machdep.c revision 174898
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 174898 2007-12-25 17:52:02Z rwatson $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_msgbuf.h"
55#include "opt_perfmon.h"
56
57#include <sys/param.h>
58#include <sys/proc.h>
59#include <sys/systm.h>
60#include <sys/bio.h>
61#include <sys/buf.h>
62#include <sys/bus.h>
63#include <sys/callout.h>
64#include <sys/clock.h>
65#include <sys/cons.h>
66#include <sys/cpu.h>
67#include <sys/eventhandler.h>
68#include <sys/exec.h>
69#include <sys/imgact.h>
70#include <sys/kdb.h>
71#include <sys/kernel.h>
72#include <sys/ktr.h>
73#include <sys/linker.h>
74#include <sys/lock.h>
75#include <sys/malloc.h>
76#include <sys/memrange.h>
77#include <sys/msgbuf.h>
78#include <sys/mutex.h>
79#include <sys/pcpu.h>
80#include <sys/ptrace.h>
81#include <sys/reboot.h>
82#include <sys/sched.h>
83#include <sys/signalvar.h>
84#include <sys/sysctl.h>
85#include <sys/sysent.h>
86#include <sys/sysproto.h>
87#include <sys/ucontext.h>
88#include <sys/vmmeter.h>
89
90#include <vm/vm.h>
91#include <vm/vm_extern.h>
92#include <vm/vm_kern.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_object.h>
96#include <vm/vm_pager.h>
97#include <vm/vm_param.h>
98
99#ifdef DDB
100#ifndef KDB
101#error KDB must be enabled in order for DDB to work!
102#endif
103#endif
104#include <ddb/ddb.h>
105
106#include <net/netisr.h>
107
108#include <machine/clock.h>
109#include <machine/cpu.h>
110#include <machine/cputypes.h>
111#include <machine/intr_machdep.h>
112#include <machine/md_var.h>
113#include <machine/metadata.h>
114#include <machine/pc/bios.h>
115#include <machine/pcb.h>
116#include <machine/proc.h>
117#include <machine/reg.h>
118#include <machine/sigframe.h>
119#include <machine/specialreg.h>
120#ifdef PERFMON
121#include <machine/perfmon.h>
122#endif
123#include <machine/tss.h>
124#ifdef SMP
125#include <machine/smp.h>
126#endif
127
128#ifdef DEV_ATPIC
129#include <amd64/isa/icu.h>
130#else
131#include <machine/apicvar.h>
132#endif
133
134#include <isa/isareg.h>
135#include <isa/rtc.h>
136
137/* Sanity check for __curthread() */
138CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
139
140extern u_int64_t hammer_time(u_int64_t, u_int64_t);
141
142extern void printcpuinfo(void);	/* XXX header file */
143extern void identify_cpu(void);
144extern void panicifcpuunsupported(void);
145
146#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
147#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
148
149static void cpu_startup(void *);
150static void get_fpcontext(struct thread *td, mcontext_t *mcp);
151static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
152SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
153
154#ifdef DDB
155extern vm_offset_t ksym_start, ksym_end;
156#endif
157
158/* Intel ICH registers */
159#define ICH_PMBASE	0x400
160#define ICH_SMI_EN	ICH_PMBASE + 0x30
161
162int	_udatasel, _ucodesel, _ucode32sel;
163
164int cold = 1;
165
166long Maxmem = 0;
167long realmem = 0;
168
169/*
170 * The number of PHYSMAP entries must be one less than the number of
171 * PHYSSEG entries because the PHYSMAP entry that spans the largest
172 * physical address that is accessible by ISA DMA is split into two
173 * PHYSSEG entries.
174 */
175#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
176
177vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
178vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
179
180/* must be 2 less so 0 0 can signal end of chunks */
181#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
182#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
183
184struct kva_md_info kmi;
185
186static struct trapframe proc0_tf;
187struct region_descriptor r_gdt, r_idt;
188
189struct pcpu __pcpu[MAXCPU];
190
191struct mtx icu_lock;
192
193struct mem_range_softc mem_range_softc;
194
195static void
196cpu_startup(dummy)
197	void *dummy;
198{
199	char *sysenv;
200
201	/*
202	 * On MacBooks, we need to disallow the legacy USB circuit to
203	 * generate an SMI# because this can cause several problems,
204	 * namely: incorrect CPU frequency detection and failure to
205	 * start the APs.
206	 * We do this by disabling a bit in the SMI_EN (SMI Control and
207	 * Enable register) of the Intel ICH LPC Interface Bridge.
208	 */
209	sysenv = getenv("smbios.system.product");
210	if (sysenv != NULL) {
211		if (strncmp(sysenv, "MacBook", 7) == 0) {
212			if (bootverbose)
213				printf("Disabling LEGACY_USB_EN bit on "
214				    "Intel ICH.\n");
215			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
216		}
217		freeenv(sysenv);
218	}
219
220	/*
221	 * Good {morning,afternoon,evening,night}.
222	 */
223	startrtclock();
224	printcpuinfo();
225	panicifcpuunsupported();
226#ifdef PERFMON
227	perfmon_init();
228#endif
229	printf("usable memory = %ju (%ju MB)\n", ptoa((uintmax_t)physmem),
230	    ptoa((uintmax_t)physmem) / 1048576);
231	realmem = Maxmem;
232	/*
233	 * Display any holes after the first chunk of extended memory.
234	 */
235	if (bootverbose) {
236		int indx;
237
238		printf("Physical memory chunk(s):\n");
239		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
240			vm_paddr_t size;
241
242			size = phys_avail[indx + 1] - phys_avail[indx];
243			printf(
244			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
245			    (uintmax_t)phys_avail[indx],
246			    (uintmax_t)phys_avail[indx + 1] - 1,
247			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
248		}
249	}
250
251	vm_ksubmap_init(&kmi);
252
253	printf("avail memory  = %ju (%ju MB)\n",
254	    ptoa((uintmax_t)cnt.v_free_count),
255	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
256
257	/*
258	 * Set up buffers, so they can be used to read disk labels.
259	 */
260	bufinit();
261	vm_pager_bufferinit();
262
263	cpu_setregs();
264}
265
266/*
267 * Send an interrupt to process.
268 *
269 * Stack is set up to allow sigcode stored
270 * at top to call routine, followed by kcall
271 * to sigreturn routine below.  After sigreturn
272 * resets the signal mask, the stack, and the
273 * frame pointer, it returns to the user
274 * specified pc, psl.
275 */
276void
277sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
278{
279	struct sigframe sf, *sfp;
280	struct proc *p;
281	struct thread *td;
282	struct sigacts *psp;
283	char *sp;
284	struct trapframe *regs;
285	int sig;
286	int oonstack;
287
288	td = curthread;
289	p = td->td_proc;
290	PROC_LOCK_ASSERT(p, MA_OWNED);
291	sig = ksi->ksi_signo;
292	psp = p->p_sigacts;
293	mtx_assert(&psp->ps_mtx, MA_OWNED);
294	regs = td->td_frame;
295	oonstack = sigonstack(regs->tf_rsp);
296
297	/* Save user context. */
298	bzero(&sf, sizeof(sf));
299	sf.sf_uc.uc_sigmask = *mask;
300	sf.sf_uc.uc_stack = td->td_sigstk;
301	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
302	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
303	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
304	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
305	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
306	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
307	fpstate_drop(td);
308
309	/* Allocate space for the signal handler context. */
310	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
311	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
312		sp = td->td_sigstk.ss_sp +
313		    td->td_sigstk.ss_size - sizeof(struct sigframe);
314#if defined(COMPAT_43)
315		td->td_sigstk.ss_flags |= SS_ONSTACK;
316#endif
317	} else
318		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
319	/* Align to 16 bytes. */
320	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
321
322	/* Translate the signal if appropriate. */
323	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
324		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
325
326	/* Build the argument list for the signal handler. */
327	regs->tf_rdi = sig;			/* arg 1 in %rdi */
328	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
329	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
330		/* Signal handler installed with SA_SIGINFO. */
331		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
332		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
333
334		/* Fill in POSIX parts */
335		sf.sf_si = ksi->ksi_info;
336		sf.sf_si.si_signo = sig; /* maybe a translated signal */
337		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
338	} else {
339		/* Old FreeBSD-style arguments. */
340		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
341		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
342		sf.sf_ahu.sf_handler = catcher;
343	}
344	mtx_unlock(&psp->ps_mtx);
345	PROC_UNLOCK(p);
346
347	/*
348	 * Copy the sigframe out to the user's stack.
349	 */
350	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
351#ifdef DEBUG
352		printf("process %ld has trashed its stack\n", (long)p->p_pid);
353#endif
354		PROC_LOCK(p);
355		sigexit(td, SIGILL);
356	}
357
358	regs->tf_rsp = (long)sfp;
359	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
360	regs->tf_rflags &= ~PSL_T;
361	regs->tf_cs = _ucodesel;
362	PROC_LOCK(p);
363	mtx_lock(&psp->ps_mtx);
364}
365
366/*
367 * System call to cleanup state after a signal
368 * has been taken.  Reset signal mask and
369 * stack state from context left by sendsig (above).
370 * Return to previous pc and psl as specified by
371 * context left by sendsig. Check carefully to
372 * make sure that the user has not modified the
373 * state to gain improper privileges.
374 *
375 * MPSAFE
376 */
377int
378sigreturn(td, uap)
379	struct thread *td;
380	struct sigreturn_args /* {
381		const struct __ucontext *sigcntxp;
382	} */ *uap;
383{
384	ucontext_t uc;
385	struct proc *p = td->td_proc;
386	struct trapframe *regs;
387	const ucontext_t *ucp;
388	long rflags;
389	int cs, error, ret;
390	ksiginfo_t ksi;
391
392	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
393	if (error != 0)
394		return (error);
395	ucp = &uc;
396	regs = td->td_frame;
397	rflags = ucp->uc_mcontext.mc_rflags;
398	/*
399	 * Don't allow users to change privileged or reserved flags.
400	 */
401	/*
402	 * XXX do allow users to change the privileged flag PSL_RF.
403	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
404	 * should sometimes set it there too.  tf_rflags is kept in
405	 * the signal context during signal handling and there is no
406	 * other place to remember it, so the PSL_RF bit may be
407	 * corrupted by the signal handler without us knowing.
408	 * Corruption of the PSL_RF bit at worst causes one more or
409	 * one less debugger trap, so allowing it is fairly harmless.
410	 */
411	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
412		printf("sigreturn: rflags = 0x%lx\n", rflags);
413		return (EINVAL);
414	}
415
416	/*
417	 * Don't allow users to load a valid privileged %cs.  Let the
418	 * hardware check for invalid selectors, excess privilege in
419	 * other selectors, invalid %eip's and invalid %esp's.
420	 */
421	cs = ucp->uc_mcontext.mc_cs;
422	if (!CS_SECURE(cs)) {
423		printf("sigreturn: cs = 0x%x\n", cs);
424		ksiginfo_init_trap(&ksi);
425		ksi.ksi_signo = SIGBUS;
426		ksi.ksi_code = BUS_OBJERR;
427		ksi.ksi_trapno = T_PROTFLT;
428		ksi.ksi_addr = (void *)regs->tf_rip;
429		trapsignal(td, &ksi);
430		return (EINVAL);
431	}
432
433	ret = set_fpcontext(td, &ucp->uc_mcontext);
434	if (ret != 0)
435		return (ret);
436	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
437
438	PROC_LOCK(p);
439#if defined(COMPAT_43)
440	if (ucp->uc_mcontext.mc_onstack & 1)
441		td->td_sigstk.ss_flags |= SS_ONSTACK;
442	else
443		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
444#endif
445
446	td->td_sigmask = ucp->uc_sigmask;
447	SIG_CANTMASK(td->td_sigmask);
448	signotify(td);
449	PROC_UNLOCK(p);
450	td->td_pcb->pcb_flags |= PCB_FULLCTX;
451	return (EJUSTRETURN);
452}
453
454#ifdef COMPAT_FREEBSD4
455int
456freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
457{
458
459	return sigreturn(td, (struct sigreturn_args *)uap);
460}
461#endif
462
463
464/*
465 * Machine dependent boot() routine
466 *
467 * I haven't seen anything to put here yet
468 * Possibly some stuff might be grafted back here from boot()
469 */
470void
471cpu_boot(int howto)
472{
473}
474
475/* Get current clock frequency for the given cpu id. */
476int
477cpu_est_clockrate(int cpu_id, uint64_t *rate)
478{
479	register_t reg;
480	uint64_t tsc1, tsc2;
481
482	if (pcpu_find(cpu_id) == NULL || rate == NULL)
483		return (EINVAL);
484
485	/* If we're booting, trust the rate calibrated moments ago. */
486	if (cold) {
487		*rate = tsc_freq;
488		return (0);
489	}
490
491#ifdef SMP
492	/* Schedule ourselves on the indicated cpu. */
493	thread_lock(curthread);
494	sched_bind(curthread, cpu_id);
495	thread_unlock(curthread);
496#endif
497
498	/* Calibrate by measuring a short delay. */
499	reg = intr_disable();
500	tsc1 = rdtsc();
501	DELAY(1000);
502	tsc2 = rdtsc();
503	intr_restore(reg);
504
505#ifdef SMP
506	thread_lock(curthread);
507	sched_unbind(curthread);
508	thread_unlock(curthread);
509#endif
510
511	/*
512	 * Calculate the difference in readings, convert to Mhz, and
513	 * subtract 0.5% of the total.  Empirical testing has shown that
514	 * overhead in DELAY() works out to approximately this value.
515	 */
516	tsc2 -= tsc1;
517	*rate = tsc2 * 1000 - tsc2 * 5;
518	return (0);
519}
520
521/*
522 * Shutdown the CPU as much as possible
523 */
524void
525cpu_halt(void)
526{
527	for (;;)
528		__asm__ ("hlt");
529}
530
531/*
532 * Hook to idle the CPU when possible.  In the SMP case we default to
533 * off because a halted cpu will not currently pick up a new thread in the
534 * run queue until the next timer tick.  If turned on this will result in
535 * approximately a 4.2% loss in real time performance in buildworld tests
536 * (but improves user and sys times oddly enough), and saves approximately
537 * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
538 *
539 * XXX we need to have a cpu mask of idle cpus and generate an IPI or
540 * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
541 * Then we can have our cake and eat it too.
542 *
543 * XXX I'm turning it on for SMP as well by default for now.  It seems to
544 * help lock contention somewhat, and this is critical for HTT. -Peter
545 */
546static int	cpu_idle_hlt = 1;
547TUNABLE_INT("machdep.cpu_idle_hlt", &cpu_idle_hlt);
548SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
549    &cpu_idle_hlt, 0, "Idle loop HLT enable");
550
551static void
552cpu_idle_default(void)
553{
554	/*
555	 * we must absolutely guarentee that hlt is the
556	 * absolute next instruction after sti or we
557	 * introduce a timing window.
558	 */
559	__asm __volatile("sti; hlt");
560}
561
562/*
563 * Note that we have to be careful here to avoid a race between checking
564 * sched_runnable() and actually halting.  If we don't do this, we may waste
565 * the time between calling hlt and the next interrupt even though there
566 * is a runnable process.
567 */
568void
569cpu_idle(void)
570{
571
572#ifdef SMP
573	if (mp_grab_cpu_hlt())
574		return;
575#endif
576	if (cpu_idle_hlt) {
577		disable_intr();
578  		if (sched_runnable())
579			enable_intr();
580		else
581			(*cpu_idle_hook)();
582	}
583}
584
585/* Other subsystems (e.g., ACPI) can hook this later. */
586void (*cpu_idle_hook)(void) = cpu_idle_default;
587
588/*
589 * Clear registers on exec
590 */
591void
592exec_setregs(td, entry, stack, ps_strings)
593	struct thread *td;
594	u_long entry;
595	u_long stack;
596	u_long ps_strings;
597{
598	struct trapframe *regs = td->td_frame;
599	struct pcb *pcb = td->td_pcb;
600
601	critical_enter();
602	wrmsr(MSR_FSBASE, 0);
603	wrmsr(MSR_KGSBASE, 0);	/* User value while we're in the kernel */
604	pcb->pcb_fsbase = 0;
605	pcb->pcb_gsbase = 0;
606	critical_exit();
607	load_ds(_udatasel);
608	load_es(_udatasel);
609	load_fs(_udatasel);
610	load_gs(_udatasel);
611	pcb->pcb_ds = _udatasel;
612	pcb->pcb_es = _udatasel;
613	pcb->pcb_fs = _udatasel;
614	pcb->pcb_gs = _udatasel;
615
616	bzero((char *)regs, sizeof(struct trapframe));
617	regs->tf_rip = entry;
618	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
619	regs->tf_rdi = stack;		/* argv */
620	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
621	regs->tf_ss = _udatasel;
622	regs->tf_cs = _ucodesel;
623
624	/*
625	 * Reset the hardware debug registers if they were in use.
626	 * They won't have any meaning for the newly exec'd process.
627	 */
628	if (pcb->pcb_flags & PCB_DBREGS) {
629		pcb->pcb_dr0 = 0;
630		pcb->pcb_dr1 = 0;
631		pcb->pcb_dr2 = 0;
632		pcb->pcb_dr3 = 0;
633		pcb->pcb_dr6 = 0;
634		pcb->pcb_dr7 = 0;
635		if (pcb == PCPU_GET(curpcb)) {
636			/*
637			 * Clear the debug registers on the running
638			 * CPU, otherwise they will end up affecting
639			 * the next process we switch to.
640			 */
641			reset_dbregs();
642		}
643		pcb->pcb_flags &= ~PCB_DBREGS;
644	}
645
646	/*
647	 * Drop the FP state if we hold it, so that the process gets a
648	 * clean FP state if it uses the FPU again.
649	 */
650	fpstate_drop(td);
651}
652
653void
654cpu_setregs(void)
655{
656	register_t cr0;
657
658	cr0 = rcr0();
659	/*
660	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
661	 * BSP.  See the comments there about why we set them.
662	 */
663	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
664	load_cr0(cr0);
665}
666
667/*
668 * Initialize amd64 and configure to run kernel
669 */
670
671/*
672 * Initialize segments & interrupt table
673 */
674
675struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor table */
676static struct gate_descriptor idt0[NIDT];
677struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
678
679static char dblfault_stack[PAGE_SIZE] __aligned(16);
680
681struct amd64tss common_tss[MAXCPU];
682
683/* software prototypes -- in more palatable form */
684struct soft_segment_descriptor gdt_segs[] = {
685/* GNULL_SEL	0 Null Descriptor */
686{	0x0,			/* segment base address  */
687	0x0,			/* length */
688	0,			/* segment type */
689	0,			/* segment descriptor priority level */
690	0,			/* segment descriptor present */
691	0,			/* long */
692	0,			/* default 32 vs 16 bit size */
693	0  			/* limit granularity (byte/page units)*/ },
694/* GCODE_SEL	1 Code Descriptor for kernel */
695{	0x0,			/* segment base address  */
696	0xfffff,		/* length - all address space */
697	SDT_MEMERA,		/* segment type */
698	SEL_KPL,		/* segment descriptor priority level */
699	1,			/* segment descriptor present */
700	1,			/* long */
701	0,			/* default 32 vs 16 bit size */
702	1  			/* limit granularity (byte/page units)*/ },
703/* GDATA_SEL	2 Data Descriptor for kernel */
704{	0x0,			/* segment base address  */
705	0xfffff,		/* length - all address space */
706	SDT_MEMRWA,		/* segment type */
707	SEL_KPL,		/* segment descriptor priority level */
708	1,			/* segment descriptor present */
709	1,			/* long */
710	0,			/* default 32 vs 16 bit size */
711	1  			/* limit granularity (byte/page units)*/ },
712/* GUCODE32_SEL	3 32 bit Code Descriptor for user */
713{	0x0,			/* segment base address  */
714	0xfffff,		/* length - all address space */
715	SDT_MEMERA,		/* segment type */
716	SEL_UPL,		/* segment descriptor priority level */
717	1,			/* segment descriptor present */
718	0,			/* long */
719	1,			/* default 32 vs 16 bit size */
720	1  			/* limit granularity (byte/page units)*/ },
721/* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
722{	0x0,			/* segment base address  */
723	0xfffff,		/* length - all address space */
724	SDT_MEMRWA,		/* segment type */
725	SEL_UPL,		/* segment descriptor priority level */
726	1,			/* segment descriptor present */
727	0,			/* long */
728	1,			/* default 32 vs 16 bit size */
729	1  			/* limit granularity (byte/page units)*/ },
730/* GUCODE_SEL	5 64 bit Code Descriptor for user */
731{	0x0,			/* segment base address  */
732	0xfffff,		/* length - all address space */
733	SDT_MEMERA,		/* segment type */
734	SEL_UPL,		/* segment descriptor priority level */
735	1,			/* segment descriptor present */
736	1,			/* long */
737	0,			/* default 32 vs 16 bit size */
738	1  			/* limit granularity (byte/page units)*/ },
739/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
740{
741	0x0,			/* segment base address */
742	sizeof(struct amd64tss)-1,/* length - all address space */
743	SDT_SYSTSS,		/* segment type */
744	SEL_KPL,		/* segment descriptor priority level */
745	1,			/* segment descriptor present */
746	0,			/* long */
747	0,			/* unused - default 32 vs 16 bit size */
748	0  			/* limit granularity (byte/page units)*/ },
749/* Actually, the TSS is a system descriptor which is double size */
750{	0x0,			/* segment base address  */
751	0x0,			/* length */
752	0,			/* segment type */
753	0,			/* segment descriptor priority level */
754	0,			/* segment descriptor present */
755	0,			/* long */
756	0,			/* default 32 vs 16 bit size */
757	0  			/* limit granularity (byte/page units)*/ },
758/* GUGS32_SEL	8 32 bit GS Descriptor for user */
759{	0x0,			/* segment base address  */
760	0xfffff,		/* length - all address space */
761	SDT_MEMRWA,		/* segment type */
762	SEL_UPL,		/* segment descriptor priority level */
763	1,			/* segment descriptor present */
764	0,			/* long */
765	1,			/* default 32 vs 16 bit size */
766	1  			/* limit granularity (byte/page units)*/ },
767};
768
769void
770setidt(idx, func, typ, dpl, ist)
771	int idx;
772	inthand_t *func;
773	int typ;
774	int dpl;
775	int ist;
776{
777	struct gate_descriptor *ip;
778
779	ip = idt + idx;
780	ip->gd_looffset = (uintptr_t)func;
781	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
782	ip->gd_ist = ist;
783	ip->gd_xx = 0;
784	ip->gd_type = typ;
785	ip->gd_dpl = dpl;
786	ip->gd_p = 1;
787	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
788}
789
790extern inthand_t
791	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
792	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
793	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
794	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
795	IDTVEC(xmm), IDTVEC(dblfault),
796	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
797
798void
799sdtossd(sd, ssd)
800	struct user_segment_descriptor *sd;
801	struct soft_segment_descriptor *ssd;
802{
803
804	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
805	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
806	ssd->ssd_type  = sd->sd_type;
807	ssd->ssd_dpl   = sd->sd_dpl;
808	ssd->ssd_p     = sd->sd_p;
809	ssd->ssd_long  = sd->sd_long;
810	ssd->ssd_def32 = sd->sd_def32;
811	ssd->ssd_gran  = sd->sd_gran;
812}
813
814void
815ssdtosd(ssd, sd)
816	struct soft_segment_descriptor *ssd;
817	struct user_segment_descriptor *sd;
818{
819
820	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
821	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
822	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
823	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
824	sd->sd_type  = ssd->ssd_type;
825	sd->sd_dpl   = ssd->ssd_dpl;
826	sd->sd_p     = ssd->ssd_p;
827	sd->sd_long  = ssd->ssd_long;
828	sd->sd_def32 = ssd->ssd_def32;
829	sd->sd_gran  = ssd->ssd_gran;
830}
831
832void
833ssdtosyssd(ssd, sd)
834	struct soft_segment_descriptor *ssd;
835	struct system_segment_descriptor *sd;
836{
837
838	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
839	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
840	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
841	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
842	sd->sd_type  = ssd->ssd_type;
843	sd->sd_dpl   = ssd->ssd_dpl;
844	sd->sd_p     = ssd->ssd_p;
845	sd->sd_gran  = ssd->ssd_gran;
846}
847
848#if !defined(DEV_ATPIC) && defined(DEV_ISA)
849#include <isa/isavar.h>
850u_int
851isa_irq_pending(void)
852{
853
854	return (0);
855}
856#endif
857
858u_int basemem;
859
860/*
861 * Populate the (physmap) array with base/bound pairs describing the
862 * available physical memory in the system, then test this memory and
863 * build the phys_avail array describing the actually-available memory.
864 *
865 * If we cannot accurately determine the physical memory map, then use
866 * value from the 0xE801 call, and failing that, the RTC.
867 *
868 * Total memory size may be set by the kernel environment variable
869 * hw.physmem or the compile-time define MAXMEM.
870 *
871 * XXX first should be vm_paddr_t.
872 */
873static void
874getmemsize(caddr_t kmdp, u_int64_t first)
875{
876	int i, off, physmap_idx, pa_indx, da_indx;
877	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
878	u_long physmem_tunable;
879	pt_entry_t *pte;
880	struct bios_smap *smapbase, *smap, *smapend;
881	u_int32_t smapsize;
882	quad_t dcons_addr, dcons_size;
883
884	bzero(physmap, sizeof(physmap));
885	basemem = 0;
886	physmap_idx = 0;
887
888	/*
889	 * get memory map from INT 15:E820, kindly supplied by the loader.
890	 *
891	 * subr_module.c says:
892	 * "Consumer may safely assume that size value precedes data."
893	 * ie: an int32_t immediately precedes smap.
894	 */
895	smapbase = (struct bios_smap *)preload_search_info(kmdp,
896	    MODINFO_METADATA | MODINFOMD_SMAP);
897	if (smapbase == NULL)
898		panic("No BIOS smap info from loader!");
899
900	smapsize = *((u_int32_t *)smapbase - 1);
901	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
902
903	for (smap = smapbase; smap < smapend; smap++) {
904		if (boothowto & RB_VERBOSE)
905			printf("SMAP type=%02x base=%016lx len=%016lx\n",
906			    smap->type, smap->base, smap->length);
907
908		if (smap->type != SMAP_TYPE_MEMORY)
909			continue;
910
911		if (smap->length == 0)
912			continue;
913
914		for (i = 0; i <= physmap_idx; i += 2) {
915			if (smap->base < physmap[i + 1]) {
916				if (boothowto & RB_VERBOSE)
917					printf(
918	"Overlapping or non-monotonic memory region, ignoring second region\n");
919				continue;
920			}
921		}
922
923		if (smap->base == physmap[physmap_idx + 1]) {
924			physmap[physmap_idx + 1] += smap->length;
925			continue;
926		}
927
928		physmap_idx += 2;
929		if (physmap_idx == PHYSMAP_SIZE) {
930			printf(
931		"Too many segments in the physical address map, giving up\n");
932			break;
933		}
934		physmap[physmap_idx] = smap->base;
935		physmap[physmap_idx + 1] = smap->base + smap->length;
936	}
937
938	/*
939	 * Find the 'base memory' segment for SMP
940	 */
941	basemem = 0;
942	for (i = 0; i <= physmap_idx; i += 2) {
943		if (physmap[i] == 0x00000000) {
944			basemem = physmap[i + 1] / 1024;
945			break;
946		}
947	}
948	if (basemem == 0)
949		panic("BIOS smap did not include a basemem segment!");
950
951#ifdef SMP
952	/* make hole for AP bootstrap code */
953	physmap[1] = mp_bootaddress(physmap[1] / 1024);
954#endif
955
956	/*
957	 * Maxmem isn't the "maximum memory", it's one larger than the
958	 * highest page of the physical address space.  It should be
959	 * called something like "Maxphyspage".  We may adjust this
960	 * based on ``hw.physmem'' and the results of the memory test.
961	 */
962	Maxmem = atop(physmap[physmap_idx + 1]);
963
964#ifdef MAXMEM
965	Maxmem = MAXMEM / 4;
966#endif
967
968	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
969		Maxmem = atop(physmem_tunable);
970
971	/*
972	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
973	 * in the system.
974	 */
975	if (Maxmem > atop(physmap[physmap_idx + 1]))
976		Maxmem = atop(physmap[physmap_idx + 1]);
977
978	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
979	    (boothowto & RB_VERBOSE))
980		printf("Physical memory use set to %ldK\n", Maxmem * 4);
981
982	/* call pmap initialization to make new kernel address space */
983	pmap_bootstrap(&first);
984
985	/*
986	 * Size up each available chunk of physical memory.
987	 */
988	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
989	pa_indx = 0;
990	da_indx = 1;
991	phys_avail[pa_indx++] = physmap[0];
992	phys_avail[pa_indx] = physmap[0];
993	dump_avail[da_indx] = physmap[0];
994	pte = CMAP1;
995
996	/*
997	 * Get dcons buffer address
998	 */
999	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1000	    getenv_quad("dcons.size", &dcons_size) == 0)
1001		dcons_addr = 0;
1002
1003	/*
1004	 * physmap is in bytes, so when converting to page boundaries,
1005	 * round up the start address and round down the end address.
1006	 */
1007	for (i = 0; i <= physmap_idx; i += 2) {
1008		vm_paddr_t end;
1009
1010		end = ptoa((vm_paddr_t)Maxmem);
1011		if (physmap[i + 1] < end)
1012			end = trunc_page(physmap[i + 1]);
1013		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1014			int tmp, page_bad, full;
1015			int *ptr = (int *)CADDR1;
1016
1017			full = FALSE;
1018			/*
1019			 * block out kernel memory as not available.
1020			 */
1021			if (pa >= 0x100000 && pa < first)
1022				goto do_dump_avail;
1023
1024			/*
1025			 * block out dcons buffer
1026			 */
1027			if (dcons_addr > 0
1028			    && pa >= trunc_page(dcons_addr)
1029			    && pa < dcons_addr + dcons_size)
1030				goto do_dump_avail;
1031
1032			page_bad = FALSE;
1033
1034			/*
1035			 * map page into kernel: valid, read/write,non-cacheable
1036			 */
1037			*pte = pa | PG_V | PG_RW | PG_N;
1038			invltlb();
1039
1040			tmp = *(int *)ptr;
1041			/*
1042			 * Test for alternating 1's and 0's
1043			 */
1044			*(volatile int *)ptr = 0xaaaaaaaa;
1045			if (*(volatile int *)ptr != 0xaaaaaaaa)
1046				page_bad = TRUE;
1047			/*
1048			 * Test for alternating 0's and 1's
1049			 */
1050			*(volatile int *)ptr = 0x55555555;
1051			if (*(volatile int *)ptr != 0x55555555)
1052				page_bad = TRUE;
1053			/*
1054			 * Test for all 1's
1055			 */
1056			*(volatile int *)ptr = 0xffffffff;
1057			if (*(volatile int *)ptr != 0xffffffff)
1058				page_bad = TRUE;
1059			/*
1060			 * Test for all 0's
1061			 */
1062			*(volatile int *)ptr = 0x0;
1063			if (*(volatile int *)ptr != 0x0)
1064				page_bad = TRUE;
1065			/*
1066			 * Restore original value.
1067			 */
1068			*(int *)ptr = tmp;
1069
1070			/*
1071			 * Adjust array of valid/good pages.
1072			 */
1073			if (page_bad == TRUE)
1074				continue;
1075			/*
1076			 * If this good page is a continuation of the
1077			 * previous set of good pages, then just increase
1078			 * the end pointer. Otherwise start a new chunk.
1079			 * Note that "end" points one higher than end,
1080			 * making the range >= start and < end.
1081			 * If we're also doing a speculative memory
1082			 * test and we at or past the end, bump up Maxmem
1083			 * so that we keep going. The first bad page
1084			 * will terminate the loop.
1085			 */
1086			if (phys_avail[pa_indx] == pa) {
1087				phys_avail[pa_indx] += PAGE_SIZE;
1088			} else {
1089				pa_indx++;
1090				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1091					printf(
1092		"Too many holes in the physical address space, giving up\n");
1093					pa_indx--;
1094					full = TRUE;
1095					goto do_dump_avail;
1096				}
1097				phys_avail[pa_indx++] = pa;	/* start */
1098				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1099			}
1100			physmem++;
1101do_dump_avail:
1102			if (dump_avail[da_indx] == pa) {
1103				dump_avail[da_indx] += PAGE_SIZE;
1104			} else {
1105				da_indx++;
1106				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1107					da_indx--;
1108					goto do_next;
1109				}
1110				dump_avail[da_indx++] = pa; /* start */
1111				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1112			}
1113do_next:
1114			if (full)
1115				break;
1116		}
1117	}
1118	*pte = 0;
1119	invltlb();
1120
1121	/*
1122	 * XXX
1123	 * The last chunk must contain at least one page plus the message
1124	 * buffer to avoid complicating other code (message buffer address
1125	 * calculation, etc.).
1126	 */
1127	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1128	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1129		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1130		phys_avail[pa_indx--] = 0;
1131		phys_avail[pa_indx--] = 0;
1132	}
1133
1134	Maxmem = atop(phys_avail[pa_indx]);
1135
1136	/* Trim off space for the message buffer. */
1137	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1138
1139	/* Map the message buffer. */
1140	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1141		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
1142		    off);
1143}
1144
1145u_int64_t
1146hammer_time(u_int64_t modulep, u_int64_t physfree)
1147{
1148	caddr_t kmdp;
1149	int gsel_tss, x;
1150	struct pcpu *pc;
1151	u_int64_t msr;
1152	char *env;
1153
1154	thread0.td_kstack = physfree + KERNBASE;
1155	bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
1156	physfree += KSTACK_PAGES * PAGE_SIZE;
1157	thread0.td_pcb = (struct pcb *)
1158	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1159
1160	/*
1161 	 * This may be done better later if it gets more high level
1162 	 * components in it. If so just link td->td_proc here.
1163	 */
1164	proc_linkup0(&proc0, &thread0);
1165
1166	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1167	preload_bootstrap_relocate(KERNBASE);
1168	kmdp = preload_search_by_type("elf kernel");
1169	if (kmdp == NULL)
1170		kmdp = preload_search_by_type("elf64 kernel");
1171	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1172	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1173#ifdef DDB
1174	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1175	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1176#endif
1177
1178	/* Init basic tunables, hz etc */
1179	init_param1();
1180
1181	/*
1182	 * make gdt memory segments
1183	 */
1184	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1185
1186	for (x = 0; x < NGDT; x++) {
1187		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1188			ssdtosd(&gdt_segs[x], &gdt[x]);
1189	}
1190	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1191	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1192
1193	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1194	r_gdt.rd_base =  (long) gdt;
1195	lgdt(&r_gdt);
1196	pc = &__pcpu[0];
1197
1198	wrmsr(MSR_FSBASE, 0);		/* User value */
1199	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1200	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1201
1202	pcpu_init(pc, 0, sizeof(struct pcpu));
1203	PCPU_SET(prvspace, pc);
1204	PCPU_SET(curthread, &thread0);
1205	PCPU_SET(curpcb, thread0.td_pcb);
1206	PCPU_SET(tssp, &common_tss[0]);
1207
1208	/*
1209	 * Initialize mutexes.
1210	 *
1211	 * icu_lock: in order to allow an interrupt to occur in a critical
1212	 * 	     section, to set pcpu->ipending (etc...) properly, we
1213	 *	     must be able to get the icu lock, so it can't be
1214	 *	     under witness.
1215	 */
1216	mutex_init();
1217	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1218
1219	/* exceptions */
1220	for (x = 0; x < NIDT; x++)
1221		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1222	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1223	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1224	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
1225 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1226	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1227	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1228	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1229	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1230	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1231	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1232	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1233	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1234	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1235	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1236	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1237	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1238	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1239	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1240	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1241
1242	r_idt.rd_limit = sizeof(idt0) - 1;
1243	r_idt.rd_base = (long) idt;
1244	lidt(&r_idt);
1245
1246	/*
1247	 * Initialize the i8254 before the console so that console
1248	 * initialization can use DELAY().
1249	 */
1250	i8254_init();
1251
1252	/*
1253	 * Initialize the console before we print anything out.
1254	 */
1255	cninit();
1256
1257#ifdef DEV_ISA
1258#ifdef DEV_ATPIC
1259	elcr_probe();
1260	atpic_startup();
1261#else
1262	/* Reset and mask the atpics and leave them shut down. */
1263	atpic_reset();
1264
1265	/*
1266	 * Point the ICU spurious interrupt vectors at the APIC spurious
1267	 * interrupt handler.
1268	 */
1269	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1270	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1271#endif
1272#else
1273#error "have you forgotten the isa device?";
1274#endif
1275
1276	kdb_init();
1277
1278#ifdef KDB
1279	if (boothowto & RB_KDB)
1280		kdb_enter(KDB_WHY_BOOTFLAGS,
1281		    "Boot flags requested debugger");
1282#endif
1283
1284	identify_cpu();		/* Final stage of CPU initialization */
1285	initializecpu();	/* Initialize CPU registers */
1286
1287	/* make an initial tss so cpu can get interrupt stack on syscall! */
1288	common_tss[0].tss_rsp0 = thread0.td_kstack + \
1289	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1290	/* Ensure the stack is aligned to 16 bytes */
1291	common_tss[0].tss_rsp0 &= ~0xFul;
1292	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1293
1294	/* doublefault stack space, runs on ist1 */
1295	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1296
1297	/* Set the IO permission bitmap (empty due to tss seg limit) */
1298	common_tss[0].tss_iobase = sizeof(struct amd64tss);
1299
1300	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1301	ltr(gsel_tss);
1302
1303	/* Set up the fast syscall stuff */
1304	msr = rdmsr(MSR_EFER) | EFER_SCE;
1305	wrmsr(MSR_EFER, msr);
1306	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1307	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1308	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1309	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1310	wrmsr(MSR_STAR, msr);
1311	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1312
1313	getmemsize(kmdp, physfree);
1314	init_param2(physmem);
1315
1316	/* now running on new page tables, configured,and u/iom is accessible */
1317
1318	msgbufinit(msgbufp, MSGBUF_SIZE);
1319	fpuinit();
1320
1321	/* transfer to user mode */
1322
1323	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1324	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1325	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1326
1327	/* setup proc 0's pcb */
1328	thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
1329	thread0.td_pcb->pcb_cr3 = KPML4phys;
1330	thread0.td_frame = &proc0_tf;
1331
1332        env = getenv("kernelname");
1333	if (env != NULL)
1334		strlcpy(kernelname, env, sizeof(kernelname));
1335
1336	/* Location of kernel stack for locore */
1337	return ((u_int64_t)thread0.td_pcb);
1338}
1339
1340void
1341cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1342{
1343
1344	pcpu->pc_acpi_id = 0xffffffff;
1345}
1346
1347void
1348spinlock_enter(void)
1349{
1350	struct thread *td;
1351
1352	td = curthread;
1353	if (td->td_md.md_spinlock_count == 0)
1354		td->td_md.md_saved_flags = intr_disable();
1355	td->td_md.md_spinlock_count++;
1356	critical_enter();
1357}
1358
1359void
1360spinlock_exit(void)
1361{
1362	struct thread *td;
1363
1364	td = curthread;
1365	critical_exit();
1366	td->td_md.md_spinlock_count--;
1367	if (td->td_md.md_spinlock_count == 0)
1368		intr_restore(td->td_md.md_saved_flags);
1369}
1370
1371/*
1372 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1373 * we want to start a backtrace from the function that caused us to enter
1374 * the debugger. We have the context in the trapframe, but base the trace
1375 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1376 * enough for a backtrace.
1377 */
1378void
1379makectx(struct trapframe *tf, struct pcb *pcb)
1380{
1381
1382	pcb->pcb_r12 = tf->tf_r12;
1383	pcb->pcb_r13 = tf->tf_r13;
1384	pcb->pcb_r14 = tf->tf_r14;
1385	pcb->pcb_r15 = tf->tf_r15;
1386	pcb->pcb_rbp = tf->tf_rbp;
1387	pcb->pcb_rbx = tf->tf_rbx;
1388	pcb->pcb_rip = tf->tf_rip;
1389	pcb->pcb_rsp = (ISPL(tf->tf_cs)) ? tf->tf_rsp : (long)(tf + 1) - 8;
1390}
1391
1392int
1393ptrace_set_pc(struct thread *td, unsigned long addr)
1394{
1395	td->td_frame->tf_rip = addr;
1396	return (0);
1397}
1398
1399int
1400ptrace_single_step(struct thread *td)
1401{
1402	td->td_frame->tf_rflags |= PSL_T;
1403	return (0);
1404}
1405
1406int
1407ptrace_clear_single_step(struct thread *td)
1408{
1409	td->td_frame->tf_rflags &= ~PSL_T;
1410	return (0);
1411}
1412
1413int
1414fill_regs(struct thread *td, struct reg *regs)
1415{
1416	struct trapframe *tp;
1417
1418	tp = td->td_frame;
1419	regs->r_r15 = tp->tf_r15;
1420	regs->r_r14 = tp->tf_r14;
1421	regs->r_r13 = tp->tf_r13;
1422	regs->r_r12 = tp->tf_r12;
1423	regs->r_r11 = tp->tf_r11;
1424	regs->r_r10 = tp->tf_r10;
1425	regs->r_r9  = tp->tf_r9;
1426	regs->r_r8  = tp->tf_r8;
1427	regs->r_rdi = tp->tf_rdi;
1428	regs->r_rsi = tp->tf_rsi;
1429	regs->r_rbp = tp->tf_rbp;
1430	regs->r_rbx = tp->tf_rbx;
1431	regs->r_rdx = tp->tf_rdx;
1432	regs->r_rcx = tp->tf_rcx;
1433	regs->r_rax = tp->tf_rax;
1434	regs->r_rip = tp->tf_rip;
1435	regs->r_cs = tp->tf_cs;
1436	regs->r_rflags = tp->tf_rflags;
1437	regs->r_rsp = tp->tf_rsp;
1438	regs->r_ss = tp->tf_ss;
1439	return (0);
1440}
1441
1442int
1443set_regs(struct thread *td, struct reg *regs)
1444{
1445	struct trapframe *tp;
1446	register_t rflags;
1447
1448	tp = td->td_frame;
1449	rflags = regs->r_rflags & 0xffffffff;
1450	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1451		return (EINVAL);
1452	tp->tf_r15 = regs->r_r15;
1453	tp->tf_r14 = regs->r_r14;
1454	tp->tf_r13 = regs->r_r13;
1455	tp->tf_r12 = regs->r_r12;
1456	tp->tf_r11 = regs->r_r11;
1457	tp->tf_r10 = regs->r_r10;
1458	tp->tf_r9  = regs->r_r9;
1459	tp->tf_r8  = regs->r_r8;
1460	tp->tf_rdi = regs->r_rdi;
1461	tp->tf_rsi = regs->r_rsi;
1462	tp->tf_rbp = regs->r_rbp;
1463	tp->tf_rbx = regs->r_rbx;
1464	tp->tf_rdx = regs->r_rdx;
1465	tp->tf_rcx = regs->r_rcx;
1466	tp->tf_rax = regs->r_rax;
1467	tp->tf_rip = regs->r_rip;
1468	tp->tf_cs = regs->r_cs;
1469	tp->tf_rflags = rflags;
1470	tp->tf_rsp = regs->r_rsp;
1471	tp->tf_ss = regs->r_ss;
1472	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1473	return (0);
1474}
1475
1476/* XXX check all this stuff! */
1477/* externalize from sv_xmm */
1478static void
1479fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1480{
1481	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1482	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1483	int i;
1484
1485	/* pcb -> fpregs */
1486	bzero(fpregs, sizeof(*fpregs));
1487
1488	/* FPU control/status */
1489	penv_fpreg->en_cw = penv_xmm->en_cw;
1490	penv_fpreg->en_sw = penv_xmm->en_sw;
1491	penv_fpreg->en_tw = penv_xmm->en_tw;
1492	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1493	penv_fpreg->en_rip = penv_xmm->en_rip;
1494	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1495	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1496	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1497
1498	/* FPU registers */
1499	for (i = 0; i < 8; ++i)
1500		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1501
1502	/* SSE registers */
1503	for (i = 0; i < 16; ++i)
1504		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1505}
1506
1507/* internalize from fpregs into sv_xmm */
1508static void
1509set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1510{
1511	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1512	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1513	int i;
1514
1515	/* fpregs -> pcb */
1516	/* FPU control/status */
1517	penv_xmm->en_cw = penv_fpreg->en_cw;
1518	penv_xmm->en_sw = penv_fpreg->en_sw;
1519	penv_xmm->en_tw = penv_fpreg->en_tw;
1520	penv_xmm->en_opcode = penv_fpreg->en_opcode;
1521	penv_xmm->en_rip = penv_fpreg->en_rip;
1522	penv_xmm->en_rdp = penv_fpreg->en_rdp;
1523	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1524	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
1525
1526	/* FPU registers */
1527	for (i = 0; i < 8; ++i)
1528		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1529
1530	/* SSE registers */
1531	for (i = 0; i < 16; ++i)
1532		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1533}
1534
1535/* externalize from td->pcb */
1536int
1537fill_fpregs(struct thread *td, struct fpreg *fpregs)
1538{
1539
1540	fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
1541	return (0);
1542}
1543
1544/* internalize to td->pcb */
1545int
1546set_fpregs(struct thread *td, struct fpreg *fpregs)
1547{
1548
1549	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
1550	return (0);
1551}
1552
1553/*
1554 * Get machine context.
1555 */
1556int
1557get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
1558{
1559	struct trapframe *tp;
1560
1561	tp = td->td_frame;
1562	PROC_LOCK(curthread->td_proc);
1563	mcp->mc_onstack = sigonstack(tp->tf_rsp);
1564	PROC_UNLOCK(curthread->td_proc);
1565	mcp->mc_r15 = tp->tf_r15;
1566	mcp->mc_r14 = tp->tf_r14;
1567	mcp->mc_r13 = tp->tf_r13;
1568	mcp->mc_r12 = tp->tf_r12;
1569	mcp->mc_r11 = tp->tf_r11;
1570	mcp->mc_r10 = tp->tf_r10;
1571	mcp->mc_r9  = tp->tf_r9;
1572	mcp->mc_r8  = tp->tf_r8;
1573	mcp->mc_rdi = tp->tf_rdi;
1574	mcp->mc_rsi = tp->tf_rsi;
1575	mcp->mc_rbp = tp->tf_rbp;
1576	mcp->mc_rbx = tp->tf_rbx;
1577	mcp->mc_rcx = tp->tf_rcx;
1578	mcp->mc_rflags = tp->tf_rflags;
1579	if (flags & GET_MC_CLEAR_RET) {
1580		mcp->mc_rax = 0;
1581		mcp->mc_rdx = 0;
1582		mcp->mc_rflags &= ~PSL_C;
1583	} else {
1584		mcp->mc_rax = tp->tf_rax;
1585		mcp->mc_rdx = tp->tf_rdx;
1586	}
1587	mcp->mc_rip = tp->tf_rip;
1588	mcp->mc_cs = tp->tf_cs;
1589	mcp->mc_rsp = tp->tf_rsp;
1590	mcp->mc_ss = tp->tf_ss;
1591	mcp->mc_len = sizeof(*mcp);
1592	get_fpcontext(td, mcp);
1593	return (0);
1594}
1595
1596/*
1597 * Set machine context.
1598 *
1599 * However, we don't set any but the user modifiable flags, and we won't
1600 * touch the cs selector.
1601 */
1602int
1603set_mcontext(struct thread *td, const mcontext_t *mcp)
1604{
1605	struct trapframe *tp;
1606	long rflags;
1607	int ret;
1608
1609	tp = td->td_frame;
1610	if (mcp->mc_len != sizeof(*mcp))
1611		return (EINVAL);
1612	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
1613	    (tp->tf_rflags & ~PSL_USERCHANGE);
1614	ret = set_fpcontext(td, mcp);
1615	if (ret != 0)
1616		return (ret);
1617	tp->tf_r15 = mcp->mc_r15;
1618	tp->tf_r14 = mcp->mc_r14;
1619	tp->tf_r13 = mcp->mc_r13;
1620	tp->tf_r12 = mcp->mc_r12;
1621	tp->tf_r11 = mcp->mc_r11;
1622	tp->tf_r10 = mcp->mc_r10;
1623	tp->tf_r9  = mcp->mc_r9;
1624	tp->tf_r8  = mcp->mc_r8;
1625	tp->tf_rdi = mcp->mc_rdi;
1626	tp->tf_rsi = mcp->mc_rsi;
1627	tp->tf_rbp = mcp->mc_rbp;
1628	tp->tf_rbx = mcp->mc_rbx;
1629	tp->tf_rdx = mcp->mc_rdx;
1630	tp->tf_rcx = mcp->mc_rcx;
1631	tp->tf_rax = mcp->mc_rax;
1632	tp->tf_rip = mcp->mc_rip;
1633	tp->tf_rflags = rflags;
1634	tp->tf_rsp = mcp->mc_rsp;
1635	tp->tf_ss = mcp->mc_ss;
1636	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1637	return (0);
1638}
1639
1640static void
1641get_fpcontext(struct thread *td, mcontext_t *mcp)
1642{
1643
1644	mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
1645	mcp->mc_fpformat = fpuformat();
1646}
1647
1648static int
1649set_fpcontext(struct thread *td, const mcontext_t *mcp)
1650{
1651	struct savefpu *fpstate;
1652
1653	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
1654		return (0);
1655	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
1656		return (EINVAL);
1657	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
1658		/* We don't care what state is left in the FPU or PCB. */
1659		fpstate_drop(td);
1660	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
1661	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
1662		/*
1663		 * XXX we violate the dubious requirement that fpusetregs()
1664		 * be called with interrupts disabled.
1665		 * XXX obsolete on trap-16 systems?
1666		 */
1667		fpstate = (struct savefpu *)&mcp->mc_fpstate;
1668		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
1669		fpusetregs(td, fpstate);
1670	} else
1671		return (EINVAL);
1672	return (0);
1673}
1674
1675void
1676fpstate_drop(struct thread *td)
1677{
1678	register_t s;
1679
1680	s = intr_disable();
1681	if (PCPU_GET(fpcurthread) == td)
1682		fpudrop();
1683	/*
1684	 * XXX force a full drop of the fpu.  The above only drops it if we
1685	 * owned it.
1686	 *
1687	 * XXX I don't much like fpugetregs()'s semantics of doing a full
1688	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
1689	 * We only need to drop to !PCB_INITDONE in sendsig().  But
1690	 * sendsig() is the only caller of fpugetregs()... perhaps we just
1691	 * have too many layers.
1692	 */
1693	curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
1694	intr_restore(s);
1695}
1696
1697int
1698fill_dbregs(struct thread *td, struct dbreg *dbregs)
1699{
1700	struct pcb *pcb;
1701
1702	if (td == NULL) {
1703		dbregs->dr[0] = rdr0();
1704		dbregs->dr[1] = rdr1();
1705		dbregs->dr[2] = rdr2();
1706		dbregs->dr[3] = rdr3();
1707		dbregs->dr[6] = rdr6();
1708		dbregs->dr[7] = rdr7();
1709	} else {
1710		pcb = td->td_pcb;
1711		dbregs->dr[0] = pcb->pcb_dr0;
1712		dbregs->dr[1] = pcb->pcb_dr1;
1713		dbregs->dr[2] = pcb->pcb_dr2;
1714		dbregs->dr[3] = pcb->pcb_dr3;
1715		dbregs->dr[6] = pcb->pcb_dr6;
1716		dbregs->dr[7] = pcb->pcb_dr7;
1717	}
1718	dbregs->dr[4] = 0;
1719	dbregs->dr[5] = 0;
1720	dbregs->dr[8] = 0;
1721	dbregs->dr[9] = 0;
1722	dbregs->dr[10] = 0;
1723	dbregs->dr[11] = 0;
1724	dbregs->dr[12] = 0;
1725	dbregs->dr[13] = 0;
1726	dbregs->dr[14] = 0;
1727	dbregs->dr[15] = 0;
1728	return (0);
1729}
1730
1731int
1732set_dbregs(struct thread *td, struct dbreg *dbregs)
1733{
1734	struct pcb *pcb;
1735	int i;
1736
1737	if (td == NULL) {
1738		load_dr0(dbregs->dr[0]);
1739		load_dr1(dbregs->dr[1]);
1740		load_dr2(dbregs->dr[2]);
1741		load_dr3(dbregs->dr[3]);
1742		load_dr6(dbregs->dr[6]);
1743		load_dr7(dbregs->dr[7]);
1744	} else {
1745		/*
1746		 * Don't let an illegal value for dr7 get set.  Specifically,
1747		 * check for undefined settings.  Setting these bit patterns
1748		 * result in undefined behaviour and can lead to an unexpected
1749		 * TRCTRAP or a general protection fault right here.
1750		 * Upper bits of dr6 and dr7 must not be set
1751		 */
1752		for (i = 0; i < 4; i++) {
1753			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
1754				return (EINVAL);
1755			if (td->td_frame->tf_cs == _ucode32sel &&
1756			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
1757				return (EINVAL);
1758		}
1759		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
1760		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
1761			return (EINVAL);
1762
1763		pcb = td->td_pcb;
1764
1765		/*
1766		 * Don't let a process set a breakpoint that is not within the
1767		 * process's address space.  If a process could do this, it
1768		 * could halt the system by setting a breakpoint in the kernel
1769		 * (if ddb was enabled).  Thus, we need to check to make sure
1770		 * that no breakpoints are being enabled for addresses outside
1771		 * process's address space.
1772		 *
1773		 * XXX - what about when the watched area of the user's
1774		 * address space is written into from within the kernel
1775		 * ... wouldn't that still cause a breakpoint to be generated
1776		 * from within kernel mode?
1777		 */
1778
1779		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
1780			/* dr0 is enabled */
1781			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
1782				return (EINVAL);
1783		}
1784		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
1785			/* dr1 is enabled */
1786			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
1787				return (EINVAL);
1788		}
1789		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
1790			/* dr2 is enabled */
1791			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
1792				return (EINVAL);
1793		}
1794		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
1795			/* dr3 is enabled */
1796			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
1797				return (EINVAL);
1798		}
1799
1800		pcb->pcb_dr0 = dbregs->dr[0];
1801		pcb->pcb_dr1 = dbregs->dr[1];
1802		pcb->pcb_dr2 = dbregs->dr[2];
1803		pcb->pcb_dr3 = dbregs->dr[3];
1804		pcb->pcb_dr6 = dbregs->dr[6];
1805		pcb->pcb_dr7 = dbregs->dr[7];
1806
1807		pcb->pcb_flags |= PCB_DBREGS;
1808	}
1809
1810	return (0);
1811}
1812
1813void
1814reset_dbregs(void)
1815{
1816
1817	load_dr7(0);	/* Turn off the control bits first */
1818	load_dr0(0);
1819	load_dr1(0);
1820	load_dr2(0);
1821	load_dr3(0);
1822	load_dr6(0);
1823}
1824
1825/*
1826 * Return > 0 if a hardware breakpoint has been hit, and the
1827 * breakpoint was in user space.  Return 0, otherwise.
1828 */
1829int
1830user_dbreg_trap(void)
1831{
1832        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
1833        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
1834        int nbp;            /* number of breakpoints that triggered */
1835        caddr_t addr[4];    /* breakpoint addresses */
1836        int i;
1837
1838        dr7 = rdr7();
1839        if ((dr7 & 0x000000ff) == 0) {
1840                /*
1841                 * all GE and LE bits in the dr7 register are zero,
1842                 * thus the trap couldn't have been caused by the
1843                 * hardware debug registers
1844                 */
1845                return 0;
1846        }
1847
1848        nbp = 0;
1849        dr6 = rdr6();
1850        bp = dr6 & 0x0000000f;
1851
1852        if (!bp) {
1853                /*
1854                 * None of the breakpoint bits are set meaning this
1855                 * trap was not caused by any of the debug registers
1856                 */
1857                return 0;
1858        }
1859
1860        /*
1861         * at least one of the breakpoints were hit, check to see
1862         * which ones and if any of them are user space addresses
1863         */
1864
1865        if (bp & 0x01) {
1866                addr[nbp++] = (caddr_t)rdr0();
1867        }
1868        if (bp & 0x02) {
1869                addr[nbp++] = (caddr_t)rdr1();
1870        }
1871        if (bp & 0x04) {
1872                addr[nbp++] = (caddr_t)rdr2();
1873        }
1874        if (bp & 0x08) {
1875                addr[nbp++] = (caddr_t)rdr3();
1876        }
1877
1878        for (i = 0; i < nbp; i++) {
1879                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
1880                        /*
1881                         * addr[i] is in user space
1882                         */
1883                        return nbp;
1884                }
1885        }
1886
1887        /*
1888         * None of the breakpoints are in user space.
1889         */
1890        return 0;
1891}
1892
1893#ifdef KDB
1894
1895/*
1896 * Provide inb() and outb() as functions.  They are normally only
1897 * available as macros calling inlined functions, thus cannot be
1898 * called from the debugger.
1899 *
1900 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1901 */
1902
1903#undef inb
1904#undef outb
1905
1906/* silence compiler warnings */
1907u_char inb(u_int);
1908void outb(u_int, u_char);
1909
1910u_char
1911inb(u_int port)
1912{
1913	u_char	data;
1914	/*
1915	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1916	 * %edx, while gcc generates inferior code (movw instead of movl)
1917	 * if we tell it to load (u_short) port.
1918	 */
1919	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1920	return (data);
1921}
1922
1923void
1924outb(u_int port, u_char data)
1925{
1926	u_char	al;
1927	/*
1928	 * Use an unnecessary assignment to help gcc's register allocator.
1929	 * This make a large difference for gcc-1.40 and a tiny difference
1930	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1931	 * best results.  gcc-2.6.0 can't handle this.
1932	 */
1933	al = data;
1934	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1935}
1936
1937#endif /* KDB */
1938