machdep.c revision 227442
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 227442 2011-11-11 04:10:36Z kib $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_perfmon.h"
56#include "opt_sched.h"
57#include "opt_kdtrace.h"
58
59#include <sys/param.h>
60#include <sys/proc.h>
61#include <sys/systm.h>
62#include <sys/bio.h>
63#include <sys/buf.h>
64#include <sys/bus.h>
65#include <sys/callout.h>
66#include <sys/cons.h>
67#include <sys/cpu.h>
68#include <sys/eventhandler.h>
69#include <sys/exec.h>
70#include <sys/imgact.h>
71#include <sys/kdb.h>
72#include <sys/kernel.h>
73#include <sys/ktr.h>
74#include <sys/linker.h>
75#include <sys/lock.h>
76#include <sys/malloc.h>
77#include <sys/msgbuf.h>
78#include <sys/mutex.h>
79#include <sys/pcpu.h>
80#include <sys/ptrace.h>
81#include <sys/reboot.h>
82#include <sys/sched.h>
83#include <sys/signalvar.h>
84#ifdef SMP
85#include <sys/smp.h>
86#endif
87#include <sys/syscallsubr.h>
88#include <sys/sysctl.h>
89#include <sys/sysent.h>
90#include <sys/sysproto.h>
91#include <sys/ucontext.h>
92#include <sys/vmmeter.h>
93
94#include <vm/vm.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_kern.h>
97#include <vm/vm_page.h>
98#include <vm/vm_map.h>
99#include <vm/vm_object.h>
100#include <vm/vm_pager.h>
101#include <vm/vm_param.h>
102
103#ifdef DDB
104#ifndef KDB
105#error KDB must be enabled in order for DDB to work!
106#endif
107#include <ddb/ddb.h>
108#include <ddb/db_sym.h>
109#endif
110
111#include <net/netisr.h>
112
113#include <machine/clock.h>
114#include <machine/cpu.h>
115#include <machine/cputypes.h>
116#include <machine/intr_machdep.h>
117#include <x86/mca.h>
118#include <machine/md_var.h>
119#include <machine/metadata.h>
120#include <machine/mp_watchdog.h>
121#include <machine/pc/bios.h>
122#include <machine/pcb.h>
123#include <machine/proc.h>
124#include <machine/reg.h>
125#include <machine/sigframe.h>
126#include <machine/specialreg.h>
127#ifdef PERFMON
128#include <machine/perfmon.h>
129#endif
130#include <machine/tss.h>
131#ifdef SMP
132#include <machine/smp.h>
133#endif
134
135#ifdef DEV_ATPIC
136#include <x86/isa/icu.h>
137#else
138#include <machine/apicvar.h>
139#endif
140
141#include <isa/isareg.h>
142#include <isa/rtc.h>
143
144/* Sanity check for __curthread() */
145CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
146
147extern u_int64_t hammer_time(u_int64_t, u_int64_t);
148
149extern void printcpuinfo(void);	/* XXX header file */
150extern void identify_cpu(void);
151extern void panicifcpuunsupported(void);
152
153#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
154#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
155
156static void cpu_startup(void *);
157static void get_fpcontext(struct thread *td, mcontext_t *mcp);
158static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
159SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
160
161/*
162 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
163 * the physical address at which the kernel is loaded.
164 */
165extern char kernphys[];
166#ifdef DDB
167extern vm_offset_t ksym_start, ksym_end;
168#endif
169
170struct msgbuf *msgbufp;
171
172/* Intel ICH registers */
173#define ICH_PMBASE	0x400
174#define ICH_SMI_EN	ICH_PMBASE + 0x30
175
176int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
177
178int cold = 1;
179
180long Maxmem = 0;
181long realmem = 0;
182
183/*
184 * The number of PHYSMAP entries must be one less than the number of
185 * PHYSSEG entries because the PHYSMAP entry that spans the largest
186 * physical address that is accessible by ISA DMA is split into two
187 * PHYSSEG entries.
188 */
189#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
190
191vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
192vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
193
194/* must be 2 less so 0 0 can signal end of chunks */
195#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
196#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
197
198struct kva_md_info kmi;
199
200static struct trapframe proc0_tf;
201struct region_descriptor r_gdt, r_idt;
202
203struct pcpu __pcpu[MAXCPU];
204
205struct mtx icu_lock;
206
207struct mtx dt_lock;	/* lock for GDT and LDT */
208
209static void
210cpu_startup(dummy)
211	void *dummy;
212{
213	uintmax_t memsize;
214	char *sysenv;
215
216	/*
217	 * On MacBooks, we need to disallow the legacy USB circuit to
218	 * generate an SMI# because this can cause several problems,
219	 * namely: incorrect CPU frequency detection and failure to
220	 * start the APs.
221	 * We do this by disabling a bit in the SMI_EN (SMI Control and
222	 * Enable register) of the Intel ICH LPC Interface Bridge.
223	 */
224	sysenv = getenv("smbios.system.product");
225	if (sysenv != NULL) {
226		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
227		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
228		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
229		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
230		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
231		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
232			if (bootverbose)
233				printf("Disabling LEGACY_USB_EN bit on "
234				    "Intel ICH.\n");
235			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
236		}
237		freeenv(sysenv);
238	}
239
240	/*
241	 * Good {morning,afternoon,evening,night}.
242	 */
243	startrtclock();
244	printcpuinfo();
245	panicifcpuunsupported();
246#ifdef PERFMON
247	perfmon_init();
248#endif
249	realmem = Maxmem;
250
251	/*
252	 * Display physical memory if SMBIOS reports reasonable amount.
253	 */
254	memsize = 0;
255	sysenv = getenv("smbios.memory.enabled");
256	if (sysenv != NULL) {
257		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
258		freeenv(sysenv);
259	}
260	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
261		memsize = ptoa((uintmax_t)Maxmem);
262	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
263
264	/*
265	 * Display any holes after the first chunk of extended memory.
266	 */
267	if (bootverbose) {
268		int indx;
269
270		printf("Physical memory chunk(s):\n");
271		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
272			vm_paddr_t size;
273
274			size = phys_avail[indx + 1] - phys_avail[indx];
275			printf(
276			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
277			    (uintmax_t)phys_avail[indx],
278			    (uintmax_t)phys_avail[indx + 1] - 1,
279			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
280		}
281	}
282
283	vm_ksubmap_init(&kmi);
284
285	printf("avail memory = %ju (%ju MB)\n",
286	    ptoa((uintmax_t)cnt.v_free_count),
287	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
288
289	/*
290	 * Set up buffers, so they can be used to read disk labels.
291	 */
292	bufinit();
293	vm_pager_bufferinit();
294
295	cpu_setregs();
296}
297
298/*
299 * Send an interrupt to process.
300 *
301 * Stack is set up to allow sigcode stored
302 * at top to call routine, followed by call
303 * to sigreturn routine below.  After sigreturn
304 * resets the signal mask, the stack, and the
305 * frame pointer, it returns to the user
306 * specified pc, psl.
307 */
308void
309sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
310{
311	struct sigframe sf, *sfp;
312	struct pcb *pcb;
313	struct proc *p;
314	struct thread *td;
315	struct sigacts *psp;
316	char *sp;
317	struct trapframe *regs;
318	int sig;
319	int oonstack;
320
321	td = curthread;
322	pcb = td->td_pcb;
323	p = td->td_proc;
324	PROC_LOCK_ASSERT(p, MA_OWNED);
325	sig = ksi->ksi_signo;
326	psp = p->p_sigacts;
327	mtx_assert(&psp->ps_mtx, MA_OWNED);
328	regs = td->td_frame;
329	oonstack = sigonstack(regs->tf_rsp);
330
331	/* Save user context. */
332	bzero(&sf, sizeof(sf));
333	sf.sf_uc.uc_sigmask = *mask;
334	sf.sf_uc.uc_stack = td->td_sigstk;
335	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
336	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
337	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
338	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
339	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
340	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
341	fpstate_drop(td);
342	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
343	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
344	bzero(sf.sf_uc.uc_mcontext.mc_spare,
345	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
346	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
347
348	/* Allocate space for the signal handler context. */
349	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
350	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
351		sp = td->td_sigstk.ss_sp +
352		    td->td_sigstk.ss_size - sizeof(struct sigframe);
353#if defined(COMPAT_43)
354		td->td_sigstk.ss_flags |= SS_ONSTACK;
355#endif
356	} else
357		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
358	/* Align to 16 bytes. */
359	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
360
361	/* Translate the signal if appropriate. */
362	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
363		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
364
365	/* Build the argument list for the signal handler. */
366	regs->tf_rdi = sig;			/* arg 1 in %rdi */
367	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
368	bzero(&sf.sf_si, sizeof(sf.sf_si));
369	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
370		/* Signal handler installed with SA_SIGINFO. */
371		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
372		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
373
374		/* Fill in POSIX parts */
375		sf.sf_si = ksi->ksi_info;
376		sf.sf_si.si_signo = sig; /* maybe a translated signal */
377		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
378	} else {
379		/* Old FreeBSD-style arguments. */
380		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
381		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
382		sf.sf_ahu.sf_handler = catcher;
383	}
384	mtx_unlock(&psp->ps_mtx);
385	PROC_UNLOCK(p);
386
387	/*
388	 * Copy the sigframe out to the user's stack.
389	 */
390	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
391#ifdef DEBUG
392		printf("process %ld has trashed its stack\n", (long)p->p_pid);
393#endif
394		PROC_LOCK(p);
395		sigexit(td, SIGILL);
396	}
397
398	regs->tf_rsp = (long)sfp;
399	regs->tf_rip = p->p_sysent->sv_sigcode_base;
400	regs->tf_rflags &= ~(PSL_T | PSL_D);
401	regs->tf_cs = _ucodesel;
402	regs->tf_ds = _udatasel;
403	regs->tf_es = _udatasel;
404	regs->tf_fs = _ufssel;
405	regs->tf_gs = _ugssel;
406	regs->tf_flags = TF_HASSEGS;
407	set_pcb_flags(pcb, PCB_FULL_IRET);
408	PROC_LOCK(p);
409	mtx_lock(&psp->ps_mtx);
410}
411
412/*
413 * System call to cleanup state after a signal
414 * has been taken.  Reset signal mask and
415 * stack state from context left by sendsig (above).
416 * Return to previous pc and psl as specified by
417 * context left by sendsig. Check carefully to
418 * make sure that the user has not modified the
419 * state to gain improper privileges.
420 *
421 * MPSAFE
422 */
423int
424sys_sigreturn(td, uap)
425	struct thread *td;
426	struct sigreturn_args /* {
427		const struct __ucontext *sigcntxp;
428	} */ *uap;
429{
430	ucontext_t uc;
431	struct pcb *pcb;
432	struct proc *p;
433	struct trapframe *regs;
434	ucontext_t *ucp;
435	long rflags;
436	int cs, error, ret;
437	ksiginfo_t ksi;
438
439	pcb = td->td_pcb;
440	p = td->td_proc;
441
442	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
443	if (error != 0) {
444		uprintf("pid %d (%s): sigreturn copyin failed\n",
445		    p->p_pid, td->td_name);
446		return (error);
447	}
448	ucp = &uc;
449	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
450		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
451		    td->td_name, ucp->uc_mcontext.mc_flags);
452		return (EINVAL);
453	}
454	regs = td->td_frame;
455	rflags = ucp->uc_mcontext.mc_rflags;
456	/*
457	 * Don't allow users to change privileged or reserved flags.
458	 */
459	/*
460	 * XXX do allow users to change the privileged flag PSL_RF.
461	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
462	 * should sometimes set it there too.  tf_rflags is kept in
463	 * the signal context during signal handling and there is no
464	 * other place to remember it, so the PSL_RF bit may be
465	 * corrupted by the signal handler without us knowing.
466	 * Corruption of the PSL_RF bit at worst causes one more or
467	 * one less debugger trap, so allowing it is fairly harmless.
468	 */
469	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
470		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
471		    td->td_name, rflags);
472		return (EINVAL);
473	}
474
475	/*
476	 * Don't allow users to load a valid privileged %cs.  Let the
477	 * hardware check for invalid selectors, excess privilege in
478	 * other selectors, invalid %eip's and invalid %esp's.
479	 */
480	cs = ucp->uc_mcontext.mc_cs;
481	if (!CS_SECURE(cs)) {
482		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
483		    td->td_name, cs);
484		ksiginfo_init_trap(&ksi);
485		ksi.ksi_signo = SIGBUS;
486		ksi.ksi_code = BUS_OBJERR;
487		ksi.ksi_trapno = T_PROTFLT;
488		ksi.ksi_addr = (void *)regs->tf_rip;
489		trapsignal(td, &ksi);
490		return (EINVAL);
491	}
492
493	ret = set_fpcontext(td, &ucp->uc_mcontext);
494	if (ret != 0) {
495		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
496		    p->p_pid, td->td_name, ret);
497		return (ret);
498	}
499	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
500	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
501	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
502
503#if defined(COMPAT_43)
504	if (ucp->uc_mcontext.mc_onstack & 1)
505		td->td_sigstk.ss_flags |= SS_ONSTACK;
506	else
507		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
508#endif
509
510	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
511	set_pcb_flags(pcb, PCB_FULL_IRET);
512	return (EJUSTRETURN);
513}
514
515#ifdef COMPAT_FREEBSD4
516int
517freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
518{
519
520	return sys_sigreturn(td, (struct sigreturn_args *)uap);
521}
522#endif
523
524
525/*
526 * Machine dependent boot() routine
527 *
528 * I haven't seen anything to put here yet
529 * Possibly some stuff might be grafted back here from boot()
530 */
531void
532cpu_boot(int howto)
533{
534}
535
536/*
537 * Flush the D-cache for non-DMA I/O so that the I-cache can
538 * be made coherent later.
539 */
540void
541cpu_flush_dcache(void *ptr, size_t len)
542{
543	/* Not applicable */
544}
545
546/* Get current clock frequency for the given cpu id. */
547int
548cpu_est_clockrate(int cpu_id, uint64_t *rate)
549{
550	uint64_t tsc1, tsc2;
551	uint64_t acnt, mcnt, perf;
552	register_t reg;
553
554	if (pcpu_find(cpu_id) == NULL || rate == NULL)
555		return (EINVAL);
556
557	/*
558	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
559	 * DELAY(9) based logic fails.
560	 */
561	if (tsc_is_invariant && !tsc_perf_stat)
562		return (EOPNOTSUPP);
563
564#ifdef SMP
565	if (smp_cpus > 1) {
566		/* Schedule ourselves on the indicated cpu. */
567		thread_lock(curthread);
568		sched_bind(curthread, cpu_id);
569		thread_unlock(curthread);
570	}
571#endif
572
573	/* Calibrate by measuring a short delay. */
574	reg = intr_disable();
575	if (tsc_is_invariant) {
576		wrmsr(MSR_MPERF, 0);
577		wrmsr(MSR_APERF, 0);
578		tsc1 = rdtsc();
579		DELAY(1000);
580		mcnt = rdmsr(MSR_MPERF);
581		acnt = rdmsr(MSR_APERF);
582		tsc2 = rdtsc();
583		intr_restore(reg);
584		perf = 1000 * acnt / mcnt;
585		*rate = (tsc2 - tsc1) * perf;
586	} else {
587		tsc1 = rdtsc();
588		DELAY(1000);
589		tsc2 = rdtsc();
590		intr_restore(reg);
591		*rate = (tsc2 - tsc1) * 1000;
592	}
593
594#ifdef SMP
595	if (smp_cpus > 1) {
596		thread_lock(curthread);
597		sched_unbind(curthread);
598		thread_unlock(curthread);
599	}
600#endif
601
602	return (0);
603}
604
605/*
606 * Shutdown the CPU as much as possible
607 */
608void
609cpu_halt(void)
610{
611	for (;;)
612		halt();
613}
614
615void (*cpu_idle_hook)(void) = NULL;	/* ACPI idle hook. */
616static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
617static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
618TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
619SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
620    0, "Use MONITOR/MWAIT for short idle");
621
622#define	STATE_RUNNING	0x0
623#define	STATE_MWAIT	0x1
624#define	STATE_SLEEPING	0x2
625
626static void
627cpu_idle_acpi(int busy)
628{
629	int *state;
630
631	state = (int *)PCPU_PTR(monitorbuf);
632	*state = STATE_SLEEPING;
633
634	/* See comments in cpu_idle_hlt(). */
635	disable_intr();
636	if (sched_runnable())
637		enable_intr();
638	else if (cpu_idle_hook)
639		cpu_idle_hook();
640	else
641		__asm __volatile("sti; hlt");
642	*state = STATE_RUNNING;
643}
644
645static void
646cpu_idle_hlt(int busy)
647{
648	int *state;
649
650	state = (int *)PCPU_PTR(monitorbuf);
651	*state = STATE_SLEEPING;
652
653	/*
654	 * Since we may be in a critical section from cpu_idle(), if
655	 * an interrupt fires during that critical section we may have
656	 * a pending preemption.  If the CPU halts, then that thread
657	 * may not execute until a later interrupt awakens the CPU.
658	 * To handle this race, check for a runnable thread after
659	 * disabling interrupts and immediately return if one is
660	 * found.  Also, we must absolutely guarentee that hlt is
661	 * the next instruction after sti.  This ensures that any
662	 * interrupt that fires after the call to disable_intr() will
663	 * immediately awaken the CPU from hlt.  Finally, please note
664	 * that on x86 this works fine because of interrupts enabled only
665	 * after the instruction following sti takes place, while IF is set
666	 * to 1 immediately, allowing hlt instruction to acknowledge the
667	 * interrupt.
668	 */
669	disable_intr();
670	if (sched_runnable())
671		enable_intr();
672	else
673		__asm __volatile("sti; hlt");
674	*state = STATE_RUNNING;
675}
676
677/*
678 * MWAIT cpu power states.  Lower 4 bits are sub-states.
679 */
680#define	MWAIT_C0	0xf0
681#define	MWAIT_C1	0x00
682#define	MWAIT_C2	0x10
683#define	MWAIT_C3	0x20
684#define	MWAIT_C4	0x30
685
686static void
687cpu_idle_mwait(int busy)
688{
689	int *state;
690
691	state = (int *)PCPU_PTR(monitorbuf);
692	*state = STATE_MWAIT;
693
694	/* See comments in cpu_idle_hlt(). */
695	disable_intr();
696	if (sched_runnable()) {
697		enable_intr();
698		*state = STATE_RUNNING;
699		return;
700	}
701	cpu_monitor(state, 0, 0);
702	if (*state == STATE_MWAIT)
703		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
704	else
705		enable_intr();
706	*state = STATE_RUNNING;
707}
708
709static void
710cpu_idle_spin(int busy)
711{
712	int *state;
713	int i;
714
715	state = (int *)PCPU_PTR(monitorbuf);
716	*state = STATE_RUNNING;
717
718	/*
719	 * The sched_runnable() call is racy but as long as there is
720	 * a loop missing it one time will have just a little impact if any
721	 * (and it is much better than missing the check at all).
722	 */
723	for (i = 0; i < 1000; i++) {
724		if (sched_runnable())
725			return;
726		cpu_spinwait();
727	}
728}
729
730/*
731 * C1E renders the local APIC timer dead, so we disable it by
732 * reading the Interrupt Pending Message register and clearing
733 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
734 *
735 * Reference:
736 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
737 *   #32559 revision 3.00+
738 */
739#define	MSR_AMDK8_IPM		0xc0010055
740#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
741#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
742#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
743
744static void
745cpu_probe_amdc1e(void)
746{
747
748	/*
749	 * Detect the presence of C1E capability mostly on latest
750	 * dual-cores (or future) k8 family.
751	 */
752	if (cpu_vendor_id == CPU_VENDOR_AMD &&
753	    (cpu_id & 0x00000f00) == 0x00000f00 &&
754	    (cpu_id & 0x0fff0000) >=  0x00040000) {
755		cpu_ident_amdc1e = 1;
756	}
757}
758
759void (*cpu_idle_fn)(int) = cpu_idle_acpi;
760
761void
762cpu_idle(int busy)
763{
764	uint64_t msr;
765
766	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
767	    busy, curcpu);
768#ifdef MP_WATCHDOG
769	ap_watchdog(PCPU_GET(cpuid));
770#endif
771	/* If we are busy - try to use fast methods. */
772	if (busy) {
773		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
774			cpu_idle_mwait(busy);
775			goto out;
776		}
777	}
778
779	/* If we have time - switch timers into idle mode. */
780	if (!busy) {
781		critical_enter();
782		cpu_idleclock();
783	}
784
785	/* Apply AMD APIC timer C1E workaround. */
786	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
787		msr = rdmsr(MSR_AMDK8_IPM);
788		if (msr & AMDK8_CMPHALT)
789			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
790	}
791
792	/* Call main idle method. */
793	cpu_idle_fn(busy);
794
795	/* Switch timers mack into active mode. */
796	if (!busy) {
797		cpu_activeclock();
798		critical_exit();
799	}
800out:
801	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
802	    busy, curcpu);
803}
804
805int
806cpu_idle_wakeup(int cpu)
807{
808	struct pcpu *pcpu;
809	int *state;
810
811	pcpu = pcpu_find(cpu);
812	state = (int *)pcpu->pc_monitorbuf;
813	/*
814	 * This doesn't need to be atomic since missing the race will
815	 * simply result in unnecessary IPIs.
816	 */
817	if (*state == STATE_SLEEPING)
818		return (0);
819	if (*state == STATE_MWAIT)
820		*state = STATE_RUNNING;
821	return (1);
822}
823
824/*
825 * Ordered by speed/power consumption.
826 */
827struct {
828	void	*id_fn;
829	char	*id_name;
830} idle_tbl[] = {
831	{ cpu_idle_spin, "spin" },
832	{ cpu_idle_mwait, "mwait" },
833	{ cpu_idle_hlt, "hlt" },
834	{ cpu_idle_acpi, "acpi" },
835	{ NULL, NULL }
836};
837
838static int
839idle_sysctl_available(SYSCTL_HANDLER_ARGS)
840{
841	char *avail, *p;
842	int error;
843	int i;
844
845	avail = malloc(256, M_TEMP, M_WAITOK);
846	p = avail;
847	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
848		if (strstr(idle_tbl[i].id_name, "mwait") &&
849		    (cpu_feature2 & CPUID2_MON) == 0)
850			continue;
851		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
852		    cpu_idle_hook == NULL)
853			continue;
854		p += sprintf(p, "%s%s", p != avail ? ", " : "",
855		    idle_tbl[i].id_name);
856	}
857	error = sysctl_handle_string(oidp, avail, 0, req);
858	free(avail, M_TEMP);
859	return (error);
860}
861
862SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
863    0, 0, idle_sysctl_available, "A", "list of available idle functions");
864
865static int
866idle_sysctl(SYSCTL_HANDLER_ARGS)
867{
868	char buf[16];
869	int error;
870	char *p;
871	int i;
872
873	p = "unknown";
874	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
875		if (idle_tbl[i].id_fn == cpu_idle_fn) {
876			p = idle_tbl[i].id_name;
877			break;
878		}
879	}
880	strncpy(buf, p, sizeof(buf));
881	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
882	if (error != 0 || req->newptr == NULL)
883		return (error);
884	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
885		if (strstr(idle_tbl[i].id_name, "mwait") &&
886		    (cpu_feature2 & CPUID2_MON) == 0)
887			continue;
888		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
889		    cpu_idle_hook == NULL)
890			continue;
891		if (strcmp(idle_tbl[i].id_name, buf))
892			continue;
893		cpu_idle_fn = idle_tbl[i].id_fn;
894		return (0);
895	}
896	return (EINVAL);
897}
898
899SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
900    idle_sysctl, "A", "currently selected idle function");
901
902/*
903 * Reset registers to default values on exec.
904 */
905void
906exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
907{
908	struct trapframe *regs = td->td_frame;
909	struct pcb *pcb = td->td_pcb;
910
911	mtx_lock(&dt_lock);
912	if (td->td_proc->p_md.md_ldt != NULL)
913		user_ldt_free(td);
914	else
915		mtx_unlock(&dt_lock);
916
917	pcb->pcb_fsbase = 0;
918	pcb->pcb_gsbase = 0;
919	clear_pcb_flags(pcb, PCB_32BIT | PCB_GS32BIT);
920	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
921	set_pcb_flags(pcb, PCB_FULL_IRET);
922
923	bzero((char *)regs, sizeof(struct trapframe));
924	regs->tf_rip = imgp->entry_addr;
925	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
926	regs->tf_rdi = stack;		/* argv */
927	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
928	regs->tf_ss = _udatasel;
929	regs->tf_cs = _ucodesel;
930	regs->tf_ds = _udatasel;
931	regs->tf_es = _udatasel;
932	regs->tf_fs = _ufssel;
933	regs->tf_gs = _ugssel;
934	regs->tf_flags = TF_HASSEGS;
935	td->td_retval[1] = 0;
936
937	/*
938	 * Reset the hardware debug registers if they were in use.
939	 * They won't have any meaning for the newly exec'd process.
940	 */
941	if (pcb->pcb_flags & PCB_DBREGS) {
942		pcb->pcb_dr0 = 0;
943		pcb->pcb_dr1 = 0;
944		pcb->pcb_dr2 = 0;
945		pcb->pcb_dr3 = 0;
946		pcb->pcb_dr6 = 0;
947		pcb->pcb_dr7 = 0;
948		if (pcb == PCPU_GET(curpcb)) {
949			/*
950			 * Clear the debug registers on the running
951			 * CPU, otherwise they will end up affecting
952			 * the next process we switch to.
953			 */
954			reset_dbregs();
955		}
956		clear_pcb_flags(pcb, PCB_DBREGS);
957	}
958
959	/*
960	 * Drop the FP state if we hold it, so that the process gets a
961	 * clean FP state if it uses the FPU again.
962	 */
963	fpstate_drop(td);
964}
965
966void
967cpu_setregs(void)
968{
969	register_t cr0;
970
971	cr0 = rcr0();
972	/*
973	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
974	 * BSP.  See the comments there about why we set them.
975	 */
976	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
977	load_cr0(cr0);
978}
979
980/*
981 * Initialize amd64 and configure to run kernel
982 */
983
984/*
985 * Initialize segments & interrupt table
986 */
987
988struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
989static struct gate_descriptor idt0[NIDT];
990struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
991
992static char dblfault_stack[PAGE_SIZE] __aligned(16);
993
994static char nmi0_stack[PAGE_SIZE] __aligned(16);
995CTASSERT(sizeof(struct nmi_pcpu) == 16);
996
997struct amd64tss common_tss[MAXCPU];
998
999/*
1000 * Software prototypes -- in more palatable form.
1001 *
1002 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
1003 * slots as corresponding segments for i386 kernel.
1004 */
1005struct soft_segment_descriptor gdt_segs[] = {
1006/* GNULL_SEL	0 Null Descriptor */
1007{	.ssd_base = 0x0,
1008	.ssd_limit = 0x0,
1009	.ssd_type = 0,
1010	.ssd_dpl = 0,
1011	.ssd_p = 0,
1012	.ssd_long = 0,
1013	.ssd_def32 = 0,
1014	.ssd_gran = 0		},
1015/* GNULL2_SEL	1 Null Descriptor */
1016{	.ssd_base = 0x0,
1017	.ssd_limit = 0x0,
1018	.ssd_type = 0,
1019	.ssd_dpl = 0,
1020	.ssd_p = 0,
1021	.ssd_long = 0,
1022	.ssd_def32 = 0,
1023	.ssd_gran = 0		},
1024/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
1025{	.ssd_base = 0x0,
1026	.ssd_limit = 0xfffff,
1027	.ssd_type = SDT_MEMRWA,
1028	.ssd_dpl = SEL_UPL,
1029	.ssd_p = 1,
1030	.ssd_long = 0,
1031	.ssd_def32 = 1,
1032	.ssd_gran = 1		},
1033/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1034{	.ssd_base = 0x0,
1035	.ssd_limit = 0xfffff,
1036	.ssd_type = SDT_MEMRWA,
1037	.ssd_dpl = SEL_UPL,
1038	.ssd_p = 1,
1039	.ssd_long = 0,
1040	.ssd_def32 = 1,
1041	.ssd_gran = 1		},
1042/* GCODE_SEL	4 Code Descriptor for kernel */
1043{	.ssd_base = 0x0,
1044	.ssd_limit = 0xfffff,
1045	.ssd_type = SDT_MEMERA,
1046	.ssd_dpl = SEL_KPL,
1047	.ssd_p = 1,
1048	.ssd_long = 1,
1049	.ssd_def32 = 0,
1050	.ssd_gran = 1		},
1051/* GDATA_SEL	5 Data Descriptor for kernel */
1052{	.ssd_base = 0x0,
1053	.ssd_limit = 0xfffff,
1054	.ssd_type = SDT_MEMRWA,
1055	.ssd_dpl = SEL_KPL,
1056	.ssd_p = 1,
1057	.ssd_long = 1,
1058	.ssd_def32 = 0,
1059	.ssd_gran = 1		},
1060/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1061{	.ssd_base = 0x0,
1062	.ssd_limit = 0xfffff,
1063	.ssd_type = SDT_MEMERA,
1064	.ssd_dpl = SEL_UPL,
1065	.ssd_p = 1,
1066	.ssd_long = 0,
1067	.ssd_def32 = 1,
1068	.ssd_gran = 1		},
1069/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1070{	.ssd_base = 0x0,
1071	.ssd_limit = 0xfffff,
1072	.ssd_type = SDT_MEMRWA,
1073	.ssd_dpl = SEL_UPL,
1074	.ssd_p = 1,
1075	.ssd_long = 0,
1076	.ssd_def32 = 1,
1077	.ssd_gran = 1		},
1078/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1079{	.ssd_base = 0x0,
1080	.ssd_limit = 0xfffff,
1081	.ssd_type = SDT_MEMERA,
1082	.ssd_dpl = SEL_UPL,
1083	.ssd_p = 1,
1084	.ssd_long = 1,
1085	.ssd_def32 = 0,
1086	.ssd_gran = 1		},
1087/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1088{	.ssd_base = 0x0,
1089	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1090	.ssd_type = SDT_SYSTSS,
1091	.ssd_dpl = SEL_KPL,
1092	.ssd_p = 1,
1093	.ssd_long = 0,
1094	.ssd_def32 = 0,
1095	.ssd_gran = 0		},
1096/* Actually, the TSS is a system descriptor which is double size */
1097{	.ssd_base = 0x0,
1098	.ssd_limit = 0x0,
1099	.ssd_type = 0,
1100	.ssd_dpl = 0,
1101	.ssd_p = 0,
1102	.ssd_long = 0,
1103	.ssd_def32 = 0,
1104	.ssd_gran = 0		},
1105/* GUSERLDT_SEL	11 LDT Descriptor */
1106{	.ssd_base = 0x0,
1107	.ssd_limit = 0x0,
1108	.ssd_type = 0,
1109	.ssd_dpl = 0,
1110	.ssd_p = 0,
1111	.ssd_long = 0,
1112	.ssd_def32 = 0,
1113	.ssd_gran = 0		},
1114/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1115{	.ssd_base = 0x0,
1116	.ssd_limit = 0x0,
1117	.ssd_type = 0,
1118	.ssd_dpl = 0,
1119	.ssd_p = 0,
1120	.ssd_long = 0,
1121	.ssd_def32 = 0,
1122	.ssd_gran = 0		},
1123};
1124
1125void
1126setidt(idx, func, typ, dpl, ist)
1127	int idx;
1128	inthand_t *func;
1129	int typ;
1130	int dpl;
1131	int ist;
1132{
1133	struct gate_descriptor *ip;
1134
1135	ip = idt + idx;
1136	ip->gd_looffset = (uintptr_t)func;
1137	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1138	ip->gd_ist = ist;
1139	ip->gd_xx = 0;
1140	ip->gd_type = typ;
1141	ip->gd_dpl = dpl;
1142	ip->gd_p = 1;
1143	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1144}
1145
1146extern inthand_t
1147	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1148	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1149	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1150	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1151	IDTVEC(xmm), IDTVEC(dblfault),
1152#ifdef KDTRACE_HOOKS
1153	IDTVEC(dtrace_ret),
1154#endif
1155	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1156
1157#ifdef DDB
1158/*
1159 * Display the index and function name of any IDT entries that don't use
1160 * the default 'rsvd' entry point.
1161 */
1162DB_SHOW_COMMAND(idt, db_show_idt)
1163{
1164	struct gate_descriptor *ip;
1165	int idx;
1166	uintptr_t func;
1167
1168	ip = idt;
1169	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1170		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1171		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1172			db_printf("%3d\t", idx);
1173			db_printsym(func, DB_STGY_PROC);
1174			db_printf("\n");
1175		}
1176		ip++;
1177	}
1178}
1179#endif
1180
1181void
1182sdtossd(sd, ssd)
1183	struct user_segment_descriptor *sd;
1184	struct soft_segment_descriptor *ssd;
1185{
1186
1187	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1188	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1189	ssd->ssd_type  = sd->sd_type;
1190	ssd->ssd_dpl   = sd->sd_dpl;
1191	ssd->ssd_p     = sd->sd_p;
1192	ssd->ssd_long  = sd->sd_long;
1193	ssd->ssd_def32 = sd->sd_def32;
1194	ssd->ssd_gran  = sd->sd_gran;
1195}
1196
1197void
1198ssdtosd(ssd, sd)
1199	struct soft_segment_descriptor *ssd;
1200	struct user_segment_descriptor *sd;
1201{
1202
1203	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1204	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1205	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1206	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1207	sd->sd_type  = ssd->ssd_type;
1208	sd->sd_dpl   = ssd->ssd_dpl;
1209	sd->sd_p     = ssd->ssd_p;
1210	sd->sd_long  = ssd->ssd_long;
1211	sd->sd_def32 = ssd->ssd_def32;
1212	sd->sd_gran  = ssd->ssd_gran;
1213}
1214
1215void
1216ssdtosyssd(ssd, sd)
1217	struct soft_segment_descriptor *ssd;
1218	struct system_segment_descriptor *sd;
1219{
1220
1221	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1222	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1223	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1224	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1225	sd->sd_type  = ssd->ssd_type;
1226	sd->sd_dpl   = ssd->ssd_dpl;
1227	sd->sd_p     = ssd->ssd_p;
1228	sd->sd_gran  = ssd->ssd_gran;
1229}
1230
1231#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1232#include <isa/isavar.h>
1233#include <isa/isareg.h>
1234/*
1235 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1236 * and is only suitable for use at probe time.
1237 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1238 * It shouldn't be here.  There should probably be an APIC centric
1239 * implementation in the apic driver code, if at all.
1240 */
1241intrmask_t
1242isa_irq_pending(void)
1243{
1244	u_char irr1;
1245	u_char irr2;
1246
1247	irr1 = inb(IO_ICU1);
1248	irr2 = inb(IO_ICU2);
1249	return ((irr2 << 8) | irr1);
1250}
1251#endif
1252
1253u_int basemem;
1254
1255static int
1256add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1257{
1258	int i, insert_idx, physmap_idx;
1259
1260	physmap_idx = *physmap_idxp;
1261
1262	if (boothowto & RB_VERBOSE)
1263		printf("SMAP type=%02x base=%016lx len=%016lx\n",
1264		    smap->type, smap->base, smap->length);
1265
1266	if (smap->type != SMAP_TYPE_MEMORY)
1267		return (1);
1268
1269	if (smap->length == 0)
1270		return (0);
1271
1272	/*
1273	 * Find insertion point while checking for overlap.  Start off by
1274	 * assuming the new entry will be added to the end.
1275	 */
1276	insert_idx = physmap_idx + 2;
1277	for (i = 0; i <= physmap_idx; i += 2) {
1278		if (smap->base < physmap[i + 1]) {
1279			if (smap->base + smap->length <= physmap[i]) {
1280				insert_idx = i;
1281				break;
1282			}
1283			if (boothowto & RB_VERBOSE)
1284				printf(
1285		    "Overlapping memory regions, ignoring second region\n");
1286			return (1);
1287		}
1288	}
1289
1290	/* See if we can prepend to the next entry. */
1291	if (insert_idx <= physmap_idx &&
1292	    smap->base + smap->length == physmap[insert_idx]) {
1293		physmap[insert_idx] = smap->base;
1294		return (1);
1295	}
1296
1297	/* See if we can append to the previous entry. */
1298	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
1299		physmap[insert_idx - 1] += smap->length;
1300		return (1);
1301	}
1302
1303	physmap_idx += 2;
1304	*physmap_idxp = physmap_idx;
1305	if (physmap_idx == PHYSMAP_SIZE) {
1306		printf(
1307		"Too many segments in the physical address map, giving up\n");
1308		return (0);
1309	}
1310
1311	/*
1312	 * Move the last 'N' entries down to make room for the new
1313	 * entry if needed.
1314	 */
1315	for (i = physmap_idx; i > insert_idx; i -= 2) {
1316		physmap[i] = physmap[i - 2];
1317		physmap[i + 1] = physmap[i - 1];
1318	}
1319
1320	/* Insert the new entry. */
1321	physmap[insert_idx] = smap->base;
1322	physmap[insert_idx + 1] = smap->base + smap->length;
1323	return (1);
1324}
1325
1326/*
1327 * Populate the (physmap) array with base/bound pairs describing the
1328 * available physical memory in the system, then test this memory and
1329 * build the phys_avail array describing the actually-available memory.
1330 *
1331 * Total memory size may be set by the kernel environment variable
1332 * hw.physmem or the compile-time define MAXMEM.
1333 *
1334 * XXX first should be vm_paddr_t.
1335 */
1336static void
1337getmemsize(caddr_t kmdp, u_int64_t first)
1338{
1339	int i, physmap_idx, pa_indx, da_indx;
1340	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1341	u_long physmem_tunable, memtest;
1342	pt_entry_t *pte;
1343	struct bios_smap *smapbase, *smap, *smapend;
1344	u_int32_t smapsize;
1345	quad_t dcons_addr, dcons_size;
1346
1347	bzero(physmap, sizeof(physmap));
1348	basemem = 0;
1349	physmap_idx = 0;
1350
1351	/*
1352	 * get memory map from INT 15:E820, kindly supplied by the loader.
1353	 *
1354	 * subr_module.c says:
1355	 * "Consumer may safely assume that size value precedes data."
1356	 * ie: an int32_t immediately precedes smap.
1357	 */
1358	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1359	    MODINFO_METADATA | MODINFOMD_SMAP);
1360	if (smapbase == NULL)
1361		panic("No BIOS smap info from loader!");
1362
1363	smapsize = *((u_int32_t *)smapbase - 1);
1364	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1365
1366	for (smap = smapbase; smap < smapend; smap++)
1367		if (!add_smap_entry(smap, physmap, &physmap_idx))
1368			break;
1369
1370	/*
1371	 * Find the 'base memory' segment for SMP
1372	 */
1373	basemem = 0;
1374	for (i = 0; i <= physmap_idx; i += 2) {
1375		if (physmap[i] == 0x00000000) {
1376			basemem = physmap[i + 1] / 1024;
1377			break;
1378		}
1379	}
1380	if (basemem == 0)
1381		panic("BIOS smap did not include a basemem segment!");
1382
1383#ifdef SMP
1384	/* make hole for AP bootstrap code */
1385	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1386#endif
1387
1388	/*
1389	 * Maxmem isn't the "maximum memory", it's one larger than the
1390	 * highest page of the physical address space.  It should be
1391	 * called something like "Maxphyspage".  We may adjust this
1392	 * based on ``hw.physmem'' and the results of the memory test.
1393	 */
1394	Maxmem = atop(physmap[physmap_idx + 1]);
1395
1396#ifdef MAXMEM
1397	Maxmem = MAXMEM / 4;
1398#endif
1399
1400	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1401		Maxmem = atop(physmem_tunable);
1402
1403	/*
1404	 * By default keep the memtest enabled.  Use a general name so that
1405	 * one could eventually do more with the code than just disable it.
1406	 */
1407	memtest = 1;
1408	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1409
1410	/*
1411	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1412	 * in the system.
1413	 */
1414	if (Maxmem > atop(physmap[physmap_idx + 1]))
1415		Maxmem = atop(physmap[physmap_idx + 1]);
1416
1417	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1418	    (boothowto & RB_VERBOSE))
1419		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1420
1421	/* call pmap initialization to make new kernel address space */
1422	pmap_bootstrap(&first);
1423
1424	/*
1425	 * Size up each available chunk of physical memory.
1426	 */
1427	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1428	pa_indx = 0;
1429	da_indx = 1;
1430	phys_avail[pa_indx++] = physmap[0];
1431	phys_avail[pa_indx] = physmap[0];
1432	dump_avail[da_indx] = physmap[0];
1433	pte = CMAP1;
1434
1435	/*
1436	 * Get dcons buffer address
1437	 */
1438	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1439	    getenv_quad("dcons.size", &dcons_size) == 0)
1440		dcons_addr = 0;
1441
1442	/*
1443	 * physmap is in bytes, so when converting to page boundaries,
1444	 * round up the start address and round down the end address.
1445	 */
1446	for (i = 0; i <= physmap_idx; i += 2) {
1447		vm_paddr_t end;
1448
1449		end = ptoa((vm_paddr_t)Maxmem);
1450		if (physmap[i + 1] < end)
1451			end = trunc_page(physmap[i + 1]);
1452		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1453			int tmp, page_bad, full;
1454			int *ptr = (int *)CADDR1;
1455
1456			full = FALSE;
1457			/*
1458			 * block out kernel memory as not available.
1459			 */
1460			if (pa >= (vm_paddr_t)kernphys && pa < first)
1461				goto do_dump_avail;
1462
1463			/*
1464			 * block out dcons buffer
1465			 */
1466			if (dcons_addr > 0
1467			    && pa >= trunc_page(dcons_addr)
1468			    && pa < dcons_addr + dcons_size)
1469				goto do_dump_avail;
1470
1471			page_bad = FALSE;
1472			if (memtest == 0)
1473				goto skip_memtest;
1474
1475			/*
1476			 * map page into kernel: valid, read/write,non-cacheable
1477			 */
1478			*pte = pa | PG_V | PG_RW | PG_N;
1479			invltlb();
1480
1481			tmp = *(int *)ptr;
1482			/*
1483			 * Test for alternating 1's and 0's
1484			 */
1485			*(volatile int *)ptr = 0xaaaaaaaa;
1486			if (*(volatile int *)ptr != 0xaaaaaaaa)
1487				page_bad = TRUE;
1488			/*
1489			 * Test for alternating 0's and 1's
1490			 */
1491			*(volatile int *)ptr = 0x55555555;
1492			if (*(volatile int *)ptr != 0x55555555)
1493				page_bad = TRUE;
1494			/*
1495			 * Test for all 1's
1496			 */
1497			*(volatile int *)ptr = 0xffffffff;
1498			if (*(volatile int *)ptr != 0xffffffff)
1499				page_bad = TRUE;
1500			/*
1501			 * Test for all 0's
1502			 */
1503			*(volatile int *)ptr = 0x0;
1504			if (*(volatile int *)ptr != 0x0)
1505				page_bad = TRUE;
1506			/*
1507			 * Restore original value.
1508			 */
1509			*(int *)ptr = tmp;
1510
1511skip_memtest:
1512			/*
1513			 * Adjust array of valid/good pages.
1514			 */
1515			if (page_bad == TRUE)
1516				continue;
1517			/*
1518			 * If this good page is a continuation of the
1519			 * previous set of good pages, then just increase
1520			 * the end pointer. Otherwise start a new chunk.
1521			 * Note that "end" points one higher than end,
1522			 * making the range >= start and < end.
1523			 * If we're also doing a speculative memory
1524			 * test and we at or past the end, bump up Maxmem
1525			 * so that we keep going. The first bad page
1526			 * will terminate the loop.
1527			 */
1528			if (phys_avail[pa_indx] == pa) {
1529				phys_avail[pa_indx] += PAGE_SIZE;
1530			} else {
1531				pa_indx++;
1532				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1533					printf(
1534		"Too many holes in the physical address space, giving up\n");
1535					pa_indx--;
1536					full = TRUE;
1537					goto do_dump_avail;
1538				}
1539				phys_avail[pa_indx++] = pa;	/* start */
1540				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1541			}
1542			physmem++;
1543do_dump_avail:
1544			if (dump_avail[da_indx] == pa) {
1545				dump_avail[da_indx] += PAGE_SIZE;
1546			} else {
1547				da_indx++;
1548				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1549					da_indx--;
1550					goto do_next;
1551				}
1552				dump_avail[da_indx++] = pa; /* start */
1553				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1554			}
1555do_next:
1556			if (full)
1557				break;
1558		}
1559	}
1560	*pte = 0;
1561	invltlb();
1562
1563	/*
1564	 * XXX
1565	 * The last chunk must contain at least one page plus the message
1566	 * buffer to avoid complicating other code (message buffer address
1567	 * calculation, etc.).
1568	 */
1569	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1570	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1571		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1572		phys_avail[pa_indx--] = 0;
1573		phys_avail[pa_indx--] = 0;
1574	}
1575
1576	Maxmem = atop(phys_avail[pa_indx]);
1577
1578	/* Trim off space for the message buffer. */
1579	phys_avail[pa_indx] -= round_page(msgbufsize);
1580
1581	/* Map the message buffer. */
1582	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1583}
1584
1585u_int64_t
1586hammer_time(u_int64_t modulep, u_int64_t physfree)
1587{
1588	caddr_t kmdp;
1589	int gsel_tss, x;
1590	struct pcpu *pc;
1591	struct nmi_pcpu *np;
1592	u_int64_t msr;
1593	char *env;
1594	size_t kstack0_sz;
1595
1596	thread0.td_kstack = physfree + KERNBASE;
1597	thread0.td_kstack_pages = KSTACK_PAGES;
1598	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1599	bzero((void *)thread0.td_kstack, kstack0_sz);
1600	physfree += kstack0_sz;
1601	thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
1602
1603	/*
1604 	 * This may be done better later if it gets more high level
1605 	 * components in it. If so just link td->td_proc here.
1606	 */
1607	proc_linkup0(&proc0, &thread0);
1608
1609	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1610	preload_bootstrap_relocate(KERNBASE);
1611	kmdp = preload_search_by_type("elf kernel");
1612	if (kmdp == NULL)
1613		kmdp = preload_search_by_type("elf64 kernel");
1614	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1615	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1616#ifdef DDB
1617	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1618	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1619#endif
1620
1621	/* Init basic tunables, hz etc */
1622	init_param1();
1623
1624	/*
1625	 * make gdt memory segments
1626	 */
1627	for (x = 0; x < NGDT; x++) {
1628		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1629		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1630			ssdtosd(&gdt_segs[x], &gdt[x]);
1631	}
1632	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1633	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1634	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1635
1636	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1637	r_gdt.rd_base =  (long) gdt;
1638	lgdt(&r_gdt);
1639	pc = &__pcpu[0];
1640
1641	wrmsr(MSR_FSBASE, 0);		/* User value */
1642	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1643	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1644
1645	pcpu_init(pc, 0, sizeof(struct pcpu));
1646	dpcpu_init((void *)(physfree + KERNBASE), 0);
1647	physfree += DPCPU_SIZE;
1648	PCPU_SET(prvspace, pc);
1649	PCPU_SET(curthread, &thread0);
1650	PCPU_SET(curpcb, thread0.td_pcb);
1651	PCPU_SET(tssp, &common_tss[0]);
1652	PCPU_SET(commontssp, &common_tss[0]);
1653	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1654	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1655	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1656	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1657
1658	/*
1659	 * Initialize mutexes.
1660	 *
1661	 * icu_lock: in order to allow an interrupt to occur in a critical
1662	 * 	     section, to set pcpu->ipending (etc...) properly, we
1663	 *	     must be able to get the icu lock, so it can't be
1664	 *	     under witness.
1665	 */
1666	mutex_init();
1667	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1668	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1669
1670	/* exceptions */
1671	for (x = 0; x < NIDT; x++)
1672		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1673	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1674	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1675	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1676 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1677	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1678	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1679	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1680	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1681	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1682	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1683	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1684	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1685	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1686	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1687	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1688	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1689	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1690	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1691	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1692#ifdef KDTRACE_HOOKS
1693	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1694#endif
1695
1696	r_idt.rd_limit = sizeof(idt0) - 1;
1697	r_idt.rd_base = (long) idt;
1698	lidt(&r_idt);
1699
1700	/*
1701	 * Initialize the i8254 before the console so that console
1702	 * initialization can use DELAY().
1703	 */
1704	i8254_init();
1705
1706	/*
1707	 * Initialize the console before we print anything out.
1708	 */
1709	cninit();
1710
1711#ifdef DEV_ISA
1712#ifdef DEV_ATPIC
1713	elcr_probe();
1714	atpic_startup();
1715#else
1716	/* Reset and mask the atpics and leave them shut down. */
1717	atpic_reset();
1718
1719	/*
1720	 * Point the ICU spurious interrupt vectors at the APIC spurious
1721	 * interrupt handler.
1722	 */
1723	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1724	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1725#endif
1726#else
1727#error "have you forgotten the isa device?";
1728#endif
1729
1730	kdb_init();
1731
1732#ifdef KDB
1733	if (boothowto & RB_KDB)
1734		kdb_enter(KDB_WHY_BOOTFLAGS,
1735		    "Boot flags requested debugger");
1736#endif
1737
1738	identify_cpu();		/* Final stage of CPU initialization */
1739	initializecpu();	/* Initialize CPU registers */
1740	initializecpucache();
1741
1742	/* make an initial tss so cpu can get interrupt stack on syscall! */
1743	common_tss[0].tss_rsp0 = thread0.td_kstack +
1744	    kstack0_sz - sizeof(struct pcb);
1745	/* Ensure the stack is aligned to 16 bytes */
1746	common_tss[0].tss_rsp0 &= ~0xFul;
1747	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1748
1749	/* doublefault stack space, runs on ist1 */
1750	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1751
1752	/*
1753	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1754	 * above the start of the ist2 stack.
1755	 */
1756	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1757	np->np_pcpu = (register_t) pc;
1758	common_tss[0].tss_ist2 = (long) np;
1759
1760	/* Set the IO permission bitmap (empty due to tss seg limit) */
1761	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1762	    IOPAGES * PAGE_SIZE;
1763
1764	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1765	ltr(gsel_tss);
1766
1767	/* Set up the fast syscall stuff */
1768	msr = rdmsr(MSR_EFER) | EFER_SCE;
1769	wrmsr(MSR_EFER, msr);
1770	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1771	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1772	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1773	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1774	wrmsr(MSR_STAR, msr);
1775	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1776
1777	getmemsize(kmdp, physfree);
1778	init_param2(physmem);
1779
1780	/* now running on new page tables, configured,and u/iom is accessible */
1781
1782	msgbufinit(msgbufp, msgbufsize);
1783	fpuinit();
1784
1785	/* transfer to user mode */
1786
1787	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1788	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1789	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1790	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1791	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1792
1793	load_ds(_udatasel);
1794	load_es(_udatasel);
1795	load_fs(_ufssel);
1796
1797	/* setup proc 0's pcb */
1798	thread0.td_pcb->pcb_flags = 0;
1799	thread0.td_pcb->pcb_cr3 = KPML4phys;
1800	thread0.td_frame = &proc0_tf;
1801
1802        env = getenv("kernelname");
1803	if (env != NULL)
1804		strlcpy(kernelname, env, sizeof(kernelname));
1805
1806#ifdef XENHVM
1807	if (inw(0x10) == 0x49d2) {
1808		if (bootverbose)
1809			printf("Xen detected: disabling emulated block and network devices\n");
1810		outw(0x10, 3);
1811	}
1812#endif
1813
1814	cpu_probe_amdc1e();
1815
1816	/* Location of kernel stack for locore */
1817	return ((u_int64_t)thread0.td_pcb);
1818}
1819
1820void
1821cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1822{
1823
1824	pcpu->pc_acpi_id = 0xffffffff;
1825}
1826
1827void
1828spinlock_enter(void)
1829{
1830	struct thread *td;
1831	register_t flags;
1832
1833	td = curthread;
1834	if (td->td_md.md_spinlock_count == 0) {
1835		flags = intr_disable();
1836		td->td_md.md_spinlock_count = 1;
1837		td->td_md.md_saved_flags = flags;
1838	} else
1839		td->td_md.md_spinlock_count++;
1840	critical_enter();
1841}
1842
1843void
1844spinlock_exit(void)
1845{
1846	struct thread *td;
1847	register_t flags;
1848
1849	td = curthread;
1850	critical_exit();
1851	flags = td->td_md.md_saved_flags;
1852	td->td_md.md_spinlock_count--;
1853	if (td->td_md.md_spinlock_count == 0)
1854		intr_restore(flags);
1855}
1856
1857/*
1858 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1859 * we want to start a backtrace from the function that caused us to enter
1860 * the debugger. We have the context in the trapframe, but base the trace
1861 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1862 * enough for a backtrace.
1863 */
1864void
1865makectx(struct trapframe *tf, struct pcb *pcb)
1866{
1867
1868	pcb->pcb_r12 = tf->tf_r12;
1869	pcb->pcb_r13 = tf->tf_r13;
1870	pcb->pcb_r14 = tf->tf_r14;
1871	pcb->pcb_r15 = tf->tf_r15;
1872	pcb->pcb_rbp = tf->tf_rbp;
1873	pcb->pcb_rbx = tf->tf_rbx;
1874	pcb->pcb_rip = tf->tf_rip;
1875	pcb->pcb_rsp = tf->tf_rsp;
1876}
1877
1878int
1879ptrace_set_pc(struct thread *td, unsigned long addr)
1880{
1881	td->td_frame->tf_rip = addr;
1882	return (0);
1883}
1884
1885int
1886ptrace_single_step(struct thread *td)
1887{
1888	td->td_frame->tf_rflags |= PSL_T;
1889	return (0);
1890}
1891
1892int
1893ptrace_clear_single_step(struct thread *td)
1894{
1895	td->td_frame->tf_rflags &= ~PSL_T;
1896	return (0);
1897}
1898
1899int
1900fill_regs(struct thread *td, struct reg *regs)
1901{
1902	struct trapframe *tp;
1903
1904	tp = td->td_frame;
1905	return (fill_frame_regs(tp, regs));
1906}
1907
1908int
1909fill_frame_regs(struct trapframe *tp, struct reg *regs)
1910{
1911	regs->r_r15 = tp->tf_r15;
1912	regs->r_r14 = tp->tf_r14;
1913	regs->r_r13 = tp->tf_r13;
1914	regs->r_r12 = tp->tf_r12;
1915	regs->r_r11 = tp->tf_r11;
1916	regs->r_r10 = tp->tf_r10;
1917	regs->r_r9  = tp->tf_r9;
1918	regs->r_r8  = tp->tf_r8;
1919	regs->r_rdi = tp->tf_rdi;
1920	regs->r_rsi = tp->tf_rsi;
1921	regs->r_rbp = tp->tf_rbp;
1922	regs->r_rbx = tp->tf_rbx;
1923	regs->r_rdx = tp->tf_rdx;
1924	regs->r_rcx = tp->tf_rcx;
1925	regs->r_rax = tp->tf_rax;
1926	regs->r_rip = tp->tf_rip;
1927	regs->r_cs = tp->tf_cs;
1928	regs->r_rflags = tp->tf_rflags;
1929	regs->r_rsp = tp->tf_rsp;
1930	regs->r_ss = tp->tf_ss;
1931	if (tp->tf_flags & TF_HASSEGS) {
1932		regs->r_ds = tp->tf_ds;
1933		regs->r_es = tp->tf_es;
1934		regs->r_fs = tp->tf_fs;
1935		regs->r_gs = tp->tf_gs;
1936	} else {
1937		regs->r_ds = 0;
1938		regs->r_es = 0;
1939		regs->r_fs = 0;
1940		regs->r_gs = 0;
1941	}
1942	return (0);
1943}
1944
1945int
1946set_regs(struct thread *td, struct reg *regs)
1947{
1948	struct trapframe *tp;
1949	register_t rflags;
1950
1951	tp = td->td_frame;
1952	rflags = regs->r_rflags & 0xffffffff;
1953	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1954		return (EINVAL);
1955	tp->tf_r15 = regs->r_r15;
1956	tp->tf_r14 = regs->r_r14;
1957	tp->tf_r13 = regs->r_r13;
1958	tp->tf_r12 = regs->r_r12;
1959	tp->tf_r11 = regs->r_r11;
1960	tp->tf_r10 = regs->r_r10;
1961	tp->tf_r9  = regs->r_r9;
1962	tp->tf_r8  = regs->r_r8;
1963	tp->tf_rdi = regs->r_rdi;
1964	tp->tf_rsi = regs->r_rsi;
1965	tp->tf_rbp = regs->r_rbp;
1966	tp->tf_rbx = regs->r_rbx;
1967	tp->tf_rdx = regs->r_rdx;
1968	tp->tf_rcx = regs->r_rcx;
1969	tp->tf_rax = regs->r_rax;
1970	tp->tf_rip = regs->r_rip;
1971	tp->tf_cs = regs->r_cs;
1972	tp->tf_rflags = rflags;
1973	tp->tf_rsp = regs->r_rsp;
1974	tp->tf_ss = regs->r_ss;
1975	if (0) {	/* XXXKIB */
1976		tp->tf_ds = regs->r_ds;
1977		tp->tf_es = regs->r_es;
1978		tp->tf_fs = regs->r_fs;
1979		tp->tf_gs = regs->r_gs;
1980		tp->tf_flags = TF_HASSEGS;
1981		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1982	}
1983	return (0);
1984}
1985
1986/* XXX check all this stuff! */
1987/* externalize from sv_xmm */
1988static void
1989fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1990{
1991	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1992	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1993	int i;
1994
1995	/* pcb -> fpregs */
1996	bzero(fpregs, sizeof(*fpregs));
1997
1998	/* FPU control/status */
1999	penv_fpreg->en_cw = penv_xmm->en_cw;
2000	penv_fpreg->en_sw = penv_xmm->en_sw;
2001	penv_fpreg->en_tw = penv_xmm->en_tw;
2002	penv_fpreg->en_opcode = penv_xmm->en_opcode;
2003	penv_fpreg->en_rip = penv_xmm->en_rip;
2004	penv_fpreg->en_rdp = penv_xmm->en_rdp;
2005	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
2006	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
2007
2008	/* FPU registers */
2009	for (i = 0; i < 8; ++i)
2010		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2011
2012	/* SSE registers */
2013	for (i = 0; i < 16; ++i)
2014		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2015}
2016
2017/* internalize from fpregs into sv_xmm */
2018static void
2019set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2020{
2021	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2022	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2023	int i;
2024
2025	/* fpregs -> pcb */
2026	/* FPU control/status */
2027	penv_xmm->en_cw = penv_fpreg->en_cw;
2028	penv_xmm->en_sw = penv_fpreg->en_sw;
2029	penv_xmm->en_tw = penv_fpreg->en_tw;
2030	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2031	penv_xmm->en_rip = penv_fpreg->en_rip;
2032	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2033	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2034	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2035
2036	/* FPU registers */
2037	for (i = 0; i < 8; ++i)
2038		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2039
2040	/* SSE registers */
2041	for (i = 0; i < 16; ++i)
2042		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2043}
2044
2045/* externalize from td->pcb */
2046int
2047fill_fpregs(struct thread *td, struct fpreg *fpregs)
2048{
2049
2050	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2051	    P_SHOULDSTOP(td->td_proc),
2052	    ("not suspended thread %p", td));
2053	fpugetregs(td);
2054	fill_fpregs_xmm(&td->td_pcb->pcb_user_save, fpregs);
2055	return (0);
2056}
2057
2058/* internalize to td->pcb */
2059int
2060set_fpregs(struct thread *td, struct fpreg *fpregs)
2061{
2062
2063	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_user_save);
2064	fpuuserinited(td);
2065	return (0);
2066}
2067
2068/*
2069 * Get machine context.
2070 */
2071int
2072get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2073{
2074	struct pcb *pcb;
2075	struct trapframe *tp;
2076
2077	pcb = td->td_pcb;
2078	tp = td->td_frame;
2079	PROC_LOCK(curthread->td_proc);
2080	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2081	PROC_UNLOCK(curthread->td_proc);
2082	mcp->mc_r15 = tp->tf_r15;
2083	mcp->mc_r14 = tp->tf_r14;
2084	mcp->mc_r13 = tp->tf_r13;
2085	mcp->mc_r12 = tp->tf_r12;
2086	mcp->mc_r11 = tp->tf_r11;
2087	mcp->mc_r10 = tp->tf_r10;
2088	mcp->mc_r9  = tp->tf_r9;
2089	mcp->mc_r8  = tp->tf_r8;
2090	mcp->mc_rdi = tp->tf_rdi;
2091	mcp->mc_rsi = tp->tf_rsi;
2092	mcp->mc_rbp = tp->tf_rbp;
2093	mcp->mc_rbx = tp->tf_rbx;
2094	mcp->mc_rcx = tp->tf_rcx;
2095	mcp->mc_rflags = tp->tf_rflags;
2096	if (flags & GET_MC_CLEAR_RET) {
2097		mcp->mc_rax = 0;
2098		mcp->mc_rdx = 0;
2099		mcp->mc_rflags &= ~PSL_C;
2100	} else {
2101		mcp->mc_rax = tp->tf_rax;
2102		mcp->mc_rdx = tp->tf_rdx;
2103	}
2104	mcp->mc_rip = tp->tf_rip;
2105	mcp->mc_cs = tp->tf_cs;
2106	mcp->mc_rsp = tp->tf_rsp;
2107	mcp->mc_ss = tp->tf_ss;
2108	mcp->mc_ds = tp->tf_ds;
2109	mcp->mc_es = tp->tf_es;
2110	mcp->mc_fs = tp->tf_fs;
2111	mcp->mc_gs = tp->tf_gs;
2112	mcp->mc_flags = tp->tf_flags;
2113	mcp->mc_len = sizeof(*mcp);
2114	get_fpcontext(td, mcp);
2115	mcp->mc_fsbase = pcb->pcb_fsbase;
2116	mcp->mc_gsbase = pcb->pcb_gsbase;
2117	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2118	return (0);
2119}
2120
2121/*
2122 * Set machine context.
2123 *
2124 * However, we don't set any but the user modifiable flags, and we won't
2125 * touch the cs selector.
2126 */
2127int
2128set_mcontext(struct thread *td, const mcontext_t *mcp)
2129{
2130	struct pcb *pcb;
2131	struct trapframe *tp;
2132	long rflags;
2133	int ret;
2134
2135	pcb = td->td_pcb;
2136	tp = td->td_frame;
2137	if (mcp->mc_len != sizeof(*mcp) ||
2138	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2139		return (EINVAL);
2140	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2141	    (tp->tf_rflags & ~PSL_USERCHANGE);
2142	ret = set_fpcontext(td, mcp);
2143	if (ret != 0)
2144		return (ret);
2145	tp->tf_r15 = mcp->mc_r15;
2146	tp->tf_r14 = mcp->mc_r14;
2147	tp->tf_r13 = mcp->mc_r13;
2148	tp->tf_r12 = mcp->mc_r12;
2149	tp->tf_r11 = mcp->mc_r11;
2150	tp->tf_r10 = mcp->mc_r10;
2151	tp->tf_r9  = mcp->mc_r9;
2152	tp->tf_r8  = mcp->mc_r8;
2153	tp->tf_rdi = mcp->mc_rdi;
2154	tp->tf_rsi = mcp->mc_rsi;
2155	tp->tf_rbp = mcp->mc_rbp;
2156	tp->tf_rbx = mcp->mc_rbx;
2157	tp->tf_rdx = mcp->mc_rdx;
2158	tp->tf_rcx = mcp->mc_rcx;
2159	tp->tf_rax = mcp->mc_rax;
2160	tp->tf_rip = mcp->mc_rip;
2161	tp->tf_rflags = rflags;
2162	tp->tf_rsp = mcp->mc_rsp;
2163	tp->tf_ss = mcp->mc_ss;
2164	tp->tf_flags = mcp->mc_flags;
2165	if (tp->tf_flags & TF_HASSEGS) {
2166		tp->tf_ds = mcp->mc_ds;
2167		tp->tf_es = mcp->mc_es;
2168		tp->tf_fs = mcp->mc_fs;
2169		tp->tf_gs = mcp->mc_gs;
2170	}
2171	if (mcp->mc_flags & _MC_HASBASES) {
2172		pcb->pcb_fsbase = mcp->mc_fsbase;
2173		pcb->pcb_gsbase = mcp->mc_gsbase;
2174	}
2175	set_pcb_flags(pcb, PCB_FULL_IRET);
2176	return (0);
2177}
2178
2179static void
2180get_fpcontext(struct thread *td, mcontext_t *mcp)
2181{
2182
2183	mcp->mc_ownedfp = fpugetregs(td);
2184	bcopy(&td->td_pcb->pcb_user_save, &mcp->mc_fpstate,
2185	    sizeof(mcp->mc_fpstate));
2186	mcp->mc_fpformat = fpuformat();
2187}
2188
2189static int
2190set_fpcontext(struct thread *td, const mcontext_t *mcp)
2191{
2192	struct savefpu *fpstate;
2193
2194	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2195		return (0);
2196	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2197		return (EINVAL);
2198	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
2199		/* We don't care what state is left in the FPU or PCB. */
2200		fpstate_drop(td);
2201	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2202	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2203		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2204		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2205		fpusetregs(td, fpstate);
2206	} else
2207		return (EINVAL);
2208	return (0);
2209}
2210
2211void
2212fpstate_drop(struct thread *td)
2213{
2214
2215	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2216	critical_enter();
2217	if (PCPU_GET(fpcurthread) == td)
2218		fpudrop();
2219	/*
2220	 * XXX force a full drop of the fpu.  The above only drops it if we
2221	 * owned it.
2222	 *
2223	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2224	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2225	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2226	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2227	 * have too many layers.
2228	 */
2229	clear_pcb_flags(curthread->td_pcb,
2230	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2231	critical_exit();
2232}
2233
2234int
2235fill_dbregs(struct thread *td, struct dbreg *dbregs)
2236{
2237	struct pcb *pcb;
2238
2239	if (td == NULL) {
2240		dbregs->dr[0] = rdr0();
2241		dbregs->dr[1] = rdr1();
2242		dbregs->dr[2] = rdr2();
2243		dbregs->dr[3] = rdr3();
2244		dbregs->dr[6] = rdr6();
2245		dbregs->dr[7] = rdr7();
2246	} else {
2247		pcb = td->td_pcb;
2248		dbregs->dr[0] = pcb->pcb_dr0;
2249		dbregs->dr[1] = pcb->pcb_dr1;
2250		dbregs->dr[2] = pcb->pcb_dr2;
2251		dbregs->dr[3] = pcb->pcb_dr3;
2252		dbregs->dr[6] = pcb->pcb_dr6;
2253		dbregs->dr[7] = pcb->pcb_dr7;
2254	}
2255	dbregs->dr[4] = 0;
2256	dbregs->dr[5] = 0;
2257	dbregs->dr[8] = 0;
2258	dbregs->dr[9] = 0;
2259	dbregs->dr[10] = 0;
2260	dbregs->dr[11] = 0;
2261	dbregs->dr[12] = 0;
2262	dbregs->dr[13] = 0;
2263	dbregs->dr[14] = 0;
2264	dbregs->dr[15] = 0;
2265	return (0);
2266}
2267
2268int
2269set_dbregs(struct thread *td, struct dbreg *dbregs)
2270{
2271	struct pcb *pcb;
2272	int i;
2273
2274	if (td == NULL) {
2275		load_dr0(dbregs->dr[0]);
2276		load_dr1(dbregs->dr[1]);
2277		load_dr2(dbregs->dr[2]);
2278		load_dr3(dbregs->dr[3]);
2279		load_dr6(dbregs->dr[6]);
2280		load_dr7(dbregs->dr[7]);
2281	} else {
2282		/*
2283		 * Don't let an illegal value for dr7 get set.  Specifically,
2284		 * check for undefined settings.  Setting these bit patterns
2285		 * result in undefined behaviour and can lead to an unexpected
2286		 * TRCTRAP or a general protection fault right here.
2287		 * Upper bits of dr6 and dr7 must not be set
2288		 */
2289		for (i = 0; i < 4; i++) {
2290			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2291				return (EINVAL);
2292			if (td->td_frame->tf_cs == _ucode32sel &&
2293			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2294				return (EINVAL);
2295		}
2296		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2297		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2298			return (EINVAL);
2299
2300		pcb = td->td_pcb;
2301
2302		/*
2303		 * Don't let a process set a breakpoint that is not within the
2304		 * process's address space.  If a process could do this, it
2305		 * could halt the system by setting a breakpoint in the kernel
2306		 * (if ddb was enabled).  Thus, we need to check to make sure
2307		 * that no breakpoints are being enabled for addresses outside
2308		 * process's address space.
2309		 *
2310		 * XXX - what about when the watched area of the user's
2311		 * address space is written into from within the kernel
2312		 * ... wouldn't that still cause a breakpoint to be generated
2313		 * from within kernel mode?
2314		 */
2315
2316		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2317			/* dr0 is enabled */
2318			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2319				return (EINVAL);
2320		}
2321		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2322			/* dr1 is enabled */
2323			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2324				return (EINVAL);
2325		}
2326		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2327			/* dr2 is enabled */
2328			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2329				return (EINVAL);
2330		}
2331		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2332			/* dr3 is enabled */
2333			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2334				return (EINVAL);
2335		}
2336
2337		pcb->pcb_dr0 = dbregs->dr[0];
2338		pcb->pcb_dr1 = dbregs->dr[1];
2339		pcb->pcb_dr2 = dbregs->dr[2];
2340		pcb->pcb_dr3 = dbregs->dr[3];
2341		pcb->pcb_dr6 = dbregs->dr[6];
2342		pcb->pcb_dr7 = dbregs->dr[7];
2343
2344		set_pcb_flags(pcb, PCB_DBREGS);
2345	}
2346
2347	return (0);
2348}
2349
2350void
2351reset_dbregs(void)
2352{
2353
2354	load_dr7(0);	/* Turn off the control bits first */
2355	load_dr0(0);
2356	load_dr1(0);
2357	load_dr2(0);
2358	load_dr3(0);
2359	load_dr6(0);
2360}
2361
2362/*
2363 * Return > 0 if a hardware breakpoint has been hit, and the
2364 * breakpoint was in user space.  Return 0, otherwise.
2365 */
2366int
2367user_dbreg_trap(void)
2368{
2369        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2370        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2371        int nbp;            /* number of breakpoints that triggered */
2372        caddr_t addr[4];    /* breakpoint addresses */
2373        int i;
2374
2375        dr7 = rdr7();
2376        if ((dr7 & 0x000000ff) == 0) {
2377                /*
2378                 * all GE and LE bits in the dr7 register are zero,
2379                 * thus the trap couldn't have been caused by the
2380                 * hardware debug registers
2381                 */
2382                return 0;
2383        }
2384
2385        nbp = 0;
2386        dr6 = rdr6();
2387        bp = dr6 & 0x0000000f;
2388
2389        if (!bp) {
2390                /*
2391                 * None of the breakpoint bits are set meaning this
2392                 * trap was not caused by any of the debug registers
2393                 */
2394                return 0;
2395        }
2396
2397        /*
2398         * at least one of the breakpoints were hit, check to see
2399         * which ones and if any of them are user space addresses
2400         */
2401
2402        if (bp & 0x01) {
2403                addr[nbp++] = (caddr_t)rdr0();
2404        }
2405        if (bp & 0x02) {
2406                addr[nbp++] = (caddr_t)rdr1();
2407        }
2408        if (bp & 0x04) {
2409                addr[nbp++] = (caddr_t)rdr2();
2410        }
2411        if (bp & 0x08) {
2412                addr[nbp++] = (caddr_t)rdr3();
2413        }
2414
2415        for (i = 0; i < nbp; i++) {
2416                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2417                        /*
2418                         * addr[i] is in user space
2419                         */
2420                        return nbp;
2421                }
2422        }
2423
2424        /*
2425         * None of the breakpoints are in user space.
2426         */
2427        return 0;
2428}
2429
2430#ifdef KDB
2431
2432/*
2433 * Provide inb() and outb() as functions.  They are normally only available as
2434 * inline functions, thus cannot be called from the debugger.
2435 */
2436
2437/* silence compiler warnings */
2438u_char inb_(u_short);
2439void outb_(u_short, u_char);
2440
2441u_char
2442inb_(u_short port)
2443{
2444	return inb(port);
2445}
2446
2447void
2448outb_(u_short port, u_char data)
2449{
2450	outb(port, data);
2451}
2452
2453#endif /* KDB */
2454