machdep.c revision 224516
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 224516 2011-07-30 13:33:05Z bz $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_perfmon.h"
56#include "opt_sched.h"
57#include "opt_kdtrace.h"
58
59#include <sys/param.h>
60#include <sys/proc.h>
61#include <sys/systm.h>
62#include <sys/bio.h>
63#include <sys/buf.h>
64#include <sys/bus.h>
65#include <sys/callout.h>
66#include <sys/cons.h>
67#include <sys/cpu.h>
68#include <sys/eventhandler.h>
69#include <sys/exec.h>
70#include <sys/imgact.h>
71#include <sys/kdb.h>
72#include <sys/kernel.h>
73#include <sys/ktr.h>
74#include <sys/linker.h>
75#include <sys/lock.h>
76#include <sys/malloc.h>
77#include <sys/msgbuf.h>
78#include <sys/mutex.h>
79#include <sys/pcpu.h>
80#include <sys/ptrace.h>
81#include <sys/reboot.h>
82#include <sys/sched.h>
83#include <sys/signalvar.h>
84#ifdef SMP
85#include <sys/smp.h>
86#endif
87#include <sys/syscallsubr.h>
88#include <sys/sysctl.h>
89#include <sys/sysent.h>
90#include <sys/sysproto.h>
91#include <sys/ucontext.h>
92#include <sys/vmmeter.h>
93
94#include <vm/vm.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_kern.h>
97#include <vm/vm_page.h>
98#include <vm/vm_map.h>
99#include <vm/vm_object.h>
100#include <vm/vm_pager.h>
101#include <vm/vm_param.h>
102
103#ifdef DDB
104#ifndef KDB
105#error KDB must be enabled in order for DDB to work!
106#endif
107#include <ddb/ddb.h>
108#include <ddb/db_sym.h>
109#endif
110
111#include <net/netisr.h>
112
113#include <machine/clock.h>
114#include <machine/cpu.h>
115#include <machine/cputypes.h>
116#include <machine/intr_machdep.h>
117#include <x86/mca.h>
118#include <machine/md_var.h>
119#include <machine/metadata.h>
120#include <machine/mp_watchdog.h>
121#include <machine/pc/bios.h>
122#include <machine/pcb.h>
123#include <machine/proc.h>
124#include <machine/reg.h>
125#include <machine/sigframe.h>
126#include <machine/specialreg.h>
127#ifdef PERFMON
128#include <machine/perfmon.h>
129#endif
130#include <machine/tss.h>
131#ifdef SMP
132#include <machine/smp.h>
133#endif
134
135#ifdef DEV_ATPIC
136#include <x86/isa/icu.h>
137#else
138#include <machine/apicvar.h>
139#endif
140
141#include <isa/isareg.h>
142#include <isa/rtc.h>
143
144/* Sanity check for __curthread() */
145CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
146
147extern u_int64_t hammer_time(u_int64_t, u_int64_t);
148
149extern void printcpuinfo(void);	/* XXX header file */
150extern void identify_cpu(void);
151extern void panicifcpuunsupported(void);
152
153#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
154#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
155
156static void cpu_startup(void *);
157static void get_fpcontext(struct thread *td, mcontext_t *mcp);
158static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
159SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
160
161/*
162 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
163 * the physical address at which the kernel is loaded.
164 */
165extern char kernphys[];
166#ifdef DDB
167extern vm_offset_t ksym_start, ksym_end;
168#endif
169
170struct msgbuf *msgbufp;
171
172/* Intel ICH registers */
173#define ICH_PMBASE	0x400
174#define ICH_SMI_EN	ICH_PMBASE + 0x30
175
176int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
177
178int cold = 1;
179
180long Maxmem = 0;
181long realmem = 0;
182
183/*
184 * The number of PHYSMAP entries must be one less than the number of
185 * PHYSSEG entries because the PHYSMAP entry that spans the largest
186 * physical address that is accessible by ISA DMA is split into two
187 * PHYSSEG entries.
188 */
189#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
190
191vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
192vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
193
194/* must be 2 less so 0 0 can signal end of chunks */
195#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
196#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
197
198struct kva_md_info kmi;
199
200static struct trapframe proc0_tf;
201struct region_descriptor r_gdt, r_idt;
202
203struct pcpu __pcpu[MAXCPU];
204
205struct mtx icu_lock;
206
207struct mtx dt_lock;	/* lock for GDT and LDT */
208
209static void
210cpu_startup(dummy)
211	void *dummy;
212{
213	uintmax_t memsize;
214	char *sysenv;
215
216	/*
217	 * On MacBooks, we need to disallow the legacy USB circuit to
218	 * generate an SMI# because this can cause several problems,
219	 * namely: incorrect CPU frequency detection and failure to
220	 * start the APs.
221	 * We do this by disabling a bit in the SMI_EN (SMI Control and
222	 * Enable register) of the Intel ICH LPC Interface Bridge.
223	 */
224	sysenv = getenv("smbios.system.product");
225	if (sysenv != NULL) {
226		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
227		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
228		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
229		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
230		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
231		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
232			if (bootverbose)
233				printf("Disabling LEGACY_USB_EN bit on "
234				    "Intel ICH.\n");
235			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
236		}
237		freeenv(sysenv);
238	}
239
240	/*
241	 * Good {morning,afternoon,evening,night}.
242	 */
243	startrtclock();
244	printcpuinfo();
245	panicifcpuunsupported();
246#ifdef PERFMON
247	perfmon_init();
248#endif
249	realmem = Maxmem;
250
251	/*
252	 * Display physical memory if SMBIOS reports reasonable amount.
253	 */
254	memsize = 0;
255	sysenv = getenv("smbios.memory.enabled");
256	if (sysenv != NULL) {
257		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
258		freeenv(sysenv);
259	}
260	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
261		memsize = ptoa((uintmax_t)Maxmem);
262	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
263
264	/*
265	 * Display any holes after the first chunk of extended memory.
266	 */
267	if (bootverbose) {
268		int indx;
269
270		printf("Physical memory chunk(s):\n");
271		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
272			vm_paddr_t size;
273
274			size = phys_avail[indx + 1] - phys_avail[indx];
275			printf(
276			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
277			    (uintmax_t)phys_avail[indx],
278			    (uintmax_t)phys_avail[indx + 1] - 1,
279			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
280		}
281	}
282
283	vm_ksubmap_init(&kmi);
284
285	printf("avail memory = %ju (%ju MB)\n",
286	    ptoa((uintmax_t)cnt.v_free_count),
287	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
288
289	/*
290	 * Set up buffers, so they can be used to read disk labels.
291	 */
292	bufinit();
293	vm_pager_bufferinit();
294
295	cpu_setregs();
296}
297
298/*
299 * Send an interrupt to process.
300 *
301 * Stack is set up to allow sigcode stored
302 * at top to call routine, followed by call
303 * to sigreturn routine below.  After sigreturn
304 * resets the signal mask, the stack, and the
305 * frame pointer, it returns to the user
306 * specified pc, psl.
307 */
308void
309sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
310{
311	struct sigframe sf, *sfp;
312	struct pcb *pcb;
313	struct proc *p;
314	struct thread *td;
315	struct sigacts *psp;
316	char *sp;
317	struct trapframe *regs;
318	int sig;
319	int oonstack;
320
321	td = curthread;
322	pcb = td->td_pcb;
323	p = td->td_proc;
324	PROC_LOCK_ASSERT(p, MA_OWNED);
325	sig = ksi->ksi_signo;
326	psp = p->p_sigacts;
327	mtx_assert(&psp->ps_mtx, MA_OWNED);
328	regs = td->td_frame;
329	oonstack = sigonstack(regs->tf_rsp);
330
331	/* Save user context. */
332	bzero(&sf, sizeof(sf));
333	sf.sf_uc.uc_sigmask = *mask;
334	sf.sf_uc.uc_stack = td->td_sigstk;
335	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
336	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
337	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
338	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
339	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
340	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
341	fpstate_drop(td);
342	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
343	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
344	bzero(sf.sf_uc.uc_mcontext.mc_spare,
345	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
346	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
347
348	/* Allocate space for the signal handler context. */
349	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
350	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
351		sp = td->td_sigstk.ss_sp +
352		    td->td_sigstk.ss_size - sizeof(struct sigframe);
353#if defined(COMPAT_43)
354		td->td_sigstk.ss_flags |= SS_ONSTACK;
355#endif
356	} else
357		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
358	/* Align to 16 bytes. */
359	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
360
361	/* Translate the signal if appropriate. */
362	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
363		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
364
365	/* Build the argument list for the signal handler. */
366	regs->tf_rdi = sig;			/* arg 1 in %rdi */
367	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
368	bzero(&sf.sf_si, sizeof(sf.sf_si));
369	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
370		/* Signal handler installed with SA_SIGINFO. */
371		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
372		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
373
374		/* Fill in POSIX parts */
375		sf.sf_si = ksi->ksi_info;
376		sf.sf_si.si_signo = sig; /* maybe a translated signal */
377		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
378	} else {
379		/* Old FreeBSD-style arguments. */
380		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
381		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
382		sf.sf_ahu.sf_handler = catcher;
383	}
384	mtx_unlock(&psp->ps_mtx);
385	PROC_UNLOCK(p);
386
387	/*
388	 * Copy the sigframe out to the user's stack.
389	 */
390	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
391#ifdef DEBUG
392		printf("process %ld has trashed its stack\n", (long)p->p_pid);
393#endif
394		PROC_LOCK(p);
395		sigexit(td, SIGILL);
396	}
397
398	regs->tf_rsp = (long)sfp;
399	regs->tf_rip = p->p_sysent->sv_sigcode_base;
400	regs->tf_rflags &= ~(PSL_T | PSL_D);
401	regs->tf_cs = _ucodesel;
402	regs->tf_ds = _udatasel;
403	regs->tf_es = _udatasel;
404	regs->tf_fs = _ufssel;
405	regs->tf_gs = _ugssel;
406	regs->tf_flags = TF_HASSEGS;
407	set_pcb_flags(pcb, PCB_FULL_IRET);
408	PROC_LOCK(p);
409	mtx_lock(&psp->ps_mtx);
410}
411
412/*
413 * System call to cleanup state after a signal
414 * has been taken.  Reset signal mask and
415 * stack state from context left by sendsig (above).
416 * Return to previous pc and psl as specified by
417 * context left by sendsig. Check carefully to
418 * make sure that the user has not modified the
419 * state to gain improper privileges.
420 *
421 * MPSAFE
422 */
423int
424sigreturn(td, uap)
425	struct thread *td;
426	struct sigreturn_args /* {
427		const struct __ucontext *sigcntxp;
428	} */ *uap;
429{
430	ucontext_t uc;
431	struct pcb *pcb;
432	struct proc *p;
433	struct trapframe *regs;
434	ucontext_t *ucp;
435	long rflags;
436	int cs, error, ret;
437	ksiginfo_t ksi;
438
439	pcb = td->td_pcb;
440	p = td->td_proc;
441
442	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
443	if (error != 0) {
444		uprintf("pid %d (%s): sigreturn copyin failed\n",
445		    p->p_pid, td->td_name);
446		return (error);
447	}
448	ucp = &uc;
449	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
450		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
451		    td->td_name, ucp->uc_mcontext.mc_flags);
452		return (EINVAL);
453	}
454	regs = td->td_frame;
455	rflags = ucp->uc_mcontext.mc_rflags;
456	/*
457	 * Don't allow users to change privileged or reserved flags.
458	 */
459	/*
460	 * XXX do allow users to change the privileged flag PSL_RF.
461	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
462	 * should sometimes set it there too.  tf_rflags is kept in
463	 * the signal context during signal handling and there is no
464	 * other place to remember it, so the PSL_RF bit may be
465	 * corrupted by the signal handler without us knowing.
466	 * Corruption of the PSL_RF bit at worst causes one more or
467	 * one less debugger trap, so allowing it is fairly harmless.
468	 */
469	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
470		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
471		    td->td_name, rflags);
472		return (EINVAL);
473	}
474
475	/*
476	 * Don't allow users to load a valid privileged %cs.  Let the
477	 * hardware check for invalid selectors, excess privilege in
478	 * other selectors, invalid %eip's and invalid %esp's.
479	 */
480	cs = ucp->uc_mcontext.mc_cs;
481	if (!CS_SECURE(cs)) {
482		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
483		    td->td_name, cs);
484		ksiginfo_init_trap(&ksi);
485		ksi.ksi_signo = SIGBUS;
486		ksi.ksi_code = BUS_OBJERR;
487		ksi.ksi_trapno = T_PROTFLT;
488		ksi.ksi_addr = (void *)regs->tf_rip;
489		trapsignal(td, &ksi);
490		return (EINVAL);
491	}
492
493	ret = set_fpcontext(td, &ucp->uc_mcontext);
494	if (ret != 0) {
495		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
496		    p->p_pid, td->td_name, ret);
497		return (ret);
498	}
499	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
500	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
501	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
502
503#if defined(COMPAT_43)
504	if (ucp->uc_mcontext.mc_onstack & 1)
505		td->td_sigstk.ss_flags |= SS_ONSTACK;
506	else
507		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
508#endif
509
510	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
511	set_pcb_flags(pcb, PCB_FULL_IRET);
512	return (EJUSTRETURN);
513}
514
515#ifdef COMPAT_FREEBSD4
516int
517freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
518{
519
520	return sigreturn(td, (struct sigreturn_args *)uap);
521}
522#endif
523
524
525/*
526 * Machine dependent boot() routine
527 *
528 * I haven't seen anything to put here yet
529 * Possibly some stuff might be grafted back here from boot()
530 */
531void
532cpu_boot(int howto)
533{
534}
535
536/*
537 * Flush the D-cache for non-DMA I/O so that the I-cache can
538 * be made coherent later.
539 */
540void
541cpu_flush_dcache(void *ptr, size_t len)
542{
543	/* Not applicable */
544}
545
546/* Get current clock frequency for the given cpu id. */
547int
548cpu_est_clockrate(int cpu_id, uint64_t *rate)
549{
550	uint64_t tsc1, tsc2;
551	uint64_t acnt, mcnt, perf;
552	register_t reg;
553
554	if (pcpu_find(cpu_id) == NULL || rate == NULL)
555		return (EINVAL);
556
557	/*
558	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
559	 * DELAY(9) based logic fails.
560	 */
561	if (tsc_is_invariant && !tsc_perf_stat)
562		return (EOPNOTSUPP);
563
564#ifdef SMP
565	if (smp_cpus > 1) {
566		/* Schedule ourselves on the indicated cpu. */
567		thread_lock(curthread);
568		sched_bind(curthread, cpu_id);
569		thread_unlock(curthread);
570	}
571#endif
572
573	/* Calibrate by measuring a short delay. */
574	reg = intr_disable();
575	if (tsc_is_invariant) {
576		wrmsr(MSR_MPERF, 0);
577		wrmsr(MSR_APERF, 0);
578		tsc1 = rdtsc();
579		DELAY(1000);
580		mcnt = rdmsr(MSR_MPERF);
581		acnt = rdmsr(MSR_APERF);
582		tsc2 = rdtsc();
583		intr_restore(reg);
584		perf = 1000 * acnt / mcnt;
585		*rate = (tsc2 - tsc1) * perf;
586	} else {
587		tsc1 = rdtsc();
588		DELAY(1000);
589		tsc2 = rdtsc();
590		intr_restore(reg);
591		*rate = (tsc2 - tsc1) * 1000;
592	}
593
594#ifdef SMP
595	if (smp_cpus > 1) {
596		thread_lock(curthread);
597		sched_unbind(curthread);
598		thread_unlock(curthread);
599	}
600#endif
601
602	return (0);
603}
604
605/*
606 * Shutdown the CPU as much as possible
607 */
608void
609cpu_halt(void)
610{
611	for (;;)
612		__asm__ ("hlt");
613}
614
615void (*cpu_idle_hook)(void) = NULL;	/* ACPI idle hook. */
616static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
617static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
618TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
619SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
620    0, "Use MONITOR/MWAIT for short idle");
621
622#define	STATE_RUNNING	0x0
623#define	STATE_MWAIT	0x1
624#define	STATE_SLEEPING	0x2
625
626static void
627cpu_idle_acpi(int busy)
628{
629	int *state;
630
631	state = (int *)PCPU_PTR(monitorbuf);
632	*state = STATE_SLEEPING;
633	disable_intr();
634	if (sched_runnable())
635		enable_intr();
636	else if (cpu_idle_hook)
637		cpu_idle_hook();
638	else
639		__asm __volatile("sti; hlt");
640	*state = STATE_RUNNING;
641}
642
643static void
644cpu_idle_hlt(int busy)
645{
646	int *state;
647
648	state = (int *)PCPU_PTR(monitorbuf);
649	*state = STATE_SLEEPING;
650	/*
651	 * We must absolutely guarentee that hlt is the next instruction
652	 * after sti or we introduce a timing window.
653	 */
654	disable_intr();
655	if (sched_runnable())
656		enable_intr();
657	else
658		__asm __volatile("sti; hlt");
659	*state = STATE_RUNNING;
660}
661
662/*
663 * MWAIT cpu power states.  Lower 4 bits are sub-states.
664 */
665#define	MWAIT_C0	0xf0
666#define	MWAIT_C1	0x00
667#define	MWAIT_C2	0x10
668#define	MWAIT_C3	0x20
669#define	MWAIT_C4	0x30
670
671static void
672cpu_idle_mwait(int busy)
673{
674	int *state;
675
676	state = (int *)PCPU_PTR(monitorbuf);
677	*state = STATE_MWAIT;
678	if (!sched_runnable()) {
679		cpu_monitor(state, 0, 0);
680		if (*state == STATE_MWAIT)
681			cpu_mwait(0, MWAIT_C1);
682	}
683	*state = STATE_RUNNING;
684}
685
686static void
687cpu_idle_spin(int busy)
688{
689	int *state;
690	int i;
691
692	state = (int *)PCPU_PTR(monitorbuf);
693	*state = STATE_RUNNING;
694	for (i = 0; i < 1000; i++) {
695		if (sched_runnable())
696			return;
697		cpu_spinwait();
698	}
699}
700
701/*
702 * C1E renders the local APIC timer dead, so we disable it by
703 * reading the Interrupt Pending Message register and clearing
704 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
705 *
706 * Reference:
707 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
708 *   #32559 revision 3.00+
709 */
710#define	MSR_AMDK8_IPM		0xc0010055
711#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
712#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
713#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
714
715static void
716cpu_probe_amdc1e(void)
717{
718
719	/*
720	 * Detect the presence of C1E capability mostly on latest
721	 * dual-cores (or future) k8 family.
722	 */
723	if (cpu_vendor_id == CPU_VENDOR_AMD &&
724	    (cpu_id & 0x00000f00) == 0x00000f00 &&
725	    (cpu_id & 0x0fff0000) >=  0x00040000) {
726		cpu_ident_amdc1e = 1;
727	}
728}
729
730void (*cpu_idle_fn)(int) = cpu_idle_acpi;
731
732void
733cpu_idle(int busy)
734{
735	uint64_t msr;
736
737	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
738	    busy, curcpu);
739#ifdef MP_WATCHDOG
740	ap_watchdog(PCPU_GET(cpuid));
741#endif
742	/* If we are busy - try to use fast methods. */
743	if (busy) {
744		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
745			cpu_idle_mwait(busy);
746			goto out;
747		}
748	}
749
750	/* If we have time - switch timers into idle mode. */
751	if (!busy) {
752		critical_enter();
753		cpu_idleclock();
754	}
755
756	/* Apply AMD APIC timer C1E workaround. */
757	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
758		msr = rdmsr(MSR_AMDK8_IPM);
759		if (msr & AMDK8_CMPHALT)
760			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
761	}
762
763	/* Call main idle method. */
764	cpu_idle_fn(busy);
765
766	/* Switch timers mack into active mode. */
767	if (!busy) {
768		cpu_activeclock();
769		critical_exit();
770	}
771out:
772	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
773	    busy, curcpu);
774}
775
776int
777cpu_idle_wakeup(int cpu)
778{
779	struct pcpu *pcpu;
780	int *state;
781
782	pcpu = pcpu_find(cpu);
783	state = (int *)pcpu->pc_monitorbuf;
784	/*
785	 * This doesn't need to be atomic since missing the race will
786	 * simply result in unnecessary IPIs.
787	 */
788	if (*state == STATE_SLEEPING)
789		return (0);
790	if (*state == STATE_MWAIT)
791		*state = STATE_RUNNING;
792	return (1);
793}
794
795/*
796 * Ordered by speed/power consumption.
797 */
798struct {
799	void	*id_fn;
800	char	*id_name;
801} idle_tbl[] = {
802	{ cpu_idle_spin, "spin" },
803	{ cpu_idle_mwait, "mwait" },
804	{ cpu_idle_hlt, "hlt" },
805	{ cpu_idle_acpi, "acpi" },
806	{ NULL, NULL }
807};
808
809static int
810idle_sysctl_available(SYSCTL_HANDLER_ARGS)
811{
812	char *avail, *p;
813	int error;
814	int i;
815
816	avail = malloc(256, M_TEMP, M_WAITOK);
817	p = avail;
818	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
819		if (strstr(idle_tbl[i].id_name, "mwait") &&
820		    (cpu_feature2 & CPUID2_MON) == 0)
821			continue;
822		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
823		    cpu_idle_hook == NULL)
824			continue;
825		p += sprintf(p, "%s%s", p != avail ? ", " : "",
826		    idle_tbl[i].id_name);
827	}
828	error = sysctl_handle_string(oidp, avail, 0, req);
829	free(avail, M_TEMP);
830	return (error);
831}
832
833SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
834    0, 0, idle_sysctl_available, "A", "list of available idle functions");
835
836static int
837idle_sysctl(SYSCTL_HANDLER_ARGS)
838{
839	char buf[16];
840	int error;
841	char *p;
842	int i;
843
844	p = "unknown";
845	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
846		if (idle_tbl[i].id_fn == cpu_idle_fn) {
847			p = idle_tbl[i].id_name;
848			break;
849		}
850	}
851	strncpy(buf, p, sizeof(buf));
852	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
853	if (error != 0 || req->newptr == NULL)
854		return (error);
855	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
856		if (strstr(idle_tbl[i].id_name, "mwait") &&
857		    (cpu_feature2 & CPUID2_MON) == 0)
858			continue;
859		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
860		    cpu_idle_hook == NULL)
861			continue;
862		if (strcmp(idle_tbl[i].id_name, buf))
863			continue;
864		cpu_idle_fn = idle_tbl[i].id_fn;
865		return (0);
866	}
867	return (EINVAL);
868}
869
870SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
871    idle_sysctl, "A", "currently selected idle function");
872
873/*
874 * Reset registers to default values on exec.
875 */
876void
877exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
878{
879	struct trapframe *regs = td->td_frame;
880	struct pcb *pcb = td->td_pcb;
881
882	mtx_lock(&dt_lock);
883	if (td->td_proc->p_md.md_ldt != NULL)
884		user_ldt_free(td);
885	else
886		mtx_unlock(&dt_lock);
887
888	pcb->pcb_fsbase = 0;
889	pcb->pcb_gsbase = 0;
890	clear_pcb_flags(pcb, PCB_32BIT | PCB_GS32BIT);
891	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
892	set_pcb_flags(pcb, PCB_FULL_IRET);
893
894	bzero((char *)regs, sizeof(struct trapframe));
895	regs->tf_rip = imgp->entry_addr;
896	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
897	regs->tf_rdi = stack;		/* argv */
898	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
899	regs->tf_ss = _udatasel;
900	regs->tf_cs = _ucodesel;
901	regs->tf_ds = _udatasel;
902	regs->tf_es = _udatasel;
903	regs->tf_fs = _ufssel;
904	regs->tf_gs = _ugssel;
905	regs->tf_flags = TF_HASSEGS;
906	td->td_retval[1] = 0;
907
908	/*
909	 * Reset the hardware debug registers if they were in use.
910	 * They won't have any meaning for the newly exec'd process.
911	 */
912	if (pcb->pcb_flags & PCB_DBREGS) {
913		pcb->pcb_dr0 = 0;
914		pcb->pcb_dr1 = 0;
915		pcb->pcb_dr2 = 0;
916		pcb->pcb_dr3 = 0;
917		pcb->pcb_dr6 = 0;
918		pcb->pcb_dr7 = 0;
919		if (pcb == PCPU_GET(curpcb)) {
920			/*
921			 * Clear the debug registers on the running
922			 * CPU, otherwise they will end up affecting
923			 * the next process we switch to.
924			 */
925			reset_dbregs();
926		}
927		clear_pcb_flags(pcb, PCB_DBREGS);
928	}
929
930	/*
931	 * Drop the FP state if we hold it, so that the process gets a
932	 * clean FP state if it uses the FPU again.
933	 */
934	fpstate_drop(td);
935}
936
937void
938cpu_setregs(void)
939{
940	register_t cr0;
941
942	cr0 = rcr0();
943	/*
944	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
945	 * BSP.  See the comments there about why we set them.
946	 */
947	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
948	load_cr0(cr0);
949}
950
951/*
952 * Initialize amd64 and configure to run kernel
953 */
954
955/*
956 * Initialize segments & interrupt table
957 */
958
959struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
960static struct gate_descriptor idt0[NIDT];
961struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
962
963static char dblfault_stack[PAGE_SIZE] __aligned(16);
964
965static char nmi0_stack[PAGE_SIZE] __aligned(16);
966CTASSERT(sizeof(struct nmi_pcpu) == 16);
967
968struct amd64tss common_tss[MAXCPU];
969
970/*
971 * Software prototypes -- in more palatable form.
972 *
973 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
974 * slots as corresponding segments for i386 kernel.
975 */
976struct soft_segment_descriptor gdt_segs[] = {
977/* GNULL_SEL	0 Null Descriptor */
978{	.ssd_base = 0x0,
979	.ssd_limit = 0x0,
980	.ssd_type = 0,
981	.ssd_dpl = 0,
982	.ssd_p = 0,
983	.ssd_long = 0,
984	.ssd_def32 = 0,
985	.ssd_gran = 0		},
986/* GNULL2_SEL	1 Null Descriptor */
987{	.ssd_base = 0x0,
988	.ssd_limit = 0x0,
989	.ssd_type = 0,
990	.ssd_dpl = 0,
991	.ssd_p = 0,
992	.ssd_long = 0,
993	.ssd_def32 = 0,
994	.ssd_gran = 0		},
995/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
996{	.ssd_base = 0x0,
997	.ssd_limit = 0xfffff,
998	.ssd_type = SDT_MEMRWA,
999	.ssd_dpl = SEL_UPL,
1000	.ssd_p = 1,
1001	.ssd_long = 0,
1002	.ssd_def32 = 1,
1003	.ssd_gran = 1		},
1004/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1005{	.ssd_base = 0x0,
1006	.ssd_limit = 0xfffff,
1007	.ssd_type = SDT_MEMRWA,
1008	.ssd_dpl = SEL_UPL,
1009	.ssd_p = 1,
1010	.ssd_long = 0,
1011	.ssd_def32 = 1,
1012	.ssd_gran = 1		},
1013/* GCODE_SEL	4 Code Descriptor for kernel */
1014{	.ssd_base = 0x0,
1015	.ssd_limit = 0xfffff,
1016	.ssd_type = SDT_MEMERA,
1017	.ssd_dpl = SEL_KPL,
1018	.ssd_p = 1,
1019	.ssd_long = 1,
1020	.ssd_def32 = 0,
1021	.ssd_gran = 1		},
1022/* GDATA_SEL	5 Data Descriptor for kernel */
1023{	.ssd_base = 0x0,
1024	.ssd_limit = 0xfffff,
1025	.ssd_type = SDT_MEMRWA,
1026	.ssd_dpl = SEL_KPL,
1027	.ssd_p = 1,
1028	.ssd_long = 1,
1029	.ssd_def32 = 0,
1030	.ssd_gran = 1		},
1031/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1032{	.ssd_base = 0x0,
1033	.ssd_limit = 0xfffff,
1034	.ssd_type = SDT_MEMERA,
1035	.ssd_dpl = SEL_UPL,
1036	.ssd_p = 1,
1037	.ssd_long = 0,
1038	.ssd_def32 = 1,
1039	.ssd_gran = 1		},
1040/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1041{	.ssd_base = 0x0,
1042	.ssd_limit = 0xfffff,
1043	.ssd_type = SDT_MEMRWA,
1044	.ssd_dpl = SEL_UPL,
1045	.ssd_p = 1,
1046	.ssd_long = 0,
1047	.ssd_def32 = 1,
1048	.ssd_gran = 1		},
1049/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1050{	.ssd_base = 0x0,
1051	.ssd_limit = 0xfffff,
1052	.ssd_type = SDT_MEMERA,
1053	.ssd_dpl = SEL_UPL,
1054	.ssd_p = 1,
1055	.ssd_long = 1,
1056	.ssd_def32 = 0,
1057	.ssd_gran = 1		},
1058/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1059{	.ssd_base = 0x0,
1060	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1061	.ssd_type = SDT_SYSTSS,
1062	.ssd_dpl = SEL_KPL,
1063	.ssd_p = 1,
1064	.ssd_long = 0,
1065	.ssd_def32 = 0,
1066	.ssd_gran = 0		},
1067/* Actually, the TSS is a system descriptor which is double size */
1068{	.ssd_base = 0x0,
1069	.ssd_limit = 0x0,
1070	.ssd_type = 0,
1071	.ssd_dpl = 0,
1072	.ssd_p = 0,
1073	.ssd_long = 0,
1074	.ssd_def32 = 0,
1075	.ssd_gran = 0		},
1076/* GUSERLDT_SEL	11 LDT Descriptor */
1077{	.ssd_base = 0x0,
1078	.ssd_limit = 0x0,
1079	.ssd_type = 0,
1080	.ssd_dpl = 0,
1081	.ssd_p = 0,
1082	.ssd_long = 0,
1083	.ssd_def32 = 0,
1084	.ssd_gran = 0		},
1085/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1086{	.ssd_base = 0x0,
1087	.ssd_limit = 0x0,
1088	.ssd_type = 0,
1089	.ssd_dpl = 0,
1090	.ssd_p = 0,
1091	.ssd_long = 0,
1092	.ssd_def32 = 0,
1093	.ssd_gran = 0		},
1094};
1095
1096void
1097setidt(idx, func, typ, dpl, ist)
1098	int idx;
1099	inthand_t *func;
1100	int typ;
1101	int dpl;
1102	int ist;
1103{
1104	struct gate_descriptor *ip;
1105
1106	ip = idt + idx;
1107	ip->gd_looffset = (uintptr_t)func;
1108	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1109	ip->gd_ist = ist;
1110	ip->gd_xx = 0;
1111	ip->gd_type = typ;
1112	ip->gd_dpl = dpl;
1113	ip->gd_p = 1;
1114	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1115}
1116
1117extern inthand_t
1118	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1119	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1120	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1121	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1122	IDTVEC(xmm), IDTVEC(dblfault),
1123#ifdef KDTRACE_HOOKS
1124	IDTVEC(dtrace_ret),
1125#endif
1126	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1127
1128#ifdef DDB
1129/*
1130 * Display the index and function name of any IDT entries that don't use
1131 * the default 'rsvd' entry point.
1132 */
1133DB_SHOW_COMMAND(idt, db_show_idt)
1134{
1135	struct gate_descriptor *ip;
1136	int idx;
1137	uintptr_t func;
1138
1139	ip = idt;
1140	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1141		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1142		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1143			db_printf("%3d\t", idx);
1144			db_printsym(func, DB_STGY_PROC);
1145			db_printf("\n");
1146		}
1147		ip++;
1148	}
1149}
1150#endif
1151
1152void
1153sdtossd(sd, ssd)
1154	struct user_segment_descriptor *sd;
1155	struct soft_segment_descriptor *ssd;
1156{
1157
1158	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1159	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1160	ssd->ssd_type  = sd->sd_type;
1161	ssd->ssd_dpl   = sd->sd_dpl;
1162	ssd->ssd_p     = sd->sd_p;
1163	ssd->ssd_long  = sd->sd_long;
1164	ssd->ssd_def32 = sd->sd_def32;
1165	ssd->ssd_gran  = sd->sd_gran;
1166}
1167
1168void
1169ssdtosd(ssd, sd)
1170	struct soft_segment_descriptor *ssd;
1171	struct user_segment_descriptor *sd;
1172{
1173
1174	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1175	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1176	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1177	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1178	sd->sd_type  = ssd->ssd_type;
1179	sd->sd_dpl   = ssd->ssd_dpl;
1180	sd->sd_p     = ssd->ssd_p;
1181	sd->sd_long  = ssd->ssd_long;
1182	sd->sd_def32 = ssd->ssd_def32;
1183	sd->sd_gran  = ssd->ssd_gran;
1184}
1185
1186void
1187ssdtosyssd(ssd, sd)
1188	struct soft_segment_descriptor *ssd;
1189	struct system_segment_descriptor *sd;
1190{
1191
1192	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1193	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1194	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1195	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1196	sd->sd_type  = ssd->ssd_type;
1197	sd->sd_dpl   = ssd->ssd_dpl;
1198	sd->sd_p     = ssd->ssd_p;
1199	sd->sd_gran  = ssd->ssd_gran;
1200}
1201
1202#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1203#include <isa/isavar.h>
1204#include <isa/isareg.h>
1205/*
1206 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1207 * and is only suitable for use at probe time.
1208 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1209 * It shouldn't be here.  There should probably be an APIC centric
1210 * implementation in the apic driver code, if at all.
1211 */
1212intrmask_t
1213isa_irq_pending(void)
1214{
1215	u_char irr1;
1216	u_char irr2;
1217
1218	irr1 = inb(IO_ICU1);
1219	irr2 = inb(IO_ICU2);
1220	return ((irr2 << 8) | irr1);
1221}
1222#endif
1223
1224u_int basemem;
1225
1226static int
1227add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1228{
1229	int i, insert_idx, physmap_idx;
1230
1231	physmap_idx = *physmap_idxp;
1232
1233	if (boothowto & RB_VERBOSE)
1234		printf("SMAP type=%02x base=%016lx len=%016lx\n",
1235		    smap->type, smap->base, smap->length);
1236
1237	if (smap->type != SMAP_TYPE_MEMORY)
1238		return (1);
1239
1240	if (smap->length == 0)
1241		return (0);
1242
1243	/*
1244	 * Find insertion point while checking for overlap.  Start off by
1245	 * assuming the new entry will be added to the end.
1246	 */
1247	insert_idx = physmap_idx + 2;
1248	for (i = 0; i <= physmap_idx; i += 2) {
1249		if (smap->base < physmap[i + 1]) {
1250			if (smap->base + smap->length <= physmap[i]) {
1251				insert_idx = i;
1252				break;
1253			}
1254			if (boothowto & RB_VERBOSE)
1255				printf(
1256		    "Overlapping memory regions, ignoring second region\n");
1257			return (1);
1258		}
1259	}
1260
1261	/* See if we can prepend to the next entry. */
1262	if (insert_idx <= physmap_idx &&
1263	    smap->base + smap->length == physmap[insert_idx]) {
1264		physmap[insert_idx] = smap->base;
1265		return (1);
1266	}
1267
1268	/* See if we can append to the previous entry. */
1269	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
1270		physmap[insert_idx - 1] += smap->length;
1271		return (1);
1272	}
1273
1274	physmap_idx += 2;
1275	*physmap_idxp = physmap_idx;
1276	if (physmap_idx == PHYSMAP_SIZE) {
1277		printf(
1278		"Too many segments in the physical address map, giving up\n");
1279		return (0);
1280	}
1281
1282	/*
1283	 * Move the last 'N' entries down to make room for the new
1284	 * entry if needed.
1285	 */
1286	for (i = physmap_idx; i > insert_idx; i -= 2) {
1287		physmap[i] = physmap[i - 2];
1288		physmap[i + 1] = physmap[i - 1];
1289	}
1290
1291	/* Insert the new entry. */
1292	physmap[insert_idx] = smap->base;
1293	physmap[insert_idx + 1] = smap->base + smap->length;
1294	return (1);
1295}
1296
1297/*
1298 * Populate the (physmap) array with base/bound pairs describing the
1299 * available physical memory in the system, then test this memory and
1300 * build the phys_avail array describing the actually-available memory.
1301 *
1302 * Total memory size may be set by the kernel environment variable
1303 * hw.physmem or the compile-time define MAXMEM.
1304 *
1305 * XXX first should be vm_paddr_t.
1306 */
1307static void
1308getmemsize(caddr_t kmdp, u_int64_t first)
1309{
1310	int i, physmap_idx, pa_indx, da_indx;
1311	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1312	u_long physmem_tunable, memtest, tmpul;
1313	pt_entry_t *pte;
1314	struct bios_smap *smapbase, *smap, *smapend;
1315	u_int32_t smapsize;
1316	quad_t dcons_addr, dcons_size;
1317
1318	bzero(physmap, sizeof(physmap));
1319	basemem = 0;
1320	physmap_idx = 0;
1321
1322	/*
1323	 * get memory map from INT 15:E820, kindly supplied by the loader.
1324	 *
1325	 * subr_module.c says:
1326	 * "Consumer may safely assume that size value precedes data."
1327	 * ie: an int32_t immediately precedes smap.
1328	 */
1329	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1330	    MODINFO_METADATA | MODINFOMD_SMAP);
1331	if (smapbase == NULL)
1332		panic("No BIOS smap info from loader!");
1333
1334	smapsize = *((u_int32_t *)smapbase - 1);
1335	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1336
1337	for (smap = smapbase; smap < smapend; smap++)
1338		if (!add_smap_entry(smap, physmap, &physmap_idx))
1339			break;
1340
1341	/*
1342	 * Find the 'base memory' segment for SMP
1343	 */
1344	basemem = 0;
1345	for (i = 0; i <= physmap_idx; i += 2) {
1346		if (physmap[i] == 0x00000000) {
1347			basemem = physmap[i + 1] / 1024;
1348			break;
1349		}
1350	}
1351	if (basemem == 0)
1352		panic("BIOS smap did not include a basemem segment!");
1353
1354#ifdef SMP
1355	/* make hole for AP bootstrap code */
1356	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1357#endif
1358
1359	/*
1360	 * Maxmem isn't the "maximum memory", it's one larger than the
1361	 * highest page of the physical address space.  It should be
1362	 * called something like "Maxphyspage".  We may adjust this
1363	 * based on ``hw.physmem'' and the results of the memory test.
1364	 */
1365	Maxmem = atop(physmap[physmap_idx + 1]);
1366
1367#ifdef MAXMEM
1368	Maxmem = MAXMEM / 4;
1369#endif
1370
1371	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1372		Maxmem = atop(physmem_tunable);
1373
1374	/*
1375	 * By default keep the memtest enabled.  Use a general name so that
1376	 * one could eventually do more with the code than just disable it.
1377	 */
1378	memtest = 1;
1379	if (TUNABLE_ULONG_FETCH("hw.memtest.tests", &tmpul))
1380		memtest = tmpul;
1381
1382	/*
1383	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1384	 * in the system.
1385	 */
1386	if (Maxmem > atop(physmap[physmap_idx + 1]))
1387		Maxmem = atop(physmap[physmap_idx + 1]);
1388
1389	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1390	    (boothowto & RB_VERBOSE))
1391		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1392
1393	/* call pmap initialization to make new kernel address space */
1394	pmap_bootstrap(&first);
1395
1396	/*
1397	 * Size up each available chunk of physical memory.
1398	 */
1399	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1400	pa_indx = 0;
1401	da_indx = 1;
1402	phys_avail[pa_indx++] = physmap[0];
1403	phys_avail[pa_indx] = physmap[0];
1404	dump_avail[da_indx] = physmap[0];
1405	pte = CMAP1;
1406
1407	/*
1408	 * Get dcons buffer address
1409	 */
1410	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1411	    getenv_quad("dcons.size", &dcons_size) == 0)
1412		dcons_addr = 0;
1413
1414	/*
1415	 * physmap is in bytes, so when converting to page boundaries,
1416	 * round up the start address and round down the end address.
1417	 */
1418	for (i = 0; i <= physmap_idx; i += 2) {
1419		vm_paddr_t end;
1420
1421		end = ptoa((vm_paddr_t)Maxmem);
1422		if (physmap[i + 1] < end)
1423			end = trunc_page(physmap[i + 1]);
1424		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1425			int tmp, page_bad, full;
1426			int *ptr = (int *)CADDR1;
1427
1428			full = FALSE;
1429			/*
1430			 * block out kernel memory as not available.
1431			 */
1432			if (pa >= (vm_paddr_t)kernphys && pa < first)
1433				goto do_dump_avail;
1434
1435			/*
1436			 * block out dcons buffer
1437			 */
1438			if (dcons_addr > 0
1439			    && pa >= trunc_page(dcons_addr)
1440			    && pa < dcons_addr + dcons_size)
1441				goto do_dump_avail;
1442
1443			page_bad = FALSE;
1444			if (memtest == 0)
1445				goto skip_memtest;
1446
1447			/*
1448			 * map page into kernel: valid, read/write,non-cacheable
1449			 */
1450			*pte = pa | PG_V | PG_RW | PG_N;
1451			invltlb();
1452
1453			tmp = *(int *)ptr;
1454			/*
1455			 * Test for alternating 1's and 0's
1456			 */
1457			*(volatile int *)ptr = 0xaaaaaaaa;
1458			if (*(volatile int *)ptr != 0xaaaaaaaa)
1459				page_bad = TRUE;
1460			/*
1461			 * Test for alternating 0's and 1's
1462			 */
1463			*(volatile int *)ptr = 0x55555555;
1464			if (*(volatile int *)ptr != 0x55555555)
1465				page_bad = TRUE;
1466			/*
1467			 * Test for all 1's
1468			 */
1469			*(volatile int *)ptr = 0xffffffff;
1470			if (*(volatile int *)ptr != 0xffffffff)
1471				page_bad = TRUE;
1472			/*
1473			 * Test for all 0's
1474			 */
1475			*(volatile int *)ptr = 0x0;
1476			if (*(volatile int *)ptr != 0x0)
1477				page_bad = TRUE;
1478			/*
1479			 * Restore original value.
1480			 */
1481			*(int *)ptr = tmp;
1482
1483skip_memtest:
1484			/*
1485			 * Adjust array of valid/good pages.
1486			 */
1487			if (page_bad == TRUE)
1488				continue;
1489			/*
1490			 * If this good page is a continuation of the
1491			 * previous set of good pages, then just increase
1492			 * the end pointer. Otherwise start a new chunk.
1493			 * Note that "end" points one higher than end,
1494			 * making the range >= start and < end.
1495			 * If we're also doing a speculative memory
1496			 * test and we at or past the end, bump up Maxmem
1497			 * so that we keep going. The first bad page
1498			 * will terminate the loop.
1499			 */
1500			if (phys_avail[pa_indx] == pa) {
1501				phys_avail[pa_indx] += PAGE_SIZE;
1502			} else {
1503				pa_indx++;
1504				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1505					printf(
1506		"Too many holes in the physical address space, giving up\n");
1507					pa_indx--;
1508					full = TRUE;
1509					goto do_dump_avail;
1510				}
1511				phys_avail[pa_indx++] = pa;	/* start */
1512				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1513			}
1514			physmem++;
1515do_dump_avail:
1516			if (dump_avail[da_indx] == pa) {
1517				dump_avail[da_indx] += PAGE_SIZE;
1518			} else {
1519				da_indx++;
1520				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1521					da_indx--;
1522					goto do_next;
1523				}
1524				dump_avail[da_indx++] = pa; /* start */
1525				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1526			}
1527do_next:
1528			if (full)
1529				break;
1530		}
1531	}
1532	*pte = 0;
1533	invltlb();
1534
1535	/*
1536	 * XXX
1537	 * The last chunk must contain at least one page plus the message
1538	 * buffer to avoid complicating other code (message buffer address
1539	 * calculation, etc.).
1540	 */
1541	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1542	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1543		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1544		phys_avail[pa_indx--] = 0;
1545		phys_avail[pa_indx--] = 0;
1546	}
1547
1548	Maxmem = atop(phys_avail[pa_indx]);
1549
1550	/* Trim off space for the message buffer. */
1551	phys_avail[pa_indx] -= round_page(msgbufsize);
1552
1553	/* Map the message buffer. */
1554	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1555}
1556
1557u_int64_t
1558hammer_time(u_int64_t modulep, u_int64_t physfree)
1559{
1560	caddr_t kmdp;
1561	int gsel_tss, x;
1562	struct pcpu *pc;
1563	struct nmi_pcpu *np;
1564	u_int64_t msr;
1565	char *env;
1566	size_t kstack0_sz;
1567
1568	thread0.td_kstack = physfree + KERNBASE;
1569	thread0.td_kstack_pages = KSTACK_PAGES;
1570	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1571	bzero((void *)thread0.td_kstack, kstack0_sz);
1572	physfree += kstack0_sz;
1573	thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
1574
1575	/*
1576 	 * This may be done better later if it gets more high level
1577 	 * components in it. If so just link td->td_proc here.
1578	 */
1579	proc_linkup0(&proc0, &thread0);
1580
1581	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1582	preload_bootstrap_relocate(KERNBASE);
1583	kmdp = preload_search_by_type("elf kernel");
1584	if (kmdp == NULL)
1585		kmdp = preload_search_by_type("elf64 kernel");
1586	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1587	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1588#ifdef DDB
1589	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1590	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1591#endif
1592
1593	/* Init basic tunables, hz etc */
1594	init_param1();
1595
1596	/*
1597	 * make gdt memory segments
1598	 */
1599	for (x = 0; x < NGDT; x++) {
1600		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1601		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1602			ssdtosd(&gdt_segs[x], &gdt[x]);
1603	}
1604	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1605	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1606	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1607
1608	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1609	r_gdt.rd_base =  (long) gdt;
1610	lgdt(&r_gdt);
1611	pc = &__pcpu[0];
1612
1613	wrmsr(MSR_FSBASE, 0);		/* User value */
1614	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1615	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1616
1617	pcpu_init(pc, 0, sizeof(struct pcpu));
1618	dpcpu_init((void *)(physfree + KERNBASE), 0);
1619	physfree += DPCPU_SIZE;
1620	PCPU_SET(prvspace, pc);
1621	PCPU_SET(curthread, &thread0);
1622	PCPU_SET(curpcb, thread0.td_pcb);
1623	PCPU_SET(tssp, &common_tss[0]);
1624	PCPU_SET(commontssp, &common_tss[0]);
1625	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1626	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1627	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1628	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1629
1630	/*
1631	 * Initialize mutexes.
1632	 *
1633	 * icu_lock: in order to allow an interrupt to occur in a critical
1634	 * 	     section, to set pcpu->ipending (etc...) properly, we
1635	 *	     must be able to get the icu lock, so it can't be
1636	 *	     under witness.
1637	 */
1638	mutex_init();
1639	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1640	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1641
1642	/* exceptions */
1643	for (x = 0; x < NIDT; x++)
1644		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1645	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1646	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1647	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1648 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1649	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1650	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1651	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1652	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1653	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1654	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1655	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1656	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1657	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1658	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1659	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1660	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1661	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1662	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1663	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1664#ifdef KDTRACE_HOOKS
1665	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1666#endif
1667
1668	r_idt.rd_limit = sizeof(idt0) - 1;
1669	r_idt.rd_base = (long) idt;
1670	lidt(&r_idt);
1671
1672	/*
1673	 * Initialize the i8254 before the console so that console
1674	 * initialization can use DELAY().
1675	 */
1676	i8254_init();
1677
1678	/*
1679	 * Initialize the console before we print anything out.
1680	 */
1681	cninit();
1682
1683#ifdef DEV_ISA
1684#ifdef DEV_ATPIC
1685	elcr_probe();
1686	atpic_startup();
1687#else
1688	/* Reset and mask the atpics and leave them shut down. */
1689	atpic_reset();
1690
1691	/*
1692	 * Point the ICU spurious interrupt vectors at the APIC spurious
1693	 * interrupt handler.
1694	 */
1695	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1696	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1697#endif
1698#else
1699#error "have you forgotten the isa device?";
1700#endif
1701
1702	kdb_init();
1703
1704#ifdef KDB
1705	if (boothowto & RB_KDB)
1706		kdb_enter(KDB_WHY_BOOTFLAGS,
1707		    "Boot flags requested debugger");
1708#endif
1709
1710	identify_cpu();		/* Final stage of CPU initialization */
1711	initializecpu();	/* Initialize CPU registers */
1712	initializecpucache();
1713
1714	/* make an initial tss so cpu can get interrupt stack on syscall! */
1715	common_tss[0].tss_rsp0 = thread0.td_kstack +
1716	    kstack0_sz - sizeof(struct pcb);
1717	/* Ensure the stack is aligned to 16 bytes */
1718	common_tss[0].tss_rsp0 &= ~0xFul;
1719	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1720
1721	/* doublefault stack space, runs on ist1 */
1722	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1723
1724	/*
1725	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1726	 * above the start of the ist2 stack.
1727	 */
1728	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1729	np->np_pcpu = (register_t) pc;
1730	common_tss[0].tss_ist2 = (long) np;
1731
1732	/* Set the IO permission bitmap (empty due to tss seg limit) */
1733	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1734	    IOPAGES * PAGE_SIZE;
1735
1736	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1737	ltr(gsel_tss);
1738
1739	/* Set up the fast syscall stuff */
1740	msr = rdmsr(MSR_EFER) | EFER_SCE;
1741	wrmsr(MSR_EFER, msr);
1742	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1743	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1744	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1745	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1746	wrmsr(MSR_STAR, msr);
1747	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1748
1749	getmemsize(kmdp, physfree);
1750	init_param2(physmem);
1751
1752	/* now running on new page tables, configured,and u/iom is accessible */
1753
1754	msgbufinit(msgbufp, msgbufsize);
1755	fpuinit();
1756
1757	/* transfer to user mode */
1758
1759	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1760	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1761	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1762	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1763	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1764
1765	load_ds(_udatasel);
1766	load_es(_udatasel);
1767	load_fs(_ufssel);
1768
1769	/* setup proc 0's pcb */
1770	thread0.td_pcb->pcb_flags = 0;
1771	thread0.td_pcb->pcb_cr3 = KPML4phys;
1772	thread0.td_frame = &proc0_tf;
1773
1774        env = getenv("kernelname");
1775	if (env != NULL)
1776		strlcpy(kernelname, env, sizeof(kernelname));
1777
1778#ifdef XENHVM
1779	if (inw(0x10) == 0x49d2) {
1780		if (bootverbose)
1781			printf("Xen detected: disabling emulated block and network devices\n");
1782		outw(0x10, 3);
1783	}
1784#endif
1785
1786	cpu_probe_amdc1e();
1787
1788	/* Location of kernel stack for locore */
1789	return ((u_int64_t)thread0.td_pcb);
1790}
1791
1792void
1793cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1794{
1795
1796	pcpu->pc_acpi_id = 0xffffffff;
1797}
1798
1799void
1800spinlock_enter(void)
1801{
1802	struct thread *td;
1803	register_t flags;
1804
1805	td = curthread;
1806	if (td->td_md.md_spinlock_count == 0) {
1807		flags = intr_disable();
1808		td->td_md.md_spinlock_count = 1;
1809		td->td_md.md_saved_flags = flags;
1810	} else
1811		td->td_md.md_spinlock_count++;
1812	critical_enter();
1813}
1814
1815void
1816spinlock_exit(void)
1817{
1818	struct thread *td;
1819	register_t flags;
1820
1821	td = curthread;
1822	critical_exit();
1823	flags = td->td_md.md_saved_flags;
1824	td->td_md.md_spinlock_count--;
1825	if (td->td_md.md_spinlock_count == 0)
1826		intr_restore(flags);
1827}
1828
1829/*
1830 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1831 * we want to start a backtrace from the function that caused us to enter
1832 * the debugger. We have the context in the trapframe, but base the trace
1833 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1834 * enough for a backtrace.
1835 */
1836void
1837makectx(struct trapframe *tf, struct pcb *pcb)
1838{
1839
1840	pcb->pcb_r12 = tf->tf_r12;
1841	pcb->pcb_r13 = tf->tf_r13;
1842	pcb->pcb_r14 = tf->tf_r14;
1843	pcb->pcb_r15 = tf->tf_r15;
1844	pcb->pcb_rbp = tf->tf_rbp;
1845	pcb->pcb_rbx = tf->tf_rbx;
1846	pcb->pcb_rip = tf->tf_rip;
1847	pcb->pcb_rsp = tf->tf_rsp;
1848}
1849
1850int
1851ptrace_set_pc(struct thread *td, unsigned long addr)
1852{
1853	td->td_frame->tf_rip = addr;
1854	return (0);
1855}
1856
1857int
1858ptrace_single_step(struct thread *td)
1859{
1860	td->td_frame->tf_rflags |= PSL_T;
1861	return (0);
1862}
1863
1864int
1865ptrace_clear_single_step(struct thread *td)
1866{
1867	td->td_frame->tf_rflags &= ~PSL_T;
1868	return (0);
1869}
1870
1871int
1872fill_regs(struct thread *td, struct reg *regs)
1873{
1874	struct trapframe *tp;
1875
1876	tp = td->td_frame;
1877	return (fill_frame_regs(tp, regs));
1878}
1879
1880int
1881fill_frame_regs(struct trapframe *tp, struct reg *regs)
1882{
1883	regs->r_r15 = tp->tf_r15;
1884	regs->r_r14 = tp->tf_r14;
1885	regs->r_r13 = tp->tf_r13;
1886	regs->r_r12 = tp->tf_r12;
1887	regs->r_r11 = tp->tf_r11;
1888	regs->r_r10 = tp->tf_r10;
1889	regs->r_r9  = tp->tf_r9;
1890	regs->r_r8  = tp->tf_r8;
1891	regs->r_rdi = tp->tf_rdi;
1892	regs->r_rsi = tp->tf_rsi;
1893	regs->r_rbp = tp->tf_rbp;
1894	regs->r_rbx = tp->tf_rbx;
1895	regs->r_rdx = tp->tf_rdx;
1896	regs->r_rcx = tp->tf_rcx;
1897	regs->r_rax = tp->tf_rax;
1898	regs->r_rip = tp->tf_rip;
1899	regs->r_cs = tp->tf_cs;
1900	regs->r_rflags = tp->tf_rflags;
1901	regs->r_rsp = tp->tf_rsp;
1902	regs->r_ss = tp->tf_ss;
1903	if (tp->tf_flags & TF_HASSEGS) {
1904		regs->r_ds = tp->tf_ds;
1905		regs->r_es = tp->tf_es;
1906		regs->r_fs = tp->tf_fs;
1907		regs->r_gs = tp->tf_gs;
1908	} else {
1909		regs->r_ds = 0;
1910		regs->r_es = 0;
1911		regs->r_fs = 0;
1912		regs->r_gs = 0;
1913	}
1914	return (0);
1915}
1916
1917int
1918set_regs(struct thread *td, struct reg *regs)
1919{
1920	struct trapframe *tp;
1921	register_t rflags;
1922
1923	tp = td->td_frame;
1924	rflags = regs->r_rflags & 0xffffffff;
1925	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1926		return (EINVAL);
1927	tp->tf_r15 = regs->r_r15;
1928	tp->tf_r14 = regs->r_r14;
1929	tp->tf_r13 = regs->r_r13;
1930	tp->tf_r12 = regs->r_r12;
1931	tp->tf_r11 = regs->r_r11;
1932	tp->tf_r10 = regs->r_r10;
1933	tp->tf_r9  = regs->r_r9;
1934	tp->tf_r8  = regs->r_r8;
1935	tp->tf_rdi = regs->r_rdi;
1936	tp->tf_rsi = regs->r_rsi;
1937	tp->tf_rbp = regs->r_rbp;
1938	tp->tf_rbx = regs->r_rbx;
1939	tp->tf_rdx = regs->r_rdx;
1940	tp->tf_rcx = regs->r_rcx;
1941	tp->tf_rax = regs->r_rax;
1942	tp->tf_rip = regs->r_rip;
1943	tp->tf_cs = regs->r_cs;
1944	tp->tf_rflags = rflags;
1945	tp->tf_rsp = regs->r_rsp;
1946	tp->tf_ss = regs->r_ss;
1947	if (0) {	/* XXXKIB */
1948		tp->tf_ds = regs->r_ds;
1949		tp->tf_es = regs->r_es;
1950		tp->tf_fs = regs->r_fs;
1951		tp->tf_gs = regs->r_gs;
1952		tp->tf_flags = TF_HASSEGS;
1953		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1954	}
1955	return (0);
1956}
1957
1958/* XXX check all this stuff! */
1959/* externalize from sv_xmm */
1960static void
1961fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1962{
1963	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1964	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1965	int i;
1966
1967	/* pcb -> fpregs */
1968	bzero(fpregs, sizeof(*fpregs));
1969
1970	/* FPU control/status */
1971	penv_fpreg->en_cw = penv_xmm->en_cw;
1972	penv_fpreg->en_sw = penv_xmm->en_sw;
1973	penv_fpreg->en_tw = penv_xmm->en_tw;
1974	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1975	penv_fpreg->en_rip = penv_xmm->en_rip;
1976	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1977	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1978	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1979
1980	/* FPU registers */
1981	for (i = 0; i < 8; ++i)
1982		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1983
1984	/* SSE registers */
1985	for (i = 0; i < 16; ++i)
1986		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1987}
1988
1989/* internalize from fpregs into sv_xmm */
1990static void
1991set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1992{
1993	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1994	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1995	int i;
1996
1997	/* fpregs -> pcb */
1998	/* FPU control/status */
1999	penv_xmm->en_cw = penv_fpreg->en_cw;
2000	penv_xmm->en_sw = penv_fpreg->en_sw;
2001	penv_xmm->en_tw = penv_fpreg->en_tw;
2002	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2003	penv_xmm->en_rip = penv_fpreg->en_rip;
2004	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2005	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2006	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2007
2008	/* FPU registers */
2009	for (i = 0; i < 8; ++i)
2010		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2011
2012	/* SSE registers */
2013	for (i = 0; i < 16; ++i)
2014		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2015}
2016
2017/* externalize from td->pcb */
2018int
2019fill_fpregs(struct thread *td, struct fpreg *fpregs)
2020{
2021
2022	KASSERT(td == curthread || TD_IS_SUSPENDED(td),
2023	    ("not suspended thread %p", td));
2024	fpugetregs(td);
2025	fill_fpregs_xmm(&td->td_pcb->pcb_user_save, fpregs);
2026	return (0);
2027}
2028
2029/* internalize to td->pcb */
2030int
2031set_fpregs(struct thread *td, struct fpreg *fpregs)
2032{
2033
2034	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_user_save);
2035	fpuuserinited(td);
2036	return (0);
2037}
2038
2039/*
2040 * Get machine context.
2041 */
2042int
2043get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2044{
2045	struct pcb *pcb;
2046	struct trapframe *tp;
2047
2048	pcb = td->td_pcb;
2049	tp = td->td_frame;
2050	PROC_LOCK(curthread->td_proc);
2051	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2052	PROC_UNLOCK(curthread->td_proc);
2053	mcp->mc_r15 = tp->tf_r15;
2054	mcp->mc_r14 = tp->tf_r14;
2055	mcp->mc_r13 = tp->tf_r13;
2056	mcp->mc_r12 = tp->tf_r12;
2057	mcp->mc_r11 = tp->tf_r11;
2058	mcp->mc_r10 = tp->tf_r10;
2059	mcp->mc_r9  = tp->tf_r9;
2060	mcp->mc_r8  = tp->tf_r8;
2061	mcp->mc_rdi = tp->tf_rdi;
2062	mcp->mc_rsi = tp->tf_rsi;
2063	mcp->mc_rbp = tp->tf_rbp;
2064	mcp->mc_rbx = tp->tf_rbx;
2065	mcp->mc_rcx = tp->tf_rcx;
2066	mcp->mc_rflags = tp->tf_rflags;
2067	if (flags & GET_MC_CLEAR_RET) {
2068		mcp->mc_rax = 0;
2069		mcp->mc_rdx = 0;
2070		mcp->mc_rflags &= ~PSL_C;
2071	} else {
2072		mcp->mc_rax = tp->tf_rax;
2073		mcp->mc_rdx = tp->tf_rdx;
2074	}
2075	mcp->mc_rip = tp->tf_rip;
2076	mcp->mc_cs = tp->tf_cs;
2077	mcp->mc_rsp = tp->tf_rsp;
2078	mcp->mc_ss = tp->tf_ss;
2079	mcp->mc_ds = tp->tf_ds;
2080	mcp->mc_es = tp->tf_es;
2081	mcp->mc_fs = tp->tf_fs;
2082	mcp->mc_gs = tp->tf_gs;
2083	mcp->mc_flags = tp->tf_flags;
2084	mcp->mc_len = sizeof(*mcp);
2085	get_fpcontext(td, mcp);
2086	mcp->mc_fsbase = pcb->pcb_fsbase;
2087	mcp->mc_gsbase = pcb->pcb_gsbase;
2088	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2089	return (0);
2090}
2091
2092/*
2093 * Set machine context.
2094 *
2095 * However, we don't set any but the user modifiable flags, and we won't
2096 * touch the cs selector.
2097 */
2098int
2099set_mcontext(struct thread *td, const mcontext_t *mcp)
2100{
2101	struct pcb *pcb;
2102	struct trapframe *tp;
2103	long rflags;
2104	int ret;
2105
2106	pcb = td->td_pcb;
2107	tp = td->td_frame;
2108	if (mcp->mc_len != sizeof(*mcp) ||
2109	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2110		return (EINVAL);
2111	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2112	    (tp->tf_rflags & ~PSL_USERCHANGE);
2113	ret = set_fpcontext(td, mcp);
2114	if (ret != 0)
2115		return (ret);
2116	tp->tf_r15 = mcp->mc_r15;
2117	tp->tf_r14 = mcp->mc_r14;
2118	tp->tf_r13 = mcp->mc_r13;
2119	tp->tf_r12 = mcp->mc_r12;
2120	tp->tf_r11 = mcp->mc_r11;
2121	tp->tf_r10 = mcp->mc_r10;
2122	tp->tf_r9  = mcp->mc_r9;
2123	tp->tf_r8  = mcp->mc_r8;
2124	tp->tf_rdi = mcp->mc_rdi;
2125	tp->tf_rsi = mcp->mc_rsi;
2126	tp->tf_rbp = mcp->mc_rbp;
2127	tp->tf_rbx = mcp->mc_rbx;
2128	tp->tf_rdx = mcp->mc_rdx;
2129	tp->tf_rcx = mcp->mc_rcx;
2130	tp->tf_rax = mcp->mc_rax;
2131	tp->tf_rip = mcp->mc_rip;
2132	tp->tf_rflags = rflags;
2133	tp->tf_rsp = mcp->mc_rsp;
2134	tp->tf_ss = mcp->mc_ss;
2135	tp->tf_flags = mcp->mc_flags;
2136	if (tp->tf_flags & TF_HASSEGS) {
2137		tp->tf_ds = mcp->mc_ds;
2138		tp->tf_es = mcp->mc_es;
2139		tp->tf_fs = mcp->mc_fs;
2140		tp->tf_gs = mcp->mc_gs;
2141	}
2142	if (mcp->mc_flags & _MC_HASBASES) {
2143		pcb->pcb_fsbase = mcp->mc_fsbase;
2144		pcb->pcb_gsbase = mcp->mc_gsbase;
2145	}
2146	set_pcb_flags(pcb, PCB_FULL_IRET);
2147	return (0);
2148}
2149
2150static void
2151get_fpcontext(struct thread *td, mcontext_t *mcp)
2152{
2153
2154	mcp->mc_ownedfp = fpugetregs(td);
2155	bcopy(&td->td_pcb->pcb_user_save, &mcp->mc_fpstate,
2156	    sizeof(mcp->mc_fpstate));
2157	mcp->mc_fpformat = fpuformat();
2158}
2159
2160static int
2161set_fpcontext(struct thread *td, const mcontext_t *mcp)
2162{
2163	struct savefpu *fpstate;
2164
2165	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2166		return (0);
2167	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2168		return (EINVAL);
2169	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
2170		/* We don't care what state is left in the FPU or PCB. */
2171		fpstate_drop(td);
2172	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2173	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2174		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2175		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2176		fpusetregs(td, fpstate);
2177	} else
2178		return (EINVAL);
2179	return (0);
2180}
2181
2182void
2183fpstate_drop(struct thread *td)
2184{
2185
2186	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2187	critical_enter();
2188	if (PCPU_GET(fpcurthread) == td)
2189		fpudrop();
2190	/*
2191	 * XXX force a full drop of the fpu.  The above only drops it if we
2192	 * owned it.
2193	 *
2194	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2195	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2196	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2197	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2198	 * have too many layers.
2199	 */
2200	clear_pcb_flags(curthread->td_pcb,
2201	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2202	critical_exit();
2203}
2204
2205int
2206fill_dbregs(struct thread *td, struct dbreg *dbregs)
2207{
2208	struct pcb *pcb;
2209
2210	if (td == NULL) {
2211		dbregs->dr[0] = rdr0();
2212		dbregs->dr[1] = rdr1();
2213		dbregs->dr[2] = rdr2();
2214		dbregs->dr[3] = rdr3();
2215		dbregs->dr[6] = rdr6();
2216		dbregs->dr[7] = rdr7();
2217	} else {
2218		pcb = td->td_pcb;
2219		dbregs->dr[0] = pcb->pcb_dr0;
2220		dbregs->dr[1] = pcb->pcb_dr1;
2221		dbregs->dr[2] = pcb->pcb_dr2;
2222		dbregs->dr[3] = pcb->pcb_dr3;
2223		dbregs->dr[6] = pcb->pcb_dr6;
2224		dbregs->dr[7] = pcb->pcb_dr7;
2225	}
2226	dbregs->dr[4] = 0;
2227	dbregs->dr[5] = 0;
2228	dbregs->dr[8] = 0;
2229	dbregs->dr[9] = 0;
2230	dbregs->dr[10] = 0;
2231	dbregs->dr[11] = 0;
2232	dbregs->dr[12] = 0;
2233	dbregs->dr[13] = 0;
2234	dbregs->dr[14] = 0;
2235	dbregs->dr[15] = 0;
2236	return (0);
2237}
2238
2239int
2240set_dbregs(struct thread *td, struct dbreg *dbregs)
2241{
2242	struct pcb *pcb;
2243	int i;
2244
2245	if (td == NULL) {
2246		load_dr0(dbregs->dr[0]);
2247		load_dr1(dbregs->dr[1]);
2248		load_dr2(dbregs->dr[2]);
2249		load_dr3(dbregs->dr[3]);
2250		load_dr6(dbregs->dr[6]);
2251		load_dr7(dbregs->dr[7]);
2252	} else {
2253		/*
2254		 * Don't let an illegal value for dr7 get set.  Specifically,
2255		 * check for undefined settings.  Setting these bit patterns
2256		 * result in undefined behaviour and can lead to an unexpected
2257		 * TRCTRAP or a general protection fault right here.
2258		 * Upper bits of dr6 and dr7 must not be set
2259		 */
2260		for (i = 0; i < 4; i++) {
2261			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2262				return (EINVAL);
2263			if (td->td_frame->tf_cs == _ucode32sel &&
2264			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2265				return (EINVAL);
2266		}
2267		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2268		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2269			return (EINVAL);
2270
2271		pcb = td->td_pcb;
2272
2273		/*
2274		 * Don't let a process set a breakpoint that is not within the
2275		 * process's address space.  If a process could do this, it
2276		 * could halt the system by setting a breakpoint in the kernel
2277		 * (if ddb was enabled).  Thus, we need to check to make sure
2278		 * that no breakpoints are being enabled for addresses outside
2279		 * process's address space.
2280		 *
2281		 * XXX - what about when the watched area of the user's
2282		 * address space is written into from within the kernel
2283		 * ... wouldn't that still cause a breakpoint to be generated
2284		 * from within kernel mode?
2285		 */
2286
2287		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2288			/* dr0 is enabled */
2289			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2290				return (EINVAL);
2291		}
2292		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2293			/* dr1 is enabled */
2294			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2295				return (EINVAL);
2296		}
2297		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2298			/* dr2 is enabled */
2299			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2300				return (EINVAL);
2301		}
2302		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2303			/* dr3 is enabled */
2304			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2305				return (EINVAL);
2306		}
2307
2308		pcb->pcb_dr0 = dbregs->dr[0];
2309		pcb->pcb_dr1 = dbregs->dr[1];
2310		pcb->pcb_dr2 = dbregs->dr[2];
2311		pcb->pcb_dr3 = dbregs->dr[3];
2312		pcb->pcb_dr6 = dbregs->dr[6];
2313		pcb->pcb_dr7 = dbregs->dr[7];
2314
2315		set_pcb_flags(pcb, PCB_DBREGS);
2316	}
2317
2318	return (0);
2319}
2320
2321void
2322reset_dbregs(void)
2323{
2324
2325	load_dr7(0);	/* Turn off the control bits first */
2326	load_dr0(0);
2327	load_dr1(0);
2328	load_dr2(0);
2329	load_dr3(0);
2330	load_dr6(0);
2331}
2332
2333/*
2334 * Return > 0 if a hardware breakpoint has been hit, and the
2335 * breakpoint was in user space.  Return 0, otherwise.
2336 */
2337int
2338user_dbreg_trap(void)
2339{
2340        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2341        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2342        int nbp;            /* number of breakpoints that triggered */
2343        caddr_t addr[4];    /* breakpoint addresses */
2344        int i;
2345
2346        dr7 = rdr7();
2347        if ((dr7 & 0x000000ff) == 0) {
2348                /*
2349                 * all GE and LE bits in the dr7 register are zero,
2350                 * thus the trap couldn't have been caused by the
2351                 * hardware debug registers
2352                 */
2353                return 0;
2354        }
2355
2356        nbp = 0;
2357        dr6 = rdr6();
2358        bp = dr6 & 0x0000000f;
2359
2360        if (!bp) {
2361                /*
2362                 * None of the breakpoint bits are set meaning this
2363                 * trap was not caused by any of the debug registers
2364                 */
2365                return 0;
2366        }
2367
2368        /*
2369         * at least one of the breakpoints were hit, check to see
2370         * which ones and if any of them are user space addresses
2371         */
2372
2373        if (bp & 0x01) {
2374                addr[nbp++] = (caddr_t)rdr0();
2375        }
2376        if (bp & 0x02) {
2377                addr[nbp++] = (caddr_t)rdr1();
2378        }
2379        if (bp & 0x04) {
2380                addr[nbp++] = (caddr_t)rdr2();
2381        }
2382        if (bp & 0x08) {
2383                addr[nbp++] = (caddr_t)rdr3();
2384        }
2385
2386        for (i = 0; i < nbp; i++) {
2387                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2388                        /*
2389                         * addr[i] is in user space
2390                         */
2391                        return nbp;
2392                }
2393        }
2394
2395        /*
2396         * None of the breakpoints are in user space.
2397         */
2398        return 0;
2399}
2400
2401#ifdef KDB
2402
2403/*
2404 * Provide inb() and outb() as functions.  They are normally only available as
2405 * inline functions, thus cannot be called from the debugger.
2406 */
2407
2408/* silence compiler warnings */
2409u_char inb_(u_short);
2410void outb_(u_short, u_char);
2411
2412u_char
2413inb_(u_short port)
2414{
2415	return inb(port);
2416}
2417
2418void
2419outb_(u_short port, u_char data)
2420{
2421	outb(port, data);
2422}
2423
2424#endif /* KDB */
2425