machdep.c revision 20998
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 *	$Id: machdep.c,v 1.222 1996/12/18 15:03:10 bde Exp $
39 */
40
41#include "npx.h"
42#include "opt_sysvipc.h"
43#include "opt_ddb.h"
44#include "opt_bounce.h"
45#include "opt_machdep.h"
46#include "opt_perfmon.h"
47#include "opt_userconfig.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/sysproto.h>
52#include <sys/signalvar.h>
53#include <sys/kernel.h>
54#include <sys/proc.h>
55#include <sys/buf.h>
56#include <sys/reboot.h>
57#include <sys/conf.h>
58#include <sys/file.h>
59#include <sys/callout.h>
60#include <sys/malloc.h>
61#include <sys/mbuf.h>
62#include <sys/mount.h>
63#include <sys/msgbuf.h>
64#include <sys/ioctl.h>
65#include <sys/sysent.h>
66#include <sys/tty.h>
67#include <sys/sysctl.h>
68#include <sys/vmmeter.h>
69
70#ifdef SYSVSHM
71#include <sys/shm.h>
72#endif
73
74#ifdef SYSVMSG
75#include <sys/msg.h>
76#endif
77
78#ifdef SYSVSEM
79#include <sys/sem.h>
80#endif
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/vm_prot.h>
85#include <vm/lock.h>
86#include <vm/vm_kern.h>
87#include <vm/vm_object.h>
88#include <vm/vm_page.h>
89#include <vm/vm_map.h>
90#include <vm/vm_pager.h>
91#include <vm/vm_extern.h>
92
93#include <sys/user.h>
94#include <sys/exec.h>
95#include <sys/vnode.h>
96
97#include <ddb/ddb.h>
98
99#include <net/netisr.h>
100
101#include <machine/cpu.h>
102#include <machine/npx.h>
103#include <machine/reg.h>
104#include <machine/psl.h>
105#include <machine/clock.h>
106#include <machine/specialreg.h>
107#include <machine/sysarch.h>
108#include <machine/cons.h>
109#include <machine/bootinfo.h>
110#include <machine/md_var.h>
111#ifdef PERFMON
112#include <machine/perfmon.h>
113#endif
114
115#include <i386/isa/isa_device.h>
116#include <i386/isa/rtc.h>
117#include <machine/random.h>
118
119extern void init386 __P((int first));
120extern int ptrace_set_pc __P((struct proc *p, unsigned int addr));
121extern int ptrace_single_step __P((struct proc *p));
122extern int ptrace_write_u __P((struct proc *p, vm_offset_t off, int data));
123extern void dblfault_handler __P((void));
124
125extern void identifycpu(void);	/* XXX header file */
126extern void earlysetcpuclass(void);	/* same header file */
127
128static void cpu_startup __P((void *));
129SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
130
131
132#ifdef BOUNCE_BUFFERS
133extern char *bouncememory;
134extern int maxbkva;
135#ifdef BOUNCEPAGES
136int	bouncepages = BOUNCEPAGES;
137#else
138int	bouncepages = 0;
139#endif
140#endif	/* BOUNCE_BUFFERS */
141
142extern int freebufspace;
143int	msgbufmapped = 0;		/* set when safe to use msgbuf */
144int _udatasel, _ucodesel;
145u_int	atdevbase;
146
147
148int physmem = 0;
149int cold = 1;
150
151static int
152sysctl_hw_physmem SYSCTL_HANDLER_ARGS
153{
154	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
155	return (error);
156}
157
158SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
159	0, 0, sysctl_hw_physmem, "I", "");
160
161static int
162sysctl_hw_usermem SYSCTL_HANDLER_ARGS
163{
164	int error = sysctl_handle_int(oidp, 0,
165		ctob(physmem - cnt.v_wire_count), req);
166	return (error);
167}
168
169SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
170	0, 0, sysctl_hw_usermem, "I", "");
171
172int boothowto = 0, bootverbose = 0, Maxmem = 0;
173static int	badpages = 0;
174long dumplo;
175extern int bootdev;
176
177vm_offset_t phys_avail[10];
178
179/* must be 2 less so 0 0 can signal end of chunks */
180#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
181
182static void setup_netisrs __P((struct linker_set *)); /* XXX declare elsewhere */
183
184static vm_offset_t buffer_sva, buffer_eva;
185vm_offset_t clean_sva, clean_eva;
186static vm_offset_t pager_sva, pager_eva;
187extern struct linker_set netisr_set;
188
189#define offsetof(type, member)	((size_t)(&((type *)0)->member))
190
191static void
192cpu_startup(dummy)
193	void *dummy;
194{
195	register unsigned i;
196	register caddr_t v;
197	vm_offset_t maxaddr;
198	vm_size_t size = 0;
199	int firstaddr;
200	vm_offset_t minaddr;
201
202	if (boothowto & RB_VERBOSE)
203		bootverbose++;
204
205	/*
206	 * Good {morning,afternoon,evening,night}.
207	 */
208	printf(version);
209	earlysetcpuclass();
210	startrtclock();
211	identifycpu();
212#ifdef PERFMON
213	perfmon_init();
214#endif
215	printf("real memory  = %d (%dK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
216	/*
217	 * Display any holes after the first chunk of extended memory.
218	 */
219	if (badpages != 0) {
220		int indx = 1;
221
222		/*
223		 * XXX skip reporting ISA hole & unmanaged kernel memory
224		 */
225		if (phys_avail[0] == PAGE_SIZE)
226			indx += 2;
227
228		printf("Physical memory hole(s):\n");
229		for (; phys_avail[indx + 1] != 0; indx += 2) {
230			int size = phys_avail[indx + 1] - phys_avail[indx];
231
232			printf("0x%08lx - 0x%08lx, %d bytes (%d pages)\n", phys_avail[indx],
233			    phys_avail[indx + 1] - 1, size, size / PAGE_SIZE);
234		}
235	}
236
237	/*
238	 * Quickly wire in netisrs.
239	 */
240	setup_netisrs(&netisr_set);
241
242	/*
243	 * Allocate space for system data structures.
244	 * The first available kernel virtual address is in "v".
245	 * As pages of kernel virtual memory are allocated, "v" is incremented.
246	 * As pages of memory are allocated and cleared,
247	 * "firstaddr" is incremented.
248	 * An index into the kernel page table corresponding to the
249	 * virtual memory address maintained in "v" is kept in "mapaddr".
250	 */
251
252	/*
253	 * Make two passes.  The first pass calculates how much memory is
254	 * needed and allocates it.  The second pass assigns virtual
255	 * addresses to the various data structures.
256	 */
257	firstaddr = 0;
258again:
259	v = (caddr_t)firstaddr;
260
261#define	valloc(name, type, num) \
262	    (name) = (type *)v; v = (caddr_t)((name)+(num))
263#define	valloclim(name, type, num, lim) \
264	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
265	valloc(callout, struct callout, ncallout);
266#ifdef SYSVSHM
267	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
268#endif
269#ifdef SYSVSEM
270	valloc(sema, struct semid_ds, seminfo.semmni);
271	valloc(sem, struct sem, seminfo.semmns);
272	/* This is pretty disgusting! */
273	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
274#endif
275#ifdef SYSVMSG
276	valloc(msgpool, char, msginfo.msgmax);
277	valloc(msgmaps, struct msgmap, msginfo.msgseg);
278	valloc(msghdrs, struct msg, msginfo.msgtql);
279	valloc(msqids, struct msqid_ds, msginfo.msgmni);
280#endif
281
282	if (nbuf == 0) {
283		nbuf = 30;
284		if( physmem > 1024)
285			nbuf += min((physmem - 1024) / 8, 2048);
286	}
287	nswbuf = max(min(nbuf/4, 128), 16);
288
289	valloc(swbuf, struct buf, nswbuf);
290	valloc(buf, struct buf, nbuf);
291
292#ifdef BOUNCE_BUFFERS
293	/*
294	 * If there is more than 16MB of memory, allocate some bounce buffers
295	 */
296	if (Maxmem > 4096) {
297		if (bouncepages == 0) {
298			bouncepages = 64;
299			bouncepages += ((Maxmem - 4096) / 2048) * 32;
300		}
301		v = (caddr_t)((vm_offset_t)round_page(v));
302		valloc(bouncememory, char, bouncepages * PAGE_SIZE);
303	}
304#endif
305
306	/*
307	 * End of first pass, size has been calculated so allocate memory
308	 */
309	if (firstaddr == 0) {
310		size = (vm_size_t)(v - firstaddr);
311		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
312		if (firstaddr == 0)
313			panic("startup: no room for tables");
314		goto again;
315	}
316
317	/*
318	 * End of second pass, addresses have been assigned
319	 */
320	if ((vm_size_t)(v - firstaddr) != size)
321		panic("startup: table size inconsistency");
322
323#ifdef BOUNCE_BUFFERS
324	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
325			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) +
326				maxbkva + pager_map_size, TRUE);
327	io_map = kmem_suballoc(clean_map, &minaddr, &maxaddr, maxbkva, FALSE);
328#else
329	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
330			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size, TRUE);
331#endif
332	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
333				(nbuf*BKVASIZE), TRUE);
334	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
335				(nswbuf*MAXPHYS) + pager_map_size, TRUE);
336	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
337				(16*ARG_MAX), TRUE);
338	exech_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
339				(16*PAGE_SIZE), TRUE);
340	u_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
341				(maxproc*UPAGES*PAGE_SIZE), FALSE);
342
343	/*
344	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
345	 * we use the more space efficient malloc in place of kmem_alloc.
346	 */
347	mclrefcnt = (char *)malloc(nmbclusters+PAGE_SIZE/MCLBYTES,
348				   M_MBUF, M_NOWAIT);
349	bzero(mclrefcnt, nmbclusters+PAGE_SIZE/MCLBYTES);
350	mcl_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
351			       nmbclusters * MCLBYTES, FALSE);
352	{
353		vm_size_t mb_map_size;
354		mb_map_size = nmbufs * MSIZE;
355		mb_map = kmem_suballoc(kmem_map, &minaddr, &maxaddr,
356				       round_page(mb_map_size), FALSE);
357	}
358
359	/*
360	 * Initialize callouts
361	 */
362	callfree = callout;
363	for (i = 1; i < ncallout; i++)
364		callout[i-1].c_next = &callout[i];
365
366#if defined(USERCONFIG)
367#if defined(USERCONFIG_BOOT)
368	if (1) {
369#else
370        if (boothowto & RB_CONFIG) {
371#endif
372		userconfig();
373		cninit();	/* the preferred console may have changed */
374	}
375#endif
376
377#ifdef BOUNCE_BUFFERS
378	/*
379	 * init bounce buffers
380	 */
381	vm_bounce_init();
382#endif
383
384	printf("avail memory = %d (%dK bytes)\n", ptoa(cnt.v_free_count),
385	    ptoa(cnt.v_free_count) / 1024);
386
387	/*
388	 * Set up buffers, so they can be used to read disk labels.
389	 */
390	bufinit();
391	vm_pager_bufferinit();
392}
393
394int
395register_netisr(num, handler)
396	int num;
397	netisr_t *handler;
398{
399
400	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
401		printf("register_netisr: bad isr number: %d\n", num);
402		return (EINVAL);
403	}
404	netisrs[num] = handler;
405	return (0);
406}
407
408static void
409setup_netisrs(ls)
410	struct linker_set *ls;
411{
412	int i;
413	const struct netisrtab *nit;
414
415	for(i = 0; ls->ls_items[i]; i++) {
416		nit = (const struct netisrtab *)ls->ls_items[i];
417		register_netisr(nit->nit_num, nit->nit_isr);
418	}
419}
420
421/*
422 * Send an interrupt to process.
423 *
424 * Stack is set up to allow sigcode stored
425 * at top to call routine, followed by kcall
426 * to sigreturn routine below.  After sigreturn
427 * resets the signal mask, the stack, and the
428 * frame pointer, it returns to the user
429 * specified pc, psl.
430 */
431void
432sendsig(catcher, sig, mask, code)
433	sig_t catcher;
434	int sig, mask;
435	u_long code;
436{
437	register struct proc *p = curproc;
438	register int *regs;
439	register struct sigframe *fp;
440	struct sigframe sf;
441	struct sigacts *psp = p->p_sigacts;
442	int oonstack;
443
444	regs = p->p_md.md_regs;
445        oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
446	/*
447	 * Allocate and validate space for the signal handler context.
448	 */
449        if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
450	    (psp->ps_sigonstack & sigmask(sig))) {
451		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
452		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
453		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
454	} else {
455		fp = (struct sigframe *)regs[tESP] - 1;
456	}
457
458	/*
459	 * grow() will return FALSE if the fp will not fit inside the stack
460	 *	and the stack can not be grown. useracc will return FALSE
461	 *	if access is denied.
462	 */
463	if ((grow(p, (int)fp) == FALSE) ||
464	    (useracc((caddr_t)fp, sizeof (struct sigframe), B_WRITE) == FALSE)) {
465		/*
466		 * Process has trashed its stack; give it an illegal
467		 * instruction to halt it in its tracks.
468		 */
469		SIGACTION(p, SIGILL) = SIG_DFL;
470		sig = sigmask(SIGILL);
471		p->p_sigignore &= ~sig;
472		p->p_sigcatch &= ~sig;
473		p->p_sigmask &= ~sig;
474		psignal(p, SIGILL);
475		return;
476	}
477
478	/*
479	 * Build the argument list for the signal handler.
480	 */
481	if (p->p_sysent->sv_sigtbl) {
482		if (sig < p->p_sysent->sv_sigsize)
483			sig = p->p_sysent->sv_sigtbl[sig];
484		else
485			sig = p->p_sysent->sv_sigsize + 1;
486	}
487	sf.sf_signum = sig;
488	sf.sf_code = code;
489	sf.sf_scp = &fp->sf_sc;
490	sf.sf_addr = (char *) regs[tERR];
491	sf.sf_handler = catcher;
492
493	/* save scratch registers */
494	sf.sf_sc.sc_eax = regs[tEAX];
495	sf.sf_sc.sc_ebx = regs[tEBX];
496	sf.sf_sc.sc_ecx = regs[tECX];
497	sf.sf_sc.sc_edx = regs[tEDX];
498	sf.sf_sc.sc_esi = regs[tESI];
499	sf.sf_sc.sc_edi = regs[tEDI];
500	sf.sf_sc.sc_cs = regs[tCS];
501	sf.sf_sc.sc_ds = regs[tDS];
502	sf.sf_sc.sc_ss = regs[tSS];
503	sf.sf_sc.sc_es = regs[tES];
504	sf.sf_sc.sc_isp = regs[tISP];
505
506	/*
507	 * Build the signal context to be used by sigreturn.
508	 */
509	sf.sf_sc.sc_onstack = oonstack;
510	sf.sf_sc.sc_mask = mask;
511	sf.sf_sc.sc_sp = regs[tESP];
512	sf.sf_sc.sc_fp = regs[tEBP];
513	sf.sf_sc.sc_pc = regs[tEIP];
514	sf.sf_sc.sc_ps = regs[tEFLAGS];
515
516	/*
517	 * Copy the sigframe out to the user's stack.
518	 */
519	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
520		/*
521		 * Something is wrong with the stack pointer.
522		 * ...Kill the process.
523		 */
524		sigexit(p, SIGILL);
525	};
526
527	regs[tESP] = (int)fp;
528	regs[tEIP] = (int)(((char *)PS_STRINGS) - *(p->p_sysent->sv_szsigcode));
529	regs[tEFLAGS] &= ~PSL_VM;
530	regs[tCS] = _ucodesel;
531	regs[tDS] = _udatasel;
532	regs[tES] = _udatasel;
533	regs[tSS] = _udatasel;
534}
535
536/*
537 * System call to cleanup state after a signal
538 * has been taken.  Reset signal mask and
539 * stack state from context left by sendsig (above).
540 * Return to previous pc and psl as specified by
541 * context left by sendsig. Check carefully to
542 * make sure that the user has not modified the
543 * state to gain improper privileges.
544 */
545int
546sigreturn(p, uap, retval)
547	struct proc *p;
548	struct sigreturn_args /* {
549		struct sigcontext *sigcntxp;
550	} */ *uap;
551	int *retval;
552{
553	register struct sigcontext *scp;
554	register struct sigframe *fp;
555	register int *regs = p->p_md.md_regs;
556	int eflags;
557
558	/*
559	 * (XXX old comment) regs[tESP] points to the return address.
560	 * The user scp pointer is above that.
561	 * The return address is faked in the signal trampoline code
562	 * for consistency.
563	 */
564	scp = uap->sigcntxp;
565	fp = (struct sigframe *)
566	     ((caddr_t)scp - offsetof(struct sigframe, sf_sc));
567
568	if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
569		return(EINVAL);
570
571	/*
572	 * Don't allow users to change privileged or reserved flags.
573	 */
574#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
575	eflags = scp->sc_ps;
576	/*
577	 * XXX do allow users to change the privileged flag PSL_RF.  The
578	 * cpu sets PSL_RF in tf_eflags for faults.  Debuggers should
579	 * sometimes set it there too.  tf_eflags is kept in the signal
580	 * context during signal handling and there is no other place
581	 * to remember it, so the PSL_RF bit may be corrupted by the
582	 * signal handler without us knowing.  Corruption of the PSL_RF
583	 * bit at worst causes one more or one less debugger trap, so
584	 * allowing it is fairly harmless.
585	 */
586	if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs[tEFLAGS] & ~PSL_RF)) {
587#ifdef DEBUG
588    		printf("sigreturn: eflags = 0x%x\n", eflags);
589#endif
590    		return(EINVAL);
591	}
592
593	/*
594	 * Don't allow users to load a valid privileged %cs.  Let the
595	 * hardware check for invalid selectors, excess privilege in
596	 * other selectors, invalid %eip's and invalid %esp's.
597	 */
598#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
599	if (!CS_SECURE(scp->sc_cs)) {
600#ifdef DEBUG
601    		printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
602#endif
603		trapsignal(p, SIGBUS, T_PROTFLT);
604		return(EINVAL);
605	}
606
607	/* restore scratch registers */
608	regs[tEAX] = scp->sc_eax;
609	regs[tEBX] = scp->sc_ebx;
610	regs[tECX] = scp->sc_ecx;
611	regs[tEDX] = scp->sc_edx;
612	regs[tESI] = scp->sc_esi;
613	regs[tEDI] = scp->sc_edi;
614	regs[tCS] = scp->sc_cs;
615	regs[tDS] = scp->sc_ds;
616	regs[tES] = scp->sc_es;
617	regs[tSS] = scp->sc_ss;
618	regs[tISP] = scp->sc_isp;
619
620	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
621		return(EINVAL);
622
623	if (scp->sc_onstack & 01)
624		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
625	else
626		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
627	p->p_sigmask = scp->sc_mask & ~sigcantmask;
628	regs[tEBP] = scp->sc_fp;
629	regs[tESP] = scp->sc_sp;
630	regs[tEIP] = scp->sc_pc;
631	regs[tEFLAGS] = eflags;
632	return(EJUSTRETURN);
633}
634
635/*
636 * Machine depdnetnt boot() routine
637 *
638 * I haven't seen anything too put here yet
639 * Possibly some stuff might be grafted back here from boot()
640 */
641void
642cpu_boot(int howto)
643{
644}
645
646/*
647 * Shutdown the CPU as much as possible
648 */
649void
650cpu_halt(void)
651{
652	for (;;)
653		__asm__ ("hlt");
654}
655
656/*
657 * Clear registers on exec
658 */
659void
660setregs(p, entry, stack)
661	struct proc *p;
662	u_long entry;
663	u_long stack;
664{
665	int *regs = p->p_md.md_regs;
666
667#ifdef USER_LDT
668	struct pcb *pcb = &p->p_addr->u_pcb;
669
670	/* was i386_user_cleanup() in NetBSD */
671	if (pcb->pcb_ldt) {
672		if (pcb == curpcb)
673			lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
674		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
675			pcb->pcb_ldt_len * sizeof(union descriptor));
676		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
677 	}
678#endif
679
680	bzero(regs, sizeof(struct trapframe));
681	regs[tEIP] = entry;
682	regs[tESP] = stack;
683	regs[tEFLAGS] = PSL_USER | (regs[tEFLAGS] & PSL_T);
684	regs[tSS] = _udatasel;
685	regs[tDS] = _udatasel;
686	regs[tES] = _udatasel;
687	regs[tCS] = _ucodesel;
688
689	p->p_addr->u_pcb.pcb_flags = 0;	/* no fp at all */
690	load_cr0(rcr0() | CR0_TS);	/* start emulating */
691#if	NNPX > 0
692	npxinit(__INITIAL_NPXCW__);
693#endif	/* NNPX > 0 */
694}
695
696static int
697sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
698{
699	int error;
700	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
701		req);
702	if (!error && req->newptr)
703		resettodr();
704	return (error);
705}
706
707SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
708	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
709
710SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
711	CTLFLAG_RW, &disable_rtc_set, 0, "");
712
713SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
714	CTLFLAG_RD, &bootinfo, bootinfo, "");
715
716SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
717	CTLFLAG_RW, &wall_cmos_clock, 0, "");
718
719/*
720 * Initialize 386 and configure to run kernel
721 */
722
723/*
724 * Initialize segments & interrupt table
725 */
726
727int currentldt;
728int _default_ldt;
729union descriptor gdt[NGDT];		/* global descriptor table */
730struct gate_descriptor idt[NIDT];	/* interrupt descriptor table */
731union descriptor ldt[NLDT];		/* local descriptor table */
732
733static struct i386tss dblfault_tss;
734static char dblfault_stack[PAGE_SIZE];
735
736extern  struct user *proc0paddr;
737
738/* software prototypes -- in more palatable form */
739struct soft_segment_descriptor gdt_segs[] = {
740/* GNULL_SEL	0 Null Descriptor */
741{	0x0,			/* segment base address  */
742	0x0,			/* length */
743	0,			/* segment type */
744	0,			/* segment descriptor priority level */
745	0,			/* segment descriptor present */
746	0, 0,
747	0,			/* default 32 vs 16 bit size */
748	0  			/* limit granularity (byte/page units)*/ },
749/* GCODE_SEL	1 Code Descriptor for kernel */
750{	0x0,			/* segment base address  */
751	0xfffff,		/* length - all address space */
752	SDT_MEMERA,		/* segment type */
753	0,			/* segment descriptor priority level */
754	1,			/* segment descriptor present */
755	0, 0,
756	1,			/* default 32 vs 16 bit size */
757	1  			/* limit granularity (byte/page units)*/ },
758/* GDATA_SEL	2 Data Descriptor for kernel */
759{	0x0,			/* segment base address  */
760	0xfffff,		/* length - all address space */
761	SDT_MEMRWA,		/* segment type */
762	0,			/* segment descriptor priority level */
763	1,			/* segment descriptor present */
764	0, 0,
765	1,			/* default 32 vs 16 bit size */
766	1  			/* limit granularity (byte/page units)*/ },
767/* GLDT_SEL	3 LDT Descriptor */
768{	(int) ldt,		/* segment base address  */
769	sizeof(ldt)-1,		/* length - all address space */
770	SDT_SYSLDT,		/* segment type */
771	0,			/* segment descriptor priority level */
772	1,			/* segment descriptor present */
773	0, 0,
774	0,			/* unused - default 32 vs 16 bit size */
775	0  			/* limit granularity (byte/page units)*/ },
776/* GTGATE_SEL	4 Null Descriptor - Placeholder */
777{	0x0,			/* segment base address  */
778	0x0,			/* length - all address space */
779	0,			/* segment type */
780	0,			/* segment descriptor priority level */
781	0,			/* segment descriptor present */
782	0, 0,
783	0,			/* default 32 vs 16 bit size */
784	0  			/* limit granularity (byte/page units)*/ },
785/* GPANIC_SEL	5 Panic Tss Descriptor */
786{	(int) &dblfault_tss,	/* segment base address  */
787	sizeof(struct i386tss)-1,/* length - all address space */
788	SDT_SYS386TSS,		/* segment type */
789	0,			/* segment descriptor priority level */
790	1,			/* segment descriptor present */
791	0, 0,
792	0,			/* unused - default 32 vs 16 bit size */
793	0  			/* limit granularity (byte/page units)*/ },
794/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
795{	(int) kstack,		/* segment base address  */
796	sizeof(struct i386tss)-1,/* length - all address space */
797	SDT_SYS386TSS,		/* segment type */
798	0,			/* segment descriptor priority level */
799	1,			/* segment descriptor present */
800	0, 0,
801	0,			/* unused - default 32 vs 16 bit size */
802	0  			/* limit granularity (byte/page units)*/ },
803/* GUSERLDT_SEL	7 User LDT Descriptor per process */
804{	(int) ldt,		/* segment base address  */
805	(512 * sizeof(union descriptor)-1),		/* length */
806	SDT_SYSLDT,		/* segment type */
807	0,			/* segment descriptor priority level */
808	1,			/* segment descriptor present */
809	0, 0,
810	0,			/* unused - default 32 vs 16 bit size */
811	0  			/* limit granularity (byte/page units)*/ },
812/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
813{	0,			/* segment base address (overwritten by APM)  */
814	0xfffff,		/* length */
815	SDT_MEMERA,		/* segment type */
816	0,			/* segment descriptor priority level */
817	1,			/* segment descriptor present */
818	0, 0,
819	1,			/* default 32 vs 16 bit size */
820	1  			/* limit granularity (byte/page units)*/ },
821/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
822{	0,			/* segment base address (overwritten by APM)  */
823	0xfffff,		/* length */
824	SDT_MEMERA,		/* segment type */
825	0,			/* segment descriptor priority level */
826	1,			/* segment descriptor present */
827	0, 0,
828	0,			/* default 32 vs 16 bit size */
829	1  			/* limit granularity (byte/page units)*/ },
830/* GAPMDATA_SEL	10 APM BIOS 32-bit interface (Data) */
831{	0,			/* segment base address (overwritten by APM) */
832	0xfffff,		/* length */
833	SDT_MEMRWA,		/* segment type */
834	0,			/* segment descriptor priority level */
835	1,			/* segment descriptor present */
836	0, 0,
837	1,			/* default 32 vs 16 bit size */
838	1  			/* limit granularity (byte/page units)*/ },
839};
840
841static struct soft_segment_descriptor ldt_segs[] = {
842	/* Null Descriptor - overwritten by call gate */
843{	0x0,			/* segment base address  */
844	0x0,			/* length - all address space */
845	0,			/* segment type */
846	0,			/* segment descriptor priority level */
847	0,			/* segment descriptor present */
848	0, 0,
849	0,			/* default 32 vs 16 bit size */
850	0  			/* limit granularity (byte/page units)*/ },
851	/* Null Descriptor - overwritten by call gate */
852{	0x0,			/* segment base address  */
853	0x0,			/* length - all address space */
854	0,			/* segment type */
855	0,			/* segment descriptor priority level */
856	0,			/* segment descriptor present */
857	0, 0,
858	0,			/* default 32 vs 16 bit size */
859	0  			/* limit granularity (byte/page units)*/ },
860	/* Null Descriptor - overwritten by call gate */
861{	0x0,			/* segment base address  */
862	0x0,			/* length - all address space */
863	0,			/* segment type */
864	0,			/* segment descriptor priority level */
865	0,			/* segment descriptor present */
866	0, 0,
867	0,			/* default 32 vs 16 bit size */
868	0  			/* limit granularity (byte/page units)*/ },
869	/* Code Descriptor for user */
870{	0x0,			/* segment base address  */
871	0xfffff,		/* length - all address space */
872	SDT_MEMERA,		/* segment type */
873	SEL_UPL,		/* segment descriptor priority level */
874	1,			/* segment descriptor present */
875	0, 0,
876	1,			/* default 32 vs 16 bit size */
877	1  			/* limit granularity (byte/page units)*/ },
878	/* Data Descriptor for user */
879{	0x0,			/* segment base address  */
880	0xfffff,		/* length - all address space */
881	SDT_MEMRWA,		/* segment type */
882	SEL_UPL,		/* segment descriptor priority level */
883	1,			/* segment descriptor present */
884	0, 0,
885	1,			/* default 32 vs 16 bit size */
886	1  			/* limit granularity (byte/page units)*/ },
887};
888
889void
890setidt(idx, func, typ, dpl, selec)
891	int idx;
892	inthand_t *func;
893	int typ;
894	int dpl;
895	int selec;
896{
897	struct gate_descriptor *ip = idt + idx;
898
899	ip->gd_looffset = (int)func;
900	ip->gd_selector = selec;
901	ip->gd_stkcpy = 0;
902	ip->gd_xx = 0;
903	ip->gd_type = typ;
904	ip->gd_dpl = dpl;
905	ip->gd_p = 1;
906	ip->gd_hioffset = ((int)func)>>16 ;
907}
908
909#define	IDTVEC(name)	__CONCAT(X,name)
910
911extern inthand_t
912	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
913	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
914	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
915	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
916	IDTVEC(syscall), IDTVEC(int0x80_syscall);
917
918void
919sdtossd(sd, ssd)
920	struct segment_descriptor *sd;
921	struct soft_segment_descriptor *ssd;
922{
923	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
924	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
925	ssd->ssd_type  = sd->sd_type;
926	ssd->ssd_dpl   = sd->sd_dpl;
927	ssd->ssd_p     = sd->sd_p;
928	ssd->ssd_def32 = sd->sd_def32;
929	ssd->ssd_gran  = sd->sd_gran;
930}
931
932void
933init386(first)
934	int first;
935{
936	int x;
937	unsigned biosbasemem, biosextmem;
938	struct gate_descriptor *gdp;
939	int gsel_tss;
940	struct isa_device *idp;
941	/* table descriptors - used to load tables by microp */
942	struct region_descriptor r_gdt, r_idt;
943	int	pagesinbase, pagesinext;
944	int	target_page, pa_indx;
945	int	off;
946
947	proc0.p_addr = proc0paddr;
948
949	atdevbase = ISA_HOLE_START + KERNBASE;
950
951	/*
952	 * Initialize the console before we print anything out.
953	 */
954	cninit();
955
956	/*
957	 * make gdt memory segments, the code segment goes up to end of the
958	 * page with etext in it, the data segment goes to the end of
959	 * the address space
960	 */
961	/*
962	 * XXX text protection is temporarily (?) disabled.  The limit was
963	 * i386_btop(round_page(etext)) - 1.
964	 */
965	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
966	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
967	for (x = 0; x < NGDT; x++)
968		ssdtosd(&gdt_segs[x], &gdt[x].sd);
969
970	/* make ldt memory segments */
971	/*
972	 * The data segment limit must not cover the user area because we
973	 * don't want the user area to be writable in copyout() etc. (page
974	 * level protection is lost in kernel mode on 386's).  Also, we
975	 * don't want the user area to be writable directly (page level
976	 * protection of the user area is not available on 486's with
977	 * CR0_WP set, because there is no user-read/kernel-write mode).
978	 *
979	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
980	 * should be spelled ...MAX_USER...
981	 */
982#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
983	/*
984	 * The code segment limit has to cover the user area until we move
985	 * the signal trampoline out of the user area.  This is safe because
986	 * the code segment cannot be written to directly.
987	 */
988#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
989	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
990	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
991	/* Note. eventually want private ldts per process */
992	for (x = 0; x < NLDT; x++)
993		ssdtosd(&ldt_segs[x], &ldt[x].sd);
994
995	/* exceptions */
996	for (x = 0; x < NIDT; x++)
997		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
998	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
999	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1000	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1001 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1002	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1003	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1004	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1005	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1006	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1007	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1008	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1009	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1010	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1011	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1012	setidt(14, &IDTVEC(page),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1013	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1014	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1015	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1016	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1017 	setidt(0x80, &IDTVEC(int0x80_syscall),
1018			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1019
1020#include	"isa.h"
1021#if	NISA >0
1022	isa_defaultirq();
1023#endif
1024	rand_initialize();
1025
1026	r_gdt.rd_limit = sizeof(gdt) - 1;
1027	r_gdt.rd_base =  (int) gdt;
1028	lgdt(&r_gdt);
1029
1030	r_idt.rd_limit = sizeof(idt) - 1;
1031	r_idt.rd_base = (int) idt;
1032	lidt(&r_idt);
1033
1034	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1035	lldt(_default_ldt);
1036	currentldt = _default_ldt;
1037
1038#ifdef DDB
1039	kdb_init();
1040	if (boothowto & RB_KDB)
1041		Debugger("Boot flags requested debugger");
1042#endif
1043
1044	/* Use BIOS values stored in RTC CMOS RAM, since probing
1045	 * breaks certain 386 AT relics.
1046	 */
1047	biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
1048	biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
1049
1050	/*
1051	 * If BIOS tells us that it has more than 640k in the basemem,
1052	 *	don't believe it - set it to 640k.
1053	 */
1054	if (biosbasemem > 640) {
1055		printf("Preposterous RTC basemem of %dK, truncating to 640K\n",
1056		       biosbasemem);
1057		biosbasemem = 640;
1058	}
1059	if (bootinfo.bi_memsizes_valid && bootinfo.bi_basemem > 640) {
1060		printf("Preposterous BIOS basemem of %dK, truncating to 640K\n",
1061		       bootinfo.bi_basemem);
1062		bootinfo.bi_basemem = 640;
1063	}
1064
1065	/*
1066	 * Warn if the official BIOS interface disagrees with the RTC
1067	 * interface used above about the amount of base memory or the
1068	 * amount of extended memory.  Prefer the BIOS value for the base
1069	 * memory.  This is necessary for machines that `steal' base
1070	 * memory for use as BIOS memory, at least if we are going to use
1071	 * the BIOS for apm.  Prefer the RTC value for extended memory.
1072	 * Eventually the hackish interface shouldn't even be looked at.
1073	 */
1074	if (bootinfo.bi_memsizes_valid) {
1075		if (bootinfo.bi_basemem != biosbasemem) {
1076			vm_offset_t pa;
1077
1078			printf(
1079	"BIOS basemem (%ldK) != RTC basemem (%dK), setting to BIOS value\n",
1080			       bootinfo.bi_basemem, biosbasemem);
1081			biosbasemem = bootinfo.bi_basemem;
1082
1083			/*
1084			 * XXX if biosbasemem is now < 640, there is `hole'
1085			 * between the end of base memory and the start of
1086			 * ISA memory.  The hole may be empty or it may
1087			 * contain BIOS code or data.  Map it read/write so
1088			 * that the BIOS can write to it.  (Memory from 0 to
1089			 * the physical end of the kernel is mapped read-only
1090			 * to begin with and then parts of it are remapped.
1091			 * The parts that aren't remapped form holes that
1092			 * remain read-only and are unused by the kernel.
1093			 * The base memory area is below the physical end of
1094			 * the kernel and right now forms a read-only hole.
1095			 * The part of it from 0 to
1096			 * (trunc_page(biosbasemem * 1024) - 1) will be
1097			 * remapped and used by the kernel later.)
1098			 *
1099			 * This code is similar to the code used in
1100			 * pmap_mapdev, but since no memory needs to be
1101			 * allocated we simply change the mapping.
1102			 */
1103			for (pa = trunc_page(biosbasemem * 1024);
1104			     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1105				unsigned *pte;
1106
1107				pte = (unsigned *)vtopte(pa + KERNBASE);
1108				*pte = pa | PG_RW | PG_V;
1109			}
1110		}
1111		if (bootinfo.bi_extmem != biosextmem)
1112			printf("BIOS extmem (%ldK) != RTC extmem (%dK)\n",
1113			       bootinfo.bi_extmem, biosextmem);
1114	}
1115
1116	pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
1117	pagesinext = biosextmem * 1024 / PAGE_SIZE;
1118
1119	/*
1120	 * Special hack for chipsets that still remap the 384k hole when
1121	 *	there's 16MB of memory - this really confuses people that
1122	 *	are trying to use bus mastering ISA controllers with the
1123	 *	"16MB limit"; they only have 16MB, but the remapping puts
1124	 *	them beyond the limit.
1125	 */
1126	/*
1127	 * If extended memory is between 15-16MB (16-17MB phys address range),
1128	 *	chop it to 15MB.
1129	 */
1130	if ((pagesinext > 3840) && (pagesinext < 4096))
1131		pagesinext = 3840;
1132
1133	/*
1134	 * Maxmem isn't the "maximum memory", it's one larger than the
1135	 * highest page of the physical address space.  It should be
1136	 * called something like "Maxphyspage".
1137	 */
1138	Maxmem = pagesinext + 0x100000/PAGE_SIZE;
1139
1140#ifdef MAXMEM
1141	Maxmem = MAXMEM/4;
1142#endif
1143
1144	idp = find_isadev(isa_devtab_null, &npxdriver, 0);
1145	if (idp != NULL && idp->id_msize != 0)
1146		Maxmem = idp->id_msize / 4;
1147
1148	/* call pmap initialization to make new kernel address space */
1149	pmap_bootstrap (first, 0);
1150
1151	/*
1152	 * Size up each available chunk of physical memory.
1153	 */
1154
1155	/*
1156	 * We currently don't bother testing base memory.
1157	 * XXX  ...but we probably should.
1158	 */
1159	pa_indx = 0;
1160	badpages = 0;
1161	if (pagesinbase > 1) {
1162		phys_avail[pa_indx++] = PAGE_SIZE;	/* skip first page of memory */
1163		phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
1164		physmem = pagesinbase - 1;
1165	} else {
1166		/* point at first chunk end */
1167		pa_indx++;
1168	}
1169
1170	for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
1171		int tmp, page_bad = FALSE;
1172
1173		/*
1174		 * map page into kernel: valid, read/write, non-cacheable
1175		 */
1176		*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
1177		invltlb();
1178
1179		tmp = *(int *)CADDR1;
1180		/*
1181		 * Test for alternating 1's and 0's
1182		 */
1183		*(volatile int *)CADDR1 = 0xaaaaaaaa;
1184		if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
1185			page_bad = TRUE;
1186		}
1187		/*
1188		 * Test for alternating 0's and 1's
1189		 */
1190		*(volatile int *)CADDR1 = 0x55555555;
1191		if (*(volatile int *)CADDR1 != 0x55555555) {
1192			page_bad = TRUE;
1193		}
1194		/*
1195		 * Test for all 1's
1196		 */
1197		*(volatile int *)CADDR1 = 0xffffffff;
1198		if (*(volatile int *)CADDR1 != 0xffffffff) {
1199			page_bad = TRUE;
1200		}
1201		/*
1202		 * Test for all 0's
1203		 */
1204		*(volatile int *)CADDR1 = 0x0;
1205		if (*(volatile int *)CADDR1 != 0x0) {
1206			/*
1207			 * test of page failed
1208			 */
1209			page_bad = TRUE;
1210		}
1211		/*
1212		 * Restore original value.
1213		 */
1214		*(int *)CADDR1 = tmp;
1215
1216		/*
1217		 * Adjust array of valid/good pages.
1218		 */
1219		if (page_bad == FALSE) {
1220			/*
1221			 * If this good page is a continuation of the
1222			 * previous set of good pages, then just increase
1223			 * the end pointer. Otherwise start a new chunk.
1224			 * Note that "end" points one higher than end,
1225			 * making the range >= start and < end.
1226			 */
1227			if (phys_avail[pa_indx] == target_page) {
1228				phys_avail[pa_indx] += PAGE_SIZE;
1229			} else {
1230				pa_indx++;
1231				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1232					printf("Too many holes in the physical address space, giving up\n");
1233					pa_indx--;
1234					break;
1235				}
1236				phys_avail[pa_indx++] = target_page;	/* start */
1237				phys_avail[pa_indx] = target_page + PAGE_SIZE;	/* end */
1238			}
1239			physmem++;
1240		} else {
1241			badpages++;
1242			page_bad = FALSE;
1243		}
1244	}
1245
1246	*(int *)CMAP1 = 0;
1247	invltlb();
1248
1249	/*
1250	 * XXX
1251	 * The last chunk must contain at least one page plus the message
1252	 * buffer to avoid complicating other code (message buffer address
1253	 * calculation, etc.).
1254	 */
1255	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1256	    round_page(sizeof(struct msgbuf)) >= phys_avail[pa_indx]) {
1257		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1258		phys_avail[pa_indx--] = 0;
1259		phys_avail[pa_indx--] = 0;
1260	}
1261
1262	Maxmem = atop(phys_avail[pa_indx]);
1263
1264	/* Trim off space for the message buffer. */
1265	phys_avail[pa_indx] -= round_page(sizeof(struct msgbuf));
1266
1267	avail_end = phys_avail[pa_indx];
1268
1269	/* now running on new page tables, configured,and u/iom is accessible */
1270
1271	/* Map the message buffer. */
1272	for (off = 0; off < round_page(sizeof(struct msgbuf)); off += PAGE_SIZE)
1273		pmap_enter(kernel_pmap, (vm_offset_t)msgbufp + off,
1274			   avail_end + off, VM_PROT_ALL, TRUE);
1275	msgbufmapped = 1;
1276
1277	/* make a initial tss so microp can get interrupt stack on syscall! */
1278	proc0.p_addr->u_pcb.pcb_tss.tss_esp0 = (int) kstack + UPAGES*PAGE_SIZE;
1279	proc0.p_addr->u_pcb.pcb_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1280	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1281
1282	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1283	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1284	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1285	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1286	dblfault_tss.tss_cr3 = IdlePTD;
1287	dblfault_tss.tss_eip = (int) dblfault_handler;
1288	dblfault_tss.tss_eflags = PSL_KERNEL;
1289	dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs = dblfault_tss.tss_gs =
1290		GSEL(GDATA_SEL, SEL_KPL);
1291	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1292	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1293
1294	((struct i386tss *)gdt_segs[GPROC0_SEL].ssd_base)->tss_ioopt =
1295		(sizeof(struct i386tss))<<16;
1296
1297	ltr(gsel_tss);
1298
1299	/* make a call gate to reenter kernel with */
1300	gdp = &ldt[LSYS5CALLS_SEL].gd;
1301
1302	x = (int) &IDTVEC(syscall);
1303	gdp->gd_looffset = x++;
1304	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1305	gdp->gd_stkcpy = 1;
1306	gdp->gd_type = SDT_SYS386CGT;
1307	gdp->gd_dpl = SEL_UPL;
1308	gdp->gd_p = 1;
1309	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1310
1311	/* XXX does this work? */
1312	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1313
1314	/* transfer to user mode */
1315
1316	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1317	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1318
1319	/* setup proc 0's pcb */
1320	proc0.p_addr->u_pcb.pcb_flags = 0;
1321	proc0.p_addr->u_pcb.pcb_cr3 = IdlePTD;
1322}
1323
1324/*
1325 * The registers are in the frame; the frame is in the user area of
1326 * the process in question; when the process is active, the registers
1327 * are in "the kernel stack"; when it's not, they're still there, but
1328 * things get flipped around.  So, since p->p_md.md_regs is the whole address
1329 * of the register set, take its offset from the kernel stack, and
1330 * index into the user block.  Don't you just *love* virtual memory?
1331 * (I'm starting to think seymour is right...)
1332 */
1333#define	TF_REGP(p)	((struct trapframe *) \
1334			 ((char *)(p)->p_addr \
1335			  + ((char *)(p)->p_md.md_regs - kstack)))
1336
1337int
1338ptrace_set_pc(p, addr)
1339	struct proc *p;
1340	unsigned int addr;
1341{
1342	TF_REGP(p)->tf_eip = addr;
1343	return (0);
1344}
1345
1346int
1347ptrace_single_step(p)
1348	struct proc *p;
1349{
1350	TF_REGP(p)->tf_eflags |= PSL_T;
1351	return (0);
1352}
1353
1354int ptrace_write_u(p, off, data)
1355	struct proc *p;
1356	vm_offset_t off;
1357	int data;
1358{
1359	struct trapframe frame_copy;
1360	vm_offset_t min;
1361	struct trapframe *tp;
1362
1363	/*
1364	 * Privileged kernel state is scattered all over the user area.
1365	 * Only allow write access to parts of regs and to fpregs.
1366	 */
1367	min = (char *)p->p_md.md_regs - kstack;
1368	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
1369		tp = TF_REGP(p);
1370		frame_copy = *tp;
1371		*(int *)((char *)&frame_copy + (off - min)) = data;
1372		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
1373		    !CS_SECURE(frame_copy.tf_cs))
1374			return (EINVAL);
1375		*(int*)((char *)p->p_addr + off) = data;
1376		return (0);
1377	}
1378	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
1379	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
1380		*(int*)((char *)p->p_addr + off) = data;
1381		return (0);
1382	}
1383	return (EFAULT);
1384}
1385
1386int
1387fill_regs(p, regs)
1388	struct proc *p;
1389	struct reg *regs;
1390{
1391	struct trapframe *tp;
1392
1393	tp = TF_REGP(p);
1394	regs->r_es = tp->tf_es;
1395	regs->r_ds = tp->tf_ds;
1396	regs->r_edi = tp->tf_edi;
1397	regs->r_esi = tp->tf_esi;
1398	regs->r_ebp = tp->tf_ebp;
1399	regs->r_ebx = tp->tf_ebx;
1400	regs->r_edx = tp->tf_edx;
1401	regs->r_ecx = tp->tf_ecx;
1402	regs->r_eax = tp->tf_eax;
1403	regs->r_eip = tp->tf_eip;
1404	regs->r_cs = tp->tf_cs;
1405	regs->r_eflags = tp->tf_eflags;
1406	regs->r_esp = tp->tf_esp;
1407	regs->r_ss = tp->tf_ss;
1408	return (0);
1409}
1410
1411int
1412set_regs(p, regs)
1413	struct proc *p;
1414	struct reg *regs;
1415{
1416	struct trapframe *tp;
1417
1418	tp = TF_REGP(p);
1419	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
1420	    !CS_SECURE(regs->r_cs))
1421		return (EINVAL);
1422	tp->tf_es = regs->r_es;
1423	tp->tf_ds = regs->r_ds;
1424	tp->tf_edi = regs->r_edi;
1425	tp->tf_esi = regs->r_esi;
1426	tp->tf_ebp = regs->r_ebp;
1427	tp->tf_ebx = regs->r_ebx;
1428	tp->tf_edx = regs->r_edx;
1429	tp->tf_ecx = regs->r_ecx;
1430	tp->tf_eax = regs->r_eax;
1431	tp->tf_eip = regs->r_eip;
1432	tp->tf_cs = regs->r_cs;
1433	tp->tf_eflags = regs->r_eflags;
1434	tp->tf_esp = regs->r_esp;
1435	tp->tf_ss = regs->r_ss;
1436	return (0);
1437}
1438
1439#ifndef DDB
1440void
1441Debugger(const char *msg)
1442{
1443	printf("Debugger(\"%s\") called.\n", msg);
1444}
1445#endif /* no DDB */
1446
1447#include <sys/disklabel.h>
1448
1449/*
1450 * Determine the size of the transfer, and make sure it is
1451 * within the boundaries of the partition. Adjust transfer
1452 * if needed, and signal errors or early completion.
1453 */
1454int
1455bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
1456{
1457        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
1458        int labelsect = lp->d_partitions[0].p_offset;
1459        int maxsz = p->p_size,
1460                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
1461
1462        /* overwriting disk label ? */
1463        /* XXX should also protect bootstrap in first 8K */
1464        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
1465#if LABELSECTOR != 0
1466            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
1467#endif
1468            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1469                bp->b_error = EROFS;
1470                goto bad;
1471        }
1472
1473#if     defined(DOSBBSECTOR) && defined(notyet)
1474        /* overwriting master boot record? */
1475        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
1476            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1477                bp->b_error = EROFS;
1478                goto bad;
1479        }
1480#endif
1481
1482        /* beyond partition? */
1483        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
1484                /* if exactly at end of disk, return an EOF */
1485                if (bp->b_blkno == maxsz) {
1486                        bp->b_resid = bp->b_bcount;
1487                        return(0);
1488                }
1489                /* or truncate if part of it fits */
1490                sz = maxsz - bp->b_blkno;
1491                if (sz <= 0) {
1492                        bp->b_error = EINVAL;
1493                        goto bad;
1494                }
1495                bp->b_bcount = sz << DEV_BSHIFT;
1496        }
1497
1498        bp->b_pblkno = bp->b_blkno + p->p_offset;
1499        return(1);
1500
1501bad:
1502        bp->b_flags |= B_ERROR;
1503        return(-1);
1504}
1505