machdep.c revision 196033
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 196033 2009-08-02 11:26:23Z ed $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_msgbuf.h"
55#include "opt_perfmon.h"
56#include "opt_sched.h"
57
58#include <sys/param.h>
59#include <sys/proc.h>
60#include <sys/systm.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/bus.h>
64#include <sys/callout.h>
65#include <sys/cons.h>
66#include <sys/cpu.h>
67#include <sys/eventhandler.h>
68#include <sys/exec.h>
69#include <sys/imgact.h>
70#include <sys/kdb.h>
71#include <sys/kernel.h>
72#include <sys/ktr.h>
73#include <sys/linker.h>
74#include <sys/lock.h>
75#include <sys/malloc.h>
76#include <sys/memrange.h>
77#include <sys/msgbuf.h>
78#include <sys/mutex.h>
79#include <sys/pcpu.h>
80#include <sys/ptrace.h>
81#include <sys/reboot.h>
82#include <sys/sched.h>
83#include <sys/signalvar.h>
84#include <sys/sysctl.h>
85#include <sys/sysent.h>
86#include <sys/sysproto.h>
87#include <sys/ucontext.h>
88#include <sys/vmmeter.h>
89
90#include <vm/vm.h>
91#include <vm/vm_extern.h>
92#include <vm/vm_kern.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_object.h>
96#include <vm/vm_pager.h>
97#include <vm/vm_param.h>
98
99#ifdef DDB
100#ifndef KDB
101#error KDB must be enabled in order for DDB to work!
102#endif
103#include <ddb/ddb.h>
104#include <ddb/db_sym.h>
105#endif
106
107#include <net/netisr.h>
108
109#include <machine/clock.h>
110#include <machine/cpu.h>
111#include <machine/cputypes.h>
112#include <machine/intr_machdep.h>
113#include <machine/mca.h>
114#include <machine/md_var.h>
115#include <machine/metadata.h>
116#include <machine/pc/bios.h>
117#include <machine/pcb.h>
118#include <machine/proc.h>
119#include <machine/reg.h>
120#include <machine/sigframe.h>
121#include <machine/specialreg.h>
122#ifdef PERFMON
123#include <machine/perfmon.h>
124#endif
125#include <machine/tss.h>
126#ifdef SMP
127#include <machine/smp.h>
128#endif
129
130#ifdef DEV_ATPIC
131#include <amd64/isa/icu.h>
132#else
133#include <machine/apicvar.h>
134#endif
135
136#include <isa/isareg.h>
137#include <isa/rtc.h>
138
139/* Sanity check for __curthread() */
140CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
141
142extern u_int64_t hammer_time(u_int64_t, u_int64_t);
143
144extern void printcpuinfo(void);	/* XXX header file */
145extern void identify_cpu(void);
146extern void panicifcpuunsupported(void);
147
148#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
149#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
150
151static void cpu_startup(void *);
152static void get_fpcontext(struct thread *td, mcontext_t *mcp);
153static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
154SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
155
156#ifdef DDB
157extern vm_offset_t ksym_start, ksym_end;
158#endif
159
160/* Intel ICH registers */
161#define ICH_PMBASE	0x400
162#define ICH_SMI_EN	ICH_PMBASE + 0x30
163
164int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
165
166int cold = 1;
167
168long Maxmem = 0;
169long realmem = 0;
170
171/*
172 * The number of PHYSMAP entries must be one less than the number of
173 * PHYSSEG entries because the PHYSMAP entry that spans the largest
174 * physical address that is accessible by ISA DMA is split into two
175 * PHYSSEG entries.
176 */
177#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
178
179vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
180vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
181
182/* must be 2 less so 0 0 can signal end of chunks */
183#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
184#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
185
186struct kva_md_info kmi;
187
188static struct trapframe proc0_tf;
189struct region_descriptor r_gdt, r_idt;
190
191struct pcpu __pcpu[MAXCPU];
192
193struct mtx icu_lock;
194
195struct mem_range_softc mem_range_softc;
196
197struct mtx dt_lock;	/* lock for GDT and LDT */
198
199static void
200cpu_startup(dummy)
201	void *dummy;
202{
203	uintmax_t memsize;
204	char *sysenv;
205
206	/*
207	 * On MacBooks, we need to disallow the legacy USB circuit to
208	 * generate an SMI# because this can cause several problems,
209	 * namely: incorrect CPU frequency detection and failure to
210	 * start the APs.
211	 * We do this by disabling a bit in the SMI_EN (SMI Control and
212	 * Enable register) of the Intel ICH LPC Interface Bridge.
213	 */
214	sysenv = getenv("smbios.system.product");
215	if (sysenv != NULL) {
216		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
217		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
218		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
219		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
220		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
221			if (bootverbose)
222				printf("Disabling LEGACY_USB_EN bit on "
223				    "Intel ICH.\n");
224			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
225		}
226		freeenv(sysenv);
227	}
228
229	/*
230	 * Good {morning,afternoon,evening,night}.
231	 */
232	startrtclock();
233	printcpuinfo();
234	panicifcpuunsupported();
235#ifdef PERFMON
236	perfmon_init();
237#endif
238	sysenv = getenv("smbios.memory.enabled");
239	if (sysenv != NULL) {
240		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10);
241		freeenv(sysenv);
242	} else
243		memsize = 0;
244	if (memsize > 0)
245		printf("real memory  = %ju (%ju MB)\n", memsize << 10,
246		    memsize >> 10);
247	else
248		printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
249		    ptoa((uintmax_t)Maxmem) / 1048576);
250	realmem = Maxmem;
251	/*
252	 * Display any holes after the first chunk of extended memory.
253	 */
254	if (bootverbose) {
255		int indx;
256
257		printf("Physical memory chunk(s):\n");
258		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
259			vm_paddr_t size;
260
261			size = phys_avail[indx + 1] - phys_avail[indx];
262			printf(
263			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
264			    (uintmax_t)phys_avail[indx],
265			    (uintmax_t)phys_avail[indx + 1] - 1,
266			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
267		}
268	}
269
270	vm_ksubmap_init(&kmi);
271
272	printf("avail memory = %ju (%ju MB)\n",
273	    ptoa((uintmax_t)cnt.v_free_count),
274	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
275
276	/*
277	 * Set up buffers, so they can be used to read disk labels.
278	 */
279	bufinit();
280	vm_pager_bufferinit();
281
282	cpu_setregs();
283	mca_init();
284}
285
286/*
287 * Send an interrupt to process.
288 *
289 * Stack is set up to allow sigcode stored
290 * at top to call routine, followed by call
291 * to sigreturn routine below.  After sigreturn
292 * resets the signal mask, the stack, and the
293 * frame pointer, it returns to the user
294 * specified pc, psl.
295 */
296void
297sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
298{
299	struct sigframe sf, *sfp;
300	struct proc *p;
301	struct thread *td;
302	struct sigacts *psp;
303	char *sp;
304	struct trapframe *regs;
305	int sig;
306	int oonstack;
307
308	td = curthread;
309	p = td->td_proc;
310	PROC_LOCK_ASSERT(p, MA_OWNED);
311	sig = ksi->ksi_signo;
312	psp = p->p_sigacts;
313	mtx_assert(&psp->ps_mtx, MA_OWNED);
314	regs = td->td_frame;
315	oonstack = sigonstack(regs->tf_rsp);
316
317	/* Save user context. */
318	bzero(&sf, sizeof(sf));
319	sf.sf_uc.uc_sigmask = *mask;
320	sf.sf_uc.uc_stack = td->td_sigstk;
321	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
322	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
323	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
324	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
325	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
326	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
327	fpstate_drop(td);
328	sf.sf_uc.uc_mcontext.mc_fsbase = td->td_pcb->pcb_fsbase;
329	sf.sf_uc.uc_mcontext.mc_gsbase = td->td_pcb->pcb_gsbase;
330
331	/* Allocate space for the signal handler context. */
332	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
333	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
334		sp = td->td_sigstk.ss_sp +
335		    td->td_sigstk.ss_size - sizeof(struct sigframe);
336#if defined(COMPAT_43)
337		td->td_sigstk.ss_flags |= SS_ONSTACK;
338#endif
339	} else
340		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
341	/* Align to 16 bytes. */
342	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
343
344	/* Translate the signal if appropriate. */
345	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
346		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
347
348	/* Build the argument list for the signal handler. */
349	regs->tf_rdi = sig;			/* arg 1 in %rdi */
350	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
351	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
352		/* Signal handler installed with SA_SIGINFO. */
353		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
354		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
355
356		/* Fill in POSIX parts */
357		sf.sf_si = ksi->ksi_info;
358		sf.sf_si.si_signo = sig; /* maybe a translated signal */
359		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
360	} else {
361		/* Old FreeBSD-style arguments. */
362		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
363		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
364		sf.sf_ahu.sf_handler = catcher;
365	}
366	mtx_unlock(&psp->ps_mtx);
367	PROC_UNLOCK(p);
368
369	/*
370	 * Copy the sigframe out to the user's stack.
371	 */
372	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
373#ifdef DEBUG
374		printf("process %ld has trashed its stack\n", (long)p->p_pid);
375#endif
376		PROC_LOCK(p);
377		sigexit(td, SIGILL);
378	}
379
380	regs->tf_rsp = (long)sfp;
381	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
382	regs->tf_rflags &= ~(PSL_T | PSL_D);
383	regs->tf_cs = _ucodesel;
384	regs->tf_ds = _udatasel;
385	regs->tf_es = _udatasel;
386	regs->tf_fs = _ufssel;
387	regs->tf_gs = _ugssel;
388	regs->tf_flags = TF_HASSEGS;
389	td->td_pcb->pcb_full_iret = 1;
390	PROC_LOCK(p);
391	mtx_lock(&psp->ps_mtx);
392}
393
394/*
395 * System call to cleanup state after a signal
396 * has been taken.  Reset signal mask and
397 * stack state from context left by sendsig (above).
398 * Return to previous pc and psl as specified by
399 * context left by sendsig. Check carefully to
400 * make sure that the user has not modified the
401 * state to gain improper privileges.
402 *
403 * MPSAFE
404 */
405int
406sigreturn(td, uap)
407	struct thread *td;
408	struct sigreturn_args /* {
409		const struct __ucontext *sigcntxp;
410	} */ *uap;
411{
412	ucontext_t uc;
413	struct proc *p = td->td_proc;
414	struct trapframe *regs;
415	const ucontext_t *ucp;
416	long rflags;
417	int cs, error, ret;
418	ksiginfo_t ksi;
419
420	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
421	if (error != 0) {
422		printf("sigreturn (pid %d): copyin failed\n", p->p_pid);
423		return (error);
424	}
425	ucp = &uc;
426	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
427		printf("sigreturn (pid %d): mc_flags %x\n", p->p_pid,
428		    ucp->uc_mcontext.mc_flags);
429		return (EINVAL);
430	}
431	regs = td->td_frame;
432	rflags = ucp->uc_mcontext.mc_rflags;
433	/*
434	 * Don't allow users to change privileged or reserved flags.
435	 */
436	/*
437	 * XXX do allow users to change the privileged flag PSL_RF.
438	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
439	 * should sometimes set it there too.  tf_rflags is kept in
440	 * the signal context during signal handling and there is no
441	 * other place to remember it, so the PSL_RF bit may be
442	 * corrupted by the signal handler without us knowing.
443	 * Corruption of the PSL_RF bit at worst causes one more or
444	 * one less debugger trap, so allowing it is fairly harmless.
445	 */
446	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
447		printf("sigreturn (pid %d): rflags = 0x%lx\n", p->p_pid,
448		    rflags);
449		return (EINVAL);
450	}
451
452	/*
453	 * Don't allow users to load a valid privileged %cs.  Let the
454	 * hardware check for invalid selectors, excess privilege in
455	 * other selectors, invalid %eip's and invalid %esp's.
456	 */
457	cs = ucp->uc_mcontext.mc_cs;
458	if (!CS_SECURE(cs)) {
459		printf("sigreturn (pid %d): cs = 0x%x\n", p->p_pid, cs);
460		ksiginfo_init_trap(&ksi);
461		ksi.ksi_signo = SIGBUS;
462		ksi.ksi_code = BUS_OBJERR;
463		ksi.ksi_trapno = T_PROTFLT;
464		ksi.ksi_addr = (void *)regs->tf_rip;
465		trapsignal(td, &ksi);
466		return (EINVAL);
467	}
468
469	ret = set_fpcontext(td, &ucp->uc_mcontext);
470	if (ret != 0) {
471		printf("sigreturn (pid %d): set_fpcontext\n", p->p_pid);
472		return (ret);
473	}
474	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
475	td->td_pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
476	td->td_pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
477
478	PROC_LOCK(p);
479#if defined(COMPAT_43)
480	if (ucp->uc_mcontext.mc_onstack & 1)
481		td->td_sigstk.ss_flags |= SS_ONSTACK;
482	else
483		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
484#endif
485
486	td->td_sigmask = ucp->uc_sigmask;
487	SIG_CANTMASK(td->td_sigmask);
488	signotify(td);
489	PROC_UNLOCK(p);
490	td->td_pcb->pcb_flags |= PCB_FULLCTX;
491	td->td_pcb->pcb_full_iret = 1;
492	return (EJUSTRETURN);
493}
494
495#ifdef COMPAT_FREEBSD4
496int
497freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
498{
499
500	return sigreturn(td, (struct sigreturn_args *)uap);
501}
502#endif
503
504
505/*
506 * Machine dependent boot() routine
507 *
508 * I haven't seen anything to put here yet
509 * Possibly some stuff might be grafted back here from boot()
510 */
511void
512cpu_boot(int howto)
513{
514}
515
516/*
517 * Flush the D-cache for non-DMA I/O so that the I-cache can
518 * be made coherent later.
519 */
520void
521cpu_flush_dcache(void *ptr, size_t len)
522{
523	/* Not applicable */
524}
525
526/* Get current clock frequency for the given cpu id. */
527int
528cpu_est_clockrate(int cpu_id, uint64_t *rate)
529{
530	register_t reg;
531	uint64_t tsc1, tsc2;
532
533	if (pcpu_find(cpu_id) == NULL || rate == NULL)
534		return (EINVAL);
535
536	/* If we're booting, trust the rate calibrated moments ago. */
537	if (cold) {
538		*rate = tsc_freq;
539		return (0);
540	}
541
542#ifdef SMP
543	/* Schedule ourselves on the indicated cpu. */
544	thread_lock(curthread);
545	sched_bind(curthread, cpu_id);
546	thread_unlock(curthread);
547#endif
548
549	/* Calibrate by measuring a short delay. */
550	reg = intr_disable();
551	tsc1 = rdtsc();
552	DELAY(1000);
553	tsc2 = rdtsc();
554	intr_restore(reg);
555
556#ifdef SMP
557	thread_lock(curthread);
558	sched_unbind(curthread);
559	thread_unlock(curthread);
560#endif
561
562	/*
563	 * Calculate the difference in readings, convert to Mhz, and
564	 * subtract 0.5% of the total.  Empirical testing has shown that
565	 * overhead in DELAY() works out to approximately this value.
566	 */
567	tsc2 -= tsc1;
568	*rate = tsc2 * 1000 - tsc2 * 5;
569	return (0);
570}
571
572/*
573 * Shutdown the CPU as much as possible
574 */
575void
576cpu_halt(void)
577{
578	for (;;)
579		__asm__ ("hlt");
580}
581
582void (*cpu_idle_hook)(void) = NULL;	/* ACPI idle hook. */
583
584static void
585cpu_idle_hlt(int busy)
586{
587	/*
588	 * we must absolutely guarentee that hlt is the next instruction
589	 * after sti or we introduce a timing window.
590	 */
591	disable_intr();
592  	if (sched_runnable())
593		enable_intr();
594	else
595		__asm __volatile("sti; hlt");
596}
597
598static void
599cpu_idle_acpi(int busy)
600{
601	disable_intr();
602  	if (sched_runnable())
603		enable_intr();
604	else if (cpu_idle_hook)
605		cpu_idle_hook();
606	else
607		__asm __volatile("sti; hlt");
608}
609
610static int cpu_ident_amdc1e = 0;
611
612static int
613cpu_probe_amdc1e(void)
614{
615	int i;
616
617	/*
618	 * Forget it, if we're not using local APIC timer.
619	 */
620	if (resource_disabled("apic", 0) ||
621	    (resource_int_value("apic", 0, "clock", &i) == 0 && i == 0))
622		return (0);
623
624	/*
625	 * Detect the presence of C1E capability mostly on latest
626	 * dual-cores (or future) k8 family.
627	 */
628	if (cpu_vendor_id == CPU_VENDOR_AMD &&
629	    (cpu_id & 0x00000f00) == 0x00000f00 &&
630	    (cpu_id & 0x0fff0000) >=  0x00040000) {
631		cpu_ident_amdc1e = 1;
632		return (1);
633	}
634
635	return (0);
636}
637
638/*
639 * C1E renders the local APIC timer dead, so we disable it by
640 * reading the Interrupt Pending Message register and clearing
641 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
642 *
643 * Reference:
644 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
645 *   #32559 revision 3.00+
646 */
647#define	MSR_AMDK8_IPM		0xc0010055
648#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
649#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
650#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
651
652static void
653cpu_idle_amdc1e(int busy)
654{
655
656	disable_intr();
657	if (sched_runnable())
658		enable_intr();
659	else {
660		uint64_t msr;
661
662		msr = rdmsr(MSR_AMDK8_IPM);
663		if (msr & AMDK8_CMPHALT)
664			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
665
666		if (cpu_idle_hook)
667			cpu_idle_hook();
668		else
669			__asm __volatile("sti; hlt");
670	}
671}
672
673static void
674cpu_idle_spin(int busy)
675{
676	return;
677}
678
679void (*cpu_idle_fn)(int) = cpu_idle_acpi;
680
681void
682cpu_idle(int busy)
683{
684#ifdef SMP
685	if (mp_grab_cpu_hlt())
686		return;
687#endif
688	cpu_idle_fn(busy);
689}
690
691/*
692 * mwait cpu power states.  Lower 4 bits are sub-states.
693 */
694#define	MWAIT_C0	0xf0
695#define	MWAIT_C1	0x00
696#define	MWAIT_C2	0x10
697#define	MWAIT_C3	0x20
698#define	MWAIT_C4	0x30
699
700#define	MWAIT_DISABLED	0x0
701#define	MWAIT_WOKEN	0x1
702#define	MWAIT_WAITING	0x2
703
704static void
705cpu_idle_mwait(int busy)
706{
707	int *mwait;
708
709	mwait = (int *)PCPU_PTR(monitorbuf);
710	*mwait = MWAIT_WAITING;
711	if (sched_runnable())
712		return;
713	cpu_monitor(mwait, 0, 0);
714	if (*mwait == MWAIT_WAITING)
715		cpu_mwait(0, MWAIT_C1);
716}
717
718static void
719cpu_idle_mwait_hlt(int busy)
720{
721	int *mwait;
722
723	mwait = (int *)PCPU_PTR(monitorbuf);
724	if (busy == 0) {
725		*mwait = MWAIT_DISABLED;
726		cpu_idle_hlt(busy);
727		return;
728	}
729	*mwait = MWAIT_WAITING;
730	if (sched_runnable())
731		return;
732	cpu_monitor(mwait, 0, 0);
733	if (*mwait == MWAIT_WAITING)
734		cpu_mwait(0, MWAIT_C1);
735}
736
737int
738cpu_idle_wakeup(int cpu)
739{
740	struct pcpu *pcpu;
741	int *mwait;
742
743	if (cpu_idle_fn == cpu_idle_spin)
744		return (1);
745	if (cpu_idle_fn != cpu_idle_mwait && cpu_idle_fn != cpu_idle_mwait_hlt)
746		return (0);
747	pcpu = pcpu_find(cpu);
748	mwait = (int *)pcpu->pc_monitorbuf;
749	/*
750	 * This doesn't need to be atomic since missing the race will
751	 * simply result in unnecessary IPIs.
752	 */
753	if (cpu_idle_fn == cpu_idle_mwait_hlt && *mwait == MWAIT_DISABLED)
754		return (0);
755	*mwait = MWAIT_WOKEN;
756
757	return (1);
758}
759
760/*
761 * Ordered by speed/power consumption.
762 */
763struct {
764	void	*id_fn;
765	char	*id_name;
766} idle_tbl[] = {
767	{ cpu_idle_spin, "spin" },
768	{ cpu_idle_mwait, "mwait" },
769	{ cpu_idle_mwait_hlt, "mwait_hlt" },
770	{ cpu_idle_amdc1e, "amdc1e" },
771	{ cpu_idle_hlt, "hlt" },
772	{ cpu_idle_acpi, "acpi" },
773	{ NULL, NULL }
774};
775
776static int
777idle_sysctl_available(SYSCTL_HANDLER_ARGS)
778{
779	char *avail, *p;
780	int error;
781	int i;
782
783	avail = malloc(256, M_TEMP, M_WAITOK);
784	p = avail;
785	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
786		if (strstr(idle_tbl[i].id_name, "mwait") &&
787		    (cpu_feature2 & CPUID2_MON) == 0)
788			continue;
789		if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
790		    cpu_ident_amdc1e == 0)
791			continue;
792		p += sprintf(p, "%s, ", idle_tbl[i].id_name);
793	}
794	error = sysctl_handle_string(oidp, avail, 0, req);
795	free(avail, M_TEMP);
796	return (error);
797}
798
799static int
800idle_sysctl(SYSCTL_HANDLER_ARGS)
801{
802	char buf[16];
803	int error;
804	char *p;
805	int i;
806
807	p = "unknown";
808	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
809		if (idle_tbl[i].id_fn == cpu_idle_fn) {
810			p = idle_tbl[i].id_name;
811			break;
812		}
813	}
814	strncpy(buf, p, sizeof(buf));
815	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
816	if (error != 0 || req->newptr == NULL)
817		return (error);
818	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
819		if (strstr(idle_tbl[i].id_name, "mwait") &&
820		    (cpu_feature2 & CPUID2_MON) == 0)
821			continue;
822		if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
823		    cpu_ident_amdc1e == 0)
824			continue;
825		if (strcmp(idle_tbl[i].id_name, buf))
826			continue;
827		cpu_idle_fn = idle_tbl[i].id_fn;
828		return (0);
829	}
830	return (EINVAL);
831}
832
833SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
834    0, 0, idle_sysctl_available, "A", "list of available idle functions");
835
836SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
837    idle_sysctl, "A", "currently selected idle function");
838
839/*
840 * Reset registers to default values on exec.
841 */
842void
843exec_setregs(td, entry, stack, ps_strings)
844	struct thread *td;
845	u_long entry;
846	u_long stack;
847	u_long ps_strings;
848{
849	struct trapframe *regs = td->td_frame;
850	struct pcb *pcb = td->td_pcb;
851
852	mtx_lock(&dt_lock);
853	if (td->td_proc->p_md.md_ldt != NULL)
854		user_ldt_free(td);
855	else
856		mtx_unlock(&dt_lock);
857
858	pcb->pcb_fsbase = 0;
859	pcb->pcb_gsbase = 0;
860	pcb->pcb_flags &= ~(PCB_32BIT | PCB_GS32BIT);
861	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
862	pcb->pcb_full_iret = 1;
863
864	bzero((char *)regs, sizeof(struct trapframe));
865	regs->tf_rip = entry;
866	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
867	regs->tf_rdi = stack;		/* argv */
868	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
869	regs->tf_ss = _udatasel;
870	regs->tf_cs = _ucodesel;
871	regs->tf_ds = _udatasel;
872	regs->tf_es = _udatasel;
873	regs->tf_fs = _ufssel;
874	regs->tf_gs = _ugssel;
875	regs->tf_flags = TF_HASSEGS;
876
877	/*
878	 * Reset the hardware debug registers if they were in use.
879	 * They won't have any meaning for the newly exec'd process.
880	 */
881	if (pcb->pcb_flags & PCB_DBREGS) {
882		pcb->pcb_dr0 = 0;
883		pcb->pcb_dr1 = 0;
884		pcb->pcb_dr2 = 0;
885		pcb->pcb_dr3 = 0;
886		pcb->pcb_dr6 = 0;
887		pcb->pcb_dr7 = 0;
888		if (pcb == PCPU_GET(curpcb)) {
889			/*
890			 * Clear the debug registers on the running
891			 * CPU, otherwise they will end up affecting
892			 * the next process we switch to.
893			 */
894			reset_dbregs();
895		}
896		pcb->pcb_flags &= ~PCB_DBREGS;
897	}
898
899	/*
900	 * Drop the FP state if we hold it, so that the process gets a
901	 * clean FP state if it uses the FPU again.
902	 */
903	fpstate_drop(td);
904}
905
906void
907cpu_setregs(void)
908{
909	register_t cr0;
910
911	cr0 = rcr0();
912	/*
913	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
914	 * BSP.  See the comments there about why we set them.
915	 */
916	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
917	load_cr0(cr0);
918}
919
920/*
921 * Initialize amd64 and configure to run kernel
922 */
923
924/*
925 * Initialize segments & interrupt table
926 */
927
928struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
929static struct gate_descriptor idt0[NIDT];
930struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
931
932static char dblfault_stack[PAGE_SIZE] __aligned(16);
933
934static char nmi0_stack[PAGE_SIZE] __aligned(16);
935CTASSERT(sizeof(struct nmi_pcpu) == 16);
936
937struct amd64tss common_tss[MAXCPU];
938
939/*
940 * Software prototypes -- in more palatable form.
941 *
942 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
943 * slots as corresponding segments for i386 kernel.
944 */
945struct soft_segment_descriptor gdt_segs[] = {
946/* GNULL_SEL	0 Null Descriptor */
947{	.ssd_base = 0x0,
948	.ssd_limit = 0x0,
949	.ssd_type = 0,
950	.ssd_dpl = 0,
951	.ssd_p = 0,
952	.ssd_long = 0,
953	.ssd_def32 = 0,
954	.ssd_gran = 0		},
955/* GNULL2_SEL	1 Null Descriptor */
956{	.ssd_base = 0x0,
957	.ssd_limit = 0x0,
958	.ssd_type = 0,
959	.ssd_dpl = 0,
960	.ssd_p = 0,
961	.ssd_long = 0,
962	.ssd_def32 = 0,
963	.ssd_gran = 0		},
964/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
965{	.ssd_base = 0x0,
966	.ssd_limit = 0xfffff,
967	.ssd_type = SDT_MEMRWA,
968	.ssd_dpl = SEL_UPL,
969	.ssd_p = 1,
970	.ssd_long = 0,
971	.ssd_def32 = 1,
972	.ssd_gran = 1		},
973/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
974{	.ssd_base = 0x0,
975	.ssd_limit = 0xfffff,
976	.ssd_type = SDT_MEMRWA,
977	.ssd_dpl = SEL_UPL,
978	.ssd_p = 1,
979	.ssd_long = 0,
980	.ssd_def32 = 1,
981	.ssd_gran = 1		},
982/* GCODE_SEL	4 Code Descriptor for kernel */
983{	.ssd_base = 0x0,
984	.ssd_limit = 0xfffff,
985	.ssd_type = SDT_MEMERA,
986	.ssd_dpl = SEL_KPL,
987	.ssd_p = 1,
988	.ssd_long = 1,
989	.ssd_def32 = 0,
990	.ssd_gran = 1		},
991/* GDATA_SEL	5 Data Descriptor for kernel */
992{	.ssd_base = 0x0,
993	.ssd_limit = 0xfffff,
994	.ssd_type = SDT_MEMRWA,
995	.ssd_dpl = SEL_KPL,
996	.ssd_p = 1,
997	.ssd_long = 1,
998	.ssd_def32 = 0,
999	.ssd_gran = 1		},
1000/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1001{	.ssd_base = 0x0,
1002	.ssd_limit = 0xfffff,
1003	.ssd_type = SDT_MEMERA,
1004	.ssd_dpl = SEL_UPL,
1005	.ssd_p = 1,
1006	.ssd_long = 0,
1007	.ssd_def32 = 1,
1008	.ssd_gran = 1		},
1009/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1010{	.ssd_base = 0x0,
1011	.ssd_limit = 0xfffff,
1012	.ssd_type = SDT_MEMRWA,
1013	.ssd_dpl = SEL_UPL,
1014	.ssd_p = 1,
1015	.ssd_long = 0,
1016	.ssd_def32 = 1,
1017	.ssd_gran = 1		},
1018/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1019{	.ssd_base = 0x0,
1020	.ssd_limit = 0xfffff,
1021	.ssd_type = SDT_MEMERA,
1022	.ssd_dpl = SEL_UPL,
1023	.ssd_p = 1,
1024	.ssd_long = 1,
1025	.ssd_def32 = 0,
1026	.ssd_gran = 1		},
1027/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1028{	.ssd_base = 0x0,
1029	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1030	.ssd_type = SDT_SYSTSS,
1031	.ssd_dpl = SEL_KPL,
1032	.ssd_p = 1,
1033	.ssd_long = 0,
1034	.ssd_def32 = 0,
1035	.ssd_gran = 0		},
1036/* Actually, the TSS is a system descriptor which is double size */
1037{	.ssd_base = 0x0,
1038	.ssd_limit = 0x0,
1039	.ssd_type = 0,
1040	.ssd_dpl = 0,
1041	.ssd_p = 0,
1042	.ssd_long = 0,
1043	.ssd_def32 = 0,
1044	.ssd_gran = 0		},
1045/* GUSERLDT_SEL	11 LDT Descriptor */
1046{	.ssd_base = 0x0,
1047	.ssd_limit = 0x0,
1048	.ssd_type = 0,
1049	.ssd_dpl = 0,
1050	.ssd_p = 0,
1051	.ssd_long = 0,
1052	.ssd_def32 = 0,
1053	.ssd_gran = 0		},
1054/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1055{	.ssd_base = 0x0,
1056	.ssd_limit = 0x0,
1057	.ssd_type = 0,
1058	.ssd_dpl = 0,
1059	.ssd_p = 0,
1060	.ssd_long = 0,
1061	.ssd_def32 = 0,
1062	.ssd_gran = 0		},
1063};
1064
1065void
1066setidt(idx, func, typ, dpl, ist)
1067	int idx;
1068	inthand_t *func;
1069	int typ;
1070	int dpl;
1071	int ist;
1072{
1073	struct gate_descriptor *ip;
1074
1075	ip = idt + idx;
1076	ip->gd_looffset = (uintptr_t)func;
1077	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1078	ip->gd_ist = ist;
1079	ip->gd_xx = 0;
1080	ip->gd_type = typ;
1081	ip->gd_dpl = dpl;
1082	ip->gd_p = 1;
1083	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1084}
1085
1086extern inthand_t
1087	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1088	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1089	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1090	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1091	IDTVEC(xmm), IDTVEC(dblfault),
1092	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1093
1094#ifdef DDB
1095/*
1096 * Display the index and function name of any IDT entries that don't use
1097 * the default 'rsvd' entry point.
1098 */
1099DB_SHOW_COMMAND(idt, db_show_idt)
1100{
1101	struct gate_descriptor *ip;
1102	int idx;
1103	uintptr_t func;
1104
1105	ip = idt;
1106	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1107		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1108		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1109			db_printf("%3d\t", idx);
1110			db_printsym(func, DB_STGY_PROC);
1111			db_printf("\n");
1112		}
1113		ip++;
1114	}
1115}
1116#endif
1117
1118void
1119sdtossd(sd, ssd)
1120	struct user_segment_descriptor *sd;
1121	struct soft_segment_descriptor *ssd;
1122{
1123
1124	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1125	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1126	ssd->ssd_type  = sd->sd_type;
1127	ssd->ssd_dpl   = sd->sd_dpl;
1128	ssd->ssd_p     = sd->sd_p;
1129	ssd->ssd_long  = sd->sd_long;
1130	ssd->ssd_def32 = sd->sd_def32;
1131	ssd->ssd_gran  = sd->sd_gran;
1132}
1133
1134void
1135ssdtosd(ssd, sd)
1136	struct soft_segment_descriptor *ssd;
1137	struct user_segment_descriptor *sd;
1138{
1139
1140	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1141	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1142	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1143	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1144	sd->sd_type  = ssd->ssd_type;
1145	sd->sd_dpl   = ssd->ssd_dpl;
1146	sd->sd_p     = ssd->ssd_p;
1147	sd->sd_long  = ssd->ssd_long;
1148	sd->sd_def32 = ssd->ssd_def32;
1149	sd->sd_gran  = ssd->ssd_gran;
1150}
1151
1152void
1153ssdtosyssd(ssd, sd)
1154	struct soft_segment_descriptor *ssd;
1155	struct system_segment_descriptor *sd;
1156{
1157
1158	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1159	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1160	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1161	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1162	sd->sd_type  = ssd->ssd_type;
1163	sd->sd_dpl   = ssd->ssd_dpl;
1164	sd->sd_p     = ssd->ssd_p;
1165	sd->sd_gran  = ssd->ssd_gran;
1166}
1167
1168#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1169#include <isa/isavar.h>
1170#include <isa/isareg.h>
1171/*
1172 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1173 * and is only suitable for use at probe time.
1174 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1175 * It shouldn't be here.  There should probably be an APIC centric
1176 * implementation in the apic driver code, if at all.
1177 */
1178intrmask_t
1179isa_irq_pending(void)
1180{
1181	u_char irr1;
1182	u_char irr2;
1183
1184	irr1 = inb(IO_ICU1);
1185	irr2 = inb(IO_ICU2);
1186	return ((irr2 << 8) | irr1);
1187}
1188#endif
1189
1190u_int basemem;
1191
1192/*
1193 * Populate the (physmap) array with base/bound pairs describing the
1194 * available physical memory in the system, then test this memory and
1195 * build the phys_avail array describing the actually-available memory.
1196 *
1197 * If we cannot accurately determine the physical memory map, then use
1198 * value from the 0xE801 call, and failing that, the RTC.
1199 *
1200 * Total memory size may be set by the kernel environment variable
1201 * hw.physmem or the compile-time define MAXMEM.
1202 *
1203 * XXX first should be vm_paddr_t.
1204 */
1205static void
1206getmemsize(caddr_t kmdp, u_int64_t first)
1207{
1208	int i, off, physmap_idx, pa_indx, da_indx;
1209	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1210	u_long physmem_tunable;
1211	pt_entry_t *pte;
1212	struct bios_smap *smapbase, *smap, *smapend;
1213	u_int32_t smapsize;
1214	quad_t dcons_addr, dcons_size;
1215
1216	bzero(physmap, sizeof(physmap));
1217	basemem = 0;
1218	physmap_idx = 0;
1219
1220	/*
1221	 * get memory map from INT 15:E820, kindly supplied by the loader.
1222	 *
1223	 * subr_module.c says:
1224	 * "Consumer may safely assume that size value precedes data."
1225	 * ie: an int32_t immediately precedes smap.
1226	 */
1227	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1228	    MODINFO_METADATA | MODINFOMD_SMAP);
1229	if (smapbase == NULL)
1230		panic("No BIOS smap info from loader!");
1231
1232	smapsize = *((u_int32_t *)smapbase - 1);
1233	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1234
1235	for (smap = smapbase; smap < smapend; smap++) {
1236		if (boothowto & RB_VERBOSE)
1237			printf("SMAP type=%02x base=%016lx len=%016lx\n",
1238			    smap->type, smap->base, smap->length);
1239
1240		if (smap->type != SMAP_TYPE_MEMORY)
1241			continue;
1242
1243		if (smap->length == 0)
1244			continue;
1245
1246		for (i = 0; i <= physmap_idx; i += 2) {
1247			if (smap->base < physmap[i + 1]) {
1248				if (boothowto & RB_VERBOSE)
1249					printf(
1250	"Overlapping or non-monotonic memory region, ignoring second region\n");
1251				continue;
1252			}
1253		}
1254
1255		if (smap->base == physmap[physmap_idx + 1]) {
1256			physmap[physmap_idx + 1] += smap->length;
1257			continue;
1258		}
1259
1260		physmap_idx += 2;
1261		if (physmap_idx == PHYSMAP_SIZE) {
1262			printf(
1263		"Too many segments in the physical address map, giving up\n");
1264			break;
1265		}
1266		physmap[physmap_idx] = smap->base;
1267		physmap[physmap_idx + 1] = smap->base + smap->length;
1268	}
1269
1270	/*
1271	 * Find the 'base memory' segment for SMP
1272	 */
1273	basemem = 0;
1274	for (i = 0; i <= physmap_idx; i += 2) {
1275		if (physmap[i] == 0x00000000) {
1276			basemem = physmap[i + 1] / 1024;
1277			break;
1278		}
1279	}
1280	if (basemem == 0)
1281		panic("BIOS smap did not include a basemem segment!");
1282
1283#ifdef SMP
1284	/* make hole for AP bootstrap code */
1285	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1286#endif
1287
1288	/*
1289	 * Maxmem isn't the "maximum memory", it's one larger than the
1290	 * highest page of the physical address space.  It should be
1291	 * called something like "Maxphyspage".  We may adjust this
1292	 * based on ``hw.physmem'' and the results of the memory test.
1293	 */
1294	Maxmem = atop(physmap[physmap_idx + 1]);
1295
1296#ifdef MAXMEM
1297	Maxmem = MAXMEM / 4;
1298#endif
1299
1300	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1301		Maxmem = atop(physmem_tunable);
1302
1303	/*
1304	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1305	 * in the system.
1306	 */
1307	if (Maxmem > atop(physmap[physmap_idx + 1]))
1308		Maxmem = atop(physmap[physmap_idx + 1]);
1309
1310	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1311	    (boothowto & RB_VERBOSE))
1312		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1313
1314	/* call pmap initialization to make new kernel address space */
1315	pmap_bootstrap(&first);
1316
1317	/*
1318	 * Size up each available chunk of physical memory.
1319	 */
1320	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1321	pa_indx = 0;
1322	da_indx = 1;
1323	phys_avail[pa_indx++] = physmap[0];
1324	phys_avail[pa_indx] = physmap[0];
1325	dump_avail[da_indx] = physmap[0];
1326	pte = CMAP1;
1327
1328	/*
1329	 * Get dcons buffer address
1330	 */
1331	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1332	    getenv_quad("dcons.size", &dcons_size) == 0)
1333		dcons_addr = 0;
1334
1335	/*
1336	 * physmap is in bytes, so when converting to page boundaries,
1337	 * round up the start address and round down the end address.
1338	 */
1339	for (i = 0; i <= physmap_idx; i += 2) {
1340		vm_paddr_t end;
1341
1342		end = ptoa((vm_paddr_t)Maxmem);
1343		if (physmap[i + 1] < end)
1344			end = trunc_page(physmap[i + 1]);
1345		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1346			int tmp, page_bad, full;
1347			int *ptr = (int *)CADDR1;
1348
1349			full = FALSE;
1350			/*
1351			 * block out kernel memory as not available.
1352			 */
1353			if (pa >= 0x100000 && pa < first)
1354				goto do_dump_avail;
1355
1356			/*
1357			 * block out dcons buffer
1358			 */
1359			if (dcons_addr > 0
1360			    && pa >= trunc_page(dcons_addr)
1361			    && pa < dcons_addr + dcons_size)
1362				goto do_dump_avail;
1363
1364			page_bad = FALSE;
1365
1366			/*
1367			 * map page into kernel: valid, read/write,non-cacheable
1368			 */
1369			*pte = pa | PG_V | PG_RW | PG_N;
1370			invltlb();
1371
1372			tmp = *(int *)ptr;
1373			/*
1374			 * Test for alternating 1's and 0's
1375			 */
1376			*(volatile int *)ptr = 0xaaaaaaaa;
1377			if (*(volatile int *)ptr != 0xaaaaaaaa)
1378				page_bad = TRUE;
1379			/*
1380			 * Test for alternating 0's and 1's
1381			 */
1382			*(volatile int *)ptr = 0x55555555;
1383			if (*(volatile int *)ptr != 0x55555555)
1384				page_bad = TRUE;
1385			/*
1386			 * Test for all 1's
1387			 */
1388			*(volatile int *)ptr = 0xffffffff;
1389			if (*(volatile int *)ptr != 0xffffffff)
1390				page_bad = TRUE;
1391			/*
1392			 * Test for all 0's
1393			 */
1394			*(volatile int *)ptr = 0x0;
1395			if (*(volatile int *)ptr != 0x0)
1396				page_bad = TRUE;
1397			/*
1398			 * Restore original value.
1399			 */
1400			*(int *)ptr = tmp;
1401
1402			/*
1403			 * Adjust array of valid/good pages.
1404			 */
1405			if (page_bad == TRUE)
1406				continue;
1407			/*
1408			 * If this good page is a continuation of the
1409			 * previous set of good pages, then just increase
1410			 * the end pointer. Otherwise start a new chunk.
1411			 * Note that "end" points one higher than end,
1412			 * making the range >= start and < end.
1413			 * If we're also doing a speculative memory
1414			 * test and we at or past the end, bump up Maxmem
1415			 * so that we keep going. The first bad page
1416			 * will terminate the loop.
1417			 */
1418			if (phys_avail[pa_indx] == pa) {
1419				phys_avail[pa_indx] += PAGE_SIZE;
1420			} else {
1421				pa_indx++;
1422				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1423					printf(
1424		"Too many holes in the physical address space, giving up\n");
1425					pa_indx--;
1426					full = TRUE;
1427					goto do_dump_avail;
1428				}
1429				phys_avail[pa_indx++] = pa;	/* start */
1430				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1431			}
1432			physmem++;
1433do_dump_avail:
1434			if (dump_avail[da_indx] == pa) {
1435				dump_avail[da_indx] += PAGE_SIZE;
1436			} else {
1437				da_indx++;
1438				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1439					da_indx--;
1440					goto do_next;
1441				}
1442				dump_avail[da_indx++] = pa; /* start */
1443				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1444			}
1445do_next:
1446			if (full)
1447				break;
1448		}
1449	}
1450	*pte = 0;
1451	invltlb();
1452
1453	/*
1454	 * XXX
1455	 * The last chunk must contain at least one page plus the message
1456	 * buffer to avoid complicating other code (message buffer address
1457	 * calculation, etc.).
1458	 */
1459	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1460	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1461		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1462		phys_avail[pa_indx--] = 0;
1463		phys_avail[pa_indx--] = 0;
1464	}
1465
1466	Maxmem = atop(phys_avail[pa_indx]);
1467
1468	/* Trim off space for the message buffer. */
1469	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1470
1471	/* Map the message buffer. */
1472	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1473		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
1474		    off);
1475}
1476
1477u_int64_t
1478hammer_time(u_int64_t modulep, u_int64_t physfree)
1479{
1480	caddr_t kmdp;
1481	int gsel_tss, x;
1482	struct pcpu *pc;
1483	struct nmi_pcpu *np;
1484	u_int64_t msr;
1485	char *env;
1486
1487	thread0.td_kstack = physfree + KERNBASE;
1488	bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
1489	physfree += KSTACK_PAGES * PAGE_SIZE;
1490	thread0.td_pcb = (struct pcb *)
1491	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1492
1493	/*
1494 	 * This may be done better later if it gets more high level
1495 	 * components in it. If so just link td->td_proc here.
1496	 */
1497	proc_linkup0(&proc0, &thread0);
1498
1499	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1500	preload_bootstrap_relocate(KERNBASE);
1501	kmdp = preload_search_by_type("elf kernel");
1502	if (kmdp == NULL)
1503		kmdp = preload_search_by_type("elf64 kernel");
1504	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1505	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1506#ifdef DDB
1507	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1508	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1509#endif
1510
1511	/* Init basic tunables, hz etc */
1512	init_param1();
1513
1514	/*
1515	 * make gdt memory segments
1516	 */
1517	for (x = 0; x < NGDT; x++) {
1518		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1519		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1520			ssdtosd(&gdt_segs[x], &gdt[x]);
1521	}
1522	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1523	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1524	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1525
1526	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1527	r_gdt.rd_base =  (long) gdt;
1528	lgdt(&r_gdt);
1529	pc = &__pcpu[0];
1530
1531	wrmsr(MSR_FSBASE, 0);		/* User value */
1532	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1533	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1534
1535	pcpu_init(pc, 0, sizeof(struct pcpu));
1536	dpcpu_init((void *)(physfree + KERNBASE), 0);
1537	physfree += DPCPU_SIZE;
1538	PCPU_SET(prvspace, pc);
1539	PCPU_SET(curthread, &thread0);
1540	PCPU_SET(curpcb, thread0.td_pcb);
1541	PCPU_SET(tssp, &common_tss[0]);
1542	PCPU_SET(commontssp, &common_tss[0]);
1543	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1544	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1545	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1546	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1547
1548	/*
1549	 * Initialize mutexes.
1550	 *
1551	 * icu_lock: in order to allow an interrupt to occur in a critical
1552	 * 	     section, to set pcpu->ipending (etc...) properly, we
1553	 *	     must be able to get the icu lock, so it can't be
1554	 *	     under witness.
1555	 */
1556	mutex_init();
1557	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1558	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1559
1560	/* exceptions */
1561	for (x = 0; x < NIDT; x++)
1562		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1563	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1564	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1565	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1566 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1567	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1568	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1569	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1570	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1571	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1572	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1573	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1574	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1575	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1576	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1577	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1578	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1579	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1580	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1581	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1582
1583	r_idt.rd_limit = sizeof(idt0) - 1;
1584	r_idt.rd_base = (long) idt;
1585	lidt(&r_idt);
1586
1587	/*
1588	 * Initialize the i8254 before the console so that console
1589	 * initialization can use DELAY().
1590	 */
1591	i8254_init();
1592
1593	/*
1594	 * Initialize the console before we print anything out.
1595	 */
1596	cninit();
1597
1598#ifdef DEV_ISA
1599#ifdef DEV_ATPIC
1600	elcr_probe();
1601	atpic_startup();
1602#else
1603	/* Reset and mask the atpics and leave them shut down. */
1604	atpic_reset();
1605
1606	/*
1607	 * Point the ICU spurious interrupt vectors at the APIC spurious
1608	 * interrupt handler.
1609	 */
1610	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1611	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1612#endif
1613#else
1614#error "have you forgotten the isa device?";
1615#endif
1616
1617	kdb_init();
1618
1619#ifdef KDB
1620	if (boothowto & RB_KDB)
1621		kdb_enter(KDB_WHY_BOOTFLAGS,
1622		    "Boot flags requested debugger");
1623#endif
1624
1625	identify_cpu();		/* Final stage of CPU initialization */
1626	initializecpu();	/* Initialize CPU registers */
1627
1628	/* make an initial tss so cpu can get interrupt stack on syscall! */
1629	common_tss[0].tss_rsp0 = thread0.td_kstack + \
1630	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1631	/* Ensure the stack is aligned to 16 bytes */
1632	common_tss[0].tss_rsp0 &= ~0xFul;
1633	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1634
1635	/* doublefault stack space, runs on ist1 */
1636	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1637
1638	/*
1639	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1640	 * above the start of the ist2 stack.
1641	 */
1642	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1643	np->np_pcpu = (register_t) pc;
1644	common_tss[0].tss_ist2 = (long) np;
1645
1646	/* Set the IO permission bitmap (empty due to tss seg limit) */
1647	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1648	    IOPAGES * PAGE_SIZE;
1649
1650	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1651	ltr(gsel_tss);
1652
1653	/* Set up the fast syscall stuff */
1654	msr = rdmsr(MSR_EFER) | EFER_SCE;
1655	wrmsr(MSR_EFER, msr);
1656	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1657	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1658	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1659	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1660	wrmsr(MSR_STAR, msr);
1661	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1662
1663	getmemsize(kmdp, physfree);
1664	init_param2(physmem);
1665
1666	/* now running on new page tables, configured,and u/iom is accessible */
1667
1668	msgbufinit(msgbufp, MSGBUF_SIZE);
1669	fpuinit();
1670
1671	/* transfer to user mode */
1672
1673	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1674	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1675	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1676	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1677	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1678
1679	load_ds(_udatasel);
1680	load_es(_udatasel);
1681	load_fs(_ufssel);
1682
1683	/* setup proc 0's pcb */
1684	thread0.td_pcb->pcb_flags = 0;
1685	thread0.td_pcb->pcb_cr3 = KPML4phys;
1686	thread0.td_frame = &proc0_tf;
1687
1688        env = getenv("kernelname");
1689	if (env != NULL)
1690		strlcpy(kernelname, env, sizeof(kernelname));
1691
1692#ifdef XENHVM
1693	if (inw(0x10) == 0x49d2) {
1694		if (bootverbose)
1695			printf("Xen detected: disabling emulated block and network devices\n");
1696		outw(0x10, 3);
1697	}
1698#endif
1699
1700	if (cpu_probe_amdc1e())
1701		cpu_idle_fn = cpu_idle_amdc1e;
1702
1703	/* Location of kernel stack for locore */
1704	return ((u_int64_t)thread0.td_pcb);
1705}
1706
1707void
1708cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1709{
1710
1711	pcpu->pc_acpi_id = 0xffffffff;
1712}
1713
1714void
1715spinlock_enter(void)
1716{
1717	struct thread *td;
1718
1719	td = curthread;
1720	if (td->td_md.md_spinlock_count == 0)
1721		td->td_md.md_saved_flags = intr_disable();
1722	td->td_md.md_spinlock_count++;
1723	critical_enter();
1724}
1725
1726void
1727spinlock_exit(void)
1728{
1729	struct thread *td;
1730
1731	td = curthread;
1732	critical_exit();
1733	td->td_md.md_spinlock_count--;
1734	if (td->td_md.md_spinlock_count == 0)
1735		intr_restore(td->td_md.md_saved_flags);
1736}
1737
1738/*
1739 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1740 * we want to start a backtrace from the function that caused us to enter
1741 * the debugger. We have the context in the trapframe, but base the trace
1742 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1743 * enough for a backtrace.
1744 */
1745void
1746makectx(struct trapframe *tf, struct pcb *pcb)
1747{
1748
1749	pcb->pcb_r12 = tf->tf_r12;
1750	pcb->pcb_r13 = tf->tf_r13;
1751	pcb->pcb_r14 = tf->tf_r14;
1752	pcb->pcb_r15 = tf->tf_r15;
1753	pcb->pcb_rbp = tf->tf_rbp;
1754	pcb->pcb_rbx = tf->tf_rbx;
1755	pcb->pcb_rip = tf->tf_rip;
1756	pcb->pcb_rsp = (ISPL(tf->tf_cs)) ? tf->tf_rsp : (long)(tf + 1) - 8;
1757}
1758
1759int
1760ptrace_set_pc(struct thread *td, unsigned long addr)
1761{
1762	td->td_frame->tf_rip = addr;
1763	return (0);
1764}
1765
1766int
1767ptrace_single_step(struct thread *td)
1768{
1769	td->td_frame->tf_rflags |= PSL_T;
1770	return (0);
1771}
1772
1773int
1774ptrace_clear_single_step(struct thread *td)
1775{
1776	td->td_frame->tf_rflags &= ~PSL_T;
1777	return (0);
1778}
1779
1780int
1781fill_regs(struct thread *td, struct reg *regs)
1782{
1783	struct trapframe *tp;
1784
1785	tp = td->td_frame;
1786	regs->r_r15 = tp->tf_r15;
1787	regs->r_r14 = tp->tf_r14;
1788	regs->r_r13 = tp->tf_r13;
1789	regs->r_r12 = tp->tf_r12;
1790	regs->r_r11 = tp->tf_r11;
1791	regs->r_r10 = tp->tf_r10;
1792	regs->r_r9  = tp->tf_r9;
1793	regs->r_r8  = tp->tf_r8;
1794	regs->r_rdi = tp->tf_rdi;
1795	regs->r_rsi = tp->tf_rsi;
1796	regs->r_rbp = tp->tf_rbp;
1797	regs->r_rbx = tp->tf_rbx;
1798	regs->r_rdx = tp->tf_rdx;
1799	regs->r_rcx = tp->tf_rcx;
1800	regs->r_rax = tp->tf_rax;
1801	regs->r_rip = tp->tf_rip;
1802	regs->r_cs = tp->tf_cs;
1803	regs->r_rflags = tp->tf_rflags;
1804	regs->r_rsp = tp->tf_rsp;
1805	regs->r_ss = tp->tf_ss;
1806	if (tp->tf_flags & TF_HASSEGS) {
1807		regs->r_ds = tp->tf_ds;
1808		regs->r_es = tp->tf_es;
1809		regs->r_fs = tp->tf_fs;
1810		regs->r_gs = tp->tf_gs;
1811	} else {
1812		regs->r_ds = 0;
1813		regs->r_es = 0;
1814		regs->r_fs = 0;
1815		regs->r_gs = 0;
1816	}
1817	return (0);
1818}
1819
1820int
1821set_regs(struct thread *td, struct reg *regs)
1822{
1823	struct trapframe *tp;
1824	register_t rflags;
1825
1826	tp = td->td_frame;
1827	rflags = regs->r_rflags & 0xffffffff;
1828	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1829		return (EINVAL);
1830	tp->tf_r15 = regs->r_r15;
1831	tp->tf_r14 = regs->r_r14;
1832	tp->tf_r13 = regs->r_r13;
1833	tp->tf_r12 = regs->r_r12;
1834	tp->tf_r11 = regs->r_r11;
1835	tp->tf_r10 = regs->r_r10;
1836	tp->tf_r9  = regs->r_r9;
1837	tp->tf_r8  = regs->r_r8;
1838	tp->tf_rdi = regs->r_rdi;
1839	tp->tf_rsi = regs->r_rsi;
1840	tp->tf_rbp = regs->r_rbp;
1841	tp->tf_rbx = regs->r_rbx;
1842	tp->tf_rdx = regs->r_rdx;
1843	tp->tf_rcx = regs->r_rcx;
1844	tp->tf_rax = regs->r_rax;
1845	tp->tf_rip = regs->r_rip;
1846	tp->tf_cs = regs->r_cs;
1847	tp->tf_rflags = rflags;
1848	tp->tf_rsp = regs->r_rsp;
1849	tp->tf_ss = regs->r_ss;
1850	if (0) {	/* XXXKIB */
1851		tp->tf_ds = regs->r_ds;
1852		tp->tf_es = regs->r_es;
1853		tp->tf_fs = regs->r_fs;
1854		tp->tf_gs = regs->r_gs;
1855		tp->tf_flags = TF_HASSEGS;
1856	}
1857	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1858	return (0);
1859}
1860
1861/* XXX check all this stuff! */
1862/* externalize from sv_xmm */
1863static void
1864fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1865{
1866	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1867	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1868	int i;
1869
1870	/* pcb -> fpregs */
1871	bzero(fpregs, sizeof(*fpregs));
1872
1873	/* FPU control/status */
1874	penv_fpreg->en_cw = penv_xmm->en_cw;
1875	penv_fpreg->en_sw = penv_xmm->en_sw;
1876	penv_fpreg->en_tw = penv_xmm->en_tw;
1877	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1878	penv_fpreg->en_rip = penv_xmm->en_rip;
1879	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1880	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1881	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1882
1883	/* FPU registers */
1884	for (i = 0; i < 8; ++i)
1885		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1886
1887	/* SSE registers */
1888	for (i = 0; i < 16; ++i)
1889		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1890}
1891
1892/* internalize from fpregs into sv_xmm */
1893static void
1894set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1895{
1896	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1897	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1898	int i;
1899
1900	/* fpregs -> pcb */
1901	/* FPU control/status */
1902	penv_xmm->en_cw = penv_fpreg->en_cw;
1903	penv_xmm->en_sw = penv_fpreg->en_sw;
1904	penv_xmm->en_tw = penv_fpreg->en_tw;
1905	penv_xmm->en_opcode = penv_fpreg->en_opcode;
1906	penv_xmm->en_rip = penv_fpreg->en_rip;
1907	penv_xmm->en_rdp = penv_fpreg->en_rdp;
1908	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1909	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
1910
1911	/* FPU registers */
1912	for (i = 0; i < 8; ++i)
1913		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1914
1915	/* SSE registers */
1916	for (i = 0; i < 16; ++i)
1917		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1918}
1919
1920/* externalize from td->pcb */
1921int
1922fill_fpregs(struct thread *td, struct fpreg *fpregs)
1923{
1924
1925	fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
1926	return (0);
1927}
1928
1929/* internalize to td->pcb */
1930int
1931set_fpregs(struct thread *td, struct fpreg *fpregs)
1932{
1933
1934	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
1935	return (0);
1936}
1937
1938/*
1939 * Get machine context.
1940 */
1941int
1942get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
1943{
1944	struct trapframe *tp;
1945
1946	tp = td->td_frame;
1947	PROC_LOCK(curthread->td_proc);
1948	mcp->mc_onstack = sigonstack(tp->tf_rsp);
1949	PROC_UNLOCK(curthread->td_proc);
1950	mcp->mc_r15 = tp->tf_r15;
1951	mcp->mc_r14 = tp->tf_r14;
1952	mcp->mc_r13 = tp->tf_r13;
1953	mcp->mc_r12 = tp->tf_r12;
1954	mcp->mc_r11 = tp->tf_r11;
1955	mcp->mc_r10 = tp->tf_r10;
1956	mcp->mc_r9  = tp->tf_r9;
1957	mcp->mc_r8  = tp->tf_r8;
1958	mcp->mc_rdi = tp->tf_rdi;
1959	mcp->mc_rsi = tp->tf_rsi;
1960	mcp->mc_rbp = tp->tf_rbp;
1961	mcp->mc_rbx = tp->tf_rbx;
1962	mcp->mc_rcx = tp->tf_rcx;
1963	mcp->mc_rflags = tp->tf_rflags;
1964	if (flags & GET_MC_CLEAR_RET) {
1965		mcp->mc_rax = 0;
1966		mcp->mc_rdx = 0;
1967		mcp->mc_rflags &= ~PSL_C;
1968	} else {
1969		mcp->mc_rax = tp->tf_rax;
1970		mcp->mc_rdx = tp->tf_rdx;
1971	}
1972	mcp->mc_rip = tp->tf_rip;
1973	mcp->mc_cs = tp->tf_cs;
1974	mcp->mc_rsp = tp->tf_rsp;
1975	mcp->mc_ss = tp->tf_ss;
1976	mcp->mc_ds = tp->tf_ds;
1977	mcp->mc_es = tp->tf_es;
1978	mcp->mc_fs = tp->tf_fs;
1979	mcp->mc_gs = tp->tf_gs;
1980	mcp->mc_flags = tp->tf_flags;
1981	mcp->mc_len = sizeof(*mcp);
1982	get_fpcontext(td, mcp);
1983	mcp->mc_fsbase = td->td_pcb->pcb_fsbase;
1984	mcp->mc_gsbase = td->td_pcb->pcb_gsbase;
1985	return (0);
1986}
1987
1988/*
1989 * Set machine context.
1990 *
1991 * However, we don't set any but the user modifiable flags, and we won't
1992 * touch the cs selector.
1993 */
1994int
1995set_mcontext(struct thread *td, const mcontext_t *mcp)
1996{
1997	struct trapframe *tp;
1998	long rflags;
1999	int ret;
2000
2001	tp = td->td_frame;
2002	if (mcp->mc_len != sizeof(*mcp) ||
2003	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2004		return (EINVAL);
2005	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2006	    (tp->tf_rflags & ~PSL_USERCHANGE);
2007	ret = set_fpcontext(td, mcp);
2008	if (ret != 0)
2009		return (ret);
2010	tp->tf_r15 = mcp->mc_r15;
2011	tp->tf_r14 = mcp->mc_r14;
2012	tp->tf_r13 = mcp->mc_r13;
2013	tp->tf_r12 = mcp->mc_r12;
2014	tp->tf_r11 = mcp->mc_r11;
2015	tp->tf_r10 = mcp->mc_r10;
2016	tp->tf_r9  = mcp->mc_r9;
2017	tp->tf_r8  = mcp->mc_r8;
2018	tp->tf_rdi = mcp->mc_rdi;
2019	tp->tf_rsi = mcp->mc_rsi;
2020	tp->tf_rbp = mcp->mc_rbp;
2021	tp->tf_rbx = mcp->mc_rbx;
2022	tp->tf_rdx = mcp->mc_rdx;
2023	tp->tf_rcx = mcp->mc_rcx;
2024	tp->tf_rax = mcp->mc_rax;
2025	tp->tf_rip = mcp->mc_rip;
2026	tp->tf_rflags = rflags;
2027	tp->tf_rsp = mcp->mc_rsp;
2028	tp->tf_ss = mcp->mc_ss;
2029	tp->tf_flags = mcp->mc_flags;
2030	if (tp->tf_flags & TF_HASSEGS) {
2031		tp->tf_ds = mcp->mc_ds;
2032		tp->tf_es = mcp->mc_es;
2033		tp->tf_fs = mcp->mc_fs;
2034		tp->tf_gs = mcp->mc_gs;
2035	}
2036	if (mcp->mc_flags & _MC_HASBASES) {
2037		td->td_pcb->pcb_fsbase = mcp->mc_fsbase;
2038		td->td_pcb->pcb_gsbase = mcp->mc_gsbase;
2039	}
2040	td->td_pcb->pcb_flags |= PCB_FULLCTX;
2041	td->td_pcb->pcb_full_iret = 1;
2042	return (0);
2043}
2044
2045static void
2046get_fpcontext(struct thread *td, mcontext_t *mcp)
2047{
2048
2049	mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
2050	mcp->mc_fpformat = fpuformat();
2051}
2052
2053static int
2054set_fpcontext(struct thread *td, const mcontext_t *mcp)
2055{
2056	struct savefpu *fpstate;
2057
2058	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2059		return (0);
2060	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2061		return (EINVAL);
2062	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
2063		/* We don't care what state is left in the FPU or PCB. */
2064		fpstate_drop(td);
2065	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2066	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2067		/*
2068		 * XXX we violate the dubious requirement that fpusetregs()
2069		 * be called with interrupts disabled.
2070		 * XXX obsolete on trap-16 systems?
2071		 */
2072		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2073		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2074		fpusetregs(td, fpstate);
2075	} else
2076		return (EINVAL);
2077	return (0);
2078}
2079
2080void
2081fpstate_drop(struct thread *td)
2082{
2083	register_t s;
2084
2085	s = intr_disable();
2086	if (PCPU_GET(fpcurthread) == td)
2087		fpudrop();
2088	/*
2089	 * XXX force a full drop of the fpu.  The above only drops it if we
2090	 * owned it.
2091	 *
2092	 * XXX I don't much like fpugetregs()'s semantics of doing a full
2093	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2094	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2095	 * sendsig() is the only caller of fpugetregs()... perhaps we just
2096	 * have too many layers.
2097	 */
2098	curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
2099	intr_restore(s);
2100}
2101
2102int
2103fill_dbregs(struct thread *td, struct dbreg *dbregs)
2104{
2105	struct pcb *pcb;
2106
2107	if (td == NULL) {
2108		dbregs->dr[0] = rdr0();
2109		dbregs->dr[1] = rdr1();
2110		dbregs->dr[2] = rdr2();
2111		dbregs->dr[3] = rdr3();
2112		dbregs->dr[6] = rdr6();
2113		dbregs->dr[7] = rdr7();
2114	} else {
2115		pcb = td->td_pcb;
2116		dbregs->dr[0] = pcb->pcb_dr0;
2117		dbregs->dr[1] = pcb->pcb_dr1;
2118		dbregs->dr[2] = pcb->pcb_dr2;
2119		dbregs->dr[3] = pcb->pcb_dr3;
2120		dbregs->dr[6] = pcb->pcb_dr6;
2121		dbregs->dr[7] = pcb->pcb_dr7;
2122	}
2123	dbregs->dr[4] = 0;
2124	dbregs->dr[5] = 0;
2125	dbregs->dr[8] = 0;
2126	dbregs->dr[9] = 0;
2127	dbregs->dr[10] = 0;
2128	dbregs->dr[11] = 0;
2129	dbregs->dr[12] = 0;
2130	dbregs->dr[13] = 0;
2131	dbregs->dr[14] = 0;
2132	dbregs->dr[15] = 0;
2133	return (0);
2134}
2135
2136int
2137set_dbregs(struct thread *td, struct dbreg *dbregs)
2138{
2139	struct pcb *pcb;
2140	int i;
2141
2142	if (td == NULL) {
2143		load_dr0(dbregs->dr[0]);
2144		load_dr1(dbregs->dr[1]);
2145		load_dr2(dbregs->dr[2]);
2146		load_dr3(dbregs->dr[3]);
2147		load_dr6(dbregs->dr[6]);
2148		load_dr7(dbregs->dr[7]);
2149	} else {
2150		/*
2151		 * Don't let an illegal value for dr7 get set.  Specifically,
2152		 * check for undefined settings.  Setting these bit patterns
2153		 * result in undefined behaviour and can lead to an unexpected
2154		 * TRCTRAP or a general protection fault right here.
2155		 * Upper bits of dr6 and dr7 must not be set
2156		 */
2157		for (i = 0; i < 4; i++) {
2158			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2159				return (EINVAL);
2160			if (td->td_frame->tf_cs == _ucode32sel &&
2161			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2162				return (EINVAL);
2163		}
2164		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2165		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2166			return (EINVAL);
2167
2168		pcb = td->td_pcb;
2169
2170		/*
2171		 * Don't let a process set a breakpoint that is not within the
2172		 * process's address space.  If a process could do this, it
2173		 * could halt the system by setting a breakpoint in the kernel
2174		 * (if ddb was enabled).  Thus, we need to check to make sure
2175		 * that no breakpoints are being enabled for addresses outside
2176		 * process's address space.
2177		 *
2178		 * XXX - what about when the watched area of the user's
2179		 * address space is written into from within the kernel
2180		 * ... wouldn't that still cause a breakpoint to be generated
2181		 * from within kernel mode?
2182		 */
2183
2184		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2185			/* dr0 is enabled */
2186			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2187				return (EINVAL);
2188		}
2189		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2190			/* dr1 is enabled */
2191			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2192				return (EINVAL);
2193		}
2194		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2195			/* dr2 is enabled */
2196			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2197				return (EINVAL);
2198		}
2199		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2200			/* dr3 is enabled */
2201			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2202				return (EINVAL);
2203		}
2204
2205		pcb->pcb_dr0 = dbregs->dr[0];
2206		pcb->pcb_dr1 = dbregs->dr[1];
2207		pcb->pcb_dr2 = dbregs->dr[2];
2208		pcb->pcb_dr3 = dbregs->dr[3];
2209		pcb->pcb_dr6 = dbregs->dr[6];
2210		pcb->pcb_dr7 = dbregs->dr[7];
2211
2212		pcb->pcb_flags |= PCB_DBREGS;
2213	}
2214
2215	return (0);
2216}
2217
2218void
2219reset_dbregs(void)
2220{
2221
2222	load_dr7(0);	/* Turn off the control bits first */
2223	load_dr0(0);
2224	load_dr1(0);
2225	load_dr2(0);
2226	load_dr3(0);
2227	load_dr6(0);
2228}
2229
2230/*
2231 * Return > 0 if a hardware breakpoint has been hit, and the
2232 * breakpoint was in user space.  Return 0, otherwise.
2233 */
2234int
2235user_dbreg_trap(void)
2236{
2237        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2238        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2239        int nbp;            /* number of breakpoints that triggered */
2240        caddr_t addr[4];    /* breakpoint addresses */
2241        int i;
2242
2243        dr7 = rdr7();
2244        if ((dr7 & 0x000000ff) == 0) {
2245                /*
2246                 * all GE and LE bits in the dr7 register are zero,
2247                 * thus the trap couldn't have been caused by the
2248                 * hardware debug registers
2249                 */
2250                return 0;
2251        }
2252
2253        nbp = 0;
2254        dr6 = rdr6();
2255        bp = dr6 & 0x0000000f;
2256
2257        if (!bp) {
2258                /*
2259                 * None of the breakpoint bits are set meaning this
2260                 * trap was not caused by any of the debug registers
2261                 */
2262                return 0;
2263        }
2264
2265        /*
2266         * at least one of the breakpoints were hit, check to see
2267         * which ones and if any of them are user space addresses
2268         */
2269
2270        if (bp & 0x01) {
2271                addr[nbp++] = (caddr_t)rdr0();
2272        }
2273        if (bp & 0x02) {
2274                addr[nbp++] = (caddr_t)rdr1();
2275        }
2276        if (bp & 0x04) {
2277                addr[nbp++] = (caddr_t)rdr2();
2278        }
2279        if (bp & 0x08) {
2280                addr[nbp++] = (caddr_t)rdr3();
2281        }
2282
2283        for (i = 0; i < nbp; i++) {
2284                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2285                        /*
2286                         * addr[i] is in user space
2287                         */
2288                        return nbp;
2289                }
2290        }
2291
2292        /*
2293         * None of the breakpoints are in user space.
2294         */
2295        return 0;
2296}
2297
2298#ifdef KDB
2299
2300/*
2301 * Provide inb() and outb() as functions.  They are normally only available as
2302 * inline functions, thus cannot be called from the debugger.
2303 */
2304
2305/* silence compiler warnings */
2306u_char inb_(u_short);
2307void outb_(u_short, u_char);
2308
2309u_char
2310inb_(u_short port)
2311{
2312	return inb(port);
2313}
2314
2315void
2316outb_(u_short port, u_char data)
2317{
2318	outb(port, data);
2319}
2320
2321#endif /* KDB */
2322