machdep.c revision 198507
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 198507 2009-10-27 10:47:58Z kib $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_msgbuf.h"
55#include "opt_perfmon.h"
56#include "opt_sched.h"
57
58#include <sys/param.h>
59#include <sys/proc.h>
60#include <sys/systm.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/bus.h>
64#include <sys/callout.h>
65#include <sys/cons.h>
66#include <sys/cpu.h>
67#include <sys/eventhandler.h>
68#include <sys/exec.h>
69#include <sys/imgact.h>
70#include <sys/kdb.h>
71#include <sys/kernel.h>
72#include <sys/ktr.h>
73#include <sys/linker.h>
74#include <sys/lock.h>
75#include <sys/malloc.h>
76#include <sys/memrange.h>
77#include <sys/msgbuf.h>
78#include <sys/mutex.h>
79#include <sys/pcpu.h>
80#include <sys/ptrace.h>
81#include <sys/reboot.h>
82#include <sys/sched.h>
83#include <sys/signalvar.h>
84#include <sys/sysctl.h>
85#include <sys/sysent.h>
86#include <sys/sysproto.h>
87#include <sys/ucontext.h>
88#include <sys/vmmeter.h>
89
90#include <vm/vm.h>
91#include <vm/vm_extern.h>
92#include <vm/vm_kern.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_object.h>
96#include <vm/vm_pager.h>
97#include <vm/vm_param.h>
98
99#ifdef DDB
100#ifndef KDB
101#error KDB must be enabled in order for DDB to work!
102#endif
103#include <ddb/ddb.h>
104#include <ddb/db_sym.h>
105#endif
106
107#include <net/netisr.h>
108
109#include <machine/clock.h>
110#include <machine/cpu.h>
111#include <machine/cputypes.h>
112#include <machine/intr_machdep.h>
113#include <machine/mca.h>
114#include <machine/md_var.h>
115#include <machine/metadata.h>
116#include <machine/pc/bios.h>
117#include <machine/pcb.h>
118#include <machine/proc.h>
119#include <machine/reg.h>
120#include <machine/sigframe.h>
121#include <machine/specialreg.h>
122#ifdef PERFMON
123#include <machine/perfmon.h>
124#endif
125#include <machine/tss.h>
126#ifdef SMP
127#include <machine/smp.h>
128#endif
129
130#ifdef DEV_ATPIC
131#include <amd64/isa/icu.h>
132#else
133#include <machine/apicvar.h>
134#endif
135
136#include <isa/isareg.h>
137#include <isa/rtc.h>
138
139/* Sanity check for __curthread() */
140CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
141
142extern u_int64_t hammer_time(u_int64_t, u_int64_t);
143
144extern void printcpuinfo(void);	/* XXX header file */
145extern void identify_cpu(void);
146extern void panicifcpuunsupported(void);
147
148#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
149#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
150
151static void cpu_startup(void *);
152static void get_fpcontext(struct thread *td, mcontext_t *mcp);
153static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
154SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
155
156#ifdef DDB
157extern vm_offset_t ksym_start, ksym_end;
158#endif
159
160/* Intel ICH registers */
161#define ICH_PMBASE	0x400
162#define ICH_SMI_EN	ICH_PMBASE + 0x30
163
164int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
165
166int cold = 1;
167
168long Maxmem = 0;
169long realmem = 0;
170
171/*
172 * The number of PHYSMAP entries must be one less than the number of
173 * PHYSSEG entries because the PHYSMAP entry that spans the largest
174 * physical address that is accessible by ISA DMA is split into two
175 * PHYSSEG entries.
176 */
177#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
178
179vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
180vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
181
182/* must be 2 less so 0 0 can signal end of chunks */
183#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
184#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
185
186struct kva_md_info kmi;
187
188static struct trapframe proc0_tf;
189struct region_descriptor r_gdt, r_idt;
190
191struct pcpu __pcpu[MAXCPU];
192
193struct mtx icu_lock;
194
195struct mem_range_softc mem_range_softc;
196
197struct mtx dt_lock;	/* lock for GDT and LDT */
198
199static void
200cpu_startup(dummy)
201	void *dummy;
202{
203	uintmax_t memsize;
204	char *sysenv;
205
206	/*
207	 * On MacBooks, we need to disallow the legacy USB circuit to
208	 * generate an SMI# because this can cause several problems,
209	 * namely: incorrect CPU frequency detection and failure to
210	 * start the APs.
211	 * We do this by disabling a bit in the SMI_EN (SMI Control and
212	 * Enable register) of the Intel ICH LPC Interface Bridge.
213	 */
214	sysenv = getenv("smbios.system.product");
215	if (sysenv != NULL) {
216		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
217		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
218		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
219		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
220		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
221		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
222			if (bootverbose)
223				printf("Disabling LEGACY_USB_EN bit on "
224				    "Intel ICH.\n");
225			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
226		}
227		freeenv(sysenv);
228	}
229
230	/*
231	 * Good {morning,afternoon,evening,night}.
232	 */
233	startrtclock();
234	printcpuinfo();
235	panicifcpuunsupported();
236#ifdef PERFMON
237	perfmon_init();
238#endif
239	realmem = Maxmem;
240
241	/*
242	 * Display physical memory if SMBIOS reports reasonable amount.
243	 */
244	memsize = 0;
245	sysenv = getenv("smbios.memory.enabled");
246	if (sysenv != NULL) {
247		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
248		freeenv(sysenv);
249	}
250	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
251		memsize = ptoa((uintmax_t)Maxmem);
252	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
253
254	/*
255	 * Display any holes after the first chunk of extended memory.
256	 */
257	if (bootverbose) {
258		int indx;
259
260		printf("Physical memory chunk(s):\n");
261		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
262			vm_paddr_t size;
263
264			size = phys_avail[indx + 1] - phys_avail[indx];
265			printf(
266			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
267			    (uintmax_t)phys_avail[indx],
268			    (uintmax_t)phys_avail[indx + 1] - 1,
269			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
270		}
271	}
272
273	vm_ksubmap_init(&kmi);
274
275	printf("avail memory = %ju (%ju MB)\n",
276	    ptoa((uintmax_t)cnt.v_free_count),
277	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
278
279	/*
280	 * Set up buffers, so they can be used to read disk labels.
281	 */
282	bufinit();
283	vm_pager_bufferinit();
284
285	cpu_setregs();
286	mca_init();
287}
288
289/*
290 * Send an interrupt to process.
291 *
292 * Stack is set up to allow sigcode stored
293 * at top to call routine, followed by call
294 * to sigreturn routine below.  After sigreturn
295 * resets the signal mask, the stack, and the
296 * frame pointer, it returns to the user
297 * specified pc, psl.
298 */
299void
300sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
301{
302	struct sigframe sf, *sfp;
303	struct proc *p;
304	struct thread *td;
305	struct sigacts *psp;
306	char *sp;
307	struct trapframe *regs;
308	int sig;
309	int oonstack;
310
311	td = curthread;
312	p = td->td_proc;
313	PROC_LOCK_ASSERT(p, MA_OWNED);
314	sig = ksi->ksi_signo;
315	psp = p->p_sigacts;
316	mtx_assert(&psp->ps_mtx, MA_OWNED);
317	regs = td->td_frame;
318	oonstack = sigonstack(regs->tf_rsp);
319
320	/* Save user context. */
321	bzero(&sf, sizeof(sf));
322	sf.sf_uc.uc_sigmask = *mask;
323	sf.sf_uc.uc_stack = td->td_sigstk;
324	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
325	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
326	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
327	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
328	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
329	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
330	fpstate_drop(td);
331	sf.sf_uc.uc_mcontext.mc_fsbase = td->td_pcb->pcb_fsbase;
332	sf.sf_uc.uc_mcontext.mc_gsbase = td->td_pcb->pcb_gsbase;
333
334	/* Allocate space for the signal handler context. */
335	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
336	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
337		sp = td->td_sigstk.ss_sp +
338		    td->td_sigstk.ss_size - sizeof(struct sigframe);
339#if defined(COMPAT_43)
340		td->td_sigstk.ss_flags |= SS_ONSTACK;
341#endif
342	} else
343		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
344	/* Align to 16 bytes. */
345	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
346
347	/* Translate the signal if appropriate. */
348	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
349		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
350
351	/* Build the argument list for the signal handler. */
352	regs->tf_rdi = sig;			/* arg 1 in %rdi */
353	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
354	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
355		/* Signal handler installed with SA_SIGINFO. */
356		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
357		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
358
359		/* Fill in POSIX parts */
360		sf.sf_si = ksi->ksi_info;
361		sf.sf_si.si_signo = sig; /* maybe a translated signal */
362		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
363	} else {
364		/* Old FreeBSD-style arguments. */
365		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
366		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
367		sf.sf_ahu.sf_handler = catcher;
368	}
369	mtx_unlock(&psp->ps_mtx);
370	PROC_UNLOCK(p);
371
372	/*
373	 * Copy the sigframe out to the user's stack.
374	 */
375	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
376#ifdef DEBUG
377		printf("process %ld has trashed its stack\n", (long)p->p_pid);
378#endif
379		PROC_LOCK(p);
380		sigexit(td, SIGILL);
381	}
382
383	regs->tf_rsp = (long)sfp;
384	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
385	regs->tf_rflags &= ~(PSL_T | PSL_D);
386	regs->tf_cs = _ucodesel;
387	regs->tf_ds = _udatasel;
388	regs->tf_es = _udatasel;
389	regs->tf_fs = _ufssel;
390	regs->tf_gs = _ugssel;
391	regs->tf_flags = TF_HASSEGS;
392	td->td_pcb->pcb_full_iret = 1;
393	PROC_LOCK(p);
394	mtx_lock(&psp->ps_mtx);
395}
396
397/*
398 * System call to cleanup state after a signal
399 * has been taken.  Reset signal mask and
400 * stack state from context left by sendsig (above).
401 * Return to previous pc and psl as specified by
402 * context left by sendsig. Check carefully to
403 * make sure that the user has not modified the
404 * state to gain improper privileges.
405 *
406 * MPSAFE
407 */
408int
409sigreturn(td, uap)
410	struct thread *td;
411	struct sigreturn_args /* {
412		const struct __ucontext *sigcntxp;
413	} */ *uap;
414{
415	ucontext_t uc;
416	struct proc *p = td->td_proc;
417	struct trapframe *regs;
418	ucontext_t *ucp;
419	long rflags;
420	int cs, error, ret;
421	ksiginfo_t ksi;
422
423	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
424	if (error != 0) {
425		printf("sigreturn (pid %d): copyin failed\n", p->p_pid);
426		return (error);
427	}
428	ucp = &uc;
429	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
430		printf("sigreturn (pid %d): mc_flags %x\n", p->p_pid,
431		    ucp->uc_mcontext.mc_flags);
432		return (EINVAL);
433	}
434	regs = td->td_frame;
435	rflags = ucp->uc_mcontext.mc_rflags;
436	/*
437	 * Don't allow users to change privileged or reserved flags.
438	 */
439	/*
440	 * XXX do allow users to change the privileged flag PSL_RF.
441	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
442	 * should sometimes set it there too.  tf_rflags is kept in
443	 * the signal context during signal handling and there is no
444	 * other place to remember it, so the PSL_RF bit may be
445	 * corrupted by the signal handler without us knowing.
446	 * Corruption of the PSL_RF bit at worst causes one more or
447	 * one less debugger trap, so allowing it is fairly harmless.
448	 */
449	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
450		printf("sigreturn (pid %d): rflags = 0x%lx\n", p->p_pid,
451		    rflags);
452		return (EINVAL);
453	}
454
455	/*
456	 * Don't allow users to load a valid privileged %cs.  Let the
457	 * hardware check for invalid selectors, excess privilege in
458	 * other selectors, invalid %eip's and invalid %esp's.
459	 */
460	cs = ucp->uc_mcontext.mc_cs;
461	if (!CS_SECURE(cs)) {
462		printf("sigreturn (pid %d): cs = 0x%x\n", p->p_pid, cs);
463		ksiginfo_init_trap(&ksi);
464		ksi.ksi_signo = SIGBUS;
465		ksi.ksi_code = BUS_OBJERR;
466		ksi.ksi_trapno = T_PROTFLT;
467		ksi.ksi_addr = (void *)regs->tf_rip;
468		trapsignal(td, &ksi);
469		return (EINVAL);
470	}
471
472	ret = set_fpcontext(td, &ucp->uc_mcontext);
473	if (ret != 0) {
474		printf("sigreturn (pid %d): set_fpcontext\n", p->p_pid);
475		return (ret);
476	}
477	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
478	td->td_pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
479	td->td_pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
480
481#if defined(COMPAT_43)
482	if (ucp->uc_mcontext.mc_onstack & 1)
483		td->td_sigstk.ss_flags |= SS_ONSTACK;
484	else
485		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
486#endif
487
488	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
489	td->td_pcb->pcb_flags |= PCB_FULLCTX;
490	td->td_pcb->pcb_full_iret = 1;
491	return (EJUSTRETURN);
492}
493
494#ifdef COMPAT_FREEBSD4
495int
496freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
497{
498
499	return sigreturn(td, (struct sigreturn_args *)uap);
500}
501#endif
502
503
504/*
505 * Machine dependent boot() routine
506 *
507 * I haven't seen anything to put here yet
508 * Possibly some stuff might be grafted back here from boot()
509 */
510void
511cpu_boot(int howto)
512{
513}
514
515/*
516 * Flush the D-cache for non-DMA I/O so that the I-cache can
517 * be made coherent later.
518 */
519void
520cpu_flush_dcache(void *ptr, size_t len)
521{
522	/* Not applicable */
523}
524
525/* Get current clock frequency for the given cpu id. */
526int
527cpu_est_clockrate(int cpu_id, uint64_t *rate)
528{
529	register_t reg;
530	uint64_t tsc1, tsc2;
531
532	if (pcpu_find(cpu_id) == NULL || rate == NULL)
533		return (EINVAL);
534
535	/* If we're booting, trust the rate calibrated moments ago. */
536	if (cold) {
537		*rate = tsc_freq;
538		return (0);
539	}
540
541#ifdef SMP
542	/* Schedule ourselves on the indicated cpu. */
543	thread_lock(curthread);
544	sched_bind(curthread, cpu_id);
545	thread_unlock(curthread);
546#endif
547
548	/* Calibrate by measuring a short delay. */
549	reg = intr_disable();
550	tsc1 = rdtsc();
551	DELAY(1000);
552	tsc2 = rdtsc();
553	intr_restore(reg);
554
555#ifdef SMP
556	thread_lock(curthread);
557	sched_unbind(curthread);
558	thread_unlock(curthread);
559#endif
560
561	/*
562	 * Calculate the difference in readings, convert to Mhz, and
563	 * subtract 0.5% of the total.  Empirical testing has shown that
564	 * overhead in DELAY() works out to approximately this value.
565	 */
566	tsc2 -= tsc1;
567	*rate = tsc2 * 1000 - tsc2 * 5;
568	return (0);
569}
570
571/*
572 * Shutdown the CPU as much as possible
573 */
574void
575cpu_halt(void)
576{
577	for (;;)
578		__asm__ ("hlt");
579}
580
581void (*cpu_idle_hook)(void) = NULL;	/* ACPI idle hook. */
582
583static void
584cpu_idle_hlt(int busy)
585{
586	/*
587	 * we must absolutely guarentee that hlt is the next instruction
588	 * after sti or we introduce a timing window.
589	 */
590	disable_intr();
591  	if (sched_runnable())
592		enable_intr();
593	else
594		__asm __volatile("sti; hlt");
595}
596
597static void
598cpu_idle_acpi(int busy)
599{
600	disable_intr();
601  	if (sched_runnable())
602		enable_intr();
603	else if (cpu_idle_hook)
604		cpu_idle_hook();
605	else
606		__asm __volatile("sti; hlt");
607}
608
609static int cpu_ident_amdc1e = 0;
610
611static int
612cpu_probe_amdc1e(void)
613{
614	int i;
615
616	/*
617	 * Forget it, if we're not using local APIC timer.
618	 */
619	if (resource_disabled("apic", 0) ||
620	    (resource_int_value("apic", 0, "clock", &i) == 0 && i == 0))
621		return (0);
622
623	/*
624	 * Detect the presence of C1E capability mostly on latest
625	 * dual-cores (or future) k8 family.
626	 */
627	if (cpu_vendor_id == CPU_VENDOR_AMD &&
628	    (cpu_id & 0x00000f00) == 0x00000f00 &&
629	    (cpu_id & 0x0fff0000) >=  0x00040000) {
630		cpu_ident_amdc1e = 1;
631		return (1);
632	}
633
634	return (0);
635}
636
637/*
638 * C1E renders the local APIC timer dead, so we disable it by
639 * reading the Interrupt Pending Message register and clearing
640 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
641 *
642 * Reference:
643 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
644 *   #32559 revision 3.00+
645 */
646#define	MSR_AMDK8_IPM		0xc0010055
647#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
648#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
649#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
650
651static void
652cpu_idle_amdc1e(int busy)
653{
654
655	disable_intr();
656	if (sched_runnable())
657		enable_intr();
658	else {
659		uint64_t msr;
660
661		msr = rdmsr(MSR_AMDK8_IPM);
662		if (msr & AMDK8_CMPHALT)
663			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
664
665		if (cpu_idle_hook)
666			cpu_idle_hook();
667		else
668			__asm __volatile("sti; hlt");
669	}
670}
671
672static void
673cpu_idle_spin(int busy)
674{
675	return;
676}
677
678void (*cpu_idle_fn)(int) = cpu_idle_acpi;
679
680void
681cpu_idle(int busy)
682{
683#ifdef SMP
684	if (mp_grab_cpu_hlt())
685		return;
686#endif
687	cpu_idle_fn(busy);
688}
689
690/*
691 * mwait cpu power states.  Lower 4 bits are sub-states.
692 */
693#define	MWAIT_C0	0xf0
694#define	MWAIT_C1	0x00
695#define	MWAIT_C2	0x10
696#define	MWAIT_C3	0x20
697#define	MWAIT_C4	0x30
698
699#define	MWAIT_DISABLED	0x0
700#define	MWAIT_WOKEN	0x1
701#define	MWAIT_WAITING	0x2
702
703static void
704cpu_idle_mwait(int busy)
705{
706	int *mwait;
707
708	mwait = (int *)PCPU_PTR(monitorbuf);
709	*mwait = MWAIT_WAITING;
710	if (sched_runnable())
711		return;
712	cpu_monitor(mwait, 0, 0);
713	if (*mwait == MWAIT_WAITING)
714		cpu_mwait(0, MWAIT_C1);
715}
716
717static void
718cpu_idle_mwait_hlt(int busy)
719{
720	int *mwait;
721
722	mwait = (int *)PCPU_PTR(monitorbuf);
723	if (busy == 0) {
724		*mwait = MWAIT_DISABLED;
725		cpu_idle_hlt(busy);
726		return;
727	}
728	*mwait = MWAIT_WAITING;
729	if (sched_runnable())
730		return;
731	cpu_monitor(mwait, 0, 0);
732	if (*mwait == MWAIT_WAITING)
733		cpu_mwait(0, MWAIT_C1);
734}
735
736int
737cpu_idle_wakeup(int cpu)
738{
739	struct pcpu *pcpu;
740	int *mwait;
741
742	if (cpu_idle_fn == cpu_idle_spin)
743		return (1);
744	if (cpu_idle_fn != cpu_idle_mwait && cpu_idle_fn != cpu_idle_mwait_hlt)
745		return (0);
746	pcpu = pcpu_find(cpu);
747	mwait = (int *)pcpu->pc_monitorbuf;
748	/*
749	 * This doesn't need to be atomic since missing the race will
750	 * simply result in unnecessary IPIs.
751	 */
752	if (cpu_idle_fn == cpu_idle_mwait_hlt && *mwait == MWAIT_DISABLED)
753		return (0);
754	*mwait = MWAIT_WOKEN;
755
756	return (1);
757}
758
759/*
760 * Ordered by speed/power consumption.
761 */
762struct {
763	void	*id_fn;
764	char	*id_name;
765} idle_tbl[] = {
766	{ cpu_idle_spin, "spin" },
767	{ cpu_idle_mwait, "mwait" },
768	{ cpu_idle_mwait_hlt, "mwait_hlt" },
769	{ cpu_idle_amdc1e, "amdc1e" },
770	{ cpu_idle_hlt, "hlt" },
771	{ cpu_idle_acpi, "acpi" },
772	{ NULL, NULL }
773};
774
775static int
776idle_sysctl_available(SYSCTL_HANDLER_ARGS)
777{
778	char *avail, *p;
779	int error;
780	int i;
781
782	avail = malloc(256, M_TEMP, M_WAITOK);
783	p = avail;
784	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
785		if (strstr(idle_tbl[i].id_name, "mwait") &&
786		    (cpu_feature2 & CPUID2_MON) == 0)
787			continue;
788		if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
789		    cpu_ident_amdc1e == 0)
790			continue;
791		p += sprintf(p, "%s, ", idle_tbl[i].id_name);
792	}
793	error = sysctl_handle_string(oidp, avail, 0, req);
794	free(avail, M_TEMP);
795	return (error);
796}
797
798static int
799idle_sysctl(SYSCTL_HANDLER_ARGS)
800{
801	char buf[16];
802	int error;
803	char *p;
804	int i;
805
806	p = "unknown";
807	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
808		if (idle_tbl[i].id_fn == cpu_idle_fn) {
809			p = idle_tbl[i].id_name;
810			break;
811		}
812	}
813	strncpy(buf, p, sizeof(buf));
814	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
815	if (error != 0 || req->newptr == NULL)
816		return (error);
817	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
818		if (strstr(idle_tbl[i].id_name, "mwait") &&
819		    (cpu_feature2 & CPUID2_MON) == 0)
820			continue;
821		if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
822		    cpu_ident_amdc1e == 0)
823			continue;
824		if (strcmp(idle_tbl[i].id_name, buf))
825			continue;
826		cpu_idle_fn = idle_tbl[i].id_fn;
827		return (0);
828	}
829	return (EINVAL);
830}
831
832SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
833    0, 0, idle_sysctl_available, "A", "list of available idle functions");
834
835SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
836    idle_sysctl, "A", "currently selected idle function");
837
838/*
839 * Reset registers to default values on exec.
840 */
841void
842exec_setregs(td, entry, stack, ps_strings)
843	struct thread *td;
844	u_long entry;
845	u_long stack;
846	u_long ps_strings;
847{
848	struct trapframe *regs = td->td_frame;
849	struct pcb *pcb = td->td_pcb;
850
851	mtx_lock(&dt_lock);
852	if (td->td_proc->p_md.md_ldt != NULL)
853		user_ldt_free(td);
854	else
855		mtx_unlock(&dt_lock);
856
857	pcb->pcb_fsbase = 0;
858	pcb->pcb_gsbase = 0;
859	pcb->pcb_flags &= ~(PCB_32BIT | PCB_GS32BIT);
860	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
861	pcb->pcb_full_iret = 1;
862
863	bzero((char *)regs, sizeof(struct trapframe));
864	regs->tf_rip = entry;
865	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
866	regs->tf_rdi = stack;		/* argv */
867	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
868	regs->tf_ss = _udatasel;
869	regs->tf_cs = _ucodesel;
870	regs->tf_ds = _udatasel;
871	regs->tf_es = _udatasel;
872	regs->tf_fs = _ufssel;
873	regs->tf_gs = _ugssel;
874	regs->tf_flags = TF_HASSEGS;
875
876	/*
877	 * Reset the hardware debug registers if they were in use.
878	 * They won't have any meaning for the newly exec'd process.
879	 */
880	if (pcb->pcb_flags & PCB_DBREGS) {
881		pcb->pcb_dr0 = 0;
882		pcb->pcb_dr1 = 0;
883		pcb->pcb_dr2 = 0;
884		pcb->pcb_dr3 = 0;
885		pcb->pcb_dr6 = 0;
886		pcb->pcb_dr7 = 0;
887		if (pcb == PCPU_GET(curpcb)) {
888			/*
889			 * Clear the debug registers on the running
890			 * CPU, otherwise they will end up affecting
891			 * the next process we switch to.
892			 */
893			reset_dbregs();
894		}
895		pcb->pcb_flags &= ~PCB_DBREGS;
896	}
897
898	/*
899	 * Drop the FP state if we hold it, so that the process gets a
900	 * clean FP state if it uses the FPU again.
901	 */
902	fpstate_drop(td);
903}
904
905void
906cpu_setregs(void)
907{
908	register_t cr0;
909
910	cr0 = rcr0();
911	/*
912	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
913	 * BSP.  See the comments there about why we set them.
914	 */
915	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
916	load_cr0(cr0);
917}
918
919/*
920 * Initialize amd64 and configure to run kernel
921 */
922
923/*
924 * Initialize segments & interrupt table
925 */
926
927struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
928static struct gate_descriptor idt0[NIDT];
929struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
930
931static char dblfault_stack[PAGE_SIZE] __aligned(16);
932
933static char nmi0_stack[PAGE_SIZE] __aligned(16);
934CTASSERT(sizeof(struct nmi_pcpu) == 16);
935
936struct amd64tss common_tss[MAXCPU];
937
938/*
939 * Software prototypes -- in more palatable form.
940 *
941 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
942 * slots as corresponding segments for i386 kernel.
943 */
944struct soft_segment_descriptor gdt_segs[] = {
945/* GNULL_SEL	0 Null Descriptor */
946{	.ssd_base = 0x0,
947	.ssd_limit = 0x0,
948	.ssd_type = 0,
949	.ssd_dpl = 0,
950	.ssd_p = 0,
951	.ssd_long = 0,
952	.ssd_def32 = 0,
953	.ssd_gran = 0		},
954/* GNULL2_SEL	1 Null Descriptor */
955{	.ssd_base = 0x0,
956	.ssd_limit = 0x0,
957	.ssd_type = 0,
958	.ssd_dpl = 0,
959	.ssd_p = 0,
960	.ssd_long = 0,
961	.ssd_def32 = 0,
962	.ssd_gran = 0		},
963/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
964{	.ssd_base = 0x0,
965	.ssd_limit = 0xfffff,
966	.ssd_type = SDT_MEMRWA,
967	.ssd_dpl = SEL_UPL,
968	.ssd_p = 1,
969	.ssd_long = 0,
970	.ssd_def32 = 1,
971	.ssd_gran = 1		},
972/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
973{	.ssd_base = 0x0,
974	.ssd_limit = 0xfffff,
975	.ssd_type = SDT_MEMRWA,
976	.ssd_dpl = SEL_UPL,
977	.ssd_p = 1,
978	.ssd_long = 0,
979	.ssd_def32 = 1,
980	.ssd_gran = 1		},
981/* GCODE_SEL	4 Code Descriptor for kernel */
982{	.ssd_base = 0x0,
983	.ssd_limit = 0xfffff,
984	.ssd_type = SDT_MEMERA,
985	.ssd_dpl = SEL_KPL,
986	.ssd_p = 1,
987	.ssd_long = 1,
988	.ssd_def32 = 0,
989	.ssd_gran = 1		},
990/* GDATA_SEL	5 Data Descriptor for kernel */
991{	.ssd_base = 0x0,
992	.ssd_limit = 0xfffff,
993	.ssd_type = SDT_MEMRWA,
994	.ssd_dpl = SEL_KPL,
995	.ssd_p = 1,
996	.ssd_long = 1,
997	.ssd_def32 = 0,
998	.ssd_gran = 1		},
999/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1000{	.ssd_base = 0x0,
1001	.ssd_limit = 0xfffff,
1002	.ssd_type = SDT_MEMERA,
1003	.ssd_dpl = SEL_UPL,
1004	.ssd_p = 1,
1005	.ssd_long = 0,
1006	.ssd_def32 = 1,
1007	.ssd_gran = 1		},
1008/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1009{	.ssd_base = 0x0,
1010	.ssd_limit = 0xfffff,
1011	.ssd_type = SDT_MEMRWA,
1012	.ssd_dpl = SEL_UPL,
1013	.ssd_p = 1,
1014	.ssd_long = 0,
1015	.ssd_def32 = 1,
1016	.ssd_gran = 1		},
1017/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1018{	.ssd_base = 0x0,
1019	.ssd_limit = 0xfffff,
1020	.ssd_type = SDT_MEMERA,
1021	.ssd_dpl = SEL_UPL,
1022	.ssd_p = 1,
1023	.ssd_long = 1,
1024	.ssd_def32 = 0,
1025	.ssd_gran = 1		},
1026/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1027{	.ssd_base = 0x0,
1028	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1029	.ssd_type = SDT_SYSTSS,
1030	.ssd_dpl = SEL_KPL,
1031	.ssd_p = 1,
1032	.ssd_long = 0,
1033	.ssd_def32 = 0,
1034	.ssd_gran = 0		},
1035/* Actually, the TSS is a system descriptor which is double size */
1036{	.ssd_base = 0x0,
1037	.ssd_limit = 0x0,
1038	.ssd_type = 0,
1039	.ssd_dpl = 0,
1040	.ssd_p = 0,
1041	.ssd_long = 0,
1042	.ssd_def32 = 0,
1043	.ssd_gran = 0		},
1044/* GUSERLDT_SEL	11 LDT Descriptor */
1045{	.ssd_base = 0x0,
1046	.ssd_limit = 0x0,
1047	.ssd_type = 0,
1048	.ssd_dpl = 0,
1049	.ssd_p = 0,
1050	.ssd_long = 0,
1051	.ssd_def32 = 0,
1052	.ssd_gran = 0		},
1053/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1054{	.ssd_base = 0x0,
1055	.ssd_limit = 0x0,
1056	.ssd_type = 0,
1057	.ssd_dpl = 0,
1058	.ssd_p = 0,
1059	.ssd_long = 0,
1060	.ssd_def32 = 0,
1061	.ssd_gran = 0		},
1062};
1063
1064void
1065setidt(idx, func, typ, dpl, ist)
1066	int idx;
1067	inthand_t *func;
1068	int typ;
1069	int dpl;
1070	int ist;
1071{
1072	struct gate_descriptor *ip;
1073
1074	ip = idt + idx;
1075	ip->gd_looffset = (uintptr_t)func;
1076	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1077	ip->gd_ist = ist;
1078	ip->gd_xx = 0;
1079	ip->gd_type = typ;
1080	ip->gd_dpl = dpl;
1081	ip->gd_p = 1;
1082	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1083}
1084
1085extern inthand_t
1086	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1087	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1088	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1089	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1090	IDTVEC(xmm), IDTVEC(dblfault),
1091	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1092
1093#ifdef DDB
1094/*
1095 * Display the index and function name of any IDT entries that don't use
1096 * the default 'rsvd' entry point.
1097 */
1098DB_SHOW_COMMAND(idt, db_show_idt)
1099{
1100	struct gate_descriptor *ip;
1101	int idx;
1102	uintptr_t func;
1103
1104	ip = idt;
1105	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1106		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1107		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1108			db_printf("%3d\t", idx);
1109			db_printsym(func, DB_STGY_PROC);
1110			db_printf("\n");
1111		}
1112		ip++;
1113	}
1114}
1115#endif
1116
1117void
1118sdtossd(sd, ssd)
1119	struct user_segment_descriptor *sd;
1120	struct soft_segment_descriptor *ssd;
1121{
1122
1123	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1124	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1125	ssd->ssd_type  = sd->sd_type;
1126	ssd->ssd_dpl   = sd->sd_dpl;
1127	ssd->ssd_p     = sd->sd_p;
1128	ssd->ssd_long  = sd->sd_long;
1129	ssd->ssd_def32 = sd->sd_def32;
1130	ssd->ssd_gran  = sd->sd_gran;
1131}
1132
1133void
1134ssdtosd(ssd, sd)
1135	struct soft_segment_descriptor *ssd;
1136	struct user_segment_descriptor *sd;
1137{
1138
1139	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1140	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1141	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1142	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1143	sd->sd_type  = ssd->ssd_type;
1144	sd->sd_dpl   = ssd->ssd_dpl;
1145	sd->sd_p     = ssd->ssd_p;
1146	sd->sd_long  = ssd->ssd_long;
1147	sd->sd_def32 = ssd->ssd_def32;
1148	sd->sd_gran  = ssd->ssd_gran;
1149}
1150
1151void
1152ssdtosyssd(ssd, sd)
1153	struct soft_segment_descriptor *ssd;
1154	struct system_segment_descriptor *sd;
1155{
1156
1157	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1158	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1159	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1160	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1161	sd->sd_type  = ssd->ssd_type;
1162	sd->sd_dpl   = ssd->ssd_dpl;
1163	sd->sd_p     = ssd->ssd_p;
1164	sd->sd_gran  = ssd->ssd_gran;
1165}
1166
1167#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1168#include <isa/isavar.h>
1169#include <isa/isareg.h>
1170/*
1171 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1172 * and is only suitable for use at probe time.
1173 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1174 * It shouldn't be here.  There should probably be an APIC centric
1175 * implementation in the apic driver code, if at all.
1176 */
1177intrmask_t
1178isa_irq_pending(void)
1179{
1180	u_char irr1;
1181	u_char irr2;
1182
1183	irr1 = inb(IO_ICU1);
1184	irr2 = inb(IO_ICU2);
1185	return ((irr2 << 8) | irr1);
1186}
1187#endif
1188
1189u_int basemem;
1190
1191static int
1192add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1193{
1194	int i, insert_idx, physmap_idx;
1195
1196	physmap_idx = *physmap_idxp;
1197
1198	if (boothowto & RB_VERBOSE)
1199		printf("SMAP type=%02x base=%016lx len=%016lx\n",
1200		    smap->type, smap->base, smap->length);
1201
1202	if (smap->type != SMAP_TYPE_MEMORY)
1203		return (1);
1204
1205	if (smap->length == 0)
1206		return (0);
1207
1208	/*
1209	 * Find insertion point while checking for overlap.  Start off by
1210	 * assuming the new entry will be added to the end.
1211	 */
1212	insert_idx = physmap_idx + 2;
1213	for (i = 0; i <= physmap_idx; i += 2) {
1214		if (smap->base < physmap[i + 1]) {
1215			if (smap->base + smap->length <= physmap[i]) {
1216				insert_idx = i;
1217				break;
1218			}
1219			if (boothowto & RB_VERBOSE)
1220				printf(
1221		    "Overlapping memory regions, ignoring second region\n");
1222			return (1);
1223		}
1224	}
1225
1226	/* See if we can prepend to the next entry. */
1227	if (insert_idx <= physmap_idx &&
1228	    smap->base + smap->length == physmap[insert_idx]) {
1229		physmap[insert_idx] = smap->base;
1230		return (1);
1231	}
1232
1233	/* See if we can append to the previous entry. */
1234	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
1235		physmap[insert_idx - 1] += smap->length;
1236		return (1);
1237	}
1238
1239	physmap_idx += 2;
1240	*physmap_idxp = physmap_idx;
1241	if (physmap_idx == PHYSMAP_SIZE) {
1242		printf(
1243		"Too many segments in the physical address map, giving up\n");
1244		return (0);
1245	}
1246
1247	/*
1248	 * Move the last 'N' entries down to make room for the new
1249	 * entry if needed.
1250	 */
1251	for (i = physmap_idx; i > insert_idx; i -= 2) {
1252		physmap[i] = physmap[i - 2];
1253		physmap[i + 1] = physmap[i - 1];
1254	}
1255
1256	/* Insert the new entry. */
1257	physmap[insert_idx] = smap->base;
1258	physmap[insert_idx + 1] = smap->base + smap->length;
1259	return (1);
1260}
1261
1262/*
1263 * Populate the (physmap) array with base/bound pairs describing the
1264 * available physical memory in the system, then test this memory and
1265 * build the phys_avail array describing the actually-available memory.
1266 *
1267 * If we cannot accurately determine the physical memory map, then use
1268 * value from the 0xE801 call, and failing that, the RTC.
1269 *
1270 * Total memory size may be set by the kernel environment variable
1271 * hw.physmem or the compile-time define MAXMEM.
1272 *
1273 * XXX first should be vm_paddr_t.
1274 */
1275static void
1276getmemsize(caddr_t kmdp, u_int64_t first)
1277{
1278	int i, off, physmap_idx, pa_indx, da_indx;
1279	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1280	u_long physmem_tunable;
1281	pt_entry_t *pte;
1282	struct bios_smap *smapbase, *smap, *smapend;
1283	u_int32_t smapsize;
1284	quad_t dcons_addr, dcons_size;
1285
1286	bzero(physmap, sizeof(physmap));
1287	basemem = 0;
1288	physmap_idx = 0;
1289
1290	/*
1291	 * get memory map from INT 15:E820, kindly supplied by the loader.
1292	 *
1293	 * subr_module.c says:
1294	 * "Consumer may safely assume that size value precedes data."
1295	 * ie: an int32_t immediately precedes smap.
1296	 */
1297	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1298	    MODINFO_METADATA | MODINFOMD_SMAP);
1299	if (smapbase == NULL)
1300		panic("No BIOS smap info from loader!");
1301
1302	smapsize = *((u_int32_t *)smapbase - 1);
1303	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1304
1305	for (smap = smapbase; smap < smapend; smap++)
1306		if (!add_smap_entry(smap, physmap, &physmap_idx))
1307			break;
1308
1309	/*
1310	 * Find the 'base memory' segment for SMP
1311	 */
1312	basemem = 0;
1313	for (i = 0; i <= physmap_idx; i += 2) {
1314		if (physmap[i] == 0x00000000) {
1315			basemem = physmap[i + 1] / 1024;
1316			break;
1317		}
1318	}
1319	if (basemem == 0)
1320		panic("BIOS smap did not include a basemem segment!");
1321
1322#ifdef SMP
1323	/* make hole for AP bootstrap code */
1324	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1325#endif
1326
1327	/*
1328	 * Maxmem isn't the "maximum memory", it's one larger than the
1329	 * highest page of the physical address space.  It should be
1330	 * called something like "Maxphyspage".  We may adjust this
1331	 * based on ``hw.physmem'' and the results of the memory test.
1332	 */
1333	Maxmem = atop(physmap[physmap_idx + 1]);
1334
1335#ifdef MAXMEM
1336	Maxmem = MAXMEM / 4;
1337#endif
1338
1339	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1340		Maxmem = atop(physmem_tunable);
1341
1342	/*
1343	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1344	 * in the system.
1345	 */
1346	if (Maxmem > atop(physmap[physmap_idx + 1]))
1347		Maxmem = atop(physmap[physmap_idx + 1]);
1348
1349	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1350	    (boothowto & RB_VERBOSE))
1351		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1352
1353	/* call pmap initialization to make new kernel address space */
1354	pmap_bootstrap(&first);
1355
1356	/*
1357	 * Size up each available chunk of physical memory.
1358	 */
1359	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1360	pa_indx = 0;
1361	da_indx = 1;
1362	phys_avail[pa_indx++] = physmap[0];
1363	phys_avail[pa_indx] = physmap[0];
1364	dump_avail[da_indx] = physmap[0];
1365	pte = CMAP1;
1366
1367	/*
1368	 * Get dcons buffer address
1369	 */
1370	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1371	    getenv_quad("dcons.size", &dcons_size) == 0)
1372		dcons_addr = 0;
1373
1374	/*
1375	 * physmap is in bytes, so when converting to page boundaries,
1376	 * round up the start address and round down the end address.
1377	 */
1378	for (i = 0; i <= physmap_idx; i += 2) {
1379		vm_paddr_t end;
1380
1381		end = ptoa((vm_paddr_t)Maxmem);
1382		if (physmap[i + 1] < end)
1383			end = trunc_page(physmap[i + 1]);
1384		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1385			int tmp, page_bad, full;
1386			int *ptr = (int *)CADDR1;
1387
1388			full = FALSE;
1389			/*
1390			 * block out kernel memory as not available.
1391			 */
1392			if (pa >= 0x100000 && pa < first)
1393				goto do_dump_avail;
1394
1395			/*
1396			 * block out dcons buffer
1397			 */
1398			if (dcons_addr > 0
1399			    && pa >= trunc_page(dcons_addr)
1400			    && pa < dcons_addr + dcons_size)
1401				goto do_dump_avail;
1402
1403			page_bad = FALSE;
1404
1405			/*
1406			 * map page into kernel: valid, read/write,non-cacheable
1407			 */
1408			*pte = pa | PG_V | PG_RW | PG_N;
1409			invltlb();
1410
1411			tmp = *(int *)ptr;
1412			/*
1413			 * Test for alternating 1's and 0's
1414			 */
1415			*(volatile int *)ptr = 0xaaaaaaaa;
1416			if (*(volatile int *)ptr != 0xaaaaaaaa)
1417				page_bad = TRUE;
1418			/*
1419			 * Test for alternating 0's and 1's
1420			 */
1421			*(volatile int *)ptr = 0x55555555;
1422			if (*(volatile int *)ptr != 0x55555555)
1423				page_bad = TRUE;
1424			/*
1425			 * Test for all 1's
1426			 */
1427			*(volatile int *)ptr = 0xffffffff;
1428			if (*(volatile int *)ptr != 0xffffffff)
1429				page_bad = TRUE;
1430			/*
1431			 * Test for all 0's
1432			 */
1433			*(volatile int *)ptr = 0x0;
1434			if (*(volatile int *)ptr != 0x0)
1435				page_bad = TRUE;
1436			/*
1437			 * Restore original value.
1438			 */
1439			*(int *)ptr = tmp;
1440
1441			/*
1442			 * Adjust array of valid/good pages.
1443			 */
1444			if (page_bad == TRUE)
1445				continue;
1446			/*
1447			 * If this good page is a continuation of the
1448			 * previous set of good pages, then just increase
1449			 * the end pointer. Otherwise start a new chunk.
1450			 * Note that "end" points one higher than end,
1451			 * making the range >= start and < end.
1452			 * If we're also doing a speculative memory
1453			 * test and we at or past the end, bump up Maxmem
1454			 * so that we keep going. The first bad page
1455			 * will terminate the loop.
1456			 */
1457			if (phys_avail[pa_indx] == pa) {
1458				phys_avail[pa_indx] += PAGE_SIZE;
1459			} else {
1460				pa_indx++;
1461				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1462					printf(
1463		"Too many holes in the physical address space, giving up\n");
1464					pa_indx--;
1465					full = TRUE;
1466					goto do_dump_avail;
1467				}
1468				phys_avail[pa_indx++] = pa;	/* start */
1469				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1470			}
1471			physmem++;
1472do_dump_avail:
1473			if (dump_avail[da_indx] == pa) {
1474				dump_avail[da_indx] += PAGE_SIZE;
1475			} else {
1476				da_indx++;
1477				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1478					da_indx--;
1479					goto do_next;
1480				}
1481				dump_avail[da_indx++] = pa; /* start */
1482				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1483			}
1484do_next:
1485			if (full)
1486				break;
1487		}
1488	}
1489	*pte = 0;
1490	invltlb();
1491
1492	/*
1493	 * XXX
1494	 * The last chunk must contain at least one page plus the message
1495	 * buffer to avoid complicating other code (message buffer address
1496	 * calculation, etc.).
1497	 */
1498	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1499	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1500		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1501		phys_avail[pa_indx--] = 0;
1502		phys_avail[pa_indx--] = 0;
1503	}
1504
1505	Maxmem = atop(phys_avail[pa_indx]);
1506
1507	/* Trim off space for the message buffer. */
1508	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1509
1510	/* Map the message buffer. */
1511	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1512		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
1513		    off);
1514}
1515
1516u_int64_t
1517hammer_time(u_int64_t modulep, u_int64_t physfree)
1518{
1519	caddr_t kmdp;
1520	int gsel_tss, x;
1521	struct pcpu *pc;
1522	struct nmi_pcpu *np;
1523	u_int64_t msr;
1524	char *env;
1525
1526	thread0.td_kstack = physfree + KERNBASE;
1527	bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
1528	physfree += KSTACK_PAGES * PAGE_SIZE;
1529	thread0.td_pcb = (struct pcb *)
1530	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1531
1532	/*
1533 	 * This may be done better later if it gets more high level
1534 	 * components in it. If so just link td->td_proc here.
1535	 */
1536	proc_linkup0(&proc0, &thread0);
1537
1538	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1539	preload_bootstrap_relocate(KERNBASE);
1540	kmdp = preload_search_by_type("elf kernel");
1541	if (kmdp == NULL)
1542		kmdp = preload_search_by_type("elf64 kernel");
1543	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1544	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1545#ifdef DDB
1546	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1547	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1548#endif
1549
1550	/* Init basic tunables, hz etc */
1551	init_param1();
1552
1553	/*
1554	 * make gdt memory segments
1555	 */
1556	for (x = 0; x < NGDT; x++) {
1557		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1558		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1559			ssdtosd(&gdt_segs[x], &gdt[x]);
1560	}
1561	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1562	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1563	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1564
1565	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1566	r_gdt.rd_base =  (long) gdt;
1567	lgdt(&r_gdt);
1568	pc = &__pcpu[0];
1569
1570	wrmsr(MSR_FSBASE, 0);		/* User value */
1571	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1572	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1573
1574	pcpu_init(pc, 0, sizeof(struct pcpu));
1575	dpcpu_init((void *)(physfree + KERNBASE), 0);
1576	physfree += DPCPU_SIZE;
1577	PCPU_SET(prvspace, pc);
1578	PCPU_SET(curthread, &thread0);
1579	PCPU_SET(curpcb, thread0.td_pcb);
1580	PCPU_SET(tssp, &common_tss[0]);
1581	PCPU_SET(commontssp, &common_tss[0]);
1582	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1583	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1584	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1585	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1586
1587	/*
1588	 * Initialize mutexes.
1589	 *
1590	 * icu_lock: in order to allow an interrupt to occur in a critical
1591	 * 	     section, to set pcpu->ipending (etc...) properly, we
1592	 *	     must be able to get the icu lock, so it can't be
1593	 *	     under witness.
1594	 */
1595	mutex_init();
1596	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1597	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1598
1599	/* exceptions */
1600	for (x = 0; x < NIDT; x++)
1601		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1602	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1603	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1604	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1605 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1606	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1607	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1608	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1609	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1610	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1611	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1612	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1613	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1614	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1615	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1616	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1617	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1618	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1619	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1620	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1621
1622	r_idt.rd_limit = sizeof(idt0) - 1;
1623	r_idt.rd_base = (long) idt;
1624	lidt(&r_idt);
1625
1626	/*
1627	 * Initialize the i8254 before the console so that console
1628	 * initialization can use DELAY().
1629	 */
1630	i8254_init();
1631
1632	/*
1633	 * Initialize the console before we print anything out.
1634	 */
1635	cninit();
1636
1637#ifdef DEV_ISA
1638#ifdef DEV_ATPIC
1639	elcr_probe();
1640	atpic_startup();
1641#else
1642	/* Reset and mask the atpics and leave them shut down. */
1643	atpic_reset();
1644
1645	/*
1646	 * Point the ICU spurious interrupt vectors at the APIC spurious
1647	 * interrupt handler.
1648	 */
1649	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1650	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1651#endif
1652#else
1653#error "have you forgotten the isa device?";
1654#endif
1655
1656	kdb_init();
1657
1658#ifdef KDB
1659	if (boothowto & RB_KDB)
1660		kdb_enter(KDB_WHY_BOOTFLAGS,
1661		    "Boot flags requested debugger");
1662#endif
1663
1664	identify_cpu();		/* Final stage of CPU initialization */
1665	initializecpu();	/* Initialize CPU registers */
1666
1667	/* make an initial tss so cpu can get interrupt stack on syscall! */
1668	common_tss[0].tss_rsp0 = thread0.td_kstack + \
1669	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1670	/* Ensure the stack is aligned to 16 bytes */
1671	common_tss[0].tss_rsp0 &= ~0xFul;
1672	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1673
1674	/* doublefault stack space, runs on ist1 */
1675	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1676
1677	/*
1678	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1679	 * above the start of the ist2 stack.
1680	 */
1681	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1682	np->np_pcpu = (register_t) pc;
1683	common_tss[0].tss_ist2 = (long) np;
1684
1685	/* Set the IO permission bitmap (empty due to tss seg limit) */
1686	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1687	    IOPAGES * PAGE_SIZE;
1688
1689	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1690	ltr(gsel_tss);
1691
1692	/* Set up the fast syscall stuff */
1693	msr = rdmsr(MSR_EFER) | EFER_SCE;
1694	wrmsr(MSR_EFER, msr);
1695	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1696	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1697	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1698	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1699	wrmsr(MSR_STAR, msr);
1700	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1701
1702	getmemsize(kmdp, physfree);
1703	init_param2(physmem);
1704
1705	/* now running on new page tables, configured,and u/iom is accessible */
1706
1707	msgbufinit(msgbufp, MSGBUF_SIZE);
1708	fpuinit();
1709
1710	/* transfer to user mode */
1711
1712	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1713	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1714	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1715	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1716	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1717
1718	load_ds(_udatasel);
1719	load_es(_udatasel);
1720	load_fs(_ufssel);
1721
1722	/* setup proc 0's pcb */
1723	thread0.td_pcb->pcb_flags = 0;
1724	thread0.td_pcb->pcb_cr3 = KPML4phys;
1725	thread0.td_frame = &proc0_tf;
1726
1727        env = getenv("kernelname");
1728	if (env != NULL)
1729		strlcpy(kernelname, env, sizeof(kernelname));
1730
1731#ifdef XENHVM
1732	if (inw(0x10) == 0x49d2) {
1733		if (bootverbose)
1734			printf("Xen detected: disabling emulated block and network devices\n");
1735		outw(0x10, 3);
1736	}
1737#endif
1738
1739	if (cpu_probe_amdc1e())
1740		cpu_idle_fn = cpu_idle_amdc1e;
1741
1742	/* Location of kernel stack for locore */
1743	return ((u_int64_t)thread0.td_pcb);
1744}
1745
1746void
1747cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1748{
1749
1750	pcpu->pc_acpi_id = 0xffffffff;
1751}
1752
1753void
1754spinlock_enter(void)
1755{
1756	struct thread *td;
1757
1758	td = curthread;
1759	if (td->td_md.md_spinlock_count == 0)
1760		td->td_md.md_saved_flags = intr_disable();
1761	td->td_md.md_spinlock_count++;
1762	critical_enter();
1763}
1764
1765void
1766spinlock_exit(void)
1767{
1768	struct thread *td;
1769
1770	td = curthread;
1771	critical_exit();
1772	td->td_md.md_spinlock_count--;
1773	if (td->td_md.md_spinlock_count == 0)
1774		intr_restore(td->td_md.md_saved_flags);
1775}
1776
1777/*
1778 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1779 * we want to start a backtrace from the function that caused us to enter
1780 * the debugger. We have the context in the trapframe, but base the trace
1781 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1782 * enough for a backtrace.
1783 */
1784void
1785makectx(struct trapframe *tf, struct pcb *pcb)
1786{
1787
1788	pcb->pcb_r12 = tf->tf_r12;
1789	pcb->pcb_r13 = tf->tf_r13;
1790	pcb->pcb_r14 = tf->tf_r14;
1791	pcb->pcb_r15 = tf->tf_r15;
1792	pcb->pcb_rbp = tf->tf_rbp;
1793	pcb->pcb_rbx = tf->tf_rbx;
1794	pcb->pcb_rip = tf->tf_rip;
1795	pcb->pcb_rsp = (ISPL(tf->tf_cs)) ? tf->tf_rsp : (long)(tf + 1) - 8;
1796}
1797
1798int
1799ptrace_set_pc(struct thread *td, unsigned long addr)
1800{
1801	td->td_frame->tf_rip = addr;
1802	return (0);
1803}
1804
1805int
1806ptrace_single_step(struct thread *td)
1807{
1808	td->td_frame->tf_rflags |= PSL_T;
1809	return (0);
1810}
1811
1812int
1813ptrace_clear_single_step(struct thread *td)
1814{
1815	td->td_frame->tf_rflags &= ~PSL_T;
1816	return (0);
1817}
1818
1819int
1820fill_regs(struct thread *td, struct reg *regs)
1821{
1822	struct trapframe *tp;
1823
1824	tp = td->td_frame;
1825	regs->r_r15 = tp->tf_r15;
1826	regs->r_r14 = tp->tf_r14;
1827	regs->r_r13 = tp->tf_r13;
1828	regs->r_r12 = tp->tf_r12;
1829	regs->r_r11 = tp->tf_r11;
1830	regs->r_r10 = tp->tf_r10;
1831	regs->r_r9  = tp->tf_r9;
1832	regs->r_r8  = tp->tf_r8;
1833	regs->r_rdi = tp->tf_rdi;
1834	regs->r_rsi = tp->tf_rsi;
1835	regs->r_rbp = tp->tf_rbp;
1836	regs->r_rbx = tp->tf_rbx;
1837	regs->r_rdx = tp->tf_rdx;
1838	regs->r_rcx = tp->tf_rcx;
1839	regs->r_rax = tp->tf_rax;
1840	regs->r_rip = tp->tf_rip;
1841	regs->r_cs = tp->tf_cs;
1842	regs->r_rflags = tp->tf_rflags;
1843	regs->r_rsp = tp->tf_rsp;
1844	regs->r_ss = tp->tf_ss;
1845	if (tp->tf_flags & TF_HASSEGS) {
1846		regs->r_ds = tp->tf_ds;
1847		regs->r_es = tp->tf_es;
1848		regs->r_fs = tp->tf_fs;
1849		regs->r_gs = tp->tf_gs;
1850	} else {
1851		regs->r_ds = 0;
1852		regs->r_es = 0;
1853		regs->r_fs = 0;
1854		regs->r_gs = 0;
1855	}
1856	return (0);
1857}
1858
1859int
1860set_regs(struct thread *td, struct reg *regs)
1861{
1862	struct trapframe *tp;
1863	register_t rflags;
1864
1865	tp = td->td_frame;
1866	rflags = regs->r_rflags & 0xffffffff;
1867	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1868		return (EINVAL);
1869	tp->tf_r15 = regs->r_r15;
1870	tp->tf_r14 = regs->r_r14;
1871	tp->tf_r13 = regs->r_r13;
1872	tp->tf_r12 = regs->r_r12;
1873	tp->tf_r11 = regs->r_r11;
1874	tp->tf_r10 = regs->r_r10;
1875	tp->tf_r9  = regs->r_r9;
1876	tp->tf_r8  = regs->r_r8;
1877	tp->tf_rdi = regs->r_rdi;
1878	tp->tf_rsi = regs->r_rsi;
1879	tp->tf_rbp = regs->r_rbp;
1880	tp->tf_rbx = regs->r_rbx;
1881	tp->tf_rdx = regs->r_rdx;
1882	tp->tf_rcx = regs->r_rcx;
1883	tp->tf_rax = regs->r_rax;
1884	tp->tf_rip = regs->r_rip;
1885	tp->tf_cs = regs->r_cs;
1886	tp->tf_rflags = rflags;
1887	tp->tf_rsp = regs->r_rsp;
1888	tp->tf_ss = regs->r_ss;
1889	if (0) {	/* XXXKIB */
1890		tp->tf_ds = regs->r_ds;
1891		tp->tf_es = regs->r_es;
1892		tp->tf_fs = regs->r_fs;
1893		tp->tf_gs = regs->r_gs;
1894		tp->tf_flags = TF_HASSEGS;
1895	}
1896	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1897	return (0);
1898}
1899
1900/* XXX check all this stuff! */
1901/* externalize from sv_xmm */
1902static void
1903fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1904{
1905	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1906	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1907	int i;
1908
1909	/* pcb -> fpregs */
1910	bzero(fpregs, sizeof(*fpregs));
1911
1912	/* FPU control/status */
1913	penv_fpreg->en_cw = penv_xmm->en_cw;
1914	penv_fpreg->en_sw = penv_xmm->en_sw;
1915	penv_fpreg->en_tw = penv_xmm->en_tw;
1916	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1917	penv_fpreg->en_rip = penv_xmm->en_rip;
1918	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1919	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1920	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1921
1922	/* FPU registers */
1923	for (i = 0; i < 8; ++i)
1924		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1925
1926	/* SSE registers */
1927	for (i = 0; i < 16; ++i)
1928		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1929}
1930
1931/* internalize from fpregs into sv_xmm */
1932static void
1933set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1934{
1935	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1936	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1937	int i;
1938
1939	/* fpregs -> pcb */
1940	/* FPU control/status */
1941	penv_xmm->en_cw = penv_fpreg->en_cw;
1942	penv_xmm->en_sw = penv_fpreg->en_sw;
1943	penv_xmm->en_tw = penv_fpreg->en_tw;
1944	penv_xmm->en_opcode = penv_fpreg->en_opcode;
1945	penv_xmm->en_rip = penv_fpreg->en_rip;
1946	penv_xmm->en_rdp = penv_fpreg->en_rdp;
1947	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1948	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
1949
1950	/* FPU registers */
1951	for (i = 0; i < 8; ++i)
1952		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1953
1954	/* SSE registers */
1955	for (i = 0; i < 16; ++i)
1956		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1957}
1958
1959/* externalize from td->pcb */
1960int
1961fill_fpregs(struct thread *td, struct fpreg *fpregs)
1962{
1963
1964	fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
1965	return (0);
1966}
1967
1968/* internalize to td->pcb */
1969int
1970set_fpregs(struct thread *td, struct fpreg *fpregs)
1971{
1972
1973	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
1974	return (0);
1975}
1976
1977/*
1978 * Get machine context.
1979 */
1980int
1981get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
1982{
1983	struct trapframe *tp;
1984
1985	tp = td->td_frame;
1986	PROC_LOCK(curthread->td_proc);
1987	mcp->mc_onstack = sigonstack(tp->tf_rsp);
1988	PROC_UNLOCK(curthread->td_proc);
1989	mcp->mc_r15 = tp->tf_r15;
1990	mcp->mc_r14 = tp->tf_r14;
1991	mcp->mc_r13 = tp->tf_r13;
1992	mcp->mc_r12 = tp->tf_r12;
1993	mcp->mc_r11 = tp->tf_r11;
1994	mcp->mc_r10 = tp->tf_r10;
1995	mcp->mc_r9  = tp->tf_r9;
1996	mcp->mc_r8  = tp->tf_r8;
1997	mcp->mc_rdi = tp->tf_rdi;
1998	mcp->mc_rsi = tp->tf_rsi;
1999	mcp->mc_rbp = tp->tf_rbp;
2000	mcp->mc_rbx = tp->tf_rbx;
2001	mcp->mc_rcx = tp->tf_rcx;
2002	mcp->mc_rflags = tp->tf_rflags;
2003	if (flags & GET_MC_CLEAR_RET) {
2004		mcp->mc_rax = 0;
2005		mcp->mc_rdx = 0;
2006		mcp->mc_rflags &= ~PSL_C;
2007	} else {
2008		mcp->mc_rax = tp->tf_rax;
2009		mcp->mc_rdx = tp->tf_rdx;
2010	}
2011	mcp->mc_rip = tp->tf_rip;
2012	mcp->mc_cs = tp->tf_cs;
2013	mcp->mc_rsp = tp->tf_rsp;
2014	mcp->mc_ss = tp->tf_ss;
2015	mcp->mc_ds = tp->tf_ds;
2016	mcp->mc_es = tp->tf_es;
2017	mcp->mc_fs = tp->tf_fs;
2018	mcp->mc_gs = tp->tf_gs;
2019	mcp->mc_flags = tp->tf_flags;
2020	mcp->mc_len = sizeof(*mcp);
2021	get_fpcontext(td, mcp);
2022	mcp->mc_fsbase = td->td_pcb->pcb_fsbase;
2023	mcp->mc_gsbase = td->td_pcb->pcb_gsbase;
2024	return (0);
2025}
2026
2027/*
2028 * Set machine context.
2029 *
2030 * However, we don't set any but the user modifiable flags, and we won't
2031 * touch the cs selector.
2032 */
2033int
2034set_mcontext(struct thread *td, const mcontext_t *mcp)
2035{
2036	struct trapframe *tp;
2037	long rflags;
2038	int ret;
2039
2040	tp = td->td_frame;
2041	if (mcp->mc_len != sizeof(*mcp) ||
2042	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2043		return (EINVAL);
2044	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2045	    (tp->tf_rflags & ~PSL_USERCHANGE);
2046	ret = set_fpcontext(td, mcp);
2047	if (ret != 0)
2048		return (ret);
2049	tp->tf_r15 = mcp->mc_r15;
2050	tp->tf_r14 = mcp->mc_r14;
2051	tp->tf_r13 = mcp->mc_r13;
2052	tp->tf_r12 = mcp->mc_r12;
2053	tp->tf_r11 = mcp->mc_r11;
2054	tp->tf_r10 = mcp->mc_r10;
2055	tp->tf_r9  = mcp->mc_r9;
2056	tp->tf_r8  = mcp->mc_r8;
2057	tp->tf_rdi = mcp->mc_rdi;
2058	tp->tf_rsi = mcp->mc_rsi;
2059	tp->tf_rbp = mcp->mc_rbp;
2060	tp->tf_rbx = mcp->mc_rbx;
2061	tp->tf_rdx = mcp->mc_rdx;
2062	tp->tf_rcx = mcp->mc_rcx;
2063	tp->tf_rax = mcp->mc_rax;
2064	tp->tf_rip = mcp->mc_rip;
2065	tp->tf_rflags = rflags;
2066	tp->tf_rsp = mcp->mc_rsp;
2067	tp->tf_ss = mcp->mc_ss;
2068	tp->tf_flags = mcp->mc_flags;
2069	if (tp->tf_flags & TF_HASSEGS) {
2070		tp->tf_ds = mcp->mc_ds;
2071		tp->tf_es = mcp->mc_es;
2072		tp->tf_fs = mcp->mc_fs;
2073		tp->tf_gs = mcp->mc_gs;
2074	}
2075	if (mcp->mc_flags & _MC_HASBASES) {
2076		td->td_pcb->pcb_fsbase = mcp->mc_fsbase;
2077		td->td_pcb->pcb_gsbase = mcp->mc_gsbase;
2078	}
2079	td->td_pcb->pcb_flags |= PCB_FULLCTX;
2080	td->td_pcb->pcb_full_iret = 1;
2081	return (0);
2082}
2083
2084static void
2085get_fpcontext(struct thread *td, mcontext_t *mcp)
2086{
2087
2088	mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
2089	mcp->mc_fpformat = fpuformat();
2090}
2091
2092static int
2093set_fpcontext(struct thread *td, const mcontext_t *mcp)
2094{
2095	struct savefpu *fpstate;
2096
2097	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2098		return (0);
2099	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2100		return (EINVAL);
2101	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
2102		/* We don't care what state is left in the FPU or PCB. */
2103		fpstate_drop(td);
2104	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2105	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2106		/*
2107		 * XXX we violate the dubious requirement that fpusetregs()
2108		 * be called with interrupts disabled.
2109		 * XXX obsolete on trap-16 systems?
2110		 */
2111		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2112		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2113		fpusetregs(td, fpstate);
2114	} else
2115		return (EINVAL);
2116	return (0);
2117}
2118
2119void
2120fpstate_drop(struct thread *td)
2121{
2122	register_t s;
2123
2124	s = intr_disable();
2125	if (PCPU_GET(fpcurthread) == td)
2126		fpudrop();
2127	/*
2128	 * XXX force a full drop of the fpu.  The above only drops it if we
2129	 * owned it.
2130	 *
2131	 * XXX I don't much like fpugetregs()'s semantics of doing a full
2132	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2133	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2134	 * sendsig() is the only caller of fpugetregs()... perhaps we just
2135	 * have too many layers.
2136	 */
2137	curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
2138	intr_restore(s);
2139}
2140
2141int
2142fill_dbregs(struct thread *td, struct dbreg *dbregs)
2143{
2144	struct pcb *pcb;
2145
2146	if (td == NULL) {
2147		dbregs->dr[0] = rdr0();
2148		dbregs->dr[1] = rdr1();
2149		dbregs->dr[2] = rdr2();
2150		dbregs->dr[3] = rdr3();
2151		dbregs->dr[6] = rdr6();
2152		dbregs->dr[7] = rdr7();
2153	} else {
2154		pcb = td->td_pcb;
2155		dbregs->dr[0] = pcb->pcb_dr0;
2156		dbregs->dr[1] = pcb->pcb_dr1;
2157		dbregs->dr[2] = pcb->pcb_dr2;
2158		dbregs->dr[3] = pcb->pcb_dr3;
2159		dbregs->dr[6] = pcb->pcb_dr6;
2160		dbregs->dr[7] = pcb->pcb_dr7;
2161	}
2162	dbregs->dr[4] = 0;
2163	dbregs->dr[5] = 0;
2164	dbregs->dr[8] = 0;
2165	dbregs->dr[9] = 0;
2166	dbregs->dr[10] = 0;
2167	dbregs->dr[11] = 0;
2168	dbregs->dr[12] = 0;
2169	dbregs->dr[13] = 0;
2170	dbregs->dr[14] = 0;
2171	dbregs->dr[15] = 0;
2172	return (0);
2173}
2174
2175int
2176set_dbregs(struct thread *td, struct dbreg *dbregs)
2177{
2178	struct pcb *pcb;
2179	int i;
2180
2181	if (td == NULL) {
2182		load_dr0(dbregs->dr[0]);
2183		load_dr1(dbregs->dr[1]);
2184		load_dr2(dbregs->dr[2]);
2185		load_dr3(dbregs->dr[3]);
2186		load_dr6(dbregs->dr[6]);
2187		load_dr7(dbregs->dr[7]);
2188	} else {
2189		/*
2190		 * Don't let an illegal value for dr7 get set.  Specifically,
2191		 * check for undefined settings.  Setting these bit patterns
2192		 * result in undefined behaviour and can lead to an unexpected
2193		 * TRCTRAP or a general protection fault right here.
2194		 * Upper bits of dr6 and dr7 must not be set
2195		 */
2196		for (i = 0; i < 4; i++) {
2197			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2198				return (EINVAL);
2199			if (td->td_frame->tf_cs == _ucode32sel &&
2200			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2201				return (EINVAL);
2202		}
2203		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2204		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2205			return (EINVAL);
2206
2207		pcb = td->td_pcb;
2208
2209		/*
2210		 * Don't let a process set a breakpoint that is not within the
2211		 * process's address space.  If a process could do this, it
2212		 * could halt the system by setting a breakpoint in the kernel
2213		 * (if ddb was enabled).  Thus, we need to check to make sure
2214		 * that no breakpoints are being enabled for addresses outside
2215		 * process's address space.
2216		 *
2217		 * XXX - what about when the watched area of the user's
2218		 * address space is written into from within the kernel
2219		 * ... wouldn't that still cause a breakpoint to be generated
2220		 * from within kernel mode?
2221		 */
2222
2223		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2224			/* dr0 is enabled */
2225			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2226				return (EINVAL);
2227		}
2228		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2229			/* dr1 is enabled */
2230			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2231				return (EINVAL);
2232		}
2233		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2234			/* dr2 is enabled */
2235			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2236				return (EINVAL);
2237		}
2238		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2239			/* dr3 is enabled */
2240			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2241				return (EINVAL);
2242		}
2243
2244		pcb->pcb_dr0 = dbregs->dr[0];
2245		pcb->pcb_dr1 = dbregs->dr[1];
2246		pcb->pcb_dr2 = dbregs->dr[2];
2247		pcb->pcb_dr3 = dbregs->dr[3];
2248		pcb->pcb_dr6 = dbregs->dr[6];
2249		pcb->pcb_dr7 = dbregs->dr[7];
2250
2251		pcb->pcb_flags |= PCB_DBREGS;
2252	}
2253
2254	return (0);
2255}
2256
2257void
2258reset_dbregs(void)
2259{
2260
2261	load_dr7(0);	/* Turn off the control bits first */
2262	load_dr0(0);
2263	load_dr1(0);
2264	load_dr2(0);
2265	load_dr3(0);
2266	load_dr6(0);
2267}
2268
2269/*
2270 * Return > 0 if a hardware breakpoint has been hit, and the
2271 * breakpoint was in user space.  Return 0, otherwise.
2272 */
2273int
2274user_dbreg_trap(void)
2275{
2276        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2277        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2278        int nbp;            /* number of breakpoints that triggered */
2279        caddr_t addr[4];    /* breakpoint addresses */
2280        int i;
2281
2282        dr7 = rdr7();
2283        if ((dr7 & 0x000000ff) == 0) {
2284                /*
2285                 * all GE and LE bits in the dr7 register are zero,
2286                 * thus the trap couldn't have been caused by the
2287                 * hardware debug registers
2288                 */
2289                return 0;
2290        }
2291
2292        nbp = 0;
2293        dr6 = rdr6();
2294        bp = dr6 & 0x0000000f;
2295
2296        if (!bp) {
2297                /*
2298                 * None of the breakpoint bits are set meaning this
2299                 * trap was not caused by any of the debug registers
2300                 */
2301                return 0;
2302        }
2303
2304        /*
2305         * at least one of the breakpoints were hit, check to see
2306         * which ones and if any of them are user space addresses
2307         */
2308
2309        if (bp & 0x01) {
2310                addr[nbp++] = (caddr_t)rdr0();
2311        }
2312        if (bp & 0x02) {
2313                addr[nbp++] = (caddr_t)rdr1();
2314        }
2315        if (bp & 0x04) {
2316                addr[nbp++] = (caddr_t)rdr2();
2317        }
2318        if (bp & 0x08) {
2319                addr[nbp++] = (caddr_t)rdr3();
2320        }
2321
2322        for (i = 0; i < nbp; i++) {
2323                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2324                        /*
2325                         * addr[i] is in user space
2326                         */
2327                        return nbp;
2328                }
2329        }
2330
2331        /*
2332         * None of the breakpoints are in user space.
2333         */
2334        return 0;
2335}
2336
2337#ifdef KDB
2338
2339/*
2340 * Provide inb() and outb() as functions.  They are normally only available as
2341 * inline functions, thus cannot be called from the debugger.
2342 */
2343
2344/* silence compiler warnings */
2345u_char inb_(u_short);
2346void outb_(u_short, u_char);
2347
2348u_char
2349inb_(u_short port)
2350{
2351	return inb(port);
2352}
2353
2354void
2355outb_(u_short port, u_char data)
2356{
2357	outb(port, data);
2358}
2359
2360#endif /* KDB */
2361