044
1045/*
1046 * Software prototypes -- in more palatable form.
1047 *
1048 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
1049 * slots as corresponding segments for i386 kernel.
1050 */
1051struct soft_segment_descriptor gdt_segs[] = {
1052/* GNULL_SEL	0 Null Descriptor */
1053{	.ssd_base = 0x0,
1054	.ssd_limit = 0x0,
1055	.ssd_type = 0,
1056	.ssd_dpl = 0,
1057	.ssd_p = 0,
1058	.ssd_long = 0,
1059	.ssd_def32 = 0,
1060	.ssd_gran = 0		},
1061/* GNULL2_SEL	1 Null Descriptor */
1062{	.ssd_base = 0x0,
1063	.ssd_limit = 0x0,
1064	.ssd_type = 0,
1065	.ssd_dpl = 0,
1066	.ssd_p = 0,
1067	.ssd_long = 0,
1068	.ssd_def32 = 0,
1069	.ssd_gran = 0		},
1070/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
1071{	.ssd_base = 0x0,
1072	.ssd_limit = 0xfffff,
1073	.ssd_type = SDT_MEMRWA,
1074	.ssd_dpl = SEL_UPL,
1075	.ssd_p = 1,
1076	.ssd_long = 0,
1077	.ssd_def32 = 1,
1078	.ssd_gran = 1		},
1079/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1080{	.ssd_base = 0x0,
1081	.ssd_limit = 0xfffff,
1082	.ssd_type = SDT_MEMRWA,
1083	.ssd_dpl = SEL_UPL,
1084	.ssd_p = 1,
1085	.ssd_long = 0,
1086	.ssd_def32 = 1,
1087	.ssd_gran = 1		},
1088/* GCODE_SEL	4 Code Descriptor for kernel */
1089{	.ssd_base = 0x0,
1090	.ssd_limit = 0xfffff,
1091	.ssd_type = SDT_MEMERA,
1092	.ssd_dpl = SEL_KPL,
1093	.ssd_p = 1,
1094	.ssd_long = 1,
1095	.ssd_def32 = 0,
1096	.ssd_gran = 1		},
1097/* GDATA_SEL	5 Data Descriptor for kernel */
1098{	.ssd_base = 0x0,
1099	.ssd_limit = 0xfffff,
1100	.ssd_type = SDT_MEMRWA,
1101	.ssd_dpl = SEL_KPL,
1102	.ssd_p = 1,
1103	.ssd_long = 1,
1104	.ssd_def32 = 0,
1105	.ssd_gran = 1		},
1106/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1107{	.ssd_base = 0x0,
1108	.ssd_limit = 0xfffff,
1109	.ssd_type = SDT_MEMERA,
1110	.ssd_dpl = SEL_UPL,
1111	.ssd_p = 1,
1112	.ssd_long = 0,
1113	.ssd_def32 = 1,
1114	.ssd_gran = 1		},
1115/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1116{	.ssd_base = 0x0,
1117	.ssd_limit = 0xfffff,
1118	.ssd_type = SDT_MEMRWA,
1119	.ssd_dpl = SEL_UPL,
1120	.ssd_p = 1,
1121	.ssd_long = 0,
1122	.ssd_def32 = 1,
1123	.ssd_gran = 1		},
1124/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1125{	.ssd_base = 0x0,
1126	.ssd_limit = 0xfffff,
1127	.ssd_type = SDT_MEMERA,
1128	.ssd_dpl = SEL_UPL,
1129	.ssd_p = 1,
1130	.ssd_long = 1,
1131	.ssd_def32 = 0,
1132	.ssd_gran = 1		},
1133/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1134{	.ssd_base = 0x0,
1135	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1136	.ssd_type = SDT_SYSTSS,
1137	.ssd_dpl = SEL_KPL,
1138	.ssd_p = 1,
1139	.ssd_long = 0,
1140	.ssd_def32 = 0,
1141	.ssd_gran = 0		},
1142/* Actually, the TSS is a system descriptor which is double size */
1143{	.ssd_base = 0x0,
1144	.ssd_limit = 0x0,
1145	.ssd_type = 0,
1146	.ssd_dpl = 0,
1147	.ssd_p = 0,
1148	.ssd_long = 0,
1149	.ssd_def32 = 0,
1150	.ssd_gran = 0		},
1151/* GUSERLDT_SEL	11 LDT Descriptor */
1152{	.ssd_base = 0x0,
1153	.ssd_limit = 0x0,
1154	.ssd_type = 0,
1155	.ssd_dpl = 0,
1156	.ssd_p = 0,
1157	.ssd_long = 0,
1158	.ssd_def32 = 0,
1159	.ssd_gran = 0		},
1160/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1161{	.ssd_base = 0x0,
1162	.ssd_limit = 0x0,
1163	.ssd_type = 0,
1164	.ssd_dpl = 0,
1165	.ssd_p = 0,
1166	.ssd_long = 0,
1167	.ssd_def32 = 0,
1168	.ssd_gran = 0		},
1169};
1170
1171void
1172setidt(idx, func, typ, dpl, ist)
1173	int idx;
1174	inthand_t *func;
1175	int typ;
1176	int dpl;
1177	int ist;
1178{
1179	struct gate_descriptor *ip;
1180
1181	ip = idt + idx;
1182	ip->gd_looffset = (uintptr_t)func;
1183	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1184	ip->gd_ist = ist;
1185	ip->gd_xx = 0;
1186	ip->gd_type = typ;
1187	ip->gd_dpl = dpl;
1188	ip->gd_p = 1;
1189	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1190}
1191
1192extern inthand_t
1193	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1194	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1195	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1196	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1197	IDTVEC(xmm), IDTVEC(dblfault),
1198#ifdef KDTRACE_HOOKS
1199	IDTVEC(dtrace_ret),
1200#endif
1201	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1202
1203#ifdef DDB
1204/*
1205 * Display the index and function name of any IDT entries that don't use
1206 * the default 'rsvd' entry point.
1207 */
1208DB_SHOW_COMMAND(idt, db_show_idt)
1209{
1210	struct gate_descriptor *ip;
1211	int idx;
1212	uintptr_t func;
1213
1214	ip = idt;
1215	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1216		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1217		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1218			db_printf("%3d\t", idx);
1219			db_printsym(func, DB_STGY_PROC);
1220			db_printf("\n");
1221		}
1222		ip++;
1223	}
1224}
1225#endif
1226
1227void
1228sdtossd(sd, ssd)
1229	struct user_segment_descriptor *sd;
1230	struct soft_segment_descriptor *ssd;
1231{
1232
1233	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1234	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1235	ssd->ssd_type  = sd->sd_type;
1236	ssd->ssd_dpl   = sd->sd_dpl;
1237	ssd->ssd_p     = sd->sd_p;
1238	ssd->ssd_long  = sd->sd_long;
1239	ssd->ssd_def32 = sd->sd_def32;
1240	ssd->ssd_gran  = sd->sd_gran;
1241}
1242
1243void
1244ssdtosd(ssd, sd)
1245	struct soft_segment_descriptor *ssd;
1246	struct user_segment_descriptor *sd;
1247{
1248
1249	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1250	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1251	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1252	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1253	sd->sd_type  = ssd->ssd_type;
1254	sd->sd_dpl   = ssd->ssd_dpl;
1255	sd->sd_p     = ssd->ssd_p;
1256	sd->sd_long  = ssd->ssd_long;
1257	sd->sd_def32 = ssd->ssd_def32;
1258	sd->sd_gran  = ssd->ssd_gran;
1259}
1260
1261void
1262ssdtosyssd(ssd, sd)
1263	struct soft_segment_descriptor *ssd;
1264	struct system_segment_descriptor *sd;
1265{
1266
1267	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1268	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1269	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1270	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1271	sd->sd_type  = ssd->ssd_type;
1272	sd->sd_dpl   = ssd->ssd_dpl;
1273	sd->sd_p     = ssd->ssd_p;
1274	sd->sd_gran  = ssd->ssd_gran;
1275}
1276
1277#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1278#include <isa/isavar.h>
1279#include <isa/isareg.h>
1280/*
1281 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1282 * and is only suitable for use at probe time.
1283 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1284 * It shouldn't be here.  There should probably be an APIC centric
1285 * implementation in the apic driver code, if at all.
1286 */
1287intrmask_t
1288isa_irq_pending(void)
1289{
1290	u_char irr1;
1291	u_char irr2;
1292
1293	irr1 = inb(IO_ICU1);
1294	irr2 = inb(IO_ICU2);
1295	return ((irr2 << 8) | irr1);
1296}
1297#endif
1298
1299u_int basemem;
1300
1301static int
1302add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1303{
1304	int i, insert_idx, physmap_idx;
1305
1306	physmap_idx = *physmap_idxp;
1307
1308	if (boothowto & RB_VERBOSE)
1309		printf("SMAP type=%02x base=%016lx len=%016lx\n",
1310		    smap->type, smap->base, smap->length);
1311
1312	if (smap->type != SMAP_TYPE_MEMORY)
1313		return (1);
1314
1315	if (smap->length == 0)
1316		return (0);
1317
1318	/*
1319	 * Find insertion point while checking for overlap.  Start off by
1320	 * assuming the new entry will be added to the end.
1321	 */
1322	insert_idx = physmap_idx + 2;
1323	for (i = 0; i <= physmap_idx; i += 2) {
1324		if (smap->base < physmap[i + 1]) {
1325			if (smap->base + smap->length <= physmap[i]) {
1326				insert_idx = i;
1327				break;
1328			}
1329			if (boothowto & RB_VERBOSE)
1330				printf(
1331		    "Overlapping memory regions, ignoring second region\n");
1332			return (1);
1333		}
1334	}
1335
1336	/* See if we can prepend to the next entry. */
1337	if (insert_idx <= physmap_idx &&
1338	    smap->base + smap->length == physmap[insert_idx]) {
1339		physmap[insert_idx] = smap->base;
1340		return (1);
1341	}
1342
1343	/* See if we can append to the previous entry. */
1344	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
1345		physmap[insert_idx - 1] += smap->length;
1346		return (1);
1347	}
1348
1349	physmap_idx += 2;
1350	*physmap_idxp = physmap_idx;
1351	if (physmap_idx == PHYSMAP_SIZE) {
1352		printf(
1353		"Too many segments in the physical address map, giving up\n");
1354		return (0);
1355	}
1356
1357	/*
1358	 * Move the last 'N' entries down to make room for the new
1359	 * entry if needed.
1360	 */
1361	for (i = physmap_idx; i > insert_idx; i -= 2) {
1362		physmap[i] = physmap[i - 2];
1363		physmap[i + 1] = physmap[i - 1];
1364	}
1365
1366	/* Insert the new entry. */
1367	physmap[insert_idx] = smap->base;
1368	physmap[insert_idx + 1] = smap->base + smap->length;
1369	return (1);
1370}
1371
1372/*
1373 * Populate the (physmap) array with base/bound pairs describing the
1374 * available physical memory in the system, then test this memory and
1375 * build the phys_avail array describing the actually-available memory.
1376 *
1377 * Total memory size may be set by the kernel environment variable
1378 * hw.physmem or the compile-time define MAXMEM.
1379 *
1380 * XXX first should be vm_paddr_t.
1381 */
1382static void
1383getmemsize(caddr_t kmdp, u_int64_t first)
1384{
1385	int i, physmap_idx, pa_indx, da_indx;
1386	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1387	u_long physmem_start, physmem_tunable, memtest;
1388	pt_entry_t *pte;
1389	struct bios_smap *smapbase, *smap, *smapend;
1390	u_int32_t smapsize;
1391	quad_t dcons_addr, dcons_size;
1392
1393	bzero(physmap, sizeof(physmap));
1394	basemem = 0;
1395	physmap_idx = 0;
1396
1397	/*
1398	 * get memory map from INT 15:E820, kindly supplied by the loader.
1399	 *
1400	 * subr_module.c says:
1401	 * "Consumer may safely assume that size value precedes data."
1402	 * ie: an int32_t immediately precedes smap.
1403	 */
1404	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1405	    MODINFO_METADATA | MODINFOMD_SMAP);
1406	if (smapbase == NULL)
1407		panic("No BIOS smap info from loader!");
1408
1409	smapsize = *((u_int32_t *)smapbase - 1);
1410	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1411
1412	for (smap = smapbase; smap < smapend; smap++)
1413		if (!add_smap_entry(smap, physmap, &physmap_idx))
1414			break;
1415
1416	/*
1417	 * Find the 'base memory' segment for SMP
1418	 */
1419	basemem = 0;
1420	for (i = 0; i <= physmap_idx; i += 2) {
1421		if (physmap[i] == 0x00000000) {
1422			basemem = physmap[i + 1] / 1024;
1423			break;
1424		}
1425	}
1426	if (basemem == 0)
1427		panic("BIOS smap did not include a basemem segment!");
1428
1429#ifdef SMP
1430	/* make hole for AP bootstrap code */
1431	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1432#endif
1433
1434	/*
1435	 * Maxmem isn't the "maximum memory", it's one larger than the
1436	 * highest page of the physical address space.  It should be
1437	 * called something like "Maxphyspage".  We may adjust this
1438	 * based on ``hw.physmem'' and the results of the memory test.
1439	 */
1440	Maxmem = atop(physmap[physmap_idx + 1]);
1441
1442#ifdef MAXMEM
1443	Maxmem = MAXMEM / 4;
1444#endif
1445
1446	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1447		Maxmem = atop(physmem_tunable);
1448
1449	/*
1450	 * By default enable the memory test on real hardware, and disable
1451	 * it if we appear to be running in a VM.  This avoids touching all
1452	 * pages unnecessarily, which doesn't matter on real hardware but is
1453	 * bad for shared VM hosts.  Use a general name so that
1454	 * one could eventually do more with the code than just disable it.
1455	 */
1456	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
1457	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1458
1459	/*
1460	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1461	 * in the system.
1462	 */
1463	if (Maxmem > atop(physmap[physmap_idx + 1]))
1464		Maxmem = atop(physmap[physmap_idx + 1]);
1465
1466	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1467	    (boothowto & RB_VERBOSE))
1468		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1469
1470	/* call pmap initialization to make new kernel address space */
1471	pmap_bootstrap(&first);
1472
1473	/*
1474	 * Size up each available chunk of physical memory.
1475	 *
1476	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1477	 * By default, mask off the first 16 pages unless we appear to be
1478	 * running in a VM.
1479	 */
1480	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1481	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1482	if (physmem_start < PAGE_SIZE)
1483		physmap[0] = PAGE_SIZE;
1484	else if (physmem_start >= physmap[1])
1485		physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1486	else
1487		physmap[0] = round_page(physmem_start);
1488	pa_indx = 0;
1489	da_indx = 1;
1490	phys_avail[pa_indx++] = physmap[0];
1491	phys_avail[pa_indx] = physmap[0];
1492	dump_avail[da_indx] = physmap[0];
1493	pte = CMAP1;
1494
1495	/*
1496	 * Get dcons buffer address
1497	 */
1498	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1499	    getenv_quad("dcons.size", &dcons_size) == 0)
1500		dcons_addr = 0;
1501
1502	/*
1503	 * physmap is in bytes, so when converting to page boundaries,
1504	 * round up the start address and round down the end address.
1505	 */
1506	for (i = 0; i <= physmap_idx; i += 2) {
1507		vm_paddr_t end;
1508
1509		end = ptoa((vm_paddr_t)Maxmem);
1510		if (physmap[i + 1] < end)
1511			end = trunc_page(physmap[i + 1]);
1512		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1513			int tmp, page_bad, full;
1514			int *ptr = (int *)CADDR1;
1515
1516			full = FALSE;
1517			/*
1518			 * block out kernel memory as not available.
1519			 */
1520			if (pa >= (vm_paddr_t)kernphys && pa < first)
1521				goto do_dump_avail;
1522
1523			/*
1524			 * block out dcons buffer
1525			 */
1526			if (dcons_addr > 0
1527			    && pa >= trunc_page(dcons_addr)
1528			    && pa < dcons_addr + dcons_size)
1529				goto do_dump_avail;
1530
1531			page_bad = FALSE;
1532			if (memtest == 0)
1533				goto skip_memtest;
1534
1535			printf("testing memory...\n");
1536
1537			/*
1538			 * map page into kernel: valid, read/write,non-cacheable
1539			 */
1540			*pte = pa | PG_V | PG_RW | PG_N;
1541			invltlb();
1542
1543			tmp = *(int *)ptr;
1544			/*
1545			 * Test for alternating 1's and 0's
1546			 */
1547			*(volatile int *)ptr = 0xaaaaaaaa;
1548			if (*(volatile int *)ptr != 0xaaaaaaaa)
1549				page_bad = TRUE;
1550			/*
1551			 * Test for alternating 0's and 1's
1552			 */
1553			*(volatile int *)ptr = 0x55555555;
1554			if (*(volatile int *)ptr != 0x55555555)
1555				page_bad = TRUE;
1556			/*
1557			 * Test for all 1's
1558			 */
1559			*(volatile int *)ptr = 0xffffffff;
1560			if (*(volatile int *)ptr != 0xffffffff)
1561				page_bad = TRUE;
1562			/*
1563			 * Test for all 0's
1564			 */
1565			*(volatile int *)ptr = 0x0;
1566			if (*(volatile int *)ptr != 0x0)
1567				page_bad = TRUE;
1568			/*
1569			 * Restore original value.
1570			 */
1571			*(int *)ptr = tmp;
1572
1573skip_memtest:
1574			/*
1575			 * Adjust array of valid/good pages.
1576			 */
1577			if (page_bad == TRUE)
1578				continue;
1579			/*
1580			 * If this good page is a continuation of the
1581			 * previous set of good pages, then just increase
1582			 * the end pointer. Otherwise start a new chunk.
1583			 * Note that "end" points one higher than end,
1584			 * making the range >= start and < end.
1585			 * If we're also doing a speculative memory
1586			 * test and we at or past the end, bump up Maxmem
1587			 * so that we keep going. The first bad page
1588			 * will terminate the loop.
1589			 */
1590			if (phys_avail[pa_indx] == pa) {
1591				phys_avail[pa_indx] += PAGE_SIZE;
1592			} else {
1593				pa_indx++;
1594				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1595					printf(
1596		"Too many holes in the physical address space, giving up\n");
1597					pa_indx--;
1598					full = TRUE;
1599					goto do_dump_avail;
1600				}
1601				phys_avail[pa_indx++] = pa;	/* start */
1602				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1603			}
1604			physmem++;
1605do_dump_avail:
1606			if (dump_avail[da_indx] == pa) {
1607				dump_avail[da_indx] += PAGE_SIZE;
1608			} else {
1609				da_indx++;
1610				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1611					da_indx--;
1612					goto do_next;
1613				}
1614				dump_avail[da_indx++] = pa; /* start */
1615				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1616			}
1617do_next:
1618			if (full)
1619				break;
1620		}
1621	}
1622	*pte = 0;
1623	invltlb();
1624
1625	/*
1626	 * XXX
1627	 * The last chunk must contain at least one page plus the message
1628	 * buffer to avoid complicating other code (message buffer address
1629	 * calculation, etc.).
1630	 */
1631	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1632	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1633		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1634		phys_avail[pa_indx--] = 0;
1635		phys_avail[pa_indx--] = 0;
1636	}
1637
1638	Maxmem = atop(phys_avail[pa_indx]);
1639
1640	/* Trim off space for the message buffer. */
1641	phys_avail[pa_indx] -= round_page(msgbufsize);
1642
1643	/* Map the message buffer. */
1644	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1645}
1646
1647u_int64_t
1648hammer_time(u_int64_t modulep, u_int64_t physfree)
1649{
1650	caddr_t kmdp;
1651	int gsel_tss, x;
1652	struct pcpu *pc;
1653	struct nmi_pcpu *np;
1654	struct xstate_hdr *xhdr;
1655	u_int64_t msr;
1656	char *env;
1657	size_t kstack0_sz;
1658
1659	thread0.td_kstack = physfree + KERNBASE;
1660	thread0.td_kstack_pages = KSTACK_PAGES;
1661	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1662	bzero((void *)thread0.td_kstack, kstack0_sz);
1663	physfree += kstack0_sz;
1664
1665	/*
1666 	 * This may be done better later if it gets more high level
1667 	 * components in it. If so just link td->td_proc here.
1668	 */
1669	proc_linkup0(&proc0, &thread0);
1670
1671	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1672	preload_bootstrap_relocate(KERNBASE);
1673	kmdp = preload_search_by_type("elf kernel");
1674	if (kmdp == NULL)
1675		kmdp = preload_search_by_type("elf64 kernel");
1676	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1677	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1678#ifdef DDB
1679	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1680	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1681#endif
1682
1683	/* Init basic tunables, hz etc */
1684	init_param1();
1685
1686	/*
1687	 * make gdt memory segments
1688	 */
1689	for (x = 0; x < NGDT; x++) {
1690		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1691		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1692			ssdtosd(&gdt_segs[x], &gdt[x]);
1693	}
1694	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1695	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1696	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1697
1698	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1699	r_gdt.rd_base =  (long) gdt;
1700	lgdt(&r_gdt);
1701	pc = &__pcpu[0];
1702
1703	wrmsr(MSR_FSBASE, 0);		/* User value */
1704	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1705	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1706
1707	pcpu_init(pc, 0, sizeof(struct pcpu));
1708	dpcpu_init((void *)(physfree + KERNBASE), 0);
1709	physfree += DPCPU_SIZE;
1710	PCPU_SET(prvspace, pc);
1711	PCPU_SET(curthread, &thread0);
1712	PCPU_SET(tssp, &common_tss[0]);
1713	PCPU_SET(commontssp, &common_tss[0]);
1714	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1715	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1716	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1717	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1718
1719	/*
1720	 * Initialize mutexes.
1721	 *
1722	 * icu_lock: in order to allow an interrupt to occur in a critical
1723	 * 	     section, to set pcpu->ipending (etc...) properly, we
1724	 *	     must be able to get the icu lock, so it can't be
1725	 *	     under witness.
1726	 */
1727	mutex_init();
1728	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1729	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1730
1731	/* exceptions */
1732	for (x = 0; x < NIDT; x++)
1733		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1734	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1735	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1736	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1737 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1738	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1739	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1740	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1741	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1742	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1743	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1744	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1745	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1746	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1747	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1748	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1749	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1750	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1751	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1752	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1753#ifdef KDTRACE_HOOKS
1754	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1755#endif
1756
1757	r_idt.rd_limit = sizeof(idt0) - 1;
1758	r_idt.rd_base = (long) idt;
1759	lidt(&r_idt);
1760
1761	/*
1762	 * Initialize the i8254 before the console so that console
1763	 * initialization can use DELAY().
1764	 */
1765	i8254_init();
1766
1767	/*
1768	 * Initialize the console before we print anything out.
1769	 */
1770	cninit();
1771
1772#ifdef DEV_ISA
1773#ifdef DEV_ATPIC
1774	elcr_probe();
1775	atpic_startup();
1776#else
1777	/* Reset and mask the atpics and leave them shut down. */
1778	atpic_reset();
1779
1780	/*
1781	 * Point the ICU spurious interrupt vectors at the APIC spurious
1782	 * interrupt handler.
1783	 */
1784	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1785	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1786#endif
1787#else
1788#error "have you forgotten the isa device?";
1789#endif
1790
1791	kdb_init();
1792
1793#ifdef KDB
1794	if (boothowto & RB_KDB)
1795		kdb_enter(KDB_WHY_BOOTFLAGS,
1796		    "Boot flags requested debugger");
1797#endif
1798
1799	identify_cpu();		/* Final stage of CPU initialization */
1800	initializecpu();	/* Initialize CPU registers */
1801	initializecpucache();
1802
1803	/* doublefault stack space, runs on ist1 */
1804	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1805
1806	/*
1807	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1808	 * above the start of the ist2 stack.
1809	 */
1810	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1811	np->np_pcpu = (register_t) pc;
1812	common_tss[0].tss_ist2 = (long) np;
1813
1814	/* Set the IO permission bitmap (empty due to tss seg limit) */
1815	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1816	    IOPAGES * PAGE_SIZE;
1817
1818	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1819	ltr(gsel_tss);
1820
1821	/* Set up the fast syscall stuff */
1822	msr = rdmsr(MSR_EFER) | EFER_SCE;
1823	wrmsr(MSR_EFER, msr);
1824	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1825	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1826	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1827	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1828	wrmsr(MSR_STAR, msr);
1829	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1830
1831	getmemsize(kmdp, physfree);
1832	init_param2(physmem);
1833
1834	/* now running on new page tables, configured,and u/iom is accessible */
1835
1836	msgbufinit(msgbufp, msgbufsize);
1837	fpuinit();
1838
1839	/*
1840	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
1841	 * area size.  Zero out the extended state header in fpu save
1842	 * area.
1843	 */
1844	thread0.td_pcb = get_pcb_td(&thread0);
1845	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1846	if (use_xsave) {
1847		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1848		    1);
1849		xhdr->xstate_bv = xsave_mask;
1850	}
1851	/* make an initial tss so cpu can get interrupt stack on syscall! */
1852	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
1853	/* Ensure the stack is aligned to 16 bytes */
1854	common_tss[0].tss_rsp0 &= ~0xFul;
1855	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1856	PCPU_SET(curpcb, thread0.td_pcb);
1857
1858	/* transfer to user mode */
1859
1860	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1861	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1862	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1863	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1864	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1865
1866	load_ds(_udatasel);
1867	load_es(_udatasel);
1868	load_fs(_ufssel);
1869
1870	/* setup proc 0's pcb */
1871	thread0.td_pcb->pcb_flags = 0;
1872	thread0.td_pcb->pcb_cr3 = KPML4phys;
1873	thread0.td_frame = &proc0_tf;
1874
1875        env = getenv("kernelname");
1876	if (env != NULL)
1877		strlcpy(kernelname, env, sizeof(kernelname));
1878
1879#ifdef XENHVM
1880	if (inw(0x10) == 0x49d2) {
1881		if (bootverbose)
1882			printf("Xen detected: disabling emulated block and network devices\n");
1883		outw(0x10, 3);
1884	}
1885#endif
1886
1887	cpu_probe_amdc1e();
1888
1889	/* Location of kernel stack for locore */
1890	return ((u_int64_t)thread0.td_pcb);
1891}
1892
1893void
1894cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1895{
1896
1897	pcpu->pc_acpi_id = 0xffffffff;
1898}
1899
1900void
1901spinlock_enter(void)
1902{
1903	struct thread *td;
1904	register_t flags;
1905
1906	td = curthread;
1907	if (td->td_md.md_spinlock_count == 0) {
1908		flags = intr_disable();
1909		td->td_md.md_spinlock_count = 1;
1910		td->td_md.md_saved_flags = flags;
1911	} else
1912		td->td_md.md_spinlock_count++;
1913	critical_enter();
1914}
1915
1916void
1917spinlock_exit(void)
1918{
1919	struct thread *td;
1920	register_t flags;
1921
1922	td = curthread;
1923	critical_exit();
1924	flags = td->td_md.md_saved_flags;
1925	td->td_md.md_spinlock_count--;
1926	if (td->td_md.md_spinlock_count == 0)
1927		intr_restore(flags);
1928}
1929
1930/*
1931 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1932 * we want to start a backtrace from the function that caused us to enter
1933 * the debugger. We have the context in the trapframe, but base the trace
1934 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1935 * enough for a backtrace.
1936 */
1937void
1938makectx(struct trapframe *tf, struct pcb *pcb)
1939{
1940
1941	pcb->pcb_r12 = tf->tf_r12;
1942	pcb->pcb_r13 = tf->tf_r13;
1943	pcb->pcb_r14 = tf->tf_r14;
1944	pcb->pcb_r15 = tf->tf_r15;
1945	pcb->pcb_rbp = tf->tf_rbp;
1946	pcb->pcb_rbx = tf->tf_rbx;
1947	pcb->pcb_rip = tf->tf_rip;
1948	pcb->pcb_rsp = tf->tf_rsp;
1949}
1950
1951int
1952ptrace_set_pc(struct thread *td, unsigned long addr)
1953{
1954	td->td_frame->tf_rip = addr;
1955	return (0);
1956}
1957
1958int
1959ptrace_single_step(struct thread *td)
1960{
1961	td->td_frame->tf_rflags |= PSL_T;
1962	return (0);
1963}
1964
1965int
1966ptrace_clear_single_step(struct thread *td)
1967{
1968	td->td_frame->tf_rflags &= ~PSL_T;
1969	return (0);
1970}
1971
1972int
1973fill_regs(struct thread *td, struct reg *regs)
1974{
1975	struct trapframe *tp;
1976
1977	tp = td->td_frame;
1978	return (fill_frame_regs(tp, regs));
1979}
1980
1981int
1982fill_frame_regs(struct trapframe *tp, struct reg *regs)
1983{
1984	regs->r_r15 = tp->tf_r15;
1985	regs->r_r14 = tp->tf_r14;
1986	regs->r_r13 = tp->tf_r13;
1987	regs->r_r12 = tp->tf_r12;
1988	regs->r_r11 = tp->tf_r11;
1989	regs->r_r10 = tp->tf_r10;
1990	regs->r_r9  = tp->tf_r9;
1991	regs->r_r8  = tp->tf_r8;
1992	regs->r_rdi = tp->tf_rdi;
1993	regs->r_rsi = tp->tf_rsi;
1994	regs->r_rbp = tp->tf_rbp;
1995	regs->r_rbx = tp->tf_rbx;
1996	regs->r_rdx = tp->tf_rdx;
1997	regs->r_rcx = tp->tf_rcx;
1998	regs->r_rax = tp->tf_rax;
1999	regs->r_rip = tp->tf_rip;
2000	regs->r_cs = tp->tf_cs;
2001	regs->r_rflags = tp->tf_rflags;
2002	regs->r_rsp = tp->tf_rsp;
2003	regs->r_ss = tp->tf_ss;
2004	if (tp->tf_flags & TF_HASSEGS) {
2005		regs->r_ds = tp->tf_ds;
2006		regs->r_es = tp->tf_es;
2007		regs->r_fs = tp->tf_fs;
2008		regs->r_gs = tp->tf_gs;
2009	} else {
2010		regs->r_ds = 0;
2011		regs->r_es = 0;
2012		regs->r_fs = 0;
2013		regs->r_gs = 0;
2014	}
2015	return (0);
2016}
2017
2018int
2019set_regs(struct thread *td, struct reg *regs)
2020{
2021	struct trapframe *tp;
2022	register_t rflags;
2023
2024	tp = td->td_frame;
2025	rflags = regs->r_rflags & 0xffffffff;
2026	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
2027		return (EINVAL);
2028	tp->tf_r15 = regs->r_r15;
2029	tp->tf_r14 = regs->r_r14;
2030	tp->tf_r13 = regs->r_r13;
2031	tp->tf_r12 = regs->r_r12;
2032	tp->tf_r11 = regs->r_r11;
2033	tp->tf_r10 = regs->r_r10;
2034	tp->tf_r9  = regs->r_r9;
2035	tp->tf_r8  = regs->r_r8;
2036	tp->tf_rdi = regs->r_rdi;
2037	tp->tf_rsi = regs->r_rsi;
2038	tp->tf_rbp = regs->r_rbp;
2039	tp->tf_rbx = regs->r_rbx;
2040	tp->tf_rdx = regs->r_rdx;
2041	tp->tf_rcx = regs->r_rcx;
2042	tp->tf_rax = regs->r_rax;
2043	tp->tf_rip = regs->r_rip;
2044	tp->tf_cs = regs->r_cs;
2045	tp->tf_rflags = rflags;
2046	tp->tf_rsp = regs->r_rsp;
2047	tp->tf_ss = regs->r_ss;
2048	if (0) {	/* XXXKIB */
2049		tp->tf_ds = regs->r_ds;
2050		tp->tf_es = regs->r_es;
2051		tp->tf_fs = regs->r_fs;
2052		tp->tf_gs = regs->r_gs;
2053		tp->tf_flags = TF_HASSEGS;
2054		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2055	}
2056	return (0);
2057}
2058
2059/* XXX check all this stuff! */
2060/* externalize from sv_xmm */
2061static void
2062fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
2063{
2064	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2065	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2066	int i;
2067
2068	/* pcb -> fpregs */
2069	bzero(fpregs, sizeof(*fpregs));
2070
2071	/* FPU control/status */
2072	penv_fpreg->en_cw = penv_xmm->en_cw;
2073	penv_fpreg->en_sw = penv_xmm->en_sw;
2074	penv_fpreg->en_tw = penv_xmm->en_tw;
2075	penv_fpreg->en_opcode = penv_xmm->en_opcode;
2076	penv_fpreg->en_rip = penv_xmm->en_rip;
2077	penv_fpreg->en_rdp = penv_xmm->en_rdp;
2078	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
2079	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
2080
2081	/* FPU registers */
2082	for (i = 0; i < 8; ++i)
2083		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2084
2085	/* SSE registers */
2086	for (i = 0; i < 16; ++i)
2087		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2088}
2089
2090/* internalize from fpregs into sv_xmm */
2091static void
2092set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2093{
2094	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2095	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2096	int i;
2097
2098	/* fpregs -> pcb */
2099	/* FPU control/status */
2100	penv_xmm->en_cw = penv_fpreg->en_cw;
2101	penv_xmm->en_sw = penv_fpreg->en_sw;
2102	penv_xmm->en_tw = penv_fpreg->en_tw;
2103	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2104	penv_xmm->en_rip = penv_fpreg->en_rip;
2105	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2106	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2107	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2108
2109	/* FPU registers */
2110	for (i = 0; i < 8; ++i)
2111		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2112
2113	/* SSE registers */
2114	for (i = 0; i < 16; ++i)
2115		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2116}
2117
2118/* externalize from td->pcb */
2119int
2120fill_fpregs(struct thread *td, struct fpreg *fpregs)
2121{
2122
2123	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2124	    P_SHOULDSTOP(td->td_proc),
2125	    ("not suspended thread %p", td));
2126	fpugetregs(td);
2127	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2128	return (0);
2129}
2130
2131/* internalize to td->pcb */
2132int
2133set_fpregs(struct thread *td, struct fpreg *fpregs)
2134{
2135
2136	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2137	fpuuserinited(td);
2138	return (0);
2139}
2140
2141/*
2142 * Get machine context.
2143 */
2144int
2145get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2146{
2147	struct pcb *pcb;
2148	struct trapframe *tp;
2149
2150	pcb = td->td_pcb;
2151	tp = td->td_frame;
2152	PROC_LOCK(curthread->td_proc);
2153	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2154	PROC_UNLOCK(curthread->td_proc);
2155	mcp->mc_r15 = tp->tf_r15;
2156	mcp->mc_r14 = tp->tf_r14;
2157	mcp->mc_r13 = tp->tf_r13;
2158	mcp->mc_r12 = tp->tf_r12;
2159	mcp->mc_r11 = tp->tf_r11;
2160	mcp->mc_r10 = tp->tf_r10;
2161	mcp->mc_r9  = tp->tf_r9;
2162	mcp->mc_r8  = tp->tf_r8;
2163	mcp->mc_rdi = tp->tf_rdi;
2164	mcp->mc_rsi = tp->tf_rsi;
2165	mcp->mc_rbp = tp->tf_rbp;
2166	mcp->mc_rbx = tp->tf_rbx;
2167	mcp->mc_rcx = tp->tf_rcx;
2168	mcp->mc_rflags = tp->tf_rflags;
2169	if (flags & GET_MC_CLEAR_RET) {
2170		mcp->mc_rax = 0;
2171		mcp->mc_rdx = 0;
2172		mcp->mc_rflags &= ~PSL_C;
2173	} else {
2174		mcp->mc_rax = tp->tf_rax;
2175		mcp->mc_rdx = tp->tf_rdx;
2176	}
2177	mcp->mc_rip = tp->tf_rip;
2178	mcp->mc_cs = tp->tf_cs;
2179	mcp->mc_rsp = tp->tf_rsp;
2180	mcp->mc_ss = tp->tf_ss;
2181	mcp->mc_ds = tp->tf_ds;
2182	mcp->mc_es = tp->tf_es;
2183	mcp->mc_fs = tp->tf_fs;
2184	mcp->mc_gs = tp->tf_gs;
2185	mcp->mc_flags = tp->tf_flags;
2186	mcp->mc_len = sizeof(*mcp);
2187	get_fpcontext(td, mcp, NULL, 0);
2188	mcp->mc_fsbase = pcb->pcb_fsbase;
2189	mcp->mc_gsbase = pcb->pcb_gsbase;
2190	mcp->mc_xfpustate = 0;
2191	mcp->mc_xfpustate_len = 0;
2192	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2193	return (0);
2194}
2195
2196/*
2197 * Set machine context.
2198 *
2199 * However, we don't set any but the user modifiable flags, and we won't
2200 * touch the cs selector.
2201 */
2202int
2203set_mcontext(struct thread *td, const mcontext_t *mcp)
2204{
2205	struct pcb *pcb;
2206	struct trapframe *tp;
2207	char *xfpustate;
2208	long rflags;
2209	int ret;
2210
2211	pcb = td->td_pcb;
2212	tp = td->td_frame;
2213	if (mcp->mc_len != sizeof(*mcp) ||
2214	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2215		return (EINVAL);
2216	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2217	    (tp->tf_rflags & ~PSL_USERCHANGE);
2218	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2219		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2220		    sizeof(struct savefpu))
2221			return (EINVAL);
2222		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2223		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2224		    mcp->mc_xfpustate_len);
2225		if (ret != 0)
2226			return (ret);
2227	} else
2228		xfpustate = NULL;
2229	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2230	if (ret != 0)
2231		return (ret);
2232	tp->tf_r15 = mcp->mc_r15;
2233	tp->tf_r14 = mcp->mc_r14;
2234	tp->tf_r13 = mcp->mc_r13;
2235	tp->tf_r12 = mcp->mc_r12;
2236	tp->tf_r11 = mcp->mc_r11;
2237	tp->tf_r10 = mcp->mc_r10;
2238	tp->tf_r9  = mcp->mc_r9;
2239	tp->tf_r8  = mcp->mc_r8;
2240	tp->tf_rdi = mcp->mc_rdi;
2241	tp->tf_rsi = mcp->mc_rsi;
2242	tp->tf_rbp = mcp->mc_rbp;
2243	tp->tf_rbx = mcp->mc_rbx;
2244	tp->tf_rdx = mcp->mc_rdx;
2245	tp->tf_rcx = mcp->mc_rcx;
2246	tp->tf_rax = mcp->mc_rax;
2247	tp->tf_rip = mcp->mc_rip;
2248	tp->tf_rflags = rflags;
2249	tp->tf_rsp = mcp->mc_rsp;
2250	tp->tf_ss = mcp->mc_ss;
2251	tp->tf_flags = mcp->mc_flags;
2252	if (tp->tf_flags & TF_HASSEGS) {
2253		tp->tf_ds = mcp->mc_ds;
2254		tp->tf_es = mcp->mc_es;
2255		tp->tf_fs = mcp->mc_fs;
2256		tp->tf_gs = mcp->mc_gs;
2257	}
2258	if (mcp->mc_flags & _MC_HASBASES) {
2259		pcb->pcb_fsbase = mcp->mc_fsbase;
2260		pcb->pcb_gsbase = mcp->mc_gsbase;
2261	}
2262	set_pcb_flags(pcb, PCB_FULL_IRET);
2263	return (0);
2264}
2265
2266static void
2267get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2268    size_t xfpusave_len)
2269{
2270	size_t max_len, len;
2271
2272	mcp->mc_ownedfp = fpugetregs(td);
2273	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate,
2274	    sizeof(mcp->mc_fpstate));
2275	mcp->mc_fpformat = fpuformat();
2276	if (!use_xsave || xfpusave_len == 0)
2277		return;
2278	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2279	len = xfpusave_len;
2280	if (len > max_len) {
2281		len = max_len;
2282		bzero(xfpusave + max_len, len - max_len);
2283	}
2284	mcp->mc_flags |= _MC_HASFPXSTATE;
2285	mcp->mc_xfpustate_len = len;
2286	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2287}
2288
2289static int
2290set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate,
2291    size_t xfpustate_len)
2292{
2293	struct savefpu *fpstate;
2294	int error;
2295
2296	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2297		return (0);
2298	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2299		return (EINVAL);
2300	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2301		/* We don't care what state is left in the FPU or PCB. */
2302		fpstate_drop(td);
2303		error = 0;
2304	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2305	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2306		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2307		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2308		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2309	} else
2310		return (EINVAL);
2311	return (error);
2312}
2313
2314void
2315fpstate_drop(struct thread *td)
2316{
2317
2318	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2319	critical_enter();
2320	if (PCPU_GET(fpcurthread) == td)
2321		fpudrop();
2322	/*
2323	 * XXX force a full drop of the fpu.  The above only drops it if we
2324	 * owned it.
2325	 *
2326	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2327	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2328	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2329	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2330	 * have too many layers.
2331	 */
2332	clear_pcb_flags(curthread->td_pcb,
2333	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2334	critical_exit();
2335}
2336
2337int
2338fill_dbregs(struct thread *td, struct dbreg *dbregs)
2339{
2340	struct pcb *pcb;
2341
2342	if (td == NULL) {
2343		dbregs->dr[0] = rdr0();
2344		dbregs->dr[1] = rdr1();
2345		dbregs->dr[2] = rdr2();
2346		dbregs->dr[3] = rdr3();
2347		dbregs->dr[6] = rdr6();
2348		dbregs->dr[7] = rdr7();
2349	} else {
2350		pcb = td->td_pcb;
2351		dbregs->dr[0] = pcb->pcb_dr0;
2352		dbregs->dr[1] = pcb->pcb_dr1;
2353		dbregs->dr[2] = pcb->pcb_dr2;
2354		dbregs->dr[3] = pcb->pcb_dr3;
2355		dbregs->dr[6] = pcb->pcb_dr6;
2356		dbregs->dr[7] = pcb->pcb_dr7;
2357	}
2358	dbregs->dr[4] = 0;
2359	dbregs->dr[5] = 0;
2360	dbregs->dr[8] = 0;
2361	dbregs->dr[9] = 0;
2362	dbregs->dr[10] = 0;
2363	dbregs->dr[11] = 0;
2364	dbregs->dr[12] = 0;
2365	dbregs->dr[13] = 0;
2366	dbregs->dr[14] = 0;
2367	dbregs->dr[15] = 0;
2368	return (0);
2369}
2370
2371int
2372set_dbregs(struct thread *td, struct dbreg *dbregs)
2373{
2374	struct pcb *pcb;
2375	int i;
2376
2377	if (td == NULL) {
2378		load_dr0(dbregs->dr[0]);
2379		load_dr1(dbregs->dr[1]);
2380		load_dr2(dbregs->dr[2]);
2381		load_dr3(dbregs->dr[3]);
2382		load_dr6(dbregs->dr[6]);
2383		load_dr7(dbregs->dr[7]);
2384	} else {
2385		/*
2386		 * Don't let an illegal value for dr7 get set.  Specifically,
2387		 * check for undefined settings.  Setting these bit patterns
2388		 * result in undefined behaviour and can lead to an unexpected
2389		 * TRCTRAP or a general protection fault right here.
2390		 * Upper bits of dr6 and dr7 must not be set
2391		 */
2392		for (i = 0; i < 4; i++) {
2393			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2394				return (EINVAL);
2395			if (td->td_frame->tf_cs == _ucode32sel &&
2396			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2397				return (EINVAL);
2398		}
2399		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2400		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2401			return (EINVAL);
2402
2403		pcb = td->td_pcb;
2404
2405		/*
2406		 * Don't let a process set a breakpoint that is not within the
2407		 * process's address space.  If a process could do this, it
2408		 * could halt the system by setting a breakpoint in the kernel
2409		 * (if ddb was enabled).  Thus, we need to check to make sure
2410		 * that no breakpoints are being enabled for addresses outside
2411		 * process's address space.
2412		 *
2413		 * XXX - what about when the watched area of the user's
2414		 * address space is written into from within the kernel
2415		 * ... wouldn't that still cause a breakpoint to be generated
2416		 * from within kernel mode?
2417		 */
2418
2419		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2420			/* dr0 is enabled */
2421			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2422				return (EINVAL);
2423		}
2424		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2425			/* dr1 is enabled */
2426			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2427				return (EINVAL);
2428		}
2429		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2430			/* dr2 is enabled */
2431			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2432				return (EINVAL);
2433		}
2434		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2435			/* dr3 is enabled */
2436			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2437				return (EINVAL);
2438		}
2439
2440		pcb->pcb_dr0 = dbregs->dr[0];
2441		pcb->pcb_dr1 = dbregs->dr[1];
2442		pcb->pcb_dr2 = dbregs->dr[2];
2443		pcb->pcb_dr3 = dbregs->dr[3];
2444		pcb->pcb_dr6 = dbregs->dr[6];
2445		pcb->pcb_dr7 = dbregs->dr[7];
2446
2447		set_pcb_flags(pcb, PCB_DBREGS);
2448	}
2449
2450	return (0);
2451}
2452
2453void
2454reset_dbregs(void)
2455{
2456
2457	load_dr7(0);	/* Turn off the control bits first */
2458	load_dr0(0);
2459	load_dr1(0);
2460	load_dr2(0);
2461	load_dr3(0);
2462	load_dr6(0);
2463}
2464
2465/*
2466 * Return > 0 if a hardware breakpoint has been hit, and the
2467 * breakpoint was in user space.  Return 0, otherwise.
2468 */
2469int
2470user_dbreg_trap(void)
2471{
2472        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2473        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2474        int nbp;            /* number of breakpoints that triggered */
2475        caddr_t addr[4];    /* breakpoint addresses */
2476        int i;
2477
2478        dr7 = rdr7();
2479        if ((dr7 & 0x000000ff) == 0) {
2480                /*
2481                 * all GE and LE bits in the dr7 register are zero,
2482                 * thus the trap couldn't have been caused by the
2483                 * hardware debug registers
2484                 */
2485                return 0;
2486        }
2487
2488        nbp = 0;
2489        dr6 = rdr6();
2490        bp = dr6 & 0x0000000f;
2491
2492        if (!bp) {
2493                /*
2494                 * None of the breakpoint bits are set meaning this
2495                 * trap was not caused by any of the debug registers
2496                 */
2497                return 0;
2498        }
2499
2500        /*
2501         * at least one of the breakpoints were hit, check to see
2502         * which ones and if any of them are user space addresses
2503         */
2504
2505        if (bp & 0x01) {
2506                addr[nbp++] = (caddr_t)rdr0();
2507        }
2508        if (bp & 0x02) {
2509                addr[nbp++] = (caddr_t)rdr1();
2510        }
2511        if (bp & 0x04) {
2512                addr[nbp++] = (caddr_t)rdr2();
2513        }
2514        if (bp & 0x08) {
2515                addr[nbp++] = (caddr_t)rdr3();
2516        }
2517
2518        for (i = 0; i < nbp; i++) {
2519                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2520                        /*
2521                         * addr[i] is in user space
2522                         */
2523                        return nbp;
2524                }
2525        }
2526
2527        /*
2528         * None of the breakpoints are in user space.
2529         */
2530        return 0;
2531}
2532
2533#ifdef KDB
2534
2535/*
2536 * Provide inb() and outb() as functions.  They are normally only available as
2537 * inline functions, thus cannot be called from the debugger.
2538 */
2539
2540/* silence compiler warnings */
2541u_char inb_(u_short);
2542void outb_(u_short, u_char);
2543
2544u_char
2545inb_(u_short port)
2546{
2547	return inb(port);
2548}
2549
2550void
2551outb_(u_short port, u_char data)
2552{
2553	outb(port, data);
2554}
2555
2556#endif /* KDB */
2557