machdep.c revision 21737
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 *	$FreeBSD: head/sys/amd64/amd64/machdep.c 21737 1997-01-15 20:46:02Z dg $
39 */
40
41#include "npx.h"
42#include "opt_sysvipc.h"
43#include "opt_ddb.h"
44#include "opt_bounce.h"
45#include "opt_machdep.h"
46#include "opt_perfmon.h"
47#include "opt_userconfig.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/sysproto.h>
52#include <sys/signalvar.h>
53#include <sys/kernel.h>
54#include <sys/proc.h>
55#include <sys/buf.h>
56#include <sys/reboot.h>
57#include <sys/conf.h>
58#include <sys/file.h>
59#include <sys/callout.h>
60#include <sys/malloc.h>
61#include <sys/mbuf.h>
62#include <sys/mount.h>
63#include <sys/msgbuf.h>
64#include <sys/ioctl.h>
65#include <sys/sysent.h>
66#include <sys/tty.h>
67#include <sys/sysctl.h>
68#include <sys/vmmeter.h>
69
70#ifdef SYSVSHM
71#include <sys/shm.h>
72#endif
73
74#ifdef SYSVMSG
75#include <sys/msg.h>
76#endif
77
78#ifdef SYSVSEM
79#include <sys/sem.h>
80#endif
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/vm_prot.h>
85#include <vm/lock.h>
86#include <vm/vm_kern.h>
87#include <vm/vm_object.h>
88#include <vm/vm_page.h>
89#include <vm/vm_map.h>
90#include <vm/vm_pager.h>
91#include <vm/vm_extern.h>
92
93#include <sys/user.h>
94#include <sys/exec.h>
95#include <sys/vnode.h>
96
97#include <ddb/ddb.h>
98
99#include <net/netisr.h>
100
101#include <machine/cpu.h>
102#include <machine/npx.h>
103#include <machine/reg.h>
104#include <machine/psl.h>
105#include <machine/clock.h>
106#include <machine/specialreg.h>
107#include <machine/sysarch.h>
108#include <machine/cons.h>
109#include <machine/bootinfo.h>
110#include <machine/md_var.h>
111#ifdef PERFMON
112#include <machine/perfmon.h>
113#endif
114
115#include <i386/isa/isa_device.h>
116#include <i386/isa/rtc.h>
117#include <machine/random.h>
118
119extern void init386 __P((int first));
120extern int ptrace_set_pc __P((struct proc *p, unsigned int addr));
121extern int ptrace_single_step __P((struct proc *p));
122extern int ptrace_write_u __P((struct proc *p, vm_offset_t off, int data));
123extern void dblfault_handler __P((void));
124
125extern void identifycpu(void);	/* XXX header file */
126extern void earlysetcpuclass(void);	/* same header file */
127
128static void cpu_startup __P((void *));
129SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
130
131
132#ifdef BOUNCE_BUFFERS
133extern char *bouncememory;
134extern int maxbkva;
135#ifdef BOUNCEPAGES
136int	bouncepages = BOUNCEPAGES;
137#else
138int	bouncepages = 0;
139#endif
140#endif	/* BOUNCE_BUFFERS */
141
142extern int freebufspace;
143int	msgbufmapped = 0;		/* set when safe to use msgbuf */
144int _udatasel, _ucodesel;
145u_int	atdevbase;
146
147
148int physmem = 0;
149int cold = 1;
150
151static int
152sysctl_hw_physmem SYSCTL_HANDLER_ARGS
153{
154	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
155	return (error);
156}
157
158SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
159	0, 0, sysctl_hw_physmem, "I", "");
160
161static int
162sysctl_hw_usermem SYSCTL_HANDLER_ARGS
163{
164	int error = sysctl_handle_int(oidp, 0,
165		ctob(physmem - cnt.v_wire_count), req);
166	return (error);
167}
168
169SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
170	0, 0, sysctl_hw_usermem, "I", "");
171
172int boothowto = 0, bootverbose = 0, Maxmem = 0;
173static int	badpages = 0;
174long dumplo;
175extern int bootdev;
176
177vm_offset_t phys_avail[10];
178
179/* must be 2 less so 0 0 can signal end of chunks */
180#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
181
182static void setup_netisrs __P((struct linker_set *)); /* XXX declare elsewhere */
183
184static vm_offset_t buffer_sva, buffer_eva;
185vm_offset_t clean_sva, clean_eva;
186static vm_offset_t pager_sva, pager_eva;
187extern struct linker_set netisr_set;
188
189#define offsetof(type, member)	((size_t)(&((type *)0)->member))
190
191static void
192cpu_startup(dummy)
193	void *dummy;
194{
195	register unsigned i;
196	register caddr_t v;
197	vm_offset_t maxaddr;
198	vm_size_t size = 0;
199	int firstaddr;
200	vm_offset_t minaddr;
201
202	if (boothowto & RB_VERBOSE)
203		bootverbose++;
204
205	/*
206	 * Good {morning,afternoon,evening,night}.
207	 */
208	printf(version);
209	earlysetcpuclass();
210	startrtclock();
211	identifycpu();
212#ifdef PERFMON
213	perfmon_init();
214#endif
215	printf("real memory  = %d (%dK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
216	/*
217	 * Display any holes after the first chunk of extended memory.
218	 */
219	if (badpages != 0) {
220		int indx = 1;
221
222		/*
223		 * XXX skip reporting ISA hole & unmanaged kernel memory
224		 */
225		if (phys_avail[0] == PAGE_SIZE)
226			indx += 2;
227
228		printf("Physical memory hole(s):\n");
229		for (; phys_avail[indx + 1] != 0; indx += 2) {
230			int size = phys_avail[indx + 1] - phys_avail[indx];
231
232			printf("0x%08lx - 0x%08lx, %d bytes (%d pages)\n", phys_avail[indx],
233			    phys_avail[indx + 1] - 1, size, size / PAGE_SIZE);
234		}
235	}
236
237	/*
238	 * Quickly wire in netisrs.
239	 */
240	setup_netisrs(&netisr_set);
241
242	/*
243	 * Allocate space for system data structures.
244	 * The first available kernel virtual address is in "v".
245	 * As pages of kernel virtual memory are allocated, "v" is incremented.
246	 * As pages of memory are allocated and cleared,
247	 * "firstaddr" is incremented.
248	 * An index into the kernel page table corresponding to the
249	 * virtual memory address maintained in "v" is kept in "mapaddr".
250	 */
251
252	/*
253	 * Make two passes.  The first pass calculates how much memory is
254	 * needed and allocates it.  The second pass assigns virtual
255	 * addresses to the various data structures.
256	 */
257	firstaddr = 0;
258again:
259	v = (caddr_t)firstaddr;
260
261#define	valloc(name, type, num) \
262	    (name) = (type *)v; v = (caddr_t)((name)+(num))
263#define	valloclim(name, type, num, lim) \
264	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
265	valloc(callout, struct callout, ncallout);
266#ifdef SYSVSHM
267	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
268#endif
269#ifdef SYSVSEM
270	valloc(sema, struct semid_ds, seminfo.semmni);
271	valloc(sem, struct sem, seminfo.semmns);
272	/* This is pretty disgusting! */
273	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
274#endif
275#ifdef SYSVMSG
276	valloc(msgpool, char, msginfo.msgmax);
277	valloc(msgmaps, struct msgmap, msginfo.msgseg);
278	valloc(msghdrs, struct msg, msginfo.msgtql);
279	valloc(msqids, struct msqid_ds, msginfo.msgmni);
280#endif
281
282	if (nbuf == 0) {
283		nbuf = 30;
284		if( physmem > 1024)
285			nbuf += min((physmem - 1024) / 8, 2048);
286	}
287	nswbuf = max(min(nbuf/4, 128), 16);
288
289	valloc(swbuf, struct buf, nswbuf);
290	valloc(buf, struct buf, nbuf);
291
292#ifdef BOUNCE_BUFFERS
293	/*
294	 * If there is more than 16MB of memory, allocate some bounce buffers
295	 */
296	if (Maxmem > 4096) {
297		if (bouncepages == 0) {
298			bouncepages = 64;
299			bouncepages += ((Maxmem - 4096) / 2048) * 32;
300		}
301		v = (caddr_t)((vm_offset_t)round_page(v));
302		valloc(bouncememory, char, bouncepages * PAGE_SIZE);
303	}
304#endif
305
306	/*
307	 * End of first pass, size has been calculated so allocate memory
308	 */
309	if (firstaddr == 0) {
310		size = (vm_size_t)(v - firstaddr);
311		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
312		if (firstaddr == 0)
313			panic("startup: no room for tables");
314		goto again;
315	}
316
317	/*
318	 * End of second pass, addresses have been assigned
319	 */
320	if ((vm_size_t)(v - firstaddr) != size)
321		panic("startup: table size inconsistency");
322
323#ifdef BOUNCE_BUFFERS
324	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
325			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) +
326				maxbkva + pager_map_size, TRUE);
327	io_map = kmem_suballoc(clean_map, &minaddr, &maxaddr, maxbkva, FALSE);
328#else
329	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
330			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size, TRUE);
331#endif
332	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
333				(nbuf*BKVASIZE), TRUE);
334	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
335				(nswbuf*MAXPHYS) + pager_map_size, TRUE);
336	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
337				(16*ARG_MAX), TRUE);
338	exech_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
339				(16*PAGE_SIZE), TRUE);
340	u_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
341				(maxproc*UPAGES*PAGE_SIZE), FALSE);
342
343	/*
344	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
345	 * we use the more space efficient malloc in place of kmem_alloc.
346	 */
347	{
348		vm_offset_t mb_map_size;
349
350		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
351		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
352		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
353		bzero(mclrefcnt, mb_map_size / MCLBYTES);
354		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
355			mb_map_size, FALSE);
356	}
357
358	/*
359	 * Initialize callouts
360	 */
361	callfree = callout;
362	for (i = 1; i < ncallout; i++)
363		callout[i-1].c_next = &callout[i];
364
365#if defined(USERCONFIG)
366#if defined(USERCONFIG_BOOT)
367	if (1) {
368#else
369        if (boothowto & RB_CONFIG) {
370#endif
371		userconfig();
372		cninit();	/* the preferred console may have changed */
373	}
374#endif
375
376#ifdef BOUNCE_BUFFERS
377	/*
378	 * init bounce buffers
379	 */
380	vm_bounce_init();
381#endif
382
383	printf("avail memory = %d (%dK bytes)\n", ptoa(cnt.v_free_count),
384	    ptoa(cnt.v_free_count) / 1024);
385
386	/*
387	 * Set up buffers, so they can be used to read disk labels.
388	 */
389	bufinit();
390	vm_pager_bufferinit();
391}
392
393int
394register_netisr(num, handler)
395	int num;
396	netisr_t *handler;
397{
398
399	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
400		printf("register_netisr: bad isr number: %d\n", num);
401		return (EINVAL);
402	}
403	netisrs[num] = handler;
404	return (0);
405}
406
407static void
408setup_netisrs(ls)
409	struct linker_set *ls;
410{
411	int i;
412	const struct netisrtab *nit;
413
414	for(i = 0; ls->ls_items[i]; i++) {
415		nit = (const struct netisrtab *)ls->ls_items[i];
416		register_netisr(nit->nit_num, nit->nit_isr);
417	}
418}
419
420/*
421 * Send an interrupt to process.
422 *
423 * Stack is set up to allow sigcode stored
424 * at top to call routine, followed by kcall
425 * to sigreturn routine below.  After sigreturn
426 * resets the signal mask, the stack, and the
427 * frame pointer, it returns to the user
428 * specified pc, psl.
429 */
430void
431sendsig(catcher, sig, mask, code)
432	sig_t catcher;
433	int sig, mask;
434	u_long code;
435{
436	register struct proc *p = curproc;
437	register int *regs;
438	register struct sigframe *fp;
439	struct sigframe sf;
440	struct sigacts *psp = p->p_sigacts;
441	int oonstack;
442
443	regs = p->p_md.md_regs;
444        oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
445	/*
446	 * Allocate and validate space for the signal handler context.
447	 */
448        if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
449	    (psp->ps_sigonstack & sigmask(sig))) {
450		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
451		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
452		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
453	} else {
454		fp = (struct sigframe *)regs[tESP] - 1;
455	}
456
457	/*
458	 * grow() will return FALSE if the fp will not fit inside the stack
459	 *	and the stack can not be grown. useracc will return FALSE
460	 *	if access is denied.
461	 */
462	if ((grow(p, (int)fp) == FALSE) ||
463	    (useracc((caddr_t)fp, sizeof (struct sigframe), B_WRITE) == FALSE)) {
464		/*
465		 * Process has trashed its stack; give it an illegal
466		 * instruction to halt it in its tracks.
467		 */
468		SIGACTION(p, SIGILL) = SIG_DFL;
469		sig = sigmask(SIGILL);
470		p->p_sigignore &= ~sig;
471		p->p_sigcatch &= ~sig;
472		p->p_sigmask &= ~sig;
473		psignal(p, SIGILL);
474		return;
475	}
476
477	/*
478	 * Build the argument list for the signal handler.
479	 */
480	if (p->p_sysent->sv_sigtbl) {
481		if (sig < p->p_sysent->sv_sigsize)
482			sig = p->p_sysent->sv_sigtbl[sig];
483		else
484			sig = p->p_sysent->sv_sigsize + 1;
485	}
486	sf.sf_signum = sig;
487	sf.sf_code = code;
488	sf.sf_scp = &fp->sf_sc;
489	sf.sf_addr = (char *) regs[tERR];
490	sf.sf_handler = catcher;
491
492	/* save scratch registers */
493	sf.sf_sc.sc_eax = regs[tEAX];
494	sf.sf_sc.sc_ebx = regs[tEBX];
495	sf.sf_sc.sc_ecx = regs[tECX];
496	sf.sf_sc.sc_edx = regs[tEDX];
497	sf.sf_sc.sc_esi = regs[tESI];
498	sf.sf_sc.sc_edi = regs[tEDI];
499	sf.sf_sc.sc_cs = regs[tCS];
500	sf.sf_sc.sc_ds = regs[tDS];
501	sf.sf_sc.sc_ss = regs[tSS];
502	sf.sf_sc.sc_es = regs[tES];
503	sf.sf_sc.sc_isp = regs[tISP];
504
505	/*
506	 * Build the signal context to be used by sigreturn.
507	 */
508	sf.sf_sc.sc_onstack = oonstack;
509	sf.sf_sc.sc_mask = mask;
510	sf.sf_sc.sc_sp = regs[tESP];
511	sf.sf_sc.sc_fp = regs[tEBP];
512	sf.sf_sc.sc_pc = regs[tEIP];
513	sf.sf_sc.sc_ps = regs[tEFLAGS];
514
515	/*
516	 * Copy the sigframe out to the user's stack.
517	 */
518	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
519		/*
520		 * Something is wrong with the stack pointer.
521		 * ...Kill the process.
522		 */
523		sigexit(p, SIGILL);
524	};
525
526	regs[tESP] = (int)fp;
527	regs[tEIP] = (int)(((char *)PS_STRINGS) - *(p->p_sysent->sv_szsigcode));
528	regs[tEFLAGS] &= ~PSL_VM;
529	regs[tCS] = _ucodesel;
530	regs[tDS] = _udatasel;
531	regs[tES] = _udatasel;
532	regs[tSS] = _udatasel;
533}
534
535/*
536 * System call to cleanup state after a signal
537 * has been taken.  Reset signal mask and
538 * stack state from context left by sendsig (above).
539 * Return to previous pc and psl as specified by
540 * context left by sendsig. Check carefully to
541 * make sure that the user has not modified the
542 * state to gain improper privileges.
543 */
544int
545sigreturn(p, uap, retval)
546	struct proc *p;
547	struct sigreturn_args /* {
548		struct sigcontext *sigcntxp;
549	} */ *uap;
550	int *retval;
551{
552	register struct sigcontext *scp;
553	register struct sigframe *fp;
554	register int *regs = p->p_md.md_regs;
555	int eflags;
556
557	/*
558	 * (XXX old comment) regs[tESP] points to the return address.
559	 * The user scp pointer is above that.
560	 * The return address is faked in the signal trampoline code
561	 * for consistency.
562	 */
563	scp = uap->sigcntxp;
564	fp = (struct sigframe *)
565	     ((caddr_t)scp - offsetof(struct sigframe, sf_sc));
566
567	if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
568		return(EINVAL);
569
570	/*
571	 * Don't allow users to change privileged or reserved flags.
572	 */
573#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
574	eflags = scp->sc_ps;
575	/*
576	 * XXX do allow users to change the privileged flag PSL_RF.  The
577	 * cpu sets PSL_RF in tf_eflags for faults.  Debuggers should
578	 * sometimes set it there too.  tf_eflags is kept in the signal
579	 * context during signal handling and there is no other place
580	 * to remember it, so the PSL_RF bit may be corrupted by the
581	 * signal handler without us knowing.  Corruption of the PSL_RF
582	 * bit at worst causes one more or one less debugger trap, so
583	 * allowing it is fairly harmless.
584	 */
585	if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs[tEFLAGS] & ~PSL_RF)) {
586#ifdef DEBUG
587    		printf("sigreturn: eflags = 0x%x\n", eflags);
588#endif
589    		return(EINVAL);
590	}
591
592	/*
593	 * Don't allow users to load a valid privileged %cs.  Let the
594	 * hardware check for invalid selectors, excess privilege in
595	 * other selectors, invalid %eip's and invalid %esp's.
596	 */
597#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
598	if (!CS_SECURE(scp->sc_cs)) {
599#ifdef DEBUG
600    		printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
601#endif
602		trapsignal(p, SIGBUS, T_PROTFLT);
603		return(EINVAL);
604	}
605
606	/* restore scratch registers */
607	regs[tEAX] = scp->sc_eax;
608	regs[tEBX] = scp->sc_ebx;
609	regs[tECX] = scp->sc_ecx;
610	regs[tEDX] = scp->sc_edx;
611	regs[tESI] = scp->sc_esi;
612	regs[tEDI] = scp->sc_edi;
613	regs[tCS] = scp->sc_cs;
614	regs[tDS] = scp->sc_ds;
615	regs[tES] = scp->sc_es;
616	regs[tSS] = scp->sc_ss;
617	regs[tISP] = scp->sc_isp;
618
619	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
620		return(EINVAL);
621
622	if (scp->sc_onstack & 01)
623		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
624	else
625		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
626	p->p_sigmask = scp->sc_mask & ~sigcantmask;
627	regs[tEBP] = scp->sc_fp;
628	regs[tESP] = scp->sc_sp;
629	regs[tEIP] = scp->sc_pc;
630	regs[tEFLAGS] = eflags;
631	return(EJUSTRETURN);
632}
633
634/*
635 * Machine depdnetnt boot() routine
636 *
637 * I haven't seen anything too put here yet
638 * Possibly some stuff might be grafted back here from boot()
639 */
640void
641cpu_boot(int howto)
642{
643}
644
645/*
646 * Shutdown the CPU as much as possible
647 */
648void
649cpu_halt(void)
650{
651	for (;;)
652		__asm__ ("hlt");
653}
654
655/*
656 * Clear registers on exec
657 */
658void
659setregs(p, entry, stack)
660	struct proc *p;
661	u_long entry;
662	u_long stack;
663{
664	int *regs = p->p_md.md_regs;
665
666#ifdef USER_LDT
667	struct pcb *pcb = &p->p_addr->u_pcb;
668
669	/* was i386_user_cleanup() in NetBSD */
670	if (pcb->pcb_ldt) {
671		if (pcb == curpcb)
672			lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
673		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
674			pcb->pcb_ldt_len * sizeof(union descriptor));
675		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
676 	}
677#endif
678
679	bzero(regs, sizeof(struct trapframe));
680	regs[tEIP] = entry;
681	regs[tESP] = stack;
682	regs[tEFLAGS] = PSL_USER | (regs[tEFLAGS] & PSL_T);
683	regs[tSS] = _udatasel;
684	regs[tDS] = _udatasel;
685	regs[tES] = _udatasel;
686	regs[tCS] = _ucodesel;
687
688	p->p_addr->u_pcb.pcb_flags = 0;	/* no fp at all */
689	load_cr0(rcr0() | CR0_TS);	/* start emulating */
690#if	NNPX > 0
691	npxinit(__INITIAL_NPXCW__);
692#endif	/* NNPX > 0 */
693}
694
695static int
696sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
697{
698	int error;
699	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
700		req);
701	if (!error && req->newptr)
702		resettodr();
703	return (error);
704}
705
706SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
707	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
708
709SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
710	CTLFLAG_RW, &disable_rtc_set, 0, "");
711
712SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
713	CTLFLAG_RD, &bootinfo, bootinfo, "");
714
715SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
716	CTLFLAG_RW, &wall_cmos_clock, 0, "");
717
718/*
719 * Initialize 386 and configure to run kernel
720 */
721
722/*
723 * Initialize segments & interrupt table
724 */
725
726int currentldt;
727int _default_ldt;
728union descriptor gdt[NGDT];		/* global descriptor table */
729struct gate_descriptor idt[NIDT];	/* interrupt descriptor table */
730union descriptor ldt[NLDT];		/* local descriptor table */
731
732static struct i386tss dblfault_tss;
733static char dblfault_stack[PAGE_SIZE];
734
735extern  struct user *proc0paddr;
736
737/* software prototypes -- in more palatable form */
738struct soft_segment_descriptor gdt_segs[] = {
739/* GNULL_SEL	0 Null Descriptor */
740{	0x0,			/* segment base address  */
741	0x0,			/* length */
742	0,			/* segment type */
743	0,			/* segment descriptor priority level */
744	0,			/* segment descriptor present */
745	0, 0,
746	0,			/* default 32 vs 16 bit size */
747	0  			/* limit granularity (byte/page units)*/ },
748/* GCODE_SEL	1 Code Descriptor for kernel */
749{	0x0,			/* segment base address  */
750	0xfffff,		/* length - all address space */
751	SDT_MEMERA,		/* segment type */
752	0,			/* segment descriptor priority level */
753	1,			/* segment descriptor present */
754	0, 0,
755	1,			/* default 32 vs 16 bit size */
756	1  			/* limit granularity (byte/page units)*/ },
757/* GDATA_SEL	2 Data Descriptor for kernel */
758{	0x0,			/* segment base address  */
759	0xfffff,		/* length - all address space */
760	SDT_MEMRWA,		/* segment type */
761	0,			/* segment descriptor priority level */
762	1,			/* segment descriptor present */
763	0, 0,
764	1,			/* default 32 vs 16 bit size */
765	1  			/* limit granularity (byte/page units)*/ },
766/* GLDT_SEL	3 LDT Descriptor */
767{	(int) ldt,		/* segment base address  */
768	sizeof(ldt)-1,		/* length - all address space */
769	SDT_SYSLDT,		/* segment type */
770	0,			/* segment descriptor priority level */
771	1,			/* segment descriptor present */
772	0, 0,
773	0,			/* unused - default 32 vs 16 bit size */
774	0  			/* limit granularity (byte/page units)*/ },
775/* GTGATE_SEL	4 Null Descriptor - Placeholder */
776{	0x0,			/* segment base address  */
777	0x0,			/* length - all address space */
778	0,			/* segment type */
779	0,			/* segment descriptor priority level */
780	0,			/* segment descriptor present */
781	0, 0,
782	0,			/* default 32 vs 16 bit size */
783	0  			/* limit granularity (byte/page units)*/ },
784/* GPANIC_SEL	5 Panic Tss Descriptor */
785{	(int) &dblfault_tss,	/* segment base address  */
786	sizeof(struct i386tss)-1,/* length - all address space */
787	SDT_SYS386TSS,		/* segment type */
788	0,			/* segment descriptor priority level */
789	1,			/* segment descriptor present */
790	0, 0,
791	0,			/* unused - default 32 vs 16 bit size */
792	0  			/* limit granularity (byte/page units)*/ },
793/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
794{	(int) kstack,		/* segment base address  */
795	sizeof(struct i386tss)-1,/* length - all address space */
796	SDT_SYS386TSS,		/* segment type */
797	0,			/* segment descriptor priority level */
798	1,			/* segment descriptor present */
799	0, 0,
800	0,			/* unused - default 32 vs 16 bit size */
801	0  			/* limit granularity (byte/page units)*/ },
802/* GUSERLDT_SEL	7 User LDT Descriptor per process */
803{	(int) ldt,		/* segment base address  */
804	(512 * sizeof(union descriptor)-1),		/* length */
805	SDT_SYSLDT,		/* segment type */
806	0,			/* segment descriptor priority level */
807	1,			/* segment descriptor present */
808	0, 0,
809	0,			/* unused - default 32 vs 16 bit size */
810	0  			/* limit granularity (byte/page units)*/ },
811/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
812{	0,			/* segment base address (overwritten by APM)  */
813	0xfffff,		/* length */
814	SDT_MEMERA,		/* segment type */
815	0,			/* segment descriptor priority level */
816	1,			/* segment descriptor present */
817	0, 0,
818	1,			/* default 32 vs 16 bit size */
819	1  			/* limit granularity (byte/page units)*/ },
820/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
821{	0,			/* segment base address (overwritten by APM)  */
822	0xfffff,		/* length */
823	SDT_MEMERA,		/* segment type */
824	0,			/* segment descriptor priority level */
825	1,			/* segment descriptor present */
826	0, 0,
827	0,			/* default 32 vs 16 bit size */
828	1  			/* limit granularity (byte/page units)*/ },
829/* GAPMDATA_SEL	10 APM BIOS 32-bit interface (Data) */
830{	0,			/* segment base address (overwritten by APM) */
831	0xfffff,		/* length */
832	SDT_MEMRWA,		/* segment type */
833	0,			/* segment descriptor priority level */
834	1,			/* segment descriptor present */
835	0, 0,
836	1,			/* default 32 vs 16 bit size */
837	1  			/* limit granularity (byte/page units)*/ },
838};
839
840static struct soft_segment_descriptor ldt_segs[] = {
841	/* Null Descriptor - overwritten by call gate */
842{	0x0,			/* segment base address  */
843	0x0,			/* length - all address space */
844	0,			/* segment type */
845	0,			/* segment descriptor priority level */
846	0,			/* segment descriptor present */
847	0, 0,
848	0,			/* default 32 vs 16 bit size */
849	0  			/* limit granularity (byte/page units)*/ },
850	/* Null Descriptor - overwritten by call gate */
851{	0x0,			/* segment base address  */
852	0x0,			/* length - all address space */
853	0,			/* segment type */
854	0,			/* segment descriptor priority level */
855	0,			/* segment descriptor present */
856	0, 0,
857	0,			/* default 32 vs 16 bit size */
858	0  			/* limit granularity (byte/page units)*/ },
859	/* Null Descriptor - overwritten by call gate */
860{	0x0,			/* segment base address  */
861	0x0,			/* length - all address space */
862	0,			/* segment type */
863	0,			/* segment descriptor priority level */
864	0,			/* segment descriptor present */
865	0, 0,
866	0,			/* default 32 vs 16 bit size */
867	0  			/* limit granularity (byte/page units)*/ },
868	/* Code Descriptor for user */
869{	0x0,			/* segment base address  */
870	0xfffff,		/* length - all address space */
871	SDT_MEMERA,		/* segment type */
872	SEL_UPL,		/* segment descriptor priority level */
873	1,			/* segment descriptor present */
874	0, 0,
875	1,			/* default 32 vs 16 bit size */
876	1  			/* limit granularity (byte/page units)*/ },
877	/* Data Descriptor for user */
878{	0x0,			/* segment base address  */
879	0xfffff,		/* length - all address space */
880	SDT_MEMRWA,		/* segment type */
881	SEL_UPL,		/* segment descriptor priority level */
882	1,			/* segment descriptor present */
883	0, 0,
884	1,			/* default 32 vs 16 bit size */
885	1  			/* limit granularity (byte/page units)*/ },
886};
887
888void
889setidt(idx, func, typ, dpl, selec)
890	int idx;
891	inthand_t *func;
892	int typ;
893	int dpl;
894	int selec;
895{
896	struct gate_descriptor *ip = idt + idx;
897
898	ip->gd_looffset = (int)func;
899	ip->gd_selector = selec;
900	ip->gd_stkcpy = 0;
901	ip->gd_xx = 0;
902	ip->gd_type = typ;
903	ip->gd_dpl = dpl;
904	ip->gd_p = 1;
905	ip->gd_hioffset = ((int)func)>>16 ;
906}
907
908#define	IDTVEC(name)	__CONCAT(X,name)
909
910extern inthand_t
911	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
912	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
913	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
914	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
915	IDTVEC(syscall), IDTVEC(int0x80_syscall);
916
917void
918sdtossd(sd, ssd)
919	struct segment_descriptor *sd;
920	struct soft_segment_descriptor *ssd;
921{
922	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
923	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
924	ssd->ssd_type  = sd->sd_type;
925	ssd->ssd_dpl   = sd->sd_dpl;
926	ssd->ssd_p     = sd->sd_p;
927	ssd->ssd_def32 = sd->sd_def32;
928	ssd->ssd_gran  = sd->sd_gran;
929}
930
931void
932init386(first)
933	int first;
934{
935	int x;
936	unsigned biosbasemem, biosextmem;
937	struct gate_descriptor *gdp;
938	int gsel_tss;
939	struct isa_device *idp;
940	/* table descriptors - used to load tables by microp */
941	struct region_descriptor r_gdt, r_idt;
942	int	pagesinbase, pagesinext;
943	int	target_page, pa_indx;
944	int	off;
945
946	proc0.p_addr = proc0paddr;
947
948	atdevbase = ISA_HOLE_START + KERNBASE;
949
950	/*
951	 * Initialize the console before we print anything out.
952	 */
953	cninit();
954
955	/*
956	 * make gdt memory segments, the code segment goes up to end of the
957	 * page with etext in it, the data segment goes to the end of
958	 * the address space
959	 */
960	/*
961	 * XXX text protection is temporarily (?) disabled.  The limit was
962	 * i386_btop(round_page(etext)) - 1.
963	 */
964	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
965	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
966	for (x = 0; x < NGDT; x++)
967		ssdtosd(&gdt_segs[x], &gdt[x].sd);
968
969	/* make ldt memory segments */
970	/*
971	 * The data segment limit must not cover the user area because we
972	 * don't want the user area to be writable in copyout() etc. (page
973	 * level protection is lost in kernel mode on 386's).  Also, we
974	 * don't want the user area to be writable directly (page level
975	 * protection of the user area is not available on 486's with
976	 * CR0_WP set, because there is no user-read/kernel-write mode).
977	 *
978	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
979	 * should be spelled ...MAX_USER...
980	 */
981#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
982	/*
983	 * The code segment limit has to cover the user area until we move
984	 * the signal trampoline out of the user area.  This is safe because
985	 * the code segment cannot be written to directly.
986	 */
987#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
988	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
989	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
990	/* Note. eventually want private ldts per process */
991	for (x = 0; x < NLDT; x++)
992		ssdtosd(&ldt_segs[x], &ldt[x].sd);
993
994	/* exceptions */
995	for (x = 0; x < NIDT; x++)
996		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
997	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
998	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
999	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1000 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1001	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1002	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1003	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1004	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1005	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1006	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1007	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1008	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1009	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1010	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1011	setidt(14, &IDTVEC(page),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1012	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1013	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1014	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1015	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1016 	setidt(0x80, &IDTVEC(int0x80_syscall),
1017			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1018
1019#include	"isa.h"
1020#if	NISA >0
1021	isa_defaultirq();
1022#endif
1023	rand_initialize();
1024
1025	r_gdt.rd_limit = sizeof(gdt) - 1;
1026	r_gdt.rd_base =  (int) gdt;
1027	lgdt(&r_gdt);
1028
1029	r_idt.rd_limit = sizeof(idt) - 1;
1030	r_idt.rd_base = (int) idt;
1031	lidt(&r_idt);
1032
1033	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1034	lldt(_default_ldt);
1035	currentldt = _default_ldt;
1036
1037#ifdef DDB
1038	kdb_init();
1039	if (boothowto & RB_KDB)
1040		Debugger("Boot flags requested debugger");
1041#endif
1042
1043	/* Use BIOS values stored in RTC CMOS RAM, since probing
1044	 * breaks certain 386 AT relics.
1045	 */
1046	biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
1047	biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
1048
1049	/*
1050	 * If BIOS tells us that it has more than 640k in the basemem,
1051	 *	don't believe it - set it to 640k.
1052	 */
1053	if (biosbasemem > 640) {
1054		printf("Preposterous RTC basemem of %dK, truncating to 640K\n",
1055		       biosbasemem);
1056		biosbasemem = 640;
1057	}
1058	if (bootinfo.bi_memsizes_valid && bootinfo.bi_basemem > 640) {
1059		printf("Preposterous BIOS basemem of %dK, truncating to 640K\n",
1060		       bootinfo.bi_basemem);
1061		bootinfo.bi_basemem = 640;
1062	}
1063
1064	/*
1065	 * Warn if the official BIOS interface disagrees with the RTC
1066	 * interface used above about the amount of base memory or the
1067	 * amount of extended memory.  Prefer the BIOS value for the base
1068	 * memory.  This is necessary for machines that `steal' base
1069	 * memory for use as BIOS memory, at least if we are going to use
1070	 * the BIOS for apm.  Prefer the RTC value for extended memory.
1071	 * Eventually the hackish interface shouldn't even be looked at.
1072	 */
1073	if (bootinfo.bi_memsizes_valid) {
1074		if (bootinfo.bi_basemem != biosbasemem) {
1075			vm_offset_t pa;
1076
1077			printf(
1078	"BIOS basemem (%ldK) != RTC basemem (%dK), setting to BIOS value\n",
1079			       bootinfo.bi_basemem, biosbasemem);
1080			biosbasemem = bootinfo.bi_basemem;
1081
1082			/*
1083			 * XXX if biosbasemem is now < 640, there is `hole'
1084			 * between the end of base memory and the start of
1085			 * ISA memory.  The hole may be empty or it may
1086			 * contain BIOS code or data.  Map it read/write so
1087			 * that the BIOS can write to it.  (Memory from 0 to
1088			 * the physical end of the kernel is mapped read-only
1089			 * to begin with and then parts of it are remapped.
1090			 * The parts that aren't remapped form holes that
1091			 * remain read-only and are unused by the kernel.
1092			 * The base memory area is below the physical end of
1093			 * the kernel and right now forms a read-only hole.
1094			 * The part of it from 0 to
1095			 * (trunc_page(biosbasemem * 1024) - 1) will be
1096			 * remapped and used by the kernel later.)
1097			 *
1098			 * This code is similar to the code used in
1099			 * pmap_mapdev, but since no memory needs to be
1100			 * allocated we simply change the mapping.
1101			 */
1102			for (pa = trunc_page(biosbasemem * 1024);
1103			     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1104				unsigned *pte;
1105
1106				pte = (unsigned *)vtopte(pa + KERNBASE);
1107				*pte = pa | PG_RW | PG_V;
1108			}
1109		}
1110		if (bootinfo.bi_extmem != biosextmem)
1111			printf("BIOS extmem (%ldK) != RTC extmem (%dK)\n",
1112			       bootinfo.bi_extmem, biosextmem);
1113	}
1114
1115	pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
1116	pagesinext = biosextmem * 1024 / PAGE_SIZE;
1117
1118	/*
1119	 * Special hack for chipsets that still remap the 384k hole when
1120	 *	there's 16MB of memory - this really confuses people that
1121	 *	are trying to use bus mastering ISA controllers with the
1122	 *	"16MB limit"; they only have 16MB, but the remapping puts
1123	 *	them beyond the limit.
1124	 */
1125	/*
1126	 * If extended memory is between 15-16MB (16-17MB phys address range),
1127	 *	chop it to 15MB.
1128	 */
1129	if ((pagesinext > 3840) && (pagesinext < 4096))
1130		pagesinext = 3840;
1131
1132	/*
1133	 * Maxmem isn't the "maximum memory", it's one larger than the
1134	 * highest page of the physical address space.  It should be
1135	 * called something like "Maxphyspage".
1136	 */
1137	Maxmem = pagesinext + 0x100000/PAGE_SIZE;
1138
1139#ifdef MAXMEM
1140	Maxmem = MAXMEM/4;
1141#endif
1142
1143	idp = find_isadev(isa_devtab_null, &npxdriver, 0);
1144	if (idp != NULL && idp->id_msize != 0)
1145		Maxmem = idp->id_msize / 4;
1146
1147	/* call pmap initialization to make new kernel address space */
1148	pmap_bootstrap (first, 0);
1149
1150	/*
1151	 * Size up each available chunk of physical memory.
1152	 */
1153
1154	/*
1155	 * We currently don't bother testing base memory.
1156	 * XXX  ...but we probably should.
1157	 */
1158	pa_indx = 0;
1159	badpages = 0;
1160	if (pagesinbase > 1) {
1161		phys_avail[pa_indx++] = PAGE_SIZE;	/* skip first page of memory */
1162		phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
1163		physmem = pagesinbase - 1;
1164	} else {
1165		/* point at first chunk end */
1166		pa_indx++;
1167	}
1168
1169	for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
1170		int tmp, page_bad = FALSE;
1171
1172		/*
1173		 * map page into kernel: valid, read/write, non-cacheable
1174		 */
1175		*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
1176		invltlb();
1177
1178		tmp = *(int *)CADDR1;
1179		/*
1180		 * Test for alternating 1's and 0's
1181		 */
1182		*(volatile int *)CADDR1 = 0xaaaaaaaa;
1183		if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
1184			page_bad = TRUE;
1185		}
1186		/*
1187		 * Test for alternating 0's and 1's
1188		 */
1189		*(volatile int *)CADDR1 = 0x55555555;
1190		if (*(volatile int *)CADDR1 != 0x55555555) {
1191			page_bad = TRUE;
1192		}
1193		/*
1194		 * Test for all 1's
1195		 */
1196		*(volatile int *)CADDR1 = 0xffffffff;
1197		if (*(volatile int *)CADDR1 != 0xffffffff) {
1198			page_bad = TRUE;
1199		}
1200		/*
1201		 * Test for all 0's
1202		 */
1203		*(volatile int *)CADDR1 = 0x0;
1204		if (*(volatile int *)CADDR1 != 0x0) {
1205			/*
1206			 * test of page failed
1207			 */
1208			page_bad = TRUE;
1209		}
1210		/*
1211		 * Restore original value.
1212		 */
1213		*(int *)CADDR1 = tmp;
1214
1215		/*
1216		 * Adjust array of valid/good pages.
1217		 */
1218		if (page_bad == FALSE) {
1219			/*
1220			 * If this good page is a continuation of the
1221			 * previous set of good pages, then just increase
1222			 * the end pointer. Otherwise start a new chunk.
1223			 * Note that "end" points one higher than end,
1224			 * making the range >= start and < end.
1225			 */
1226			if (phys_avail[pa_indx] == target_page) {
1227				phys_avail[pa_indx] += PAGE_SIZE;
1228			} else {
1229				pa_indx++;
1230				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1231					printf("Too many holes in the physical address space, giving up\n");
1232					pa_indx--;
1233					break;
1234				}
1235				phys_avail[pa_indx++] = target_page;	/* start */
1236				phys_avail[pa_indx] = target_page + PAGE_SIZE;	/* end */
1237			}
1238			physmem++;
1239		} else {
1240			badpages++;
1241			page_bad = FALSE;
1242		}
1243	}
1244
1245	*(int *)CMAP1 = 0;
1246	invltlb();
1247
1248	/*
1249	 * XXX
1250	 * The last chunk must contain at least one page plus the message
1251	 * buffer to avoid complicating other code (message buffer address
1252	 * calculation, etc.).
1253	 */
1254	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1255	    round_page(sizeof(struct msgbuf)) >= phys_avail[pa_indx]) {
1256		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1257		phys_avail[pa_indx--] = 0;
1258		phys_avail[pa_indx--] = 0;
1259	}
1260
1261	Maxmem = atop(phys_avail[pa_indx]);
1262
1263	/* Trim off space for the message buffer. */
1264	phys_avail[pa_indx] -= round_page(sizeof(struct msgbuf));
1265
1266	avail_end = phys_avail[pa_indx];
1267
1268	/* now running on new page tables, configured,and u/iom is accessible */
1269
1270	/* Map the message buffer. */
1271	for (off = 0; off < round_page(sizeof(struct msgbuf)); off += PAGE_SIZE)
1272		pmap_enter(kernel_pmap, (vm_offset_t)msgbufp + off,
1273			   avail_end + off, VM_PROT_ALL, TRUE);
1274	msgbufmapped = 1;
1275
1276	/* make a initial tss so microp can get interrupt stack on syscall! */
1277	proc0.p_addr->u_pcb.pcb_tss.tss_esp0 = (int) kstack + UPAGES*PAGE_SIZE;
1278	proc0.p_addr->u_pcb.pcb_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1279	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1280
1281	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1282	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1283	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1284	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1285	dblfault_tss.tss_cr3 = IdlePTD;
1286	dblfault_tss.tss_eip = (int) dblfault_handler;
1287	dblfault_tss.tss_eflags = PSL_KERNEL;
1288	dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs = dblfault_tss.tss_gs =
1289		GSEL(GDATA_SEL, SEL_KPL);
1290	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1291	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1292
1293	((struct i386tss *)gdt_segs[GPROC0_SEL].ssd_base)->tss_ioopt =
1294		(sizeof(struct i386tss))<<16;
1295
1296	ltr(gsel_tss);
1297
1298	/* make a call gate to reenter kernel with */
1299	gdp = &ldt[LSYS5CALLS_SEL].gd;
1300
1301	x = (int) &IDTVEC(syscall);
1302	gdp->gd_looffset = x++;
1303	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1304	gdp->gd_stkcpy = 1;
1305	gdp->gd_type = SDT_SYS386CGT;
1306	gdp->gd_dpl = SEL_UPL;
1307	gdp->gd_p = 1;
1308	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1309
1310	/* XXX does this work? */
1311	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1312
1313	/* transfer to user mode */
1314
1315	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1316	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1317
1318	/* setup proc 0's pcb */
1319	proc0.p_addr->u_pcb.pcb_flags = 0;
1320	proc0.p_addr->u_pcb.pcb_cr3 = IdlePTD;
1321}
1322
1323/*
1324 * The registers are in the frame; the frame is in the user area of
1325 * the process in question; when the process is active, the registers
1326 * are in "the kernel stack"; when it's not, they're still there, but
1327 * things get flipped around.  So, since p->p_md.md_regs is the whole address
1328 * of the register set, take its offset from the kernel stack, and
1329 * index into the user block.  Don't you just *love* virtual memory?
1330 * (I'm starting to think seymour is right...)
1331 */
1332#define	TF_REGP(p)	((struct trapframe *) \
1333			 ((char *)(p)->p_addr \
1334			  + ((char *)(p)->p_md.md_regs - kstack)))
1335
1336int
1337ptrace_set_pc(p, addr)
1338	struct proc *p;
1339	unsigned int addr;
1340{
1341	TF_REGP(p)->tf_eip = addr;
1342	return (0);
1343}
1344
1345int
1346ptrace_single_step(p)
1347	struct proc *p;
1348{
1349	TF_REGP(p)->tf_eflags |= PSL_T;
1350	return (0);
1351}
1352
1353int ptrace_write_u(p, off, data)
1354	struct proc *p;
1355	vm_offset_t off;
1356	int data;
1357{
1358	struct trapframe frame_copy;
1359	vm_offset_t min;
1360	struct trapframe *tp;
1361
1362	/*
1363	 * Privileged kernel state is scattered all over the user area.
1364	 * Only allow write access to parts of regs and to fpregs.
1365	 */
1366	min = (char *)p->p_md.md_regs - kstack;
1367	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
1368		tp = TF_REGP(p);
1369		frame_copy = *tp;
1370		*(int *)((char *)&frame_copy + (off - min)) = data;
1371		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
1372		    !CS_SECURE(frame_copy.tf_cs))
1373			return (EINVAL);
1374		*(int*)((char *)p->p_addr + off) = data;
1375		return (0);
1376	}
1377	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
1378	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
1379		*(int*)((char *)p->p_addr + off) = data;
1380		return (0);
1381	}
1382	return (EFAULT);
1383}
1384
1385int
1386fill_regs(p, regs)
1387	struct proc *p;
1388	struct reg *regs;
1389{
1390	struct trapframe *tp;
1391
1392	tp = TF_REGP(p);
1393	regs->r_es = tp->tf_es;
1394	regs->r_ds = tp->tf_ds;
1395	regs->r_edi = tp->tf_edi;
1396	regs->r_esi = tp->tf_esi;
1397	regs->r_ebp = tp->tf_ebp;
1398	regs->r_ebx = tp->tf_ebx;
1399	regs->r_edx = tp->tf_edx;
1400	regs->r_ecx = tp->tf_ecx;
1401	regs->r_eax = tp->tf_eax;
1402	regs->r_eip = tp->tf_eip;
1403	regs->r_cs = tp->tf_cs;
1404	regs->r_eflags = tp->tf_eflags;
1405	regs->r_esp = tp->tf_esp;
1406	regs->r_ss = tp->tf_ss;
1407	return (0);
1408}
1409
1410int
1411set_regs(p, regs)
1412	struct proc *p;
1413	struct reg *regs;
1414{
1415	struct trapframe *tp;
1416
1417	tp = TF_REGP(p);
1418	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
1419	    !CS_SECURE(regs->r_cs))
1420		return (EINVAL);
1421	tp->tf_es = regs->r_es;
1422	tp->tf_ds = regs->r_ds;
1423	tp->tf_edi = regs->r_edi;
1424	tp->tf_esi = regs->r_esi;
1425	tp->tf_ebp = regs->r_ebp;
1426	tp->tf_ebx = regs->r_ebx;
1427	tp->tf_edx = regs->r_edx;
1428	tp->tf_ecx = regs->r_ecx;
1429	tp->tf_eax = regs->r_eax;
1430	tp->tf_eip = regs->r_eip;
1431	tp->tf_cs = regs->r_cs;
1432	tp->tf_eflags = regs->r_eflags;
1433	tp->tf_esp = regs->r_esp;
1434	tp->tf_ss = regs->r_ss;
1435	return (0);
1436}
1437
1438#ifndef DDB
1439void
1440Debugger(const char *msg)
1441{
1442	printf("Debugger(\"%s\") called.\n", msg);
1443}
1444#endif /* no DDB */
1445
1446#include <sys/disklabel.h>
1447
1448/*
1449 * Determine the size of the transfer, and make sure it is
1450 * within the boundaries of the partition. Adjust transfer
1451 * if needed, and signal errors or early completion.
1452 */
1453int
1454bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
1455{
1456        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
1457        int labelsect = lp->d_partitions[0].p_offset;
1458        int maxsz = p->p_size,
1459                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
1460
1461        /* overwriting disk label ? */
1462        /* XXX should also protect bootstrap in first 8K */
1463        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
1464#if LABELSECTOR != 0
1465            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
1466#endif
1467            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1468                bp->b_error = EROFS;
1469                goto bad;
1470        }
1471
1472#if     defined(DOSBBSECTOR) && defined(notyet)
1473        /* overwriting master boot record? */
1474        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
1475            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1476                bp->b_error = EROFS;
1477                goto bad;
1478        }
1479#endif
1480
1481        /* beyond partition? */
1482        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
1483                /* if exactly at end of disk, return an EOF */
1484                if (bp->b_blkno == maxsz) {
1485                        bp->b_resid = bp->b_bcount;
1486                        return(0);
1487                }
1488                /* or truncate if part of it fits */
1489                sz = maxsz - bp->b_blkno;
1490                if (sz <= 0) {
1491                        bp->b_error = EINVAL;
1492                        goto bad;
1493                }
1494                bp->b_bcount = sz << DEV_BSHIFT;
1495        }
1496
1497        bp->b_pblkno = bp->b_blkno + p->p_offset;
1498        return(1);
1499
1500bad:
1501        bp->b_flags |= B_ERROR;
1502        return(-1);
1503}
1504