machdep.c revision 195907
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 195907 2009-07-27 13:51:55Z rpaulo $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_msgbuf.h"
55#include "opt_perfmon.h"
56#include "opt_sched.h"
57
58#include <sys/param.h>
59#include <sys/proc.h>
60#include <sys/systm.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/bus.h>
64#include <sys/callout.h>
65#include <sys/cons.h>
66#include <sys/cpu.h>
67#include <sys/eventhandler.h>
68#include <sys/exec.h>
69#include <sys/imgact.h>
70#include <sys/kdb.h>
71#include <sys/kernel.h>
72#include <sys/ktr.h>
73#include <sys/linker.h>
74#include <sys/lock.h>
75#include <sys/malloc.h>
76#include <sys/memrange.h>
77#include <sys/msgbuf.h>
78#include <sys/mutex.h>
79#include <sys/pcpu.h>
80#include <sys/ptrace.h>
81#include <sys/reboot.h>
82#include <sys/sched.h>
83#include <sys/signalvar.h>
84#include <sys/sysctl.h>
85#include <sys/sysent.h>
86#include <sys/sysproto.h>
87#include <sys/ucontext.h>
88#include <sys/vmmeter.h>
89
90#include <vm/vm.h>
91#include <vm/vm_extern.h>
92#include <vm/vm_kern.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_object.h>
96#include <vm/vm_pager.h>
97#include <vm/vm_param.h>
98
99#ifdef DDB
100#ifndef KDB
101#error KDB must be enabled in order for DDB to work!
102#endif
103#include <ddb/ddb.h>
104#include <ddb/db_sym.h>
105#endif
106
107#include <net/netisr.h>
108
109#include <machine/clock.h>
110#include <machine/cpu.h>
111#include <machine/cputypes.h>
112#include <machine/intr_machdep.h>
113#include <machine/mca.h>
114#include <machine/md_var.h>
115#include <machine/metadata.h>
116#include <machine/pc/bios.h>
117#include <machine/pcb.h>
118#include <machine/proc.h>
119#include <machine/reg.h>
120#include <machine/sigframe.h>
121#include <machine/specialreg.h>
122#ifdef PERFMON
123#include <machine/perfmon.h>
124#endif
125#include <machine/tss.h>
126#ifdef SMP
127#include <machine/smp.h>
128#endif
129
130#ifdef DEV_ATPIC
131#include <amd64/isa/icu.h>
132#else
133#include <machine/apicvar.h>
134#endif
135
136#include <isa/isareg.h>
137#include <isa/rtc.h>
138
139/* Sanity check for __curthread() */
140CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
141
142extern u_int64_t hammer_time(u_int64_t, u_int64_t);
143
144extern void printcpuinfo(void);	/* XXX header file */
145extern void identify_cpu(void);
146extern void panicifcpuunsupported(void);
147
148#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
149#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
150
151static void cpu_startup(void *);
152static void get_fpcontext(struct thread *td, mcontext_t *mcp);
153static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
154SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
155
156#ifdef DDB
157extern vm_offset_t ksym_start, ksym_end;
158#endif
159
160/* Intel ICH registers */
161#define ICH_PMBASE	0x400
162#define ICH_SMI_EN	ICH_PMBASE + 0x30
163
164int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
165
166int cold = 1;
167
168long Maxmem = 0;
169long realmem = 0;
170
171/*
172 * The number of PHYSMAP entries must be one less than the number of
173 * PHYSSEG entries because the PHYSMAP entry that spans the largest
174 * physical address that is accessible by ISA DMA is split into two
175 * PHYSSEG entries.
176 */
177#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
178
179vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
180vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
181
182/* must be 2 less so 0 0 can signal end of chunks */
183#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
184#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
185
186struct kva_md_info kmi;
187
188static struct trapframe proc0_tf;
189struct region_descriptor r_gdt, r_idt;
190
191struct pcpu __pcpu[MAXCPU];
192
193struct mtx icu_lock;
194
195struct mem_range_softc mem_range_softc;
196
197struct mtx dt_lock;	/* lock for GDT and LDT */
198
199static void
200cpu_startup(dummy)
201	void *dummy;
202{
203	uintmax_t memsize;
204	char *sysenv;
205
206	/*
207	 * On MacBooks, we need to disallow the legacy USB circuit to
208	 * generate an SMI# because this can cause several problems,
209	 * namely: incorrect CPU frequency detection and failure to
210	 * start the APs.
211	 * We do this by disabling a bit in the SMI_EN (SMI Control and
212	 * Enable register) of the Intel ICH LPC Interface Bridge.
213	 */
214	sysenv = getenv("smbios.system.product");
215	if (sysenv != NULL) {
216		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
217		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
218		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
219		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
220			if (bootverbose)
221				printf("Disabling LEGACY_USB_EN bit on "
222				    "Intel ICH.\n");
223			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
224		}
225		freeenv(sysenv);
226	}
227
228	/*
229	 * Good {morning,afternoon,evening,night}.
230	 */
231	startrtclock();
232	printcpuinfo();
233	panicifcpuunsupported();
234#ifdef PERFMON
235	perfmon_init();
236#endif
237	sysenv = getenv("smbios.memory.enabled");
238	if (sysenv != NULL) {
239		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10);
240		freeenv(sysenv);
241	} else
242		memsize = 0;
243	if (memsize > 0)
244		printf("real memory  = %ju (%ju MB)\n", memsize << 10,
245		    memsize >> 10);
246	else
247		printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
248		    ptoa((uintmax_t)Maxmem) / 1048576);
249	realmem = Maxmem;
250	/*
251	 * Display any holes after the first chunk of extended memory.
252	 */
253	if (bootverbose) {
254		int indx;
255
256		printf("Physical memory chunk(s):\n");
257		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
258			vm_paddr_t size;
259
260			size = phys_avail[indx + 1] - phys_avail[indx];
261			printf(
262			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
263			    (uintmax_t)phys_avail[indx],
264			    (uintmax_t)phys_avail[indx + 1] - 1,
265			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
266		}
267	}
268
269	vm_ksubmap_init(&kmi);
270
271	printf("avail memory = %ju (%ju MB)\n",
272	    ptoa((uintmax_t)cnt.v_free_count),
273	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
274
275	/*
276	 * Set up buffers, so they can be used to read disk labels.
277	 */
278	bufinit();
279	vm_pager_bufferinit();
280
281	cpu_setregs();
282	mca_init();
283}
284
285/*
286 * Send an interrupt to process.
287 *
288 * Stack is set up to allow sigcode stored
289 * at top to call routine, followed by call
290 * to sigreturn routine below.  After sigreturn
291 * resets the signal mask, the stack, and the
292 * frame pointer, it returns to the user
293 * specified pc, psl.
294 */
295void
296sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
297{
298	struct sigframe sf, *sfp;
299	struct proc *p;
300	struct thread *td;
301	struct sigacts *psp;
302	char *sp;
303	struct trapframe *regs;
304	int sig;
305	int oonstack;
306
307	td = curthread;
308	p = td->td_proc;
309	PROC_LOCK_ASSERT(p, MA_OWNED);
310	sig = ksi->ksi_signo;
311	psp = p->p_sigacts;
312	mtx_assert(&psp->ps_mtx, MA_OWNED);
313	regs = td->td_frame;
314	oonstack = sigonstack(regs->tf_rsp);
315
316	/* Save user context. */
317	bzero(&sf, sizeof(sf));
318	sf.sf_uc.uc_sigmask = *mask;
319	sf.sf_uc.uc_stack = td->td_sigstk;
320	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
321	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
322	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
323	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
324	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
325	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
326	fpstate_drop(td);
327	sf.sf_uc.uc_mcontext.mc_fsbase = td->td_pcb->pcb_fsbase;
328	sf.sf_uc.uc_mcontext.mc_gsbase = td->td_pcb->pcb_gsbase;
329
330	/* Allocate space for the signal handler context. */
331	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
332	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
333		sp = td->td_sigstk.ss_sp +
334		    td->td_sigstk.ss_size - sizeof(struct sigframe);
335#if defined(COMPAT_43)
336		td->td_sigstk.ss_flags |= SS_ONSTACK;
337#endif
338	} else
339		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
340	/* Align to 16 bytes. */
341	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
342
343	/* Translate the signal if appropriate. */
344	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
345		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
346
347	/* Build the argument list for the signal handler. */
348	regs->tf_rdi = sig;			/* arg 1 in %rdi */
349	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
350	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
351		/* Signal handler installed with SA_SIGINFO. */
352		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
353		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
354
355		/* Fill in POSIX parts */
356		sf.sf_si = ksi->ksi_info;
357		sf.sf_si.si_signo = sig; /* maybe a translated signal */
358		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
359	} else {
360		/* Old FreeBSD-style arguments. */
361		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
362		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
363		sf.sf_ahu.sf_handler = catcher;
364	}
365	mtx_unlock(&psp->ps_mtx);
366	PROC_UNLOCK(p);
367
368	/*
369	 * Copy the sigframe out to the user's stack.
370	 */
371	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
372#ifdef DEBUG
373		printf("process %ld has trashed its stack\n", (long)p->p_pid);
374#endif
375		PROC_LOCK(p);
376		sigexit(td, SIGILL);
377	}
378
379	regs->tf_rsp = (long)sfp;
380	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
381	regs->tf_rflags &= ~(PSL_T | PSL_D);
382	regs->tf_cs = _ucodesel;
383	regs->tf_ds = _udatasel;
384	regs->tf_es = _udatasel;
385	regs->tf_fs = _ufssel;
386	regs->tf_gs = _ugssel;
387	regs->tf_flags = TF_HASSEGS;
388	td->td_pcb->pcb_full_iret = 1;
389	PROC_LOCK(p);
390	mtx_lock(&psp->ps_mtx);
391}
392
393/*
394 * System call to cleanup state after a signal
395 * has been taken.  Reset signal mask and
396 * stack state from context left by sendsig (above).
397 * Return to previous pc and psl as specified by
398 * context left by sendsig. Check carefully to
399 * make sure that the user has not modified the
400 * state to gain improper privileges.
401 *
402 * MPSAFE
403 */
404int
405sigreturn(td, uap)
406	struct thread *td;
407	struct sigreturn_args /* {
408		const struct __ucontext *sigcntxp;
409	} */ *uap;
410{
411	ucontext_t uc;
412	struct proc *p = td->td_proc;
413	struct trapframe *regs;
414	const ucontext_t *ucp;
415	long rflags;
416	int cs, error, ret;
417	ksiginfo_t ksi;
418
419	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
420	if (error != 0) {
421		printf("sigreturn (pid %d): copyin failed\n", p->p_pid);
422		return (error);
423	}
424	ucp = &uc;
425	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
426		printf("sigreturn (pid %d): mc_flags %x\n", p->p_pid,
427		    ucp->uc_mcontext.mc_flags);
428		return (EINVAL);
429	}
430	regs = td->td_frame;
431	rflags = ucp->uc_mcontext.mc_rflags;
432	/*
433	 * Don't allow users to change privileged or reserved flags.
434	 */
435	/*
436	 * XXX do allow users to change the privileged flag PSL_RF.
437	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
438	 * should sometimes set it there too.  tf_rflags is kept in
439	 * the signal context during signal handling and there is no
440	 * other place to remember it, so the PSL_RF bit may be
441	 * corrupted by the signal handler without us knowing.
442	 * Corruption of the PSL_RF bit at worst causes one more or
443	 * one less debugger trap, so allowing it is fairly harmless.
444	 */
445	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
446		printf("sigreturn (pid %d): rflags = 0x%lx\n", p->p_pid,
447		    rflags);
448		return (EINVAL);
449	}
450
451	/*
452	 * Don't allow users to load a valid privileged %cs.  Let the
453	 * hardware check for invalid selectors, excess privilege in
454	 * other selectors, invalid %eip's and invalid %esp's.
455	 */
456	cs = ucp->uc_mcontext.mc_cs;
457	if (!CS_SECURE(cs)) {
458		printf("sigreturn (pid %d): cs = 0x%x\n", p->p_pid, cs);
459		ksiginfo_init_trap(&ksi);
460		ksi.ksi_signo = SIGBUS;
461		ksi.ksi_code = BUS_OBJERR;
462		ksi.ksi_trapno = T_PROTFLT;
463		ksi.ksi_addr = (void *)regs->tf_rip;
464		trapsignal(td, &ksi);
465		return (EINVAL);
466	}
467
468	ret = set_fpcontext(td, &ucp->uc_mcontext);
469	if (ret != 0) {
470		printf("sigreturn (pid %d): set_fpcontext\n", p->p_pid);
471		return (ret);
472	}
473	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
474	td->td_pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
475	td->td_pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
476
477	PROC_LOCK(p);
478#if defined(COMPAT_43)
479	if (ucp->uc_mcontext.mc_onstack & 1)
480		td->td_sigstk.ss_flags |= SS_ONSTACK;
481	else
482		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
483#endif
484
485	td->td_sigmask = ucp->uc_sigmask;
486	SIG_CANTMASK(td->td_sigmask);
487	signotify(td);
488	PROC_UNLOCK(p);
489	td->td_pcb->pcb_flags |= PCB_FULLCTX;
490	td->td_pcb->pcb_full_iret = 1;
491	return (EJUSTRETURN);
492}
493
494#ifdef COMPAT_FREEBSD4
495int
496freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
497{
498
499	return sigreturn(td, (struct sigreturn_args *)uap);
500}
501#endif
502
503
504/*
505 * Machine dependent boot() routine
506 *
507 * I haven't seen anything to put here yet
508 * Possibly some stuff might be grafted back here from boot()
509 */
510void
511cpu_boot(int howto)
512{
513}
514
515/*
516 * Flush the D-cache for non-DMA I/O so that the I-cache can
517 * be made coherent later.
518 */
519void
520cpu_flush_dcache(void *ptr, size_t len)
521{
522	/* Not applicable */
523}
524
525/* Get current clock frequency for the given cpu id. */
526int
527cpu_est_clockrate(int cpu_id, uint64_t *rate)
528{
529	register_t reg;
530	uint64_t tsc1, tsc2;
531
532	if (pcpu_find(cpu_id) == NULL || rate == NULL)
533		return (EINVAL);
534
535	/* If we're booting, trust the rate calibrated moments ago. */
536	if (cold) {
537		*rate = tsc_freq;
538		return (0);
539	}
540
541#ifdef SMP
542	/* Schedule ourselves on the indicated cpu. */
543	thread_lock(curthread);
544	sched_bind(curthread, cpu_id);
545	thread_unlock(curthread);
546#endif
547
548	/* Calibrate by measuring a short delay. */
549	reg = intr_disable();
550	tsc1 = rdtsc();
551	DELAY(1000);
552	tsc2 = rdtsc();
553	intr_restore(reg);
554
555#ifdef SMP
556	thread_lock(curthread);
557	sched_unbind(curthread);
558	thread_unlock(curthread);
559#endif
560
561	/*
562	 * Calculate the difference in readings, convert to Mhz, and
563	 * subtract 0.5% of the total.  Empirical testing has shown that
564	 * overhead in DELAY() works out to approximately this value.
565	 */
566	tsc2 -= tsc1;
567	*rate = tsc2 * 1000 - tsc2 * 5;
568	return (0);
569}
570
571/*
572 * Shutdown the CPU as much as possible
573 */
574void
575cpu_halt(void)
576{
577	for (;;)
578		__asm__ ("hlt");
579}
580
581void (*cpu_idle_hook)(void) = NULL;	/* ACPI idle hook. */
582
583static void
584cpu_idle_hlt(int busy)
585{
586	/*
587	 * we must absolutely guarentee that hlt is the next instruction
588	 * after sti or we introduce a timing window.
589	 */
590	disable_intr();
591  	if (sched_runnable())
592		enable_intr();
593	else
594		__asm __volatile("sti; hlt");
595}
596
597static void
598cpu_idle_acpi(int busy)
599{
600	disable_intr();
601  	if (sched_runnable())
602		enable_intr();
603	else if (cpu_idle_hook)
604		cpu_idle_hook();
605	else
606		__asm __volatile("sti; hlt");
607}
608
609static int cpu_ident_amdc1e = 0;
610
611static int
612cpu_probe_amdc1e(void)
613{
614	int i;
615
616	/*
617	 * Forget it, if we're not using local APIC timer.
618	 */
619	if (resource_disabled("apic", 0) ||
620	    (resource_int_value("apic", 0, "clock", &i) == 0 && i == 0))
621		return (0);
622
623	/*
624	 * Detect the presence of C1E capability mostly on latest
625	 * dual-cores (or future) k8 family.
626	 */
627	if (cpu_vendor_id == CPU_VENDOR_AMD &&
628	    (cpu_id & 0x00000f00) == 0x00000f00 &&
629	    (cpu_id & 0x0fff0000) >=  0x00040000) {
630		cpu_ident_amdc1e = 1;
631		return (1);
632	}
633
634	return (0);
635}
636
637/*
638 * C1E renders the local APIC timer dead, so we disable it by
639 * reading the Interrupt Pending Message register and clearing
640 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
641 *
642 * Reference:
643 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
644 *   #32559 revision 3.00+
645 */
646#define	MSR_AMDK8_IPM		0xc0010055
647#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
648#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
649#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
650
651static void
652cpu_idle_amdc1e(int busy)
653{
654
655	disable_intr();
656	if (sched_runnable())
657		enable_intr();
658	else {
659		uint64_t msr;
660
661		msr = rdmsr(MSR_AMDK8_IPM);
662		if (msr & AMDK8_CMPHALT)
663			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
664
665		if (cpu_idle_hook)
666			cpu_idle_hook();
667		else
668			__asm __volatile("sti; hlt");
669	}
670}
671
672static void
673cpu_idle_spin(int busy)
674{
675	return;
676}
677
678void (*cpu_idle_fn)(int) = cpu_idle_acpi;
679
680void
681cpu_idle(int busy)
682{
683#ifdef SMP
684	if (mp_grab_cpu_hlt())
685		return;
686#endif
687	cpu_idle_fn(busy);
688}
689
690/*
691 * mwait cpu power states.  Lower 4 bits are sub-states.
692 */
693#define	MWAIT_C0	0xf0
694#define	MWAIT_C1	0x00
695#define	MWAIT_C2	0x10
696#define	MWAIT_C3	0x20
697#define	MWAIT_C4	0x30
698
699#define	MWAIT_DISABLED	0x0
700#define	MWAIT_WOKEN	0x1
701#define	MWAIT_WAITING	0x2
702
703static void
704cpu_idle_mwait(int busy)
705{
706	int *mwait;
707
708	mwait = (int *)PCPU_PTR(monitorbuf);
709	*mwait = MWAIT_WAITING;
710	if (sched_runnable())
711		return;
712	cpu_monitor(mwait, 0, 0);
713	if (*mwait == MWAIT_WAITING)
714		cpu_mwait(0, MWAIT_C1);
715}
716
717static void
718cpu_idle_mwait_hlt(int busy)
719{
720	int *mwait;
721
722	mwait = (int *)PCPU_PTR(monitorbuf);
723	if (busy == 0) {
724		*mwait = MWAIT_DISABLED;
725		cpu_idle_hlt(busy);
726		return;
727	}
728	*mwait = MWAIT_WAITING;
729	if (sched_runnable())
730		return;
731	cpu_monitor(mwait, 0, 0);
732	if (*mwait == MWAIT_WAITING)
733		cpu_mwait(0, MWAIT_C1);
734}
735
736int
737cpu_idle_wakeup(int cpu)
738{
739	struct pcpu *pcpu;
740	int *mwait;
741
742	if (cpu_idle_fn == cpu_idle_spin)
743		return (1);
744	if (cpu_idle_fn != cpu_idle_mwait && cpu_idle_fn != cpu_idle_mwait_hlt)
745		return (0);
746	pcpu = pcpu_find(cpu);
747	mwait = (int *)pcpu->pc_monitorbuf;
748	/*
749	 * This doesn't need to be atomic since missing the race will
750	 * simply result in unnecessary IPIs.
751	 */
752	if (cpu_idle_fn == cpu_idle_mwait_hlt && *mwait == MWAIT_DISABLED)
753		return (0);
754	*mwait = MWAIT_WOKEN;
755
756	return (1);
757}
758
759/*
760 * Ordered by speed/power consumption.
761 */
762struct {
763	void	*id_fn;
764	char	*id_name;
765} idle_tbl[] = {
766	{ cpu_idle_spin, "spin" },
767	{ cpu_idle_mwait, "mwait" },
768	{ cpu_idle_mwait_hlt, "mwait_hlt" },
769	{ cpu_idle_amdc1e, "amdc1e" },
770	{ cpu_idle_hlt, "hlt" },
771	{ cpu_idle_acpi, "acpi" },
772	{ NULL, NULL }
773};
774
775static int
776idle_sysctl_available(SYSCTL_HANDLER_ARGS)
777{
778	char *avail, *p;
779	int error;
780	int i;
781
782	avail = malloc(256, M_TEMP, M_WAITOK);
783	p = avail;
784	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
785		if (strstr(idle_tbl[i].id_name, "mwait") &&
786		    (cpu_feature2 & CPUID2_MON) == 0)
787			continue;
788		if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
789		    cpu_ident_amdc1e == 0)
790			continue;
791		p += sprintf(p, "%s, ", idle_tbl[i].id_name);
792	}
793	error = sysctl_handle_string(oidp, avail, 0, req);
794	free(avail, M_TEMP);
795	return (error);
796}
797
798static int
799idle_sysctl(SYSCTL_HANDLER_ARGS)
800{
801	char buf[16];
802	int error;
803	char *p;
804	int i;
805
806	p = "unknown";
807	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
808		if (idle_tbl[i].id_fn == cpu_idle_fn) {
809			p = idle_tbl[i].id_name;
810			break;
811		}
812	}
813	strncpy(buf, p, sizeof(buf));
814	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
815	if (error != 0 || req->newptr == NULL)
816		return (error);
817	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
818		if (strstr(idle_tbl[i].id_name, "mwait") &&
819		    (cpu_feature2 & CPUID2_MON) == 0)
820			continue;
821		if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
822		    cpu_ident_amdc1e == 0)
823			continue;
824		if (strcmp(idle_tbl[i].id_name, buf))
825			continue;
826		cpu_idle_fn = idle_tbl[i].id_fn;
827		return (0);
828	}
829	return (EINVAL);
830}
831
832SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
833    0, 0, idle_sysctl_available, "A", "list of available idle functions");
834
835SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
836    idle_sysctl, "A", "currently selected idle function");
837
838/*
839 * Reset registers to default values on exec.
840 */
841void
842exec_setregs(td, entry, stack, ps_strings)
843	struct thread *td;
844	u_long entry;
845	u_long stack;
846	u_long ps_strings;
847{
848	struct trapframe *regs = td->td_frame;
849	struct pcb *pcb = td->td_pcb;
850
851	mtx_lock(&dt_lock);
852	if (td->td_proc->p_md.md_ldt != NULL)
853		user_ldt_free(td);
854	else
855		mtx_unlock(&dt_lock);
856
857	pcb->pcb_fsbase = 0;
858	pcb->pcb_gsbase = 0;
859	pcb->pcb_flags &= ~(PCB_32BIT | PCB_GS32BIT);
860	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
861	pcb->pcb_full_iret = 1;
862
863	bzero((char *)regs, sizeof(struct trapframe));
864	regs->tf_rip = entry;
865	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
866	regs->tf_rdi = stack;		/* argv */
867	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
868	regs->tf_ss = _udatasel;
869	regs->tf_cs = _ucodesel;
870	regs->tf_ds = _udatasel;
871	regs->tf_es = _udatasel;
872	regs->tf_fs = _ufssel;
873	regs->tf_gs = _ugssel;
874	regs->tf_flags = TF_HASSEGS;
875
876	/*
877	 * Reset the hardware debug registers if they were in use.
878	 * They won't have any meaning for the newly exec'd process.
879	 */
880	if (pcb->pcb_flags & PCB_DBREGS) {
881		pcb->pcb_dr0 = 0;
882		pcb->pcb_dr1 = 0;
883		pcb->pcb_dr2 = 0;
884		pcb->pcb_dr3 = 0;
885		pcb->pcb_dr6 = 0;
886		pcb->pcb_dr7 = 0;
887		if (pcb == PCPU_GET(curpcb)) {
888			/*
889			 * Clear the debug registers on the running
890			 * CPU, otherwise they will end up affecting
891			 * the next process we switch to.
892			 */
893			reset_dbregs();
894		}
895		pcb->pcb_flags &= ~PCB_DBREGS;
896	}
897
898	/*
899	 * Drop the FP state if we hold it, so that the process gets a
900	 * clean FP state if it uses the FPU again.
901	 */
902	fpstate_drop(td);
903}
904
905void
906cpu_setregs(void)
907{
908	register_t cr0;
909
910	cr0 = rcr0();
911	/*
912	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
913	 * BSP.  See the comments there about why we set them.
914	 */
915	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
916	load_cr0(cr0);
917}
918
919/*
920 * Initialize amd64 and configure to run kernel
921 */
922
923/*
924 * Initialize segments & interrupt table
925 */
926
927struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
928static struct gate_descriptor idt0[NIDT];
929struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
930
931static char dblfault_stack[PAGE_SIZE] __aligned(16);
932
933static char nmi0_stack[PAGE_SIZE] __aligned(16);
934CTASSERT(sizeof(struct nmi_pcpu) == 16);
935
936struct amd64tss common_tss[MAXCPU];
937
938/*
939 * Software prototypes -- in more palatable form.
940 *
941 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
942 * slots as corresponding segments for i386 kernel.
943 */
944struct soft_segment_descriptor gdt_segs[] = {
945/* GNULL_SEL	0 Null Descriptor */
946{	.ssd_base = 0x0,
947	.ssd_limit = 0x0,
948	.ssd_type = 0,
949	.ssd_dpl = 0,
950	.ssd_p = 0,
951	.ssd_long = 0,
952	.ssd_def32 = 0,
953	.ssd_gran = 0		},
954/* GNULL2_SEL	1 Null Descriptor */
955{	.ssd_base = 0x0,
956	.ssd_limit = 0x0,
957	.ssd_type = 0,
958	.ssd_dpl = 0,
959	.ssd_p = 0,
960	.ssd_long = 0,
961	.ssd_def32 = 0,
962	.ssd_gran = 0		},
963/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
964{	.ssd_base = 0x0,
965	.ssd_limit = 0xfffff,
966	.ssd_type = SDT_MEMRWA,
967	.ssd_dpl = SEL_UPL,
968	.ssd_p = 1,
969	.ssd_long = 0,
970	.ssd_def32 = 1,
971	.ssd_gran = 1		},
972/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
973{	.ssd_base = 0x0,
974	.ssd_limit = 0xfffff,
975	.ssd_type = SDT_MEMRWA,
976	.ssd_dpl = SEL_UPL,
977	.ssd_p = 1,
978	.ssd_long = 0,
979	.ssd_def32 = 1,
980	.ssd_gran = 1		},
981/* GCODE_SEL	4 Code Descriptor for kernel */
982{	.ssd_base = 0x0,
983	.ssd_limit = 0xfffff,
984	.ssd_type = SDT_MEMERA,
985	.ssd_dpl = SEL_KPL,
986	.ssd_p = 1,
987	.ssd_long = 1,
988	.ssd_def32 = 0,
989	.ssd_gran = 1		},
990/* GDATA_SEL	5 Data Descriptor for kernel */
991{	.ssd_base = 0x0,
992	.ssd_limit = 0xfffff,
993	.ssd_type = SDT_MEMRWA,
994	.ssd_dpl = SEL_KPL,
995	.ssd_p = 1,
996	.ssd_long = 1,
997	.ssd_def32 = 0,
998	.ssd_gran = 1		},
999/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1000{	.ssd_base = 0x0,
1001	.ssd_limit = 0xfffff,
1002	.ssd_type = SDT_MEMERA,
1003	.ssd_dpl = SEL_UPL,
1004	.ssd_p = 1,
1005	.ssd_long = 0,
1006	.ssd_def32 = 1,
1007	.ssd_gran = 1		},
1008/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1009{	.ssd_base = 0x0,
1010	.ssd_limit = 0xfffff,
1011	.ssd_type = SDT_MEMRWA,
1012	.ssd_dpl = SEL_UPL,
1013	.ssd_p = 1,
1014	.ssd_long = 0,
1015	.ssd_def32 = 1,
1016	.ssd_gran = 1		},
1017/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1018{	.ssd_base = 0x0,
1019	.ssd_limit = 0xfffff,
1020	.ssd_type = SDT_MEMERA,
1021	.ssd_dpl = SEL_UPL,
1022	.ssd_p = 1,
1023	.ssd_long = 1,
1024	.ssd_def32 = 0,
1025	.ssd_gran = 1		},
1026/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1027{	.ssd_base = 0x0,
1028	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1029	.ssd_type = SDT_SYSTSS,
1030	.ssd_dpl = SEL_KPL,
1031	.ssd_p = 1,
1032	.ssd_long = 0,
1033	.ssd_def32 = 0,
1034	.ssd_gran = 0		},
1035/* Actually, the TSS is a system descriptor which is double size */
1036{	.ssd_base = 0x0,
1037	.ssd_limit = 0x0,
1038	.ssd_type = 0,
1039	.ssd_dpl = 0,
1040	.ssd_p = 0,
1041	.ssd_long = 0,
1042	.ssd_def32 = 0,
1043	.ssd_gran = 0		},
1044/* GUSERLDT_SEL	11 LDT Descriptor */
1045{	.ssd_base = 0x0,
1046	.ssd_limit = 0x0,
1047	.ssd_type = 0,
1048	.ssd_dpl = 0,
1049	.ssd_p = 0,
1050	.ssd_long = 0,
1051	.ssd_def32 = 0,
1052	.ssd_gran = 0		},
1053/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1054{	.ssd_base = 0x0,
1055	.ssd_limit = 0x0,
1056	.ssd_type = 0,
1057	.ssd_dpl = 0,
1058	.ssd_p = 0,
1059	.ssd_long = 0,
1060	.ssd_def32 = 0,
1061	.ssd_gran = 0		},
1062};
1063
1064void
1065setidt(idx, func, typ, dpl, ist)
1066	int idx;
1067	inthand_t *func;
1068	int typ;
1069	int dpl;
1070	int ist;
1071{
1072	struct gate_descriptor *ip;
1073
1074	ip = idt + idx;
1075	ip->gd_looffset = (uintptr_t)func;
1076	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1077	ip->gd_ist = ist;
1078	ip->gd_xx = 0;
1079	ip->gd_type = typ;
1080	ip->gd_dpl = dpl;
1081	ip->gd_p = 1;
1082	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1083}
1084
1085extern inthand_t
1086	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1087	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1088	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1089	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1090	IDTVEC(xmm), IDTVEC(dblfault),
1091	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1092
1093#ifdef DDB
1094/*
1095 * Display the index and function name of any IDT entries that don't use
1096 * the default 'rsvd' entry point.
1097 */
1098DB_SHOW_COMMAND(idt, db_show_idt)
1099{
1100	struct gate_descriptor *ip;
1101	int idx;
1102	uintptr_t func;
1103
1104	ip = idt;
1105	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1106		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1107		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1108			db_printf("%3d\t", idx);
1109			db_printsym(func, DB_STGY_PROC);
1110			db_printf("\n");
1111		}
1112		ip++;
1113	}
1114}
1115#endif
1116
1117void
1118sdtossd(sd, ssd)
1119	struct user_segment_descriptor *sd;
1120	struct soft_segment_descriptor *ssd;
1121{
1122
1123	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1124	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1125	ssd->ssd_type  = sd->sd_type;
1126	ssd->ssd_dpl   = sd->sd_dpl;
1127	ssd->ssd_p     = sd->sd_p;
1128	ssd->ssd_long  = sd->sd_long;
1129	ssd->ssd_def32 = sd->sd_def32;
1130	ssd->ssd_gran  = sd->sd_gran;
1131}
1132
1133void
1134ssdtosd(ssd, sd)
1135	struct soft_segment_descriptor *ssd;
1136	struct user_segment_descriptor *sd;
1137{
1138
1139	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1140	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1141	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1142	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1143	sd->sd_type  = ssd->ssd_type;
1144	sd->sd_dpl   = ssd->ssd_dpl;
1145	sd->sd_p     = ssd->ssd_p;
1146	sd->sd_long  = ssd->ssd_long;
1147	sd->sd_def32 = ssd->ssd_def32;
1148	sd->sd_gran  = ssd->ssd_gran;
1149}
1150
1151void
1152ssdtosyssd(ssd, sd)
1153	struct soft_segment_descriptor *ssd;
1154	struct system_segment_descriptor *sd;
1155{
1156
1157	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1158	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1159	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1160	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1161	sd->sd_type  = ssd->ssd_type;
1162	sd->sd_dpl   = ssd->ssd_dpl;
1163	sd->sd_p     = ssd->ssd_p;
1164	sd->sd_gran  = ssd->ssd_gran;
1165}
1166
1167#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1168#include <isa/isavar.h>
1169#include <isa/isareg.h>
1170/*
1171 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1172 * and is only suitable for use at probe time.
1173 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1174 * It shouldn't be here.  There should probably be an APIC centric
1175 * implementation in the apic driver code, if at all.
1176 */
1177intrmask_t
1178isa_irq_pending(void)
1179{
1180	u_char irr1;
1181	u_char irr2;
1182
1183	irr1 = inb(IO_ICU1);
1184	irr2 = inb(IO_ICU2);
1185	return ((irr2 << 8) | irr1);
1186}
1187#endif
1188
1189u_int basemem;
1190
1191/*
1192 * Populate the (physmap) array with base/bound pairs describing the
1193 * available physical memory in the system, then test this memory and
1194 * build the phys_avail array describing the actually-available memory.
1195 *
1196 * If we cannot accurately determine the physical memory map, then use
1197 * value from the 0xE801 call, and failing that, the RTC.
1198 *
1199 * Total memory size may be set by the kernel environment variable
1200 * hw.physmem or the compile-time define MAXMEM.
1201 *
1202 * XXX first should be vm_paddr_t.
1203 */
1204static void
1205getmemsize(caddr_t kmdp, u_int64_t first)
1206{
1207	int i, off, physmap_idx, pa_indx, da_indx;
1208	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1209	u_long physmem_tunable;
1210	pt_entry_t *pte;
1211	struct bios_smap *smapbase, *smap, *smapend;
1212	u_int32_t smapsize;
1213	quad_t dcons_addr, dcons_size;
1214
1215	bzero(physmap, sizeof(physmap));
1216	basemem = 0;
1217	physmap_idx = 0;
1218
1219	/*
1220	 * get memory map from INT 15:E820, kindly supplied by the loader.
1221	 *
1222	 * subr_module.c says:
1223	 * "Consumer may safely assume that size value precedes data."
1224	 * ie: an int32_t immediately precedes smap.
1225	 */
1226	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1227	    MODINFO_METADATA | MODINFOMD_SMAP);
1228	if (smapbase == NULL)
1229		panic("No BIOS smap info from loader!");
1230
1231	smapsize = *((u_int32_t *)smapbase - 1);
1232	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1233
1234	for (smap = smapbase; smap < smapend; smap++) {
1235		if (boothowto & RB_VERBOSE)
1236			printf("SMAP type=%02x base=%016lx len=%016lx\n",
1237			    smap->type, smap->base, smap->length);
1238
1239		if (smap->type != SMAP_TYPE_MEMORY)
1240			continue;
1241
1242		if (smap->length == 0)
1243			continue;
1244
1245		for (i = 0; i <= physmap_idx; i += 2) {
1246			if (smap->base < physmap[i + 1]) {
1247				if (boothowto & RB_VERBOSE)
1248					printf(
1249	"Overlapping or non-monotonic memory region, ignoring second region\n");
1250				continue;
1251			}
1252		}
1253
1254		if (smap->base == physmap[physmap_idx + 1]) {
1255			physmap[physmap_idx + 1] += smap->length;
1256			continue;
1257		}
1258
1259		physmap_idx += 2;
1260		if (physmap_idx == PHYSMAP_SIZE) {
1261			printf(
1262		"Too many segments in the physical address map, giving up\n");
1263			break;
1264		}
1265		physmap[physmap_idx] = smap->base;
1266		physmap[physmap_idx + 1] = smap->base + smap->length;
1267	}
1268
1269	/*
1270	 * Find the 'base memory' segment for SMP
1271	 */
1272	basemem = 0;
1273	for (i = 0; i <= physmap_idx; i += 2) {
1274		if (physmap[i] == 0x00000000) {
1275			basemem = physmap[i + 1] / 1024;
1276			break;
1277		}
1278	}
1279	if (basemem == 0)
1280		panic("BIOS smap did not include a basemem segment!");
1281
1282#ifdef SMP
1283	/* make hole for AP bootstrap code */
1284	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1285#endif
1286
1287	/*
1288	 * Maxmem isn't the "maximum memory", it's one larger than the
1289	 * highest page of the physical address space.  It should be
1290	 * called something like "Maxphyspage".  We may adjust this
1291	 * based on ``hw.physmem'' and the results of the memory test.
1292	 */
1293	Maxmem = atop(physmap[physmap_idx + 1]);
1294
1295#ifdef MAXMEM
1296	Maxmem = MAXMEM / 4;
1297#endif
1298
1299	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1300		Maxmem = atop(physmem_tunable);
1301
1302	/*
1303	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1304	 * in the system.
1305	 */
1306	if (Maxmem > atop(physmap[physmap_idx + 1]))
1307		Maxmem = atop(physmap[physmap_idx + 1]);
1308
1309	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1310	    (boothowto & RB_VERBOSE))
1311		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1312
1313	/* call pmap initialization to make new kernel address space */
1314	pmap_bootstrap(&first);
1315
1316	/*
1317	 * Size up each available chunk of physical memory.
1318	 */
1319	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1320	pa_indx = 0;
1321	da_indx = 1;
1322	phys_avail[pa_indx++] = physmap[0];
1323	phys_avail[pa_indx] = physmap[0];
1324	dump_avail[da_indx] = physmap[0];
1325	pte = CMAP1;
1326
1327	/*
1328	 * Get dcons buffer address
1329	 */
1330	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1331	    getenv_quad("dcons.size", &dcons_size) == 0)
1332		dcons_addr = 0;
1333
1334	/*
1335	 * physmap is in bytes, so when converting to page boundaries,
1336	 * round up the start address and round down the end address.
1337	 */
1338	for (i = 0; i <= physmap_idx; i += 2) {
1339		vm_paddr_t end;
1340
1341		end = ptoa((vm_paddr_t)Maxmem);
1342		if (physmap[i + 1] < end)
1343			end = trunc_page(physmap[i + 1]);
1344		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1345			int tmp, page_bad, full;
1346			int *ptr = (int *)CADDR1;
1347
1348			full = FALSE;
1349			/*
1350			 * block out kernel memory as not available.
1351			 */
1352			if (pa >= 0x100000 && pa < first)
1353				goto do_dump_avail;
1354
1355			/*
1356			 * block out dcons buffer
1357			 */
1358			if (dcons_addr > 0
1359			    && pa >= trunc_page(dcons_addr)
1360			    && pa < dcons_addr + dcons_size)
1361				goto do_dump_avail;
1362
1363			page_bad = FALSE;
1364
1365			/*
1366			 * map page into kernel: valid, read/write,non-cacheable
1367			 */
1368			*pte = pa | PG_V | PG_RW | PG_N;
1369			invltlb();
1370
1371			tmp = *(int *)ptr;
1372			/*
1373			 * Test for alternating 1's and 0's
1374			 */
1375			*(volatile int *)ptr = 0xaaaaaaaa;
1376			if (*(volatile int *)ptr != 0xaaaaaaaa)
1377				page_bad = TRUE;
1378			/*
1379			 * Test for alternating 0's and 1's
1380			 */
1381			*(volatile int *)ptr = 0x55555555;
1382			if (*(volatile int *)ptr != 0x55555555)
1383				page_bad = TRUE;
1384			/*
1385			 * Test for all 1's
1386			 */
1387			*(volatile int *)ptr = 0xffffffff;
1388			if (*(volatile int *)ptr != 0xffffffff)
1389				page_bad = TRUE;
1390			/*
1391			 * Test for all 0's
1392			 */
1393			*(volatile int *)ptr = 0x0;
1394			if (*(volatile int *)ptr != 0x0)
1395				page_bad = TRUE;
1396			/*
1397			 * Restore original value.
1398			 */
1399			*(int *)ptr = tmp;
1400
1401			/*
1402			 * Adjust array of valid/good pages.
1403			 */
1404			if (page_bad == TRUE)
1405				continue;
1406			/*
1407			 * If this good page is a continuation of the
1408			 * previous set of good pages, then just increase
1409			 * the end pointer. Otherwise start a new chunk.
1410			 * Note that "end" points one higher than end,
1411			 * making the range >= start and < end.
1412			 * If we're also doing a speculative memory
1413			 * test and we at or past the end, bump up Maxmem
1414			 * so that we keep going. The first bad page
1415			 * will terminate the loop.
1416			 */
1417			if (phys_avail[pa_indx] == pa) {
1418				phys_avail[pa_indx] += PAGE_SIZE;
1419			} else {
1420				pa_indx++;
1421				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1422					printf(
1423		"Too many holes in the physical address space, giving up\n");
1424					pa_indx--;
1425					full = TRUE;
1426					goto do_dump_avail;
1427				}
1428				phys_avail[pa_indx++] = pa;	/* start */
1429				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1430			}
1431			physmem++;
1432do_dump_avail:
1433			if (dump_avail[da_indx] == pa) {
1434				dump_avail[da_indx] += PAGE_SIZE;
1435			} else {
1436				da_indx++;
1437				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1438					da_indx--;
1439					goto do_next;
1440				}
1441				dump_avail[da_indx++] = pa; /* start */
1442				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1443			}
1444do_next:
1445			if (full)
1446				break;
1447		}
1448	}
1449	*pte = 0;
1450	invltlb();
1451
1452	/*
1453	 * XXX
1454	 * The last chunk must contain at least one page plus the message
1455	 * buffer to avoid complicating other code (message buffer address
1456	 * calculation, etc.).
1457	 */
1458	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1459	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1460		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1461		phys_avail[pa_indx--] = 0;
1462		phys_avail[pa_indx--] = 0;
1463	}
1464
1465	Maxmem = atop(phys_avail[pa_indx]);
1466
1467	/* Trim off space for the message buffer. */
1468	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1469
1470	/* Map the message buffer. */
1471	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1472		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
1473		    off);
1474}
1475
1476u_int64_t
1477hammer_time(u_int64_t modulep, u_int64_t physfree)
1478{
1479	caddr_t kmdp;
1480	int gsel_tss, x;
1481	struct pcpu *pc;
1482	struct nmi_pcpu *np;
1483	u_int64_t msr;
1484	char *env;
1485
1486	thread0.td_kstack = physfree + KERNBASE;
1487	bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
1488	physfree += KSTACK_PAGES * PAGE_SIZE;
1489	thread0.td_pcb = (struct pcb *)
1490	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1491
1492	/*
1493 	 * This may be done better later if it gets more high level
1494 	 * components in it. If so just link td->td_proc here.
1495	 */
1496	proc_linkup0(&proc0, &thread0);
1497
1498	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1499	preload_bootstrap_relocate(KERNBASE);
1500	kmdp = preload_search_by_type("elf kernel");
1501	if (kmdp == NULL)
1502		kmdp = preload_search_by_type("elf64 kernel");
1503	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1504	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1505#ifdef DDB
1506	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1507	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1508#endif
1509
1510	/* Init basic tunables, hz etc */
1511	init_param1();
1512
1513	/*
1514	 * make gdt memory segments
1515	 */
1516	for (x = 0; x < NGDT; x++) {
1517		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1518		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1519			ssdtosd(&gdt_segs[x], &gdt[x]);
1520	}
1521	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1522	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1523	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1524
1525	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1526	r_gdt.rd_base =  (long) gdt;
1527	lgdt(&r_gdt);
1528	pc = &__pcpu[0];
1529
1530	wrmsr(MSR_FSBASE, 0);		/* User value */
1531	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1532	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1533
1534	pcpu_init(pc, 0, sizeof(struct pcpu));
1535	dpcpu_init((void *)(physfree + KERNBASE), 0);
1536	physfree += DPCPU_SIZE;
1537	PCPU_SET(prvspace, pc);
1538	PCPU_SET(curthread, &thread0);
1539	PCPU_SET(curpcb, thread0.td_pcb);
1540	PCPU_SET(tssp, &common_tss[0]);
1541	PCPU_SET(commontssp, &common_tss[0]);
1542	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1543	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1544	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1545	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1546
1547	/*
1548	 * Initialize mutexes.
1549	 *
1550	 * icu_lock: in order to allow an interrupt to occur in a critical
1551	 * 	     section, to set pcpu->ipending (etc...) properly, we
1552	 *	     must be able to get the icu lock, so it can't be
1553	 *	     under witness.
1554	 */
1555	mutex_init();
1556	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1557	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1558
1559	/* exceptions */
1560	for (x = 0; x < NIDT; x++)
1561		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1562	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1563	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1564	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1565 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1566	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1567	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1568	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1569	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1570	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1571	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1572	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1573	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1574	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1575	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1576	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1577	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1578	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1579	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1580	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1581
1582	r_idt.rd_limit = sizeof(idt0) - 1;
1583	r_idt.rd_base = (long) idt;
1584	lidt(&r_idt);
1585
1586	/*
1587	 * Initialize the i8254 before the console so that console
1588	 * initialization can use DELAY().
1589	 */
1590	i8254_init();
1591
1592	/*
1593	 * Initialize the console before we print anything out.
1594	 */
1595	cninit();
1596
1597#ifdef DEV_ISA
1598#ifdef DEV_ATPIC
1599	elcr_probe();
1600	atpic_startup();
1601#else
1602	/* Reset and mask the atpics and leave them shut down. */
1603	atpic_reset();
1604
1605	/*
1606	 * Point the ICU spurious interrupt vectors at the APIC spurious
1607	 * interrupt handler.
1608	 */
1609	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1610	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1611#endif
1612#else
1613#error "have you forgotten the isa device?";
1614#endif
1615
1616	kdb_init();
1617
1618#ifdef KDB
1619	if (boothowto & RB_KDB)
1620		kdb_enter(KDB_WHY_BOOTFLAGS,
1621		    "Boot flags requested debugger");
1622#endif
1623
1624	identify_cpu();		/* Final stage of CPU initialization */
1625	initializecpu();	/* Initialize CPU registers */
1626
1627	/* make an initial tss so cpu can get interrupt stack on syscall! */
1628	common_tss[0].tss_rsp0 = thread0.td_kstack + \
1629	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1630	/* Ensure the stack is aligned to 16 bytes */
1631	common_tss[0].tss_rsp0 &= ~0xFul;
1632	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1633
1634	/* doublefault stack space, runs on ist1 */
1635	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1636
1637	/*
1638	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1639	 * above the start of the ist2 stack.
1640	 */
1641	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1642	np->np_pcpu = (register_t) pc;
1643	common_tss[0].tss_ist2 = (long) np;
1644
1645	/* Set the IO permission bitmap (empty due to tss seg limit) */
1646	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1647	    IOPAGES * PAGE_SIZE;
1648
1649	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1650	ltr(gsel_tss);
1651
1652	/* Set up the fast syscall stuff */
1653	msr = rdmsr(MSR_EFER) | EFER_SCE;
1654	wrmsr(MSR_EFER, msr);
1655	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1656	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1657	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1658	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1659	wrmsr(MSR_STAR, msr);
1660	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1661
1662	getmemsize(kmdp, physfree);
1663	init_param2(physmem);
1664
1665	/* now running on new page tables, configured,and u/iom is accessible */
1666
1667	msgbufinit(msgbufp, MSGBUF_SIZE);
1668	fpuinit();
1669
1670	/* transfer to user mode */
1671
1672	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1673	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1674	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1675	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1676	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1677
1678	load_ds(_udatasel);
1679	load_es(_udatasel);
1680	load_fs(_ufssel);
1681
1682	/* setup proc 0's pcb */
1683	thread0.td_pcb->pcb_flags = 0;
1684	thread0.td_pcb->pcb_cr3 = KPML4phys;
1685	thread0.td_frame = &proc0_tf;
1686
1687        env = getenv("kernelname");
1688	if (env != NULL)
1689		strlcpy(kernelname, env, sizeof(kernelname));
1690
1691#ifdef XENHVM
1692	if (inw(0x10) == 0x49d2) {
1693		if (bootverbose)
1694			printf("Xen detected: disabling emulated block and network devices\n");
1695		outw(0x10, 3);
1696	}
1697#endif
1698
1699	if (cpu_probe_amdc1e())
1700		cpu_idle_fn = cpu_idle_amdc1e;
1701
1702	/* Location of kernel stack for locore */
1703	return ((u_int64_t)thread0.td_pcb);
1704}
1705
1706void
1707cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1708{
1709
1710	pcpu->pc_acpi_id = 0xffffffff;
1711}
1712
1713void
1714spinlock_enter(void)
1715{
1716	struct thread *td;
1717
1718	td = curthread;
1719	if (td->td_md.md_spinlock_count == 0)
1720		td->td_md.md_saved_flags = intr_disable();
1721	td->td_md.md_spinlock_count++;
1722	critical_enter();
1723}
1724
1725void
1726spinlock_exit(void)
1727{
1728	struct thread *td;
1729
1730	td = curthread;
1731	critical_exit();
1732	td->td_md.md_spinlock_count--;
1733	if (td->td_md.md_spinlock_count == 0)
1734		intr_restore(td->td_md.md_saved_flags);
1735}
1736
1737/*
1738 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1739 * we want to start a backtrace from the function that caused us to enter
1740 * the debugger. We have the context in the trapframe, but base the trace
1741 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1742 * enough for a backtrace.
1743 */
1744void
1745makectx(struct trapframe *tf, struct pcb *pcb)
1746{
1747
1748	pcb->pcb_r12 = tf->tf_r12;
1749	pcb->pcb_r13 = tf->tf_r13;
1750	pcb->pcb_r14 = tf->tf_r14;
1751	pcb->pcb_r15 = tf->tf_r15;
1752	pcb->pcb_rbp = tf->tf_rbp;
1753	pcb->pcb_rbx = tf->tf_rbx;
1754	pcb->pcb_rip = tf->tf_rip;
1755	pcb->pcb_rsp = (ISPL(tf->tf_cs)) ? tf->tf_rsp : (long)(tf + 1) - 8;
1756}
1757
1758int
1759ptrace_set_pc(struct thread *td, unsigned long addr)
1760{
1761	td->td_frame->tf_rip = addr;
1762	return (0);
1763}
1764
1765int
1766ptrace_single_step(struct thread *td)
1767{
1768	td->td_frame->tf_rflags |= PSL_T;
1769	return (0);
1770}
1771
1772int
1773ptrace_clear_single_step(struct thread *td)
1774{
1775	td->td_frame->tf_rflags &= ~PSL_T;
1776	return (0);
1777}
1778
1779int
1780fill_regs(struct thread *td, struct reg *regs)
1781{
1782	struct trapframe *tp;
1783
1784	tp = td->td_frame;
1785	regs->r_r15 = tp->tf_r15;
1786	regs->r_r14 = tp->tf_r14;
1787	regs->r_r13 = tp->tf_r13;
1788	regs->r_r12 = tp->tf_r12;
1789	regs->r_r11 = tp->tf_r11;
1790	regs->r_r10 = tp->tf_r10;
1791	regs->r_r9  = tp->tf_r9;
1792	regs->r_r8  = tp->tf_r8;
1793	regs->r_rdi = tp->tf_rdi;
1794	regs->r_rsi = tp->tf_rsi;
1795	regs->r_rbp = tp->tf_rbp;
1796	regs->r_rbx = tp->tf_rbx;
1797	regs->r_rdx = tp->tf_rdx;
1798	regs->r_rcx = tp->tf_rcx;
1799	regs->r_rax = tp->tf_rax;
1800	regs->r_rip = tp->tf_rip;
1801	regs->r_cs = tp->tf_cs;
1802	regs->r_rflags = tp->tf_rflags;
1803	regs->r_rsp = tp->tf_rsp;
1804	regs->r_ss = tp->tf_ss;
1805	if (tp->tf_flags & TF_HASSEGS) {
1806		regs->r_ds = tp->tf_ds;
1807		regs->r_es = tp->tf_es;
1808		regs->r_fs = tp->tf_fs;
1809		regs->r_gs = tp->tf_gs;
1810	} else {
1811		regs->r_ds = 0;
1812		regs->r_es = 0;
1813		regs->r_fs = 0;
1814		regs->r_gs = 0;
1815	}
1816	return (0);
1817}
1818
1819int
1820set_regs(struct thread *td, struct reg *regs)
1821{
1822	struct trapframe *tp;
1823	register_t rflags;
1824
1825	tp = td->td_frame;
1826	rflags = regs->r_rflags & 0xffffffff;
1827	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1828		return (EINVAL);
1829	tp->tf_r15 = regs->r_r15;
1830	tp->tf_r14 = regs->r_r14;
1831	tp->tf_r13 = regs->r_r13;
1832	tp->tf_r12 = regs->r_r12;
1833	tp->tf_r11 = regs->r_r11;
1834	tp->tf_r10 = regs->r_r10;
1835	tp->tf_r9  = regs->r_r9;
1836	tp->tf_r8  = regs->r_r8;
1837	tp->tf_rdi = regs->r_rdi;
1838	tp->tf_rsi = regs->r_rsi;
1839	tp->tf_rbp = regs->r_rbp;
1840	tp->tf_rbx = regs->r_rbx;
1841	tp->tf_rdx = regs->r_rdx;
1842	tp->tf_rcx = regs->r_rcx;
1843	tp->tf_rax = regs->r_rax;
1844	tp->tf_rip = regs->r_rip;
1845	tp->tf_cs = regs->r_cs;
1846	tp->tf_rflags = rflags;
1847	tp->tf_rsp = regs->r_rsp;
1848	tp->tf_ss = regs->r_ss;
1849	if (0) {	/* XXXKIB */
1850		tp->tf_ds = regs->r_ds;
1851		tp->tf_es = regs->r_es;
1852		tp->tf_fs = regs->r_fs;
1853		tp->tf_gs = regs->r_gs;
1854		tp->tf_flags = TF_HASSEGS;
1855	}
1856	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1857	return (0);
1858}
1859
1860/* XXX check all this stuff! */
1861/* externalize from sv_xmm */
1862static void
1863fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1864{
1865	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1866	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1867	int i;
1868
1869	/* pcb -> fpregs */
1870	bzero(fpregs, sizeof(*fpregs));
1871
1872	/* FPU control/status */
1873	penv_fpreg->en_cw = penv_xmm->en_cw;
1874	penv_fpreg->en_sw = penv_xmm->en_sw;
1875	penv_fpreg->en_tw = penv_xmm->en_tw;
1876	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1877	penv_fpreg->en_rip = penv_xmm->en_rip;
1878	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1879	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1880	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1881
1882	/* FPU registers */
1883	for (i = 0; i < 8; ++i)
1884		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1885
1886	/* SSE registers */
1887	for (i = 0; i < 16; ++i)
1888		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1889}
1890
1891/* internalize from fpregs into sv_xmm */
1892static void
1893set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1894{
1895	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1896	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1897	int i;
1898
1899	/* fpregs -> pcb */
1900	/* FPU control/status */
1901	penv_xmm->en_cw = penv_fpreg->en_cw;
1902	penv_xmm->en_sw = penv_fpreg->en_sw;
1903	penv_xmm->en_tw = penv_fpreg->en_tw;
1904	penv_xmm->en_opcode = penv_fpreg->en_opcode;
1905	penv_xmm->en_rip = penv_fpreg->en_rip;
1906	penv_xmm->en_rdp = penv_fpreg->en_rdp;
1907	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1908	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
1909
1910	/* FPU registers */
1911	for (i = 0; i < 8; ++i)
1912		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1913
1914	/* SSE registers */
1915	for (i = 0; i < 16; ++i)
1916		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1917}
1918
1919/* externalize from td->pcb */
1920int
1921fill_fpregs(struct thread *td, struct fpreg *fpregs)
1922{
1923
1924	fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
1925	return (0);
1926}
1927
1928/* internalize to td->pcb */
1929int
1930set_fpregs(struct thread *td, struct fpreg *fpregs)
1931{
1932
1933	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
1934	return (0);
1935}
1936
1937/*
1938 * Get machine context.
1939 */
1940int
1941get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
1942{
1943	struct trapframe *tp;
1944
1945	tp = td->td_frame;
1946	PROC_LOCK(curthread->td_proc);
1947	mcp->mc_onstack = sigonstack(tp->tf_rsp);
1948	PROC_UNLOCK(curthread->td_proc);
1949	mcp->mc_r15 = tp->tf_r15;
1950	mcp->mc_r14 = tp->tf_r14;
1951	mcp->mc_r13 = tp->tf_r13;
1952	mcp->mc_r12 = tp->tf_r12;
1953	mcp->mc_r11 = tp->tf_r11;
1954	mcp->mc_r10 = tp->tf_r10;
1955	mcp->mc_r9  = tp->tf_r9;
1956	mcp->mc_r8  = tp->tf_r8;
1957	mcp->mc_rdi = tp->tf_rdi;
1958	mcp->mc_rsi = tp->tf_rsi;
1959	mcp->mc_rbp = tp->tf_rbp;
1960	mcp->mc_rbx = tp->tf_rbx;
1961	mcp->mc_rcx = tp->tf_rcx;
1962	mcp->mc_rflags = tp->tf_rflags;
1963	if (flags & GET_MC_CLEAR_RET) {
1964		mcp->mc_rax = 0;
1965		mcp->mc_rdx = 0;
1966		mcp->mc_rflags &= ~PSL_C;
1967	} else {
1968		mcp->mc_rax = tp->tf_rax;
1969		mcp->mc_rdx = tp->tf_rdx;
1970	}
1971	mcp->mc_rip = tp->tf_rip;
1972	mcp->mc_cs = tp->tf_cs;
1973	mcp->mc_rsp = tp->tf_rsp;
1974	mcp->mc_ss = tp->tf_ss;
1975	mcp->mc_ds = tp->tf_ds;
1976	mcp->mc_es = tp->tf_es;
1977	mcp->mc_fs = tp->tf_fs;
1978	mcp->mc_gs = tp->tf_gs;
1979	mcp->mc_flags = tp->tf_flags;
1980	mcp->mc_len = sizeof(*mcp);
1981	get_fpcontext(td, mcp);
1982	mcp->mc_fsbase = td->td_pcb->pcb_fsbase;
1983	mcp->mc_gsbase = td->td_pcb->pcb_gsbase;
1984	return (0);
1985}
1986
1987/*
1988 * Set machine context.
1989 *
1990 * However, we don't set any but the user modifiable flags, and we won't
1991 * touch the cs selector.
1992 */
1993int
1994set_mcontext(struct thread *td, const mcontext_t *mcp)
1995{
1996	struct trapframe *tp;
1997	long rflags;
1998	int ret;
1999
2000	tp = td->td_frame;
2001	if (mcp->mc_len != sizeof(*mcp) ||
2002	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2003		return (EINVAL);
2004	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2005	    (tp->tf_rflags & ~PSL_USERCHANGE);
2006	ret = set_fpcontext(td, mcp);
2007	if (ret != 0)
2008		return (ret);
2009	tp->tf_r15 = mcp->mc_r15;
2010	tp->tf_r14 = mcp->mc_r14;
2011	tp->tf_r13 = mcp->mc_r13;
2012	tp->tf_r12 = mcp->mc_r12;
2013	tp->tf_r11 = mcp->mc_r11;
2014	tp->tf_r10 = mcp->mc_r10;
2015	tp->tf_r9  = mcp->mc_r9;
2016	tp->tf_r8  = mcp->mc_r8;
2017	tp->tf_rdi = mcp->mc_rdi;
2018	tp->tf_rsi = mcp->mc_rsi;
2019	tp->tf_rbp = mcp->mc_rbp;
2020	tp->tf_rbx = mcp->mc_rbx;
2021	tp->tf_rdx = mcp->mc_rdx;
2022	tp->tf_rcx = mcp->mc_rcx;
2023	tp->tf_rax = mcp->mc_rax;
2024	tp->tf_rip = mcp->mc_rip;
2025	tp->tf_rflags = rflags;
2026	tp->tf_rsp = mcp->mc_rsp;
2027	tp->tf_ss = mcp->mc_ss;
2028	tp->tf_flags = mcp->mc_flags;
2029	if (tp->tf_flags & TF_HASSEGS) {
2030		tp->tf_ds = mcp->mc_ds;
2031		tp->tf_es = mcp->mc_es;
2032		tp->tf_fs = mcp->mc_fs;
2033		tp->tf_gs = mcp->mc_gs;
2034	}
2035	if (mcp->mc_flags & _MC_HASBASES) {
2036		td->td_pcb->pcb_fsbase = mcp->mc_fsbase;
2037		td->td_pcb->pcb_gsbase = mcp->mc_gsbase;
2038	}
2039	td->td_pcb->pcb_flags |= PCB_FULLCTX;
2040	td->td_pcb->pcb_full_iret = 1;
2041	return (0);
2042}
2043
2044static void
2045get_fpcontext(struct thread *td, mcontext_t *mcp)
2046{
2047
2048	mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
2049	mcp->mc_fpformat = fpuformat();
2050}
2051
2052static int
2053set_fpcontext(struct thread *td, const mcontext_t *mcp)
2054{
2055	struct savefpu *fpstate;
2056
2057	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2058		return (0);
2059	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2060		return (EINVAL);
2061	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
2062		/* We don't care what state is left in the FPU or PCB. */
2063		fpstate_drop(td);
2064	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2065	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2066		/*
2067		 * XXX we violate the dubious requirement that fpusetregs()
2068		 * be called with interrupts disabled.
2069		 * XXX obsolete on trap-16 systems?
2070		 */
2071		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2072		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2073		fpusetregs(td, fpstate);
2074	} else
2075		return (EINVAL);
2076	return (0);
2077}
2078
2079void
2080fpstate_drop(struct thread *td)
2081{
2082	register_t s;
2083
2084	s = intr_disable();
2085	if (PCPU_GET(fpcurthread) == td)
2086		fpudrop();
2087	/*
2088	 * XXX force a full drop of the fpu.  The above only drops it if we
2089	 * owned it.
2090	 *
2091	 * XXX I don't much like fpugetregs()'s semantics of doing a full
2092	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2093	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2094	 * sendsig() is the only caller of fpugetregs()... perhaps we just
2095	 * have too many layers.
2096	 */
2097	curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
2098	intr_restore(s);
2099}
2100
2101int
2102fill_dbregs(struct thread *td, struct dbreg *dbregs)
2103{
2104	struct pcb *pcb;
2105
2106	if (td == NULL) {
2107		dbregs->dr[0] = rdr0();
2108		dbregs->dr[1] = rdr1();
2109		dbregs->dr[2] = rdr2();
2110		dbregs->dr[3] = rdr3();
2111		dbregs->dr[6] = rdr6();
2112		dbregs->dr[7] = rdr7();
2113	} else {
2114		pcb = td->td_pcb;
2115		dbregs->dr[0] = pcb->pcb_dr0;
2116		dbregs->dr[1] = pcb->pcb_dr1;
2117		dbregs->dr[2] = pcb->pcb_dr2;
2118		dbregs->dr[3] = pcb->pcb_dr3;
2119		dbregs->dr[6] = pcb->pcb_dr6;
2120		dbregs->dr[7] = pcb->pcb_dr7;
2121	}
2122	dbregs->dr[4] = 0;
2123	dbregs->dr[5] = 0;
2124	dbregs->dr[8] = 0;
2125	dbregs->dr[9] = 0;
2126	dbregs->dr[10] = 0;
2127	dbregs->dr[11] = 0;
2128	dbregs->dr[12] = 0;
2129	dbregs->dr[13] = 0;
2130	dbregs->dr[14] = 0;
2131	dbregs->dr[15] = 0;
2132	return (0);
2133}
2134
2135int
2136set_dbregs(struct thread *td, struct dbreg *dbregs)
2137{
2138	struct pcb *pcb;
2139	int i;
2140
2141	if (td == NULL) {
2142		load_dr0(dbregs->dr[0]);
2143		load_dr1(dbregs->dr[1]);
2144		load_dr2(dbregs->dr[2]);
2145		load_dr3(dbregs->dr[3]);
2146		load_dr6(dbregs->dr[6]);
2147		load_dr7(dbregs->dr[7]);
2148	} else {
2149		/*
2150		 * Don't let an illegal value for dr7 get set.  Specifically,
2151		 * check for undefined settings.  Setting these bit patterns
2152		 * result in undefined behaviour and can lead to an unexpected
2153		 * TRCTRAP or a general protection fault right here.
2154		 * Upper bits of dr6 and dr7 must not be set
2155		 */
2156		for (i = 0; i < 4; i++) {
2157			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2158				return (EINVAL);
2159			if (td->td_frame->tf_cs == _ucode32sel &&
2160			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2161				return (EINVAL);
2162		}
2163		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2164		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2165			return (EINVAL);
2166
2167		pcb = td->td_pcb;
2168
2169		/*
2170		 * Don't let a process set a breakpoint that is not within the
2171		 * process's address space.  If a process could do this, it
2172		 * could halt the system by setting a breakpoint in the kernel
2173		 * (if ddb was enabled).  Thus, we need to check to make sure
2174		 * that no breakpoints are being enabled for addresses outside
2175		 * process's address space.
2176		 *
2177		 * XXX - what about when the watched area of the user's
2178		 * address space is written into from within the kernel
2179		 * ... wouldn't that still cause a breakpoint to be generated
2180		 * from within kernel mode?
2181		 */
2182
2183		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2184			/* dr0 is enabled */
2185			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2186				return (EINVAL);
2187		}
2188		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2189			/* dr1 is enabled */
2190			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2191				return (EINVAL);
2192		}
2193		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2194			/* dr2 is enabled */
2195			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2196				return (EINVAL);
2197		}
2198		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2199			/* dr3 is enabled */
2200			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2201				return (EINVAL);
2202		}
2203
2204		pcb->pcb_dr0 = dbregs->dr[0];
2205		pcb->pcb_dr1 = dbregs->dr[1];
2206		pcb->pcb_dr2 = dbregs->dr[2];
2207		pcb->pcb_dr3 = dbregs->dr[3];
2208		pcb->pcb_dr6 = dbregs->dr[6];
2209		pcb->pcb_dr7 = dbregs->dr[7];
2210
2211		pcb->pcb_flags |= PCB_DBREGS;
2212	}
2213
2214	return (0);
2215}
2216
2217void
2218reset_dbregs(void)
2219{
2220
2221	load_dr7(0);	/* Turn off the control bits first */
2222	load_dr0(0);
2223	load_dr1(0);
2224	load_dr2(0);
2225	load_dr3(0);
2226	load_dr6(0);
2227}
2228
2229/*
2230 * Return > 0 if a hardware breakpoint has been hit, and the
2231 * breakpoint was in user space.  Return 0, otherwise.
2232 */
2233int
2234user_dbreg_trap(void)
2235{
2236        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2237        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2238        int nbp;            /* number of breakpoints that triggered */
2239        caddr_t addr[4];    /* breakpoint addresses */
2240        int i;
2241
2242        dr7 = rdr7();
2243        if ((dr7 & 0x000000ff) == 0) {
2244                /*
2245                 * all GE and LE bits in the dr7 register are zero,
2246                 * thus the trap couldn't have been caused by the
2247                 * hardware debug registers
2248                 */
2249                return 0;
2250        }
2251
2252        nbp = 0;
2253        dr6 = rdr6();
2254        bp = dr6 & 0x0000000f;
2255
2256        if (!bp) {
2257                /*
2258                 * None of the breakpoint bits are set meaning this
2259                 * trap was not caused by any of the debug registers
2260                 */
2261                return 0;
2262        }
2263
2264        /*
2265         * at least one of the breakpoints were hit, check to see
2266         * which ones and if any of them are user space addresses
2267         */
2268
2269        if (bp & 0x01) {
2270                addr[nbp++] = (caddr_t)rdr0();
2271        }
2272        if (bp & 0x02) {
2273                addr[nbp++] = (caddr_t)rdr1();
2274        }
2275        if (bp & 0x04) {
2276                addr[nbp++] = (caddr_t)rdr2();
2277        }
2278        if (bp & 0x08) {
2279                addr[nbp++] = (caddr_t)rdr3();
2280        }
2281
2282        for (i = 0; i < nbp; i++) {
2283                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2284                        /*
2285                         * addr[i] is in user space
2286                         */
2287                        return nbp;
2288                }
2289        }
2290
2291        /*
2292         * None of the breakpoints are in user space.
2293         */
2294        return 0;
2295}
2296
2297#ifdef KDB
2298
2299/*
2300 * Provide inb() and outb() as functions.  They are normally only available as
2301 * inline functions, thus cannot be called from the debugger.
2302 */
2303
2304/* silence compiler warnings */
2305u_char inb_(u_short);
2306void outb_(u_short, u_char);
2307
2308u_char
2309inb_(u_short port)
2310{
2311	return inb(port);
2312}
2313
2314void
2315outb_(u_short port, u_char data)
2316{
2317	outb(port, data);
2318}
2319
2320#endif /* KDB */
2321