machdep.c revision 213382
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 213382 2010-10-03 13:52:17Z kib $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_msgbuf.h"
55#include "opt_perfmon.h"
56#include "opt_sched.h"
57#include "opt_kdtrace.h"
58
59#include <sys/param.h>
60#include <sys/proc.h>
61#include <sys/systm.h>
62#include <sys/bio.h>
63#include <sys/buf.h>
64#include <sys/bus.h>
65#include <sys/callout.h>
66#include <sys/cons.h>
67#include <sys/cpu.h>
68#include <sys/eventhandler.h>
69#include <sys/exec.h>
70#include <sys/imgact.h>
71#include <sys/kdb.h>
72#include <sys/kernel.h>
73#include <sys/ktr.h>
74#include <sys/linker.h>
75#include <sys/lock.h>
76#include <sys/malloc.h>
77#include <sys/memrange.h>
78#include <sys/msgbuf.h>
79#include <sys/mutex.h>
80#include <sys/pcpu.h>
81#include <sys/ptrace.h>
82#include <sys/reboot.h>
83#include <sys/sched.h>
84#include <sys/signalvar.h>
85#include <sys/syscallsubr.h>
86#include <sys/sysctl.h>
87#include <sys/sysent.h>
88#include <sys/sysproto.h>
89#include <sys/ucontext.h>
90#include <sys/vmmeter.h>
91
92#include <vm/vm.h>
93#include <vm/vm_extern.h>
94#include <vm/vm_kern.h>
95#include <vm/vm_page.h>
96#include <vm/vm_map.h>
97#include <vm/vm_object.h>
98#include <vm/vm_pager.h>
99#include <vm/vm_param.h>
100
101#ifdef DDB
102#ifndef KDB
103#error KDB must be enabled in order for DDB to work!
104#endif
105#include <ddb/ddb.h>
106#include <ddb/db_sym.h>
107#endif
108
109#include <net/netisr.h>
110
111#include <machine/clock.h>
112#include <machine/cpu.h>
113#include <machine/cputypes.h>
114#include <machine/intr_machdep.h>
115#include <machine/mca.h>
116#include <machine/md_var.h>
117#include <machine/metadata.h>
118#include <machine/pc/bios.h>
119#include <machine/pcb.h>
120#include <machine/proc.h>
121#include <machine/reg.h>
122#include <machine/sigframe.h>
123#include <machine/specialreg.h>
124#ifdef PERFMON
125#include <machine/perfmon.h>
126#endif
127#include <machine/tss.h>
128#ifdef SMP
129#include <machine/smp.h>
130#endif
131
132#ifdef DEV_ATPIC
133#include <x86/isa/icu.h>
134#else
135#include <machine/apicvar.h>
136#endif
137
138#include <isa/isareg.h>
139#include <isa/rtc.h>
140
141/* Sanity check for __curthread() */
142CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
143
144extern u_int64_t hammer_time(u_int64_t, u_int64_t);
145
146extern void printcpuinfo(void);	/* XXX header file */
147extern void identify_cpu(void);
148extern void panicifcpuunsupported(void);
149
150#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
151#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
152
153static void cpu_startup(void *);
154static void get_fpcontext(struct thread *td, mcontext_t *mcp);
155static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
156SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
157
158#ifdef DDB
159extern vm_offset_t ksym_start, ksym_end;
160#endif
161
162struct msgbuf *msgbufp;
163
164/* Intel ICH registers */
165#define ICH_PMBASE	0x400
166#define ICH_SMI_EN	ICH_PMBASE + 0x30
167
168int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
169
170int cold = 1;
171
172long Maxmem = 0;
173long realmem = 0;
174
175/*
176 * The number of PHYSMAP entries must be one less than the number of
177 * PHYSSEG entries because the PHYSMAP entry that spans the largest
178 * physical address that is accessible by ISA DMA is split into two
179 * PHYSSEG entries.
180 */
181#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
182
183vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
184vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
185
186/* must be 2 less so 0 0 can signal end of chunks */
187#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
188#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
189
190struct kva_md_info kmi;
191
192static struct trapframe proc0_tf;
193struct region_descriptor r_gdt, r_idt;
194
195struct pcpu __pcpu[MAXCPU];
196
197struct mtx icu_lock;
198
199struct mem_range_softc mem_range_softc;
200
201struct mtx dt_lock;	/* lock for GDT and LDT */
202
203static void
204cpu_startup(dummy)
205	void *dummy;
206{
207	uintmax_t memsize;
208	char *sysenv;
209
210	/*
211	 * On MacBooks, we need to disallow the legacy USB circuit to
212	 * generate an SMI# because this can cause several problems,
213	 * namely: incorrect CPU frequency detection and failure to
214	 * start the APs.
215	 * We do this by disabling a bit in the SMI_EN (SMI Control and
216	 * Enable register) of the Intel ICH LPC Interface Bridge.
217	 */
218	sysenv = getenv("smbios.system.product");
219	if (sysenv != NULL) {
220		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
221		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
222		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
223		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
224		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
225		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
226			if (bootverbose)
227				printf("Disabling LEGACY_USB_EN bit on "
228				    "Intel ICH.\n");
229			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
230		}
231		freeenv(sysenv);
232	}
233
234	/*
235	 * Good {morning,afternoon,evening,night}.
236	 */
237	startrtclock();
238	printcpuinfo();
239	panicifcpuunsupported();
240#ifdef PERFMON
241	perfmon_init();
242#endif
243	realmem = Maxmem;
244
245	/*
246	 * Display physical memory if SMBIOS reports reasonable amount.
247	 */
248	memsize = 0;
249	sysenv = getenv("smbios.memory.enabled");
250	if (sysenv != NULL) {
251		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
252		freeenv(sysenv);
253	}
254	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
255		memsize = ptoa((uintmax_t)Maxmem);
256	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
257
258	/*
259	 * Display any holes after the first chunk of extended memory.
260	 */
261	if (bootverbose) {
262		int indx;
263
264		printf("Physical memory chunk(s):\n");
265		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
266			vm_paddr_t size;
267
268			size = phys_avail[indx + 1] - phys_avail[indx];
269			printf(
270			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
271			    (uintmax_t)phys_avail[indx],
272			    (uintmax_t)phys_avail[indx + 1] - 1,
273			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
274		}
275	}
276
277	vm_ksubmap_init(&kmi);
278
279	printf("avail memory = %ju (%ju MB)\n",
280	    ptoa((uintmax_t)cnt.v_free_count),
281	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
282
283	/*
284	 * Set up buffers, so they can be used to read disk labels.
285	 */
286	bufinit();
287	vm_pager_bufferinit();
288
289	cpu_setregs();
290}
291
292/*
293 * Send an interrupt to process.
294 *
295 * Stack is set up to allow sigcode stored
296 * at top to call routine, followed by call
297 * to sigreturn routine below.  After sigreturn
298 * resets the signal mask, the stack, and the
299 * frame pointer, it returns to the user
300 * specified pc, psl.
301 */
302void
303sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
304{
305	struct sigframe sf, *sfp;
306	struct proc *p;
307	struct thread *td;
308	struct sigacts *psp;
309	char *sp;
310	struct trapframe *regs;
311	int sig;
312	int oonstack;
313
314	td = curthread;
315	p = td->td_proc;
316	PROC_LOCK_ASSERT(p, MA_OWNED);
317	sig = ksi->ksi_signo;
318	psp = p->p_sigacts;
319	mtx_assert(&psp->ps_mtx, MA_OWNED);
320	regs = td->td_frame;
321	oonstack = sigonstack(regs->tf_rsp);
322
323	/* Save user context. */
324	bzero(&sf, sizeof(sf));
325	sf.sf_uc.uc_sigmask = *mask;
326	sf.sf_uc.uc_stack = td->td_sigstk;
327	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
328	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
329	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
330	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
331	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
332	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
333	fpstate_drop(td);
334	sf.sf_uc.uc_mcontext.mc_fsbase = td->td_pcb->pcb_fsbase;
335	sf.sf_uc.uc_mcontext.mc_gsbase = td->td_pcb->pcb_gsbase;
336
337	/* Allocate space for the signal handler context. */
338	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
339	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
340		sp = td->td_sigstk.ss_sp +
341		    td->td_sigstk.ss_size - sizeof(struct sigframe);
342#if defined(COMPAT_43)
343		td->td_sigstk.ss_flags |= SS_ONSTACK;
344#endif
345	} else
346		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
347	/* Align to 16 bytes. */
348	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
349
350	/* Translate the signal if appropriate. */
351	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
352		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
353
354	/* Build the argument list for the signal handler. */
355	regs->tf_rdi = sig;			/* arg 1 in %rdi */
356	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
357	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
358		/* Signal handler installed with SA_SIGINFO. */
359		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
360		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
361
362		/* Fill in POSIX parts */
363		sf.sf_si = ksi->ksi_info;
364		sf.sf_si.si_signo = sig; /* maybe a translated signal */
365		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
366	} else {
367		/* Old FreeBSD-style arguments. */
368		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
369		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
370		sf.sf_ahu.sf_handler = catcher;
371	}
372	mtx_unlock(&psp->ps_mtx);
373	PROC_UNLOCK(p);
374
375	/*
376	 * Copy the sigframe out to the user's stack.
377	 */
378	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
379#ifdef DEBUG
380		printf("process %ld has trashed its stack\n", (long)p->p_pid);
381#endif
382		PROC_LOCK(p);
383		sigexit(td, SIGILL);
384	}
385
386	regs->tf_rsp = (long)sfp;
387	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
388	regs->tf_rflags &= ~(PSL_T | PSL_D);
389	regs->tf_cs = _ucodesel;
390	regs->tf_ds = _udatasel;
391	regs->tf_es = _udatasel;
392	regs->tf_fs = _ufssel;
393	regs->tf_gs = _ugssel;
394	regs->tf_flags = TF_HASSEGS;
395	td->td_pcb->pcb_full_iret = 1;
396	PROC_LOCK(p);
397	mtx_lock(&psp->ps_mtx);
398}
399
400/*
401 * System call to cleanup state after a signal
402 * has been taken.  Reset signal mask and
403 * stack state from context left by sendsig (above).
404 * Return to previous pc and psl as specified by
405 * context left by sendsig. Check carefully to
406 * make sure that the user has not modified the
407 * state to gain improper privileges.
408 *
409 * MPSAFE
410 */
411int
412sigreturn(td, uap)
413	struct thread *td;
414	struct sigreturn_args /* {
415		const struct __ucontext *sigcntxp;
416	} */ *uap;
417{
418	ucontext_t uc;
419	struct proc *p = td->td_proc;
420	struct trapframe *regs;
421	ucontext_t *ucp;
422	long rflags;
423	int cs, error, ret;
424	ksiginfo_t ksi;
425
426	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
427	if (error != 0) {
428		uprintf("pid %d (%s): sigreturn copyin failed\n",
429		    p->p_pid, td->td_name);
430		return (error);
431	}
432	ucp = &uc;
433	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
434		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
435		    td->td_name, ucp->uc_mcontext.mc_flags);
436		return (EINVAL);
437	}
438	regs = td->td_frame;
439	rflags = ucp->uc_mcontext.mc_rflags;
440	/*
441	 * Don't allow users to change privileged or reserved flags.
442	 */
443	/*
444	 * XXX do allow users to change the privileged flag PSL_RF.
445	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
446	 * should sometimes set it there too.  tf_rflags is kept in
447	 * the signal context during signal handling and there is no
448	 * other place to remember it, so the PSL_RF bit may be
449	 * corrupted by the signal handler without us knowing.
450	 * Corruption of the PSL_RF bit at worst causes one more or
451	 * one less debugger trap, so allowing it is fairly harmless.
452	 */
453	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
454		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
455		    td->td_name, rflags);
456		return (EINVAL);
457	}
458
459	/*
460	 * Don't allow users to load a valid privileged %cs.  Let the
461	 * hardware check for invalid selectors, excess privilege in
462	 * other selectors, invalid %eip's and invalid %esp's.
463	 */
464	cs = ucp->uc_mcontext.mc_cs;
465	if (!CS_SECURE(cs)) {
466		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
467		    td->td_name, cs);
468		ksiginfo_init_trap(&ksi);
469		ksi.ksi_signo = SIGBUS;
470		ksi.ksi_code = BUS_OBJERR;
471		ksi.ksi_trapno = T_PROTFLT;
472		ksi.ksi_addr = (void *)regs->tf_rip;
473		trapsignal(td, &ksi);
474		return (EINVAL);
475	}
476
477	ret = set_fpcontext(td, &ucp->uc_mcontext);
478	if (ret != 0) {
479		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
480		    p->p_pid, td->td_name, ret);
481		return (ret);
482	}
483	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
484	td->td_pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
485	td->td_pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
486
487#if defined(COMPAT_43)
488	if (ucp->uc_mcontext.mc_onstack & 1)
489		td->td_sigstk.ss_flags |= SS_ONSTACK;
490	else
491		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
492#endif
493
494	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
495	td->td_pcb->pcb_flags |= PCB_FULLCTX;
496	td->td_pcb->pcb_full_iret = 1;
497	return (EJUSTRETURN);
498}
499
500#ifdef COMPAT_FREEBSD4
501int
502freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
503{
504
505	return sigreturn(td, (struct sigreturn_args *)uap);
506}
507#endif
508
509
510/*
511 * Machine dependent boot() routine
512 *
513 * I haven't seen anything to put here yet
514 * Possibly some stuff might be grafted back here from boot()
515 */
516void
517cpu_boot(int howto)
518{
519}
520
521/*
522 * Flush the D-cache for non-DMA I/O so that the I-cache can
523 * be made coherent later.
524 */
525void
526cpu_flush_dcache(void *ptr, size_t len)
527{
528	/* Not applicable */
529}
530
531/* Get current clock frequency for the given cpu id. */
532int
533cpu_est_clockrate(int cpu_id, uint64_t *rate)
534{
535	register_t reg;
536	uint64_t tsc1, tsc2;
537
538	if (pcpu_find(cpu_id) == NULL || rate == NULL)
539		return (EINVAL);
540
541	/* If we're booting, trust the rate calibrated moments ago. */
542	if (cold) {
543		*rate = tsc_freq;
544		return (0);
545	}
546
547#ifdef SMP
548	/* Schedule ourselves on the indicated cpu. */
549	thread_lock(curthread);
550	sched_bind(curthread, cpu_id);
551	thread_unlock(curthread);
552#endif
553
554	/* Calibrate by measuring a short delay. */
555	reg = intr_disable();
556	tsc1 = rdtsc();
557	DELAY(1000);
558	tsc2 = rdtsc();
559	intr_restore(reg);
560
561#ifdef SMP
562	thread_lock(curthread);
563	sched_unbind(curthread);
564	thread_unlock(curthread);
565#endif
566
567	/*
568	 * Calculate the difference in readings, convert to Mhz, and
569	 * subtract 0.5% of the total.  Empirical testing has shown that
570	 * overhead in DELAY() works out to approximately this value.
571	 */
572	tsc2 -= tsc1;
573	*rate = tsc2 * 1000 - tsc2 * 5;
574	return (0);
575}
576
577/*
578 * Shutdown the CPU as much as possible
579 */
580void
581cpu_halt(void)
582{
583	for (;;)
584		__asm__ ("hlt");
585}
586
587void (*cpu_idle_hook)(void) = NULL;	/* ACPI idle hook. */
588static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
589static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
590TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
591SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
592    0, "Use MONITOR/MWAIT for short idle");
593
594#define	STATE_RUNNING	0x0
595#define	STATE_MWAIT	0x1
596#define	STATE_SLEEPING	0x2
597
598static void
599cpu_idle_acpi(int busy)
600{
601	int *state;
602
603	state = (int *)PCPU_PTR(monitorbuf);
604	*state = STATE_SLEEPING;
605	disable_intr();
606	if (sched_runnable())
607		enable_intr();
608	else if (cpu_idle_hook)
609		cpu_idle_hook();
610	else
611		__asm __volatile("sti; hlt");
612	*state = STATE_RUNNING;
613}
614
615static void
616cpu_idle_hlt(int busy)
617{
618	int *state;
619
620	state = (int *)PCPU_PTR(monitorbuf);
621	*state = STATE_SLEEPING;
622	/*
623	 * We must absolutely guarentee that hlt is the next instruction
624	 * after sti or we introduce a timing window.
625	 */
626	disable_intr();
627	if (sched_runnable())
628		enable_intr();
629	else
630		__asm __volatile("sti; hlt");
631	*state = STATE_RUNNING;
632}
633
634/*
635 * MWAIT cpu power states.  Lower 4 bits are sub-states.
636 */
637#define	MWAIT_C0	0xf0
638#define	MWAIT_C1	0x00
639#define	MWAIT_C2	0x10
640#define	MWAIT_C3	0x20
641#define	MWAIT_C4	0x30
642
643static void
644cpu_idle_mwait(int busy)
645{
646	int *state;
647
648	state = (int *)PCPU_PTR(monitorbuf);
649	*state = STATE_MWAIT;
650	if (!sched_runnable()) {
651		cpu_monitor(state, 0, 0);
652		if (*state == STATE_MWAIT)
653			cpu_mwait(0, MWAIT_C1);
654	}
655	*state = STATE_RUNNING;
656}
657
658static void
659cpu_idle_spin(int busy)
660{
661	int *state;
662	int i;
663
664	state = (int *)PCPU_PTR(monitorbuf);
665	*state = STATE_RUNNING;
666	for (i = 0; i < 1000; i++) {
667		if (sched_runnable())
668			return;
669		cpu_spinwait();
670	}
671}
672
673/*
674 * C1E renders the local APIC timer dead, so we disable it by
675 * reading the Interrupt Pending Message register and clearing
676 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
677 *
678 * Reference:
679 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
680 *   #32559 revision 3.00+
681 */
682#define	MSR_AMDK8_IPM		0xc0010055
683#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
684#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
685#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
686
687static void
688cpu_probe_amdc1e(void)
689{
690
691	/*
692	 * Detect the presence of C1E capability mostly on latest
693	 * dual-cores (or future) k8 family.
694	 */
695	if (cpu_vendor_id == CPU_VENDOR_AMD &&
696	    (cpu_id & 0x00000f00) == 0x00000f00 &&
697	    (cpu_id & 0x0fff0000) >=  0x00040000) {
698		cpu_ident_amdc1e = 1;
699	}
700}
701
702void (*cpu_idle_fn)(int) = cpu_idle_acpi;
703
704void
705cpu_idle(int busy)
706{
707	uint64_t msr;
708
709	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
710	    busy, curcpu);
711#ifdef SMP
712	if (mp_grab_cpu_hlt())
713		return;
714#endif
715	/* If we are busy - try to use fast methods. */
716	if (busy) {
717		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
718			cpu_idle_mwait(busy);
719			goto out;
720		}
721	}
722
723	/* If we have time - switch timers into idle mode. */
724	if (!busy) {
725		critical_enter();
726		cpu_idleclock();
727	}
728
729	/* Apply AMD APIC timer C1E workaround. */
730	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
731		msr = rdmsr(MSR_AMDK8_IPM);
732		if (msr & AMDK8_CMPHALT)
733			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
734	}
735
736	/* Call main idle method. */
737	cpu_idle_fn(busy);
738
739	/* Switch timers mack into active mode. */
740	if (!busy) {
741		cpu_activeclock();
742		critical_exit();
743	}
744out:
745	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
746	    busy, curcpu);
747}
748
749int
750cpu_idle_wakeup(int cpu)
751{
752	struct pcpu *pcpu;
753	int *state;
754
755	pcpu = pcpu_find(cpu);
756	state = (int *)pcpu->pc_monitorbuf;
757	/*
758	 * This doesn't need to be atomic since missing the race will
759	 * simply result in unnecessary IPIs.
760	 */
761	if (*state == STATE_SLEEPING)
762		return (0);
763	if (*state == STATE_MWAIT)
764		*state = STATE_RUNNING;
765	return (1);
766}
767
768/*
769 * Ordered by speed/power consumption.
770 */
771struct {
772	void	*id_fn;
773	char	*id_name;
774} idle_tbl[] = {
775	{ cpu_idle_spin, "spin" },
776	{ cpu_idle_mwait, "mwait" },
777	{ cpu_idle_hlt, "hlt" },
778	{ cpu_idle_acpi, "acpi" },
779	{ NULL, NULL }
780};
781
782static int
783idle_sysctl_available(SYSCTL_HANDLER_ARGS)
784{
785	char *avail, *p;
786	int error;
787	int i;
788
789	avail = malloc(256, M_TEMP, M_WAITOK);
790	p = avail;
791	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
792		if (strstr(idle_tbl[i].id_name, "mwait") &&
793		    (cpu_feature2 & CPUID2_MON) == 0)
794			continue;
795		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
796		    cpu_idle_hook == NULL)
797			continue;
798		p += sprintf(p, "%s, ", idle_tbl[i].id_name);
799	}
800	error = sysctl_handle_string(oidp, avail, 0, req);
801	free(avail, M_TEMP);
802	return (error);
803}
804
805SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
806    0, 0, idle_sysctl_available, "A", "list of available idle functions");
807
808static int
809idle_sysctl(SYSCTL_HANDLER_ARGS)
810{
811	char buf[16];
812	int error;
813	char *p;
814	int i;
815
816	p = "unknown";
817	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
818		if (idle_tbl[i].id_fn == cpu_idle_fn) {
819			p = idle_tbl[i].id_name;
820			break;
821		}
822	}
823	strncpy(buf, p, sizeof(buf));
824	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
825	if (error != 0 || req->newptr == NULL)
826		return (error);
827	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
828		if (strstr(idle_tbl[i].id_name, "mwait") &&
829		    (cpu_feature2 & CPUID2_MON) == 0)
830			continue;
831		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
832		    cpu_idle_hook == NULL)
833			continue;
834		if (strcmp(idle_tbl[i].id_name, buf))
835			continue;
836		cpu_idle_fn = idle_tbl[i].id_fn;
837		return (0);
838	}
839	return (EINVAL);
840}
841
842SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
843    idle_sysctl, "A", "currently selected idle function");
844
845/*
846 * Reset registers to default values on exec.
847 */
848void
849exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
850{
851	struct trapframe *regs = td->td_frame;
852	struct pcb *pcb = td->td_pcb;
853
854	mtx_lock(&dt_lock);
855	if (td->td_proc->p_md.md_ldt != NULL)
856		user_ldt_free(td);
857	else
858		mtx_unlock(&dt_lock);
859
860	pcb->pcb_fsbase = 0;
861	pcb->pcb_gsbase = 0;
862	pcb->pcb_flags &= ~(PCB_32BIT | PCB_GS32BIT);
863	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
864	pcb->pcb_full_iret = 1;
865
866	bzero((char *)regs, sizeof(struct trapframe));
867	regs->tf_rip = imgp->entry_addr;
868	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
869	regs->tf_rdi = stack;		/* argv */
870	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
871	regs->tf_ss = _udatasel;
872	regs->tf_cs = _ucodesel;
873	regs->tf_ds = _udatasel;
874	regs->tf_es = _udatasel;
875	regs->tf_fs = _ufssel;
876	regs->tf_gs = _ugssel;
877	regs->tf_flags = TF_HASSEGS;
878
879	/*
880	 * Reset the hardware debug registers if they were in use.
881	 * They won't have any meaning for the newly exec'd process.
882	 */
883	if (pcb->pcb_flags & PCB_DBREGS) {
884		pcb->pcb_dr0 = 0;
885		pcb->pcb_dr1 = 0;
886		pcb->pcb_dr2 = 0;
887		pcb->pcb_dr3 = 0;
888		pcb->pcb_dr6 = 0;
889		pcb->pcb_dr7 = 0;
890		if (pcb == PCPU_GET(curpcb)) {
891			/*
892			 * Clear the debug registers on the running
893			 * CPU, otherwise they will end up affecting
894			 * the next process we switch to.
895			 */
896			reset_dbregs();
897		}
898		pcb->pcb_flags &= ~PCB_DBREGS;
899	}
900
901	/*
902	 * Drop the FP state if we hold it, so that the process gets a
903	 * clean FP state if it uses the FPU again.
904	 */
905	fpstate_drop(td);
906}
907
908void
909cpu_setregs(void)
910{
911	register_t cr0;
912
913	cr0 = rcr0();
914	/*
915	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
916	 * BSP.  See the comments there about why we set them.
917	 */
918	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
919	load_cr0(cr0);
920}
921
922/*
923 * Initialize amd64 and configure to run kernel
924 */
925
926/*
927 * Initialize segments & interrupt table
928 */
929
930struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
931static struct gate_descriptor idt0[NIDT];
932struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
933
934static char dblfault_stack[PAGE_SIZE] __aligned(16);
935
936static char nmi0_stack[PAGE_SIZE] __aligned(16);
937CTASSERT(sizeof(struct nmi_pcpu) == 16);
938
939struct amd64tss common_tss[MAXCPU];
940
941/*
942 * Software prototypes -- in more palatable form.
943 *
944 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
945 * slots as corresponding segments for i386 kernel.
946 */
947struct soft_segment_descriptor gdt_segs[] = {
948/* GNULL_SEL	0 Null Descriptor */
949{	.ssd_base = 0x0,
950	.ssd_limit = 0x0,
951	.ssd_type = 0,
952	.ssd_dpl = 0,
953	.ssd_p = 0,
954	.ssd_long = 0,
955	.ssd_def32 = 0,
956	.ssd_gran = 0		},
957/* GNULL2_SEL	1 Null Descriptor */
958{	.ssd_base = 0x0,
959	.ssd_limit = 0x0,
960	.ssd_type = 0,
961	.ssd_dpl = 0,
962	.ssd_p = 0,
963	.ssd_long = 0,
964	.ssd_def32 = 0,
965	.ssd_gran = 0		},
966/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
967{	.ssd_base = 0x0,
968	.ssd_limit = 0xfffff,
969	.ssd_type = SDT_MEMRWA,
970	.ssd_dpl = SEL_UPL,
971	.ssd_p = 1,
972	.ssd_long = 0,
973	.ssd_def32 = 1,
974	.ssd_gran = 1		},
975/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
976{	.ssd_base = 0x0,
977	.ssd_limit = 0xfffff,
978	.ssd_type = SDT_MEMRWA,
979	.ssd_dpl = SEL_UPL,
980	.ssd_p = 1,
981	.ssd_long = 0,
982	.ssd_def32 = 1,
983	.ssd_gran = 1		},
984/* GCODE_SEL	4 Code Descriptor for kernel */
985{	.ssd_base = 0x0,
986	.ssd_limit = 0xfffff,
987	.ssd_type = SDT_MEMERA,
988	.ssd_dpl = SEL_KPL,
989	.ssd_p = 1,
990	.ssd_long = 1,
991	.ssd_def32 = 0,
992	.ssd_gran = 1		},
993/* GDATA_SEL	5 Data Descriptor for kernel */
994{	.ssd_base = 0x0,
995	.ssd_limit = 0xfffff,
996	.ssd_type = SDT_MEMRWA,
997	.ssd_dpl = SEL_KPL,
998	.ssd_p = 1,
999	.ssd_long = 1,
1000	.ssd_def32 = 0,
1001	.ssd_gran = 1		},
1002/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1003{	.ssd_base = 0x0,
1004	.ssd_limit = 0xfffff,
1005	.ssd_type = SDT_MEMERA,
1006	.ssd_dpl = SEL_UPL,
1007	.ssd_p = 1,
1008	.ssd_long = 0,
1009	.ssd_def32 = 1,
1010	.ssd_gran = 1		},
1011/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1012{	.ssd_base = 0x0,
1013	.ssd_limit = 0xfffff,
1014	.ssd_type = SDT_MEMRWA,
1015	.ssd_dpl = SEL_UPL,
1016	.ssd_p = 1,
1017	.ssd_long = 0,
1018	.ssd_def32 = 1,
1019	.ssd_gran = 1		},
1020/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1021{	.ssd_base = 0x0,
1022	.ssd_limit = 0xfffff,
1023	.ssd_type = SDT_MEMERA,
1024	.ssd_dpl = SEL_UPL,
1025	.ssd_p = 1,
1026	.ssd_long = 1,
1027	.ssd_def32 = 0,
1028	.ssd_gran = 1		},
1029/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1030{	.ssd_base = 0x0,
1031	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1032	.ssd_type = SDT_SYSTSS,
1033	.ssd_dpl = SEL_KPL,
1034	.ssd_p = 1,
1035	.ssd_long = 0,
1036	.ssd_def32 = 0,
1037	.ssd_gran = 0		},
1038/* Actually, the TSS is a system descriptor which is double size */
1039{	.ssd_base = 0x0,
1040	.ssd_limit = 0x0,
1041	.ssd_type = 0,
1042	.ssd_dpl = 0,
1043	.ssd_p = 0,
1044	.ssd_long = 0,
1045	.ssd_def32 = 0,
1046	.ssd_gran = 0		},
1047/* GUSERLDT_SEL	11 LDT Descriptor */
1048{	.ssd_base = 0x0,
1049	.ssd_limit = 0x0,
1050	.ssd_type = 0,
1051	.ssd_dpl = 0,
1052	.ssd_p = 0,
1053	.ssd_long = 0,
1054	.ssd_def32 = 0,
1055	.ssd_gran = 0		},
1056/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1057{	.ssd_base = 0x0,
1058	.ssd_limit = 0x0,
1059	.ssd_type = 0,
1060	.ssd_dpl = 0,
1061	.ssd_p = 0,
1062	.ssd_long = 0,
1063	.ssd_def32 = 0,
1064	.ssd_gran = 0		},
1065};
1066
1067void
1068setidt(idx, func, typ, dpl, ist)
1069	int idx;
1070	inthand_t *func;
1071	int typ;
1072	int dpl;
1073	int ist;
1074{
1075	struct gate_descriptor *ip;
1076
1077	ip = idt + idx;
1078	ip->gd_looffset = (uintptr_t)func;
1079	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1080	ip->gd_ist = ist;
1081	ip->gd_xx = 0;
1082	ip->gd_type = typ;
1083	ip->gd_dpl = dpl;
1084	ip->gd_p = 1;
1085	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1086}
1087
1088extern inthand_t
1089	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1090	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1091	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1092	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1093	IDTVEC(xmm), IDTVEC(dblfault),
1094#ifdef KDTRACE_HOOKS
1095	IDTVEC(dtrace_ret),
1096#endif
1097	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1098
1099#ifdef DDB
1100/*
1101 * Display the index and function name of any IDT entries that don't use
1102 * the default 'rsvd' entry point.
1103 */
1104DB_SHOW_COMMAND(idt, db_show_idt)
1105{
1106	struct gate_descriptor *ip;
1107	int idx;
1108	uintptr_t func;
1109
1110	ip = idt;
1111	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1112		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1113		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1114			db_printf("%3d\t", idx);
1115			db_printsym(func, DB_STGY_PROC);
1116			db_printf("\n");
1117		}
1118		ip++;
1119	}
1120}
1121#endif
1122
1123void
1124sdtossd(sd, ssd)
1125	struct user_segment_descriptor *sd;
1126	struct soft_segment_descriptor *ssd;
1127{
1128
1129	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1130	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1131	ssd->ssd_type  = sd->sd_type;
1132	ssd->ssd_dpl   = sd->sd_dpl;
1133	ssd->ssd_p     = sd->sd_p;
1134	ssd->ssd_long  = sd->sd_long;
1135	ssd->ssd_def32 = sd->sd_def32;
1136	ssd->ssd_gran  = sd->sd_gran;
1137}
1138
1139void
1140ssdtosd(ssd, sd)
1141	struct soft_segment_descriptor *ssd;
1142	struct user_segment_descriptor *sd;
1143{
1144
1145	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1146	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1147	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1148	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1149	sd->sd_type  = ssd->ssd_type;
1150	sd->sd_dpl   = ssd->ssd_dpl;
1151	sd->sd_p     = ssd->ssd_p;
1152	sd->sd_long  = ssd->ssd_long;
1153	sd->sd_def32 = ssd->ssd_def32;
1154	sd->sd_gran  = ssd->ssd_gran;
1155}
1156
1157void
1158ssdtosyssd(ssd, sd)
1159	struct soft_segment_descriptor *ssd;
1160	struct system_segment_descriptor *sd;
1161{
1162
1163	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1164	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1165	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1166	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1167	sd->sd_type  = ssd->ssd_type;
1168	sd->sd_dpl   = ssd->ssd_dpl;
1169	sd->sd_p     = ssd->ssd_p;
1170	sd->sd_gran  = ssd->ssd_gran;
1171}
1172
1173#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1174#include <isa/isavar.h>
1175#include <isa/isareg.h>
1176/*
1177 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1178 * and is only suitable for use at probe time.
1179 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1180 * It shouldn't be here.  There should probably be an APIC centric
1181 * implementation in the apic driver code, if at all.
1182 */
1183intrmask_t
1184isa_irq_pending(void)
1185{
1186	u_char irr1;
1187	u_char irr2;
1188
1189	irr1 = inb(IO_ICU1);
1190	irr2 = inb(IO_ICU2);
1191	return ((irr2 << 8) | irr1);
1192}
1193#endif
1194
1195u_int basemem;
1196
1197static int
1198add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1199{
1200	int i, insert_idx, physmap_idx;
1201
1202	physmap_idx = *physmap_idxp;
1203
1204	if (boothowto & RB_VERBOSE)
1205		printf("SMAP type=%02x base=%016lx len=%016lx\n",
1206		    smap->type, smap->base, smap->length);
1207
1208	if (smap->type != SMAP_TYPE_MEMORY)
1209		return (1);
1210
1211	if (smap->length == 0)
1212		return (0);
1213
1214	/*
1215	 * Find insertion point while checking for overlap.  Start off by
1216	 * assuming the new entry will be added to the end.
1217	 */
1218	insert_idx = physmap_idx + 2;
1219	for (i = 0; i <= physmap_idx; i += 2) {
1220		if (smap->base < physmap[i + 1]) {
1221			if (smap->base + smap->length <= physmap[i]) {
1222				insert_idx = i;
1223				break;
1224			}
1225			if (boothowto & RB_VERBOSE)
1226				printf(
1227		    "Overlapping memory regions, ignoring second region\n");
1228			return (1);
1229		}
1230	}
1231
1232	/* See if we can prepend to the next entry. */
1233	if (insert_idx <= physmap_idx &&
1234	    smap->base + smap->length == physmap[insert_idx]) {
1235		physmap[insert_idx] = smap->base;
1236		return (1);
1237	}
1238
1239	/* See if we can append to the previous entry. */
1240	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
1241		physmap[insert_idx - 1] += smap->length;
1242		return (1);
1243	}
1244
1245	physmap_idx += 2;
1246	*physmap_idxp = physmap_idx;
1247	if (physmap_idx == PHYSMAP_SIZE) {
1248		printf(
1249		"Too many segments in the physical address map, giving up\n");
1250		return (0);
1251	}
1252
1253	/*
1254	 * Move the last 'N' entries down to make room for the new
1255	 * entry if needed.
1256	 */
1257	for (i = physmap_idx; i > insert_idx; i -= 2) {
1258		physmap[i] = physmap[i - 2];
1259		physmap[i + 1] = physmap[i - 1];
1260	}
1261
1262	/* Insert the new entry. */
1263	physmap[insert_idx] = smap->base;
1264	physmap[insert_idx + 1] = smap->base + smap->length;
1265	return (1);
1266}
1267
1268/*
1269 * Populate the (physmap) array with base/bound pairs describing the
1270 * available physical memory in the system, then test this memory and
1271 * build the phys_avail array describing the actually-available memory.
1272 *
1273 * If we cannot accurately determine the physical memory map, then use
1274 * value from the 0xE801 call, and failing that, the RTC.
1275 *
1276 * Total memory size may be set by the kernel environment variable
1277 * hw.physmem or the compile-time define MAXMEM.
1278 *
1279 * XXX first should be vm_paddr_t.
1280 */
1281static void
1282getmemsize(caddr_t kmdp, u_int64_t first)
1283{
1284	int i, physmap_idx, pa_indx, da_indx;
1285	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1286	u_long physmem_tunable;
1287	pt_entry_t *pte;
1288	struct bios_smap *smapbase, *smap, *smapend;
1289	u_int32_t smapsize;
1290	quad_t dcons_addr, dcons_size;
1291
1292	bzero(physmap, sizeof(physmap));
1293	basemem = 0;
1294	physmap_idx = 0;
1295
1296	/*
1297	 * get memory map from INT 15:E820, kindly supplied by the loader.
1298	 *
1299	 * subr_module.c says:
1300	 * "Consumer may safely assume that size value precedes data."
1301	 * ie: an int32_t immediately precedes smap.
1302	 */
1303	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1304	    MODINFO_METADATA | MODINFOMD_SMAP);
1305	if (smapbase == NULL)
1306		panic("No BIOS smap info from loader!");
1307
1308	smapsize = *((u_int32_t *)smapbase - 1);
1309	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1310
1311	for (smap = smapbase; smap < smapend; smap++)
1312		if (!add_smap_entry(smap, physmap, &physmap_idx))
1313			break;
1314
1315	/*
1316	 * Find the 'base memory' segment for SMP
1317	 */
1318	basemem = 0;
1319	for (i = 0; i <= physmap_idx; i += 2) {
1320		if (physmap[i] == 0x00000000) {
1321			basemem = physmap[i + 1] / 1024;
1322			break;
1323		}
1324	}
1325	if (basemem == 0)
1326		panic("BIOS smap did not include a basemem segment!");
1327
1328#ifdef SMP
1329	/* make hole for AP bootstrap code */
1330	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1331#endif
1332
1333	/*
1334	 * Maxmem isn't the "maximum memory", it's one larger than the
1335	 * highest page of the physical address space.  It should be
1336	 * called something like "Maxphyspage".  We may adjust this
1337	 * based on ``hw.physmem'' and the results of the memory test.
1338	 */
1339	Maxmem = atop(physmap[physmap_idx + 1]);
1340
1341#ifdef MAXMEM
1342	Maxmem = MAXMEM / 4;
1343#endif
1344
1345	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1346		Maxmem = atop(physmem_tunable);
1347
1348	/*
1349	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1350	 * in the system.
1351	 */
1352	if (Maxmem > atop(physmap[physmap_idx + 1]))
1353		Maxmem = atop(physmap[physmap_idx + 1]);
1354
1355	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1356	    (boothowto & RB_VERBOSE))
1357		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1358
1359	/* call pmap initialization to make new kernel address space */
1360	pmap_bootstrap(&first);
1361
1362	/*
1363	 * Size up each available chunk of physical memory.
1364	 */
1365	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1366	pa_indx = 0;
1367	da_indx = 1;
1368	phys_avail[pa_indx++] = physmap[0];
1369	phys_avail[pa_indx] = physmap[0];
1370	dump_avail[da_indx] = physmap[0];
1371	pte = CMAP1;
1372
1373	/*
1374	 * Get dcons buffer address
1375	 */
1376	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1377	    getenv_quad("dcons.size", &dcons_size) == 0)
1378		dcons_addr = 0;
1379
1380	/*
1381	 * physmap is in bytes, so when converting to page boundaries,
1382	 * round up the start address and round down the end address.
1383	 */
1384	for (i = 0; i <= physmap_idx; i += 2) {
1385		vm_paddr_t end;
1386
1387		end = ptoa((vm_paddr_t)Maxmem);
1388		if (physmap[i + 1] < end)
1389			end = trunc_page(physmap[i + 1]);
1390		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1391			int tmp, page_bad, full;
1392			int *ptr = (int *)CADDR1;
1393
1394			full = FALSE;
1395			/*
1396			 * block out kernel memory as not available.
1397			 */
1398			if (pa >= 0x100000 && pa < first)
1399				goto do_dump_avail;
1400
1401			/*
1402			 * block out dcons buffer
1403			 */
1404			if (dcons_addr > 0
1405			    && pa >= trunc_page(dcons_addr)
1406			    && pa < dcons_addr + dcons_size)
1407				goto do_dump_avail;
1408
1409			page_bad = FALSE;
1410
1411			/*
1412			 * map page into kernel: valid, read/write,non-cacheable
1413			 */
1414			*pte = pa | PG_V | PG_RW | PG_N;
1415			invltlb();
1416
1417			tmp = *(int *)ptr;
1418			/*
1419			 * Test for alternating 1's and 0's
1420			 */
1421			*(volatile int *)ptr = 0xaaaaaaaa;
1422			if (*(volatile int *)ptr != 0xaaaaaaaa)
1423				page_bad = TRUE;
1424			/*
1425			 * Test for alternating 0's and 1's
1426			 */
1427			*(volatile int *)ptr = 0x55555555;
1428			if (*(volatile int *)ptr != 0x55555555)
1429				page_bad = TRUE;
1430			/*
1431			 * Test for all 1's
1432			 */
1433			*(volatile int *)ptr = 0xffffffff;
1434			if (*(volatile int *)ptr != 0xffffffff)
1435				page_bad = TRUE;
1436			/*
1437			 * Test for all 0's
1438			 */
1439			*(volatile int *)ptr = 0x0;
1440			if (*(volatile int *)ptr != 0x0)
1441				page_bad = TRUE;
1442			/*
1443			 * Restore original value.
1444			 */
1445			*(int *)ptr = tmp;
1446
1447			/*
1448			 * Adjust array of valid/good pages.
1449			 */
1450			if (page_bad == TRUE)
1451				continue;
1452			/*
1453			 * If this good page is a continuation of the
1454			 * previous set of good pages, then just increase
1455			 * the end pointer. Otherwise start a new chunk.
1456			 * Note that "end" points one higher than end,
1457			 * making the range >= start and < end.
1458			 * If we're also doing a speculative memory
1459			 * test and we at or past the end, bump up Maxmem
1460			 * so that we keep going. The first bad page
1461			 * will terminate the loop.
1462			 */
1463			if (phys_avail[pa_indx] == pa) {
1464				phys_avail[pa_indx] += PAGE_SIZE;
1465			} else {
1466				pa_indx++;
1467				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1468					printf(
1469		"Too many holes in the physical address space, giving up\n");
1470					pa_indx--;
1471					full = TRUE;
1472					goto do_dump_avail;
1473				}
1474				phys_avail[pa_indx++] = pa;	/* start */
1475				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1476			}
1477			physmem++;
1478do_dump_avail:
1479			if (dump_avail[da_indx] == pa) {
1480				dump_avail[da_indx] += PAGE_SIZE;
1481			} else {
1482				da_indx++;
1483				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1484					da_indx--;
1485					goto do_next;
1486				}
1487				dump_avail[da_indx++] = pa; /* start */
1488				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1489			}
1490do_next:
1491			if (full)
1492				break;
1493		}
1494	}
1495	*pte = 0;
1496	invltlb();
1497
1498	/*
1499	 * XXX
1500	 * The last chunk must contain at least one page plus the message
1501	 * buffer to avoid complicating other code (message buffer address
1502	 * calculation, etc.).
1503	 */
1504	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1505	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1506		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1507		phys_avail[pa_indx--] = 0;
1508		phys_avail[pa_indx--] = 0;
1509	}
1510
1511	Maxmem = atop(phys_avail[pa_indx]);
1512
1513	/* Trim off space for the message buffer. */
1514	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1515
1516	/* Map the message buffer. */
1517	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1518}
1519
1520u_int64_t
1521hammer_time(u_int64_t modulep, u_int64_t physfree)
1522{
1523	caddr_t kmdp;
1524	int gsel_tss, x;
1525	struct pcpu *pc;
1526	struct nmi_pcpu *np;
1527	u_int64_t msr;
1528	char *env;
1529
1530	thread0.td_kstack = physfree + KERNBASE;
1531	bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
1532	physfree += KSTACK_PAGES * PAGE_SIZE;
1533	thread0.td_pcb = (struct pcb *)
1534	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1535
1536	/*
1537 	 * This may be done better later if it gets more high level
1538 	 * components in it. If so just link td->td_proc here.
1539	 */
1540	proc_linkup0(&proc0, &thread0);
1541
1542	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1543	preload_bootstrap_relocate(KERNBASE);
1544	kmdp = preload_search_by_type("elf kernel");
1545	if (kmdp == NULL)
1546		kmdp = preload_search_by_type("elf64 kernel");
1547	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1548	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1549#ifdef DDB
1550	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1551	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1552#endif
1553
1554	/* Init basic tunables, hz etc */
1555	init_param1();
1556
1557	/*
1558	 * make gdt memory segments
1559	 */
1560	for (x = 0; x < NGDT; x++) {
1561		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1562		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1563			ssdtosd(&gdt_segs[x], &gdt[x]);
1564	}
1565	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1566	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1567	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1568
1569	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1570	r_gdt.rd_base =  (long) gdt;
1571	lgdt(&r_gdt);
1572	pc = &__pcpu[0];
1573
1574	wrmsr(MSR_FSBASE, 0);		/* User value */
1575	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1576	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1577
1578	pcpu_init(pc, 0, sizeof(struct pcpu));
1579	dpcpu_init((void *)(physfree + KERNBASE), 0);
1580	physfree += DPCPU_SIZE;
1581	PCPU_SET(prvspace, pc);
1582	PCPU_SET(curthread, &thread0);
1583	PCPU_SET(curpcb, thread0.td_pcb);
1584	PCPU_SET(tssp, &common_tss[0]);
1585	PCPU_SET(commontssp, &common_tss[0]);
1586	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1587	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1588	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1589	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1590
1591	/*
1592	 * Initialize mutexes.
1593	 *
1594	 * icu_lock: in order to allow an interrupt to occur in a critical
1595	 * 	     section, to set pcpu->ipending (etc...) properly, we
1596	 *	     must be able to get the icu lock, so it can't be
1597	 *	     under witness.
1598	 */
1599	mutex_init();
1600	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1601	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1602
1603	/* exceptions */
1604	for (x = 0; x < NIDT; x++)
1605		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1606	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1607	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1608	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1609 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1610	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1611	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1612	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1613	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1614	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1615	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1616	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1617	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1618	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1619	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1620	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1621	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1622	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1623	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1624	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1625#ifdef KDTRACE_HOOKS
1626	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1627#endif
1628
1629	r_idt.rd_limit = sizeof(idt0) - 1;
1630	r_idt.rd_base = (long) idt;
1631	lidt(&r_idt);
1632
1633	/*
1634	 * Initialize the i8254 before the console so that console
1635	 * initialization can use DELAY().
1636	 */
1637	i8254_init();
1638
1639	/*
1640	 * Initialize the console before we print anything out.
1641	 */
1642	cninit();
1643
1644#ifdef DEV_ISA
1645#ifdef DEV_ATPIC
1646	elcr_probe();
1647	atpic_startup();
1648#else
1649	/* Reset and mask the atpics and leave them shut down. */
1650	atpic_reset();
1651
1652	/*
1653	 * Point the ICU spurious interrupt vectors at the APIC spurious
1654	 * interrupt handler.
1655	 */
1656	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1657	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1658#endif
1659#else
1660#error "have you forgotten the isa device?";
1661#endif
1662
1663	kdb_init();
1664
1665#ifdef KDB
1666	if (boothowto & RB_KDB)
1667		kdb_enter(KDB_WHY_BOOTFLAGS,
1668		    "Boot flags requested debugger");
1669#endif
1670
1671	identify_cpu();		/* Final stage of CPU initialization */
1672	initializecpu();	/* Initialize CPU registers */
1673	initializecpucache();
1674
1675	/* make an initial tss so cpu can get interrupt stack on syscall! */
1676	common_tss[0].tss_rsp0 = thread0.td_kstack + \
1677	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1678	/* Ensure the stack is aligned to 16 bytes */
1679	common_tss[0].tss_rsp0 &= ~0xFul;
1680	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1681
1682	/* doublefault stack space, runs on ist1 */
1683	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1684
1685	/*
1686	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1687	 * above the start of the ist2 stack.
1688	 */
1689	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1690	np->np_pcpu = (register_t) pc;
1691	common_tss[0].tss_ist2 = (long) np;
1692
1693	/* Set the IO permission bitmap (empty due to tss seg limit) */
1694	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1695	    IOPAGES * PAGE_SIZE;
1696
1697	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1698	ltr(gsel_tss);
1699
1700	/* Set up the fast syscall stuff */
1701	msr = rdmsr(MSR_EFER) | EFER_SCE;
1702	wrmsr(MSR_EFER, msr);
1703	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1704	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1705	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1706	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1707	wrmsr(MSR_STAR, msr);
1708	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1709
1710	getmemsize(kmdp, physfree);
1711	init_param2(physmem);
1712
1713	/* now running on new page tables, configured,and u/iom is accessible */
1714
1715	msgbufinit(msgbufp, MSGBUF_SIZE);
1716	fpuinit();
1717
1718	/* transfer to user mode */
1719
1720	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1721	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1722	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1723	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1724	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1725
1726	load_ds(_udatasel);
1727	load_es(_udatasel);
1728	load_fs(_ufssel);
1729
1730	/* setup proc 0's pcb */
1731	thread0.td_pcb->pcb_flags = 0;
1732	thread0.td_pcb->pcb_cr3 = KPML4phys;
1733	thread0.td_frame = &proc0_tf;
1734
1735        env = getenv("kernelname");
1736	if (env != NULL)
1737		strlcpy(kernelname, env, sizeof(kernelname));
1738
1739#ifdef XENHVM
1740	if (inw(0x10) == 0x49d2) {
1741		if (bootverbose)
1742			printf("Xen detected: disabling emulated block and network devices\n");
1743		outw(0x10, 3);
1744	}
1745#endif
1746
1747	cpu_probe_amdc1e();
1748
1749	/* Location of kernel stack for locore */
1750	return ((u_int64_t)thread0.td_pcb);
1751}
1752
1753void
1754cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1755{
1756
1757	pcpu->pc_acpi_id = 0xffffffff;
1758}
1759
1760void
1761spinlock_enter(void)
1762{
1763	struct thread *td;
1764
1765	td = curthread;
1766	if (td->td_md.md_spinlock_count == 0)
1767		td->td_md.md_saved_flags = intr_disable();
1768	td->td_md.md_spinlock_count++;
1769	critical_enter();
1770}
1771
1772void
1773spinlock_exit(void)
1774{
1775	struct thread *td;
1776
1777	td = curthread;
1778	critical_exit();
1779	td->td_md.md_spinlock_count--;
1780	if (td->td_md.md_spinlock_count == 0)
1781		intr_restore(td->td_md.md_saved_flags);
1782}
1783
1784/*
1785 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1786 * we want to start a backtrace from the function that caused us to enter
1787 * the debugger. We have the context in the trapframe, but base the trace
1788 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1789 * enough for a backtrace.
1790 */
1791void
1792makectx(struct trapframe *tf, struct pcb *pcb)
1793{
1794
1795	pcb->pcb_r12 = tf->tf_r12;
1796	pcb->pcb_r13 = tf->tf_r13;
1797	pcb->pcb_r14 = tf->tf_r14;
1798	pcb->pcb_r15 = tf->tf_r15;
1799	pcb->pcb_rbp = tf->tf_rbp;
1800	pcb->pcb_rbx = tf->tf_rbx;
1801	pcb->pcb_rip = tf->tf_rip;
1802	pcb->pcb_rsp = tf->tf_rsp;
1803}
1804
1805int
1806ptrace_set_pc(struct thread *td, unsigned long addr)
1807{
1808	td->td_frame->tf_rip = addr;
1809	return (0);
1810}
1811
1812int
1813ptrace_single_step(struct thread *td)
1814{
1815	td->td_frame->tf_rflags |= PSL_T;
1816	return (0);
1817}
1818
1819int
1820ptrace_clear_single_step(struct thread *td)
1821{
1822	td->td_frame->tf_rflags &= ~PSL_T;
1823	return (0);
1824}
1825
1826int
1827fill_regs(struct thread *td, struct reg *regs)
1828{
1829	struct trapframe *tp;
1830
1831	tp = td->td_frame;
1832	regs->r_r15 = tp->tf_r15;
1833	regs->r_r14 = tp->tf_r14;
1834	regs->r_r13 = tp->tf_r13;
1835	regs->r_r12 = tp->tf_r12;
1836	regs->r_r11 = tp->tf_r11;
1837	regs->r_r10 = tp->tf_r10;
1838	regs->r_r9  = tp->tf_r9;
1839	regs->r_r8  = tp->tf_r8;
1840	regs->r_rdi = tp->tf_rdi;
1841	regs->r_rsi = tp->tf_rsi;
1842	regs->r_rbp = tp->tf_rbp;
1843	regs->r_rbx = tp->tf_rbx;
1844	regs->r_rdx = tp->tf_rdx;
1845	regs->r_rcx = tp->tf_rcx;
1846	regs->r_rax = tp->tf_rax;
1847	regs->r_rip = tp->tf_rip;
1848	regs->r_cs = tp->tf_cs;
1849	regs->r_rflags = tp->tf_rflags;
1850	regs->r_rsp = tp->tf_rsp;
1851	regs->r_ss = tp->tf_ss;
1852	if (tp->tf_flags & TF_HASSEGS) {
1853		regs->r_ds = tp->tf_ds;
1854		regs->r_es = tp->tf_es;
1855		regs->r_fs = tp->tf_fs;
1856		regs->r_gs = tp->tf_gs;
1857	} else {
1858		regs->r_ds = 0;
1859		regs->r_es = 0;
1860		regs->r_fs = 0;
1861		regs->r_gs = 0;
1862	}
1863	return (0);
1864}
1865
1866int
1867set_regs(struct thread *td, struct reg *regs)
1868{
1869	struct trapframe *tp;
1870	register_t rflags;
1871
1872	tp = td->td_frame;
1873	rflags = regs->r_rflags & 0xffffffff;
1874	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1875		return (EINVAL);
1876	tp->tf_r15 = regs->r_r15;
1877	tp->tf_r14 = regs->r_r14;
1878	tp->tf_r13 = regs->r_r13;
1879	tp->tf_r12 = regs->r_r12;
1880	tp->tf_r11 = regs->r_r11;
1881	tp->tf_r10 = regs->r_r10;
1882	tp->tf_r9  = regs->r_r9;
1883	tp->tf_r8  = regs->r_r8;
1884	tp->tf_rdi = regs->r_rdi;
1885	tp->tf_rsi = regs->r_rsi;
1886	tp->tf_rbp = regs->r_rbp;
1887	tp->tf_rbx = regs->r_rbx;
1888	tp->tf_rdx = regs->r_rdx;
1889	tp->tf_rcx = regs->r_rcx;
1890	tp->tf_rax = regs->r_rax;
1891	tp->tf_rip = regs->r_rip;
1892	tp->tf_cs = regs->r_cs;
1893	tp->tf_rflags = rflags;
1894	tp->tf_rsp = regs->r_rsp;
1895	tp->tf_ss = regs->r_ss;
1896	if (0) {	/* XXXKIB */
1897		tp->tf_ds = regs->r_ds;
1898		tp->tf_es = regs->r_es;
1899		tp->tf_fs = regs->r_fs;
1900		tp->tf_gs = regs->r_gs;
1901		tp->tf_flags = TF_HASSEGS;
1902	}
1903	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1904	return (0);
1905}
1906
1907/* XXX check all this stuff! */
1908/* externalize from sv_xmm */
1909static void
1910fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1911{
1912	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1913	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1914	int i;
1915
1916	/* pcb -> fpregs */
1917	bzero(fpregs, sizeof(*fpregs));
1918
1919	/* FPU control/status */
1920	penv_fpreg->en_cw = penv_xmm->en_cw;
1921	penv_fpreg->en_sw = penv_xmm->en_sw;
1922	penv_fpreg->en_tw = penv_xmm->en_tw;
1923	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1924	penv_fpreg->en_rip = penv_xmm->en_rip;
1925	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1926	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1927	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1928
1929	/* FPU registers */
1930	for (i = 0; i < 8; ++i)
1931		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1932
1933	/* SSE registers */
1934	for (i = 0; i < 16; ++i)
1935		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1936}
1937
1938/* internalize from fpregs into sv_xmm */
1939static void
1940set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1941{
1942	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1943	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1944	int i;
1945
1946	/* fpregs -> pcb */
1947	/* FPU control/status */
1948	penv_xmm->en_cw = penv_fpreg->en_cw;
1949	penv_xmm->en_sw = penv_fpreg->en_sw;
1950	penv_xmm->en_tw = penv_fpreg->en_tw;
1951	penv_xmm->en_opcode = penv_fpreg->en_opcode;
1952	penv_xmm->en_rip = penv_fpreg->en_rip;
1953	penv_xmm->en_rdp = penv_fpreg->en_rdp;
1954	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1955	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
1956
1957	/* FPU registers */
1958	for (i = 0; i < 8; ++i)
1959		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1960
1961	/* SSE registers */
1962	for (i = 0; i < 16; ++i)
1963		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1964}
1965
1966/* externalize from td->pcb */
1967int
1968fill_fpregs(struct thread *td, struct fpreg *fpregs)
1969{
1970
1971	fill_fpregs_xmm(&td->td_pcb->pcb_user_save, fpregs);
1972	return (0);
1973}
1974
1975/* internalize to td->pcb */
1976int
1977set_fpregs(struct thread *td, struct fpreg *fpregs)
1978{
1979
1980	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_user_save);
1981	return (0);
1982}
1983
1984/*
1985 * Get machine context.
1986 */
1987int
1988get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
1989{
1990	struct trapframe *tp;
1991
1992	tp = td->td_frame;
1993	PROC_LOCK(curthread->td_proc);
1994	mcp->mc_onstack = sigonstack(tp->tf_rsp);
1995	PROC_UNLOCK(curthread->td_proc);
1996	mcp->mc_r15 = tp->tf_r15;
1997	mcp->mc_r14 = tp->tf_r14;
1998	mcp->mc_r13 = tp->tf_r13;
1999	mcp->mc_r12 = tp->tf_r12;
2000	mcp->mc_r11 = tp->tf_r11;
2001	mcp->mc_r10 = tp->tf_r10;
2002	mcp->mc_r9  = tp->tf_r9;
2003	mcp->mc_r8  = tp->tf_r8;
2004	mcp->mc_rdi = tp->tf_rdi;
2005	mcp->mc_rsi = tp->tf_rsi;
2006	mcp->mc_rbp = tp->tf_rbp;
2007	mcp->mc_rbx = tp->tf_rbx;
2008	mcp->mc_rcx = tp->tf_rcx;
2009	mcp->mc_rflags = tp->tf_rflags;
2010	if (flags & GET_MC_CLEAR_RET) {
2011		mcp->mc_rax = 0;
2012		mcp->mc_rdx = 0;
2013		mcp->mc_rflags &= ~PSL_C;
2014	} else {
2015		mcp->mc_rax = tp->tf_rax;
2016		mcp->mc_rdx = tp->tf_rdx;
2017	}
2018	mcp->mc_rip = tp->tf_rip;
2019	mcp->mc_cs = tp->tf_cs;
2020	mcp->mc_rsp = tp->tf_rsp;
2021	mcp->mc_ss = tp->tf_ss;
2022	mcp->mc_ds = tp->tf_ds;
2023	mcp->mc_es = tp->tf_es;
2024	mcp->mc_fs = tp->tf_fs;
2025	mcp->mc_gs = tp->tf_gs;
2026	mcp->mc_flags = tp->tf_flags;
2027	mcp->mc_len = sizeof(*mcp);
2028	get_fpcontext(td, mcp);
2029	mcp->mc_fsbase = td->td_pcb->pcb_fsbase;
2030	mcp->mc_gsbase = td->td_pcb->pcb_gsbase;
2031	return (0);
2032}
2033
2034/*
2035 * Set machine context.
2036 *
2037 * However, we don't set any but the user modifiable flags, and we won't
2038 * touch the cs selector.
2039 */
2040int
2041set_mcontext(struct thread *td, const mcontext_t *mcp)
2042{
2043	struct trapframe *tp;
2044	long rflags;
2045	int ret;
2046
2047	tp = td->td_frame;
2048	if (mcp->mc_len != sizeof(*mcp) ||
2049	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2050		return (EINVAL);
2051	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2052	    (tp->tf_rflags & ~PSL_USERCHANGE);
2053	ret = set_fpcontext(td, mcp);
2054	if (ret != 0)
2055		return (ret);
2056	tp->tf_r15 = mcp->mc_r15;
2057	tp->tf_r14 = mcp->mc_r14;
2058	tp->tf_r13 = mcp->mc_r13;
2059	tp->tf_r12 = mcp->mc_r12;
2060	tp->tf_r11 = mcp->mc_r11;
2061	tp->tf_r10 = mcp->mc_r10;
2062	tp->tf_r9  = mcp->mc_r9;
2063	tp->tf_r8  = mcp->mc_r8;
2064	tp->tf_rdi = mcp->mc_rdi;
2065	tp->tf_rsi = mcp->mc_rsi;
2066	tp->tf_rbp = mcp->mc_rbp;
2067	tp->tf_rbx = mcp->mc_rbx;
2068	tp->tf_rdx = mcp->mc_rdx;
2069	tp->tf_rcx = mcp->mc_rcx;
2070	tp->tf_rax = mcp->mc_rax;
2071	tp->tf_rip = mcp->mc_rip;
2072	tp->tf_rflags = rflags;
2073	tp->tf_rsp = mcp->mc_rsp;
2074	tp->tf_ss = mcp->mc_ss;
2075	tp->tf_flags = mcp->mc_flags;
2076	if (tp->tf_flags & TF_HASSEGS) {
2077		tp->tf_ds = mcp->mc_ds;
2078		tp->tf_es = mcp->mc_es;
2079		tp->tf_fs = mcp->mc_fs;
2080		tp->tf_gs = mcp->mc_gs;
2081	}
2082	if (mcp->mc_flags & _MC_HASBASES) {
2083		td->td_pcb->pcb_fsbase = mcp->mc_fsbase;
2084		td->td_pcb->pcb_gsbase = mcp->mc_gsbase;
2085	}
2086	td->td_pcb->pcb_flags |= PCB_FULLCTX;
2087	td->td_pcb->pcb_full_iret = 1;
2088	return (0);
2089}
2090
2091static void
2092get_fpcontext(struct thread *td, mcontext_t *mcp)
2093{
2094
2095	mcp->mc_ownedfp = fpugetuserregs(td,
2096	    (struct savefpu *)&mcp->mc_fpstate);
2097	mcp->mc_fpformat = fpuformat();
2098}
2099
2100static int
2101set_fpcontext(struct thread *td, const mcontext_t *mcp)
2102{
2103	struct savefpu *fpstate;
2104
2105	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2106		return (0);
2107	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2108		return (EINVAL);
2109	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
2110		/* We don't care what state is left in the FPU or PCB. */
2111		fpstate_drop(td);
2112	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2113	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2114		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2115		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2116		fpusetuserregs(td, fpstate);
2117	} else
2118		return (EINVAL);
2119	return (0);
2120}
2121
2122void
2123fpstate_drop(struct thread *td)
2124{
2125
2126	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2127	critical_enter();
2128	if (PCPU_GET(fpcurthread) == td)
2129		fpudrop();
2130	/*
2131	 * XXX force a full drop of the fpu.  The above only drops it if we
2132	 * owned it.
2133	 *
2134	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2135	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2136	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2137	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2138	 * have too many layers.
2139	 */
2140	curthread->td_pcb->pcb_flags &= ~(PCB_FPUINITDONE |
2141	    PCB_USERFPUINITDONE);
2142	critical_exit();
2143}
2144
2145int
2146fill_dbregs(struct thread *td, struct dbreg *dbregs)
2147{
2148	struct pcb *pcb;
2149
2150	if (td == NULL) {
2151		dbregs->dr[0] = rdr0();
2152		dbregs->dr[1] = rdr1();
2153		dbregs->dr[2] = rdr2();
2154		dbregs->dr[3] = rdr3();
2155		dbregs->dr[6] = rdr6();
2156		dbregs->dr[7] = rdr7();
2157	} else {
2158		pcb = td->td_pcb;
2159		dbregs->dr[0] = pcb->pcb_dr0;
2160		dbregs->dr[1] = pcb->pcb_dr1;
2161		dbregs->dr[2] = pcb->pcb_dr2;
2162		dbregs->dr[3] = pcb->pcb_dr3;
2163		dbregs->dr[6] = pcb->pcb_dr6;
2164		dbregs->dr[7] = pcb->pcb_dr7;
2165	}
2166	dbregs->dr[4] = 0;
2167	dbregs->dr[5] = 0;
2168	dbregs->dr[8] = 0;
2169	dbregs->dr[9] = 0;
2170	dbregs->dr[10] = 0;
2171	dbregs->dr[11] = 0;
2172	dbregs->dr[12] = 0;
2173	dbregs->dr[13] = 0;
2174	dbregs->dr[14] = 0;
2175	dbregs->dr[15] = 0;
2176	return (0);
2177}
2178
2179int
2180set_dbregs(struct thread *td, struct dbreg *dbregs)
2181{
2182	struct pcb *pcb;
2183	int i;
2184
2185	if (td == NULL) {
2186		load_dr0(dbregs->dr[0]);
2187		load_dr1(dbregs->dr[1]);
2188		load_dr2(dbregs->dr[2]);
2189		load_dr3(dbregs->dr[3]);
2190		load_dr6(dbregs->dr[6]);
2191		load_dr7(dbregs->dr[7]);
2192	} else {
2193		/*
2194		 * Don't let an illegal value for dr7 get set.  Specifically,
2195		 * check for undefined settings.  Setting these bit patterns
2196		 * result in undefined behaviour and can lead to an unexpected
2197		 * TRCTRAP or a general protection fault right here.
2198		 * Upper bits of dr6 and dr7 must not be set
2199		 */
2200		for (i = 0; i < 4; i++) {
2201			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2202				return (EINVAL);
2203			if (td->td_frame->tf_cs == _ucode32sel &&
2204			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2205				return (EINVAL);
2206		}
2207		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2208		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2209			return (EINVAL);
2210
2211		pcb = td->td_pcb;
2212
2213		/*
2214		 * Don't let a process set a breakpoint that is not within the
2215		 * process's address space.  If a process could do this, it
2216		 * could halt the system by setting a breakpoint in the kernel
2217		 * (if ddb was enabled).  Thus, we need to check to make sure
2218		 * that no breakpoints are being enabled for addresses outside
2219		 * process's address space.
2220		 *
2221		 * XXX - what about when the watched area of the user's
2222		 * address space is written into from within the kernel
2223		 * ... wouldn't that still cause a breakpoint to be generated
2224		 * from within kernel mode?
2225		 */
2226
2227		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2228			/* dr0 is enabled */
2229			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2230				return (EINVAL);
2231		}
2232		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2233			/* dr1 is enabled */
2234			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2235				return (EINVAL);
2236		}
2237		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2238			/* dr2 is enabled */
2239			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2240				return (EINVAL);
2241		}
2242		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2243			/* dr3 is enabled */
2244			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2245				return (EINVAL);
2246		}
2247
2248		pcb->pcb_dr0 = dbregs->dr[0];
2249		pcb->pcb_dr1 = dbregs->dr[1];
2250		pcb->pcb_dr2 = dbregs->dr[2];
2251		pcb->pcb_dr3 = dbregs->dr[3];
2252		pcb->pcb_dr6 = dbregs->dr[6];
2253		pcb->pcb_dr7 = dbregs->dr[7];
2254
2255		pcb->pcb_flags |= PCB_DBREGS;
2256	}
2257
2258	return (0);
2259}
2260
2261void
2262reset_dbregs(void)
2263{
2264
2265	load_dr7(0);	/* Turn off the control bits first */
2266	load_dr0(0);
2267	load_dr1(0);
2268	load_dr2(0);
2269	load_dr3(0);
2270	load_dr6(0);
2271}
2272
2273/*
2274 * Return > 0 if a hardware breakpoint has been hit, and the
2275 * breakpoint was in user space.  Return 0, otherwise.
2276 */
2277int
2278user_dbreg_trap(void)
2279{
2280        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2281        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2282        int nbp;            /* number of breakpoints that triggered */
2283        caddr_t addr[4];    /* breakpoint addresses */
2284        int i;
2285
2286        dr7 = rdr7();
2287        if ((dr7 & 0x000000ff) == 0) {
2288                /*
2289                 * all GE and LE bits in the dr7 register are zero,
2290                 * thus the trap couldn't have been caused by the
2291                 * hardware debug registers
2292                 */
2293                return 0;
2294        }
2295
2296        nbp = 0;
2297        dr6 = rdr6();
2298        bp = dr6 & 0x0000000f;
2299
2300        if (!bp) {
2301                /*
2302                 * None of the breakpoint bits are set meaning this
2303                 * trap was not caused by any of the debug registers
2304                 */
2305                return 0;
2306        }
2307
2308        /*
2309         * at least one of the breakpoints were hit, check to see
2310         * which ones and if any of them are user space addresses
2311         */
2312
2313        if (bp & 0x01) {
2314                addr[nbp++] = (caddr_t)rdr0();
2315        }
2316        if (bp & 0x02) {
2317                addr[nbp++] = (caddr_t)rdr1();
2318        }
2319        if (bp & 0x04) {
2320                addr[nbp++] = (caddr_t)rdr2();
2321        }
2322        if (bp & 0x08) {
2323                addr[nbp++] = (caddr_t)rdr3();
2324        }
2325
2326        for (i = 0; i < nbp; i++) {
2327                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2328                        /*
2329                         * addr[i] is in user space
2330                         */
2331                        return nbp;
2332                }
2333        }
2334
2335        /*
2336         * None of the breakpoints are in user space.
2337         */
2338        return 0;
2339}
2340
2341#ifdef KDB
2342
2343/*
2344 * Provide inb() and outb() as functions.  They are normally only available as
2345 * inline functions, thus cannot be called from the debugger.
2346 */
2347
2348/* silence compiler warnings */
2349u_char inb_(u_short);
2350void outb_(u_short, u_char);
2351
2352u_char
2353inb_(u_short port)
2354{
2355	return inb(port);
2356}
2357
2358void
2359outb_(u_short port, u_char data)
2360{
2361	outb(port, data);
2362}
2363
2364#endif /* KDB */
2365