machdep.c revision 170307
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 170307 2007-06-05 00:00:57Z jeff $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_msgbuf.h"
55#include "opt_perfmon.h"
56
57#include <sys/param.h>
58#include <sys/proc.h>
59#include <sys/systm.h>
60#include <sys/bio.h>
61#include <sys/buf.h>
62#include <sys/bus.h>
63#include <sys/callout.h>
64#include <sys/clock.h>
65#include <sys/cons.h>
66#include <sys/cpu.h>
67#include <sys/eventhandler.h>
68#include <sys/exec.h>
69#include <sys/imgact.h>
70#include <sys/kdb.h>
71#include <sys/kernel.h>
72#include <sys/ktr.h>
73#include <sys/linker.h>
74#include <sys/lock.h>
75#include <sys/malloc.h>
76#include <sys/memrange.h>
77#include <sys/msgbuf.h>
78#include <sys/mutex.h>
79#include <sys/pcpu.h>
80#include <sys/ptrace.h>
81#include <sys/reboot.h>
82#include <sys/sched.h>
83#include <sys/signalvar.h>
84#include <sys/sysctl.h>
85#include <sys/sysent.h>
86#include <sys/sysproto.h>
87#include <sys/ucontext.h>
88#include <sys/vmmeter.h>
89
90#include <vm/vm.h>
91#include <vm/vm_extern.h>
92#include <vm/vm_kern.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_object.h>
96#include <vm/vm_pager.h>
97#include <vm/vm_param.h>
98
99#ifdef DDB
100#ifndef KDB
101#error KDB must be enabled in order for DDB to work!
102#endif
103#endif
104#include <ddb/ddb.h>
105
106#include <net/netisr.h>
107
108#include <machine/clock.h>
109#include <machine/cpu.h>
110#include <machine/cputypes.h>
111#include <machine/intr_machdep.h>
112#include <machine/md_var.h>
113#include <machine/metadata.h>
114#include <machine/pc/bios.h>
115#include <machine/pcb.h>
116#include <machine/proc.h>
117#include <machine/reg.h>
118#include <machine/sigframe.h>
119#include <machine/specialreg.h>
120#ifdef PERFMON
121#include <machine/perfmon.h>
122#endif
123#include <machine/tss.h>
124#ifdef SMP
125#include <machine/smp.h>
126#endif
127
128#ifdef DEV_ATPIC
129#include <amd64/isa/icu.h>
130#else
131#include <machine/apicvar.h>
132#endif
133
134#include <isa/isareg.h>
135#include <isa/rtc.h>
136
137/* Sanity check for __curthread() */
138CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
139
140extern u_int64_t hammer_time(u_int64_t, u_int64_t);
141extern void dblfault_handler(void);
142
143extern void printcpuinfo(void);	/* XXX header file */
144extern void identify_cpu(void);
145extern void panicifcpuunsupported(void);
146
147#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
148#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
149
150static void cpu_startup(void *);
151static void get_fpcontext(struct thread *td, mcontext_t *mcp);
152static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
153SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
154
155#ifdef DDB
156extern vm_offset_t ksym_start, ksym_end;
157#endif
158
159int	_udatasel, _ucodesel, _ucode32sel;
160
161int cold = 1;
162
163long Maxmem = 0;
164long realmem = 0;
165
166/*
167 * The number of PHYSMAP entries must be one less than the number of
168 * PHYSSEG entries because the PHYSMAP entry that spans the largest
169 * physical address that is accessible by ISA DMA is split into two
170 * PHYSSEG entries.
171 */
172#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
173
174vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
175vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
176
177/* must be 2 less so 0 0 can signal end of chunks */
178#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
179#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
180
181struct kva_md_info kmi;
182
183static struct trapframe proc0_tf;
184struct region_descriptor r_gdt, r_idt;
185
186struct pcpu __pcpu[MAXCPU];
187
188struct mtx icu_lock;
189
190struct mem_range_softc mem_range_softc;
191
192static void
193cpu_startup(dummy)
194	void *dummy;
195{
196	/*
197	 * Good {morning,afternoon,evening,night}.
198	 */
199	startrtclock();
200	printcpuinfo();
201	panicifcpuunsupported();
202#ifdef PERFMON
203	perfmon_init();
204#endif
205	printf("usable memory = %ju (%ju MB)\n", ptoa((uintmax_t)physmem),
206	    ptoa((uintmax_t)physmem) / 1048576);
207	realmem = Maxmem;
208	/*
209	 * Display any holes after the first chunk of extended memory.
210	 */
211	if (bootverbose) {
212		int indx;
213
214		printf("Physical memory chunk(s):\n");
215		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
216			vm_paddr_t size;
217
218			size = phys_avail[indx + 1] - phys_avail[indx];
219			printf(
220			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
221			    (uintmax_t)phys_avail[indx],
222			    (uintmax_t)phys_avail[indx + 1] - 1,
223			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
224		}
225	}
226
227	vm_ksubmap_init(&kmi);
228
229	printf("avail memory  = %ju (%ju MB)\n",
230	    ptoa((uintmax_t)cnt.v_free_count),
231	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
232
233	/*
234	 * Set up buffers, so they can be used to read disk labels.
235	 */
236	bufinit();
237	vm_pager_bufferinit();
238
239	cpu_setregs();
240}
241
242/*
243 * Send an interrupt to process.
244 *
245 * Stack is set up to allow sigcode stored
246 * at top to call routine, followed by kcall
247 * to sigreturn routine below.  After sigreturn
248 * resets the signal mask, the stack, and the
249 * frame pointer, it returns to the user
250 * specified pc, psl.
251 */
252void
253sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
254{
255	struct sigframe sf, *sfp;
256	struct proc *p;
257	struct thread *td;
258	struct sigacts *psp;
259	char *sp;
260	struct trapframe *regs;
261	int sig;
262	int oonstack;
263
264	td = curthread;
265	p = td->td_proc;
266	PROC_LOCK_ASSERT(p, MA_OWNED);
267	sig = ksi->ksi_signo;
268	psp = p->p_sigacts;
269	mtx_assert(&psp->ps_mtx, MA_OWNED);
270	regs = td->td_frame;
271	oonstack = sigonstack(regs->tf_rsp);
272
273	/* Save user context. */
274	bzero(&sf, sizeof(sf));
275	sf.sf_uc.uc_sigmask = *mask;
276	sf.sf_uc.uc_stack = td->td_sigstk;
277	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
278	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
279	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
280	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
281	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
282	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
283	fpstate_drop(td);
284
285	/* Allocate space for the signal handler context. */
286	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
287	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
288		sp = td->td_sigstk.ss_sp +
289		    td->td_sigstk.ss_size - sizeof(struct sigframe);
290#if defined(COMPAT_43)
291		td->td_sigstk.ss_flags |= SS_ONSTACK;
292#endif
293	} else
294		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
295	/* Align to 16 bytes. */
296	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
297
298	/* Translate the signal if appropriate. */
299	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
300		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
301
302	/* Build the argument list for the signal handler. */
303	regs->tf_rdi = sig;			/* arg 1 in %rdi */
304	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
305	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
306		/* Signal handler installed with SA_SIGINFO. */
307		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
308		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
309
310		/* Fill in POSIX parts */
311		sf.sf_si = ksi->ksi_info;
312		sf.sf_si.si_signo = sig; /* maybe a translated signal */
313		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
314	} else {
315		/* Old FreeBSD-style arguments. */
316		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
317		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
318		sf.sf_ahu.sf_handler = catcher;
319	}
320	mtx_unlock(&psp->ps_mtx);
321	PROC_UNLOCK(p);
322
323	/*
324	 * Copy the sigframe out to the user's stack.
325	 */
326	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
327#ifdef DEBUG
328		printf("process %ld has trashed its stack\n", (long)p->p_pid);
329#endif
330		PROC_LOCK(p);
331		sigexit(td, SIGILL);
332	}
333
334	regs->tf_rsp = (long)sfp;
335	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
336	regs->tf_rflags &= ~PSL_T;
337	regs->tf_cs = _ucodesel;
338	PROC_LOCK(p);
339	mtx_lock(&psp->ps_mtx);
340}
341
342/*
343 * System call to cleanup state after a signal
344 * has been taken.  Reset signal mask and
345 * stack state from context left by sendsig (above).
346 * Return to previous pc and psl as specified by
347 * context left by sendsig. Check carefully to
348 * make sure that the user has not modified the
349 * state to gain improper privileges.
350 *
351 * MPSAFE
352 */
353int
354sigreturn(td, uap)
355	struct thread *td;
356	struct sigreturn_args /* {
357		const struct __ucontext *sigcntxp;
358	} */ *uap;
359{
360	ucontext_t uc;
361	struct proc *p = td->td_proc;
362	struct trapframe *regs;
363	const ucontext_t *ucp;
364	long rflags;
365	int cs, error, ret;
366	ksiginfo_t ksi;
367
368	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
369	if (error != 0)
370		return (error);
371	ucp = &uc;
372	regs = td->td_frame;
373	rflags = ucp->uc_mcontext.mc_rflags;
374	/*
375	 * Don't allow users to change privileged or reserved flags.
376	 */
377	/*
378	 * XXX do allow users to change the privileged flag PSL_RF.
379	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
380	 * should sometimes set it there too.  tf_rflags is kept in
381	 * the signal context during signal handling and there is no
382	 * other place to remember it, so the PSL_RF bit may be
383	 * corrupted by the signal handler without us knowing.
384	 * Corruption of the PSL_RF bit at worst causes one more or
385	 * one less debugger trap, so allowing it is fairly harmless.
386	 */
387	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
388		printf("sigreturn: rflags = 0x%lx\n", rflags);
389		return (EINVAL);
390	}
391
392	/*
393	 * Don't allow users to load a valid privileged %cs.  Let the
394	 * hardware check for invalid selectors, excess privilege in
395	 * other selectors, invalid %eip's and invalid %esp's.
396	 */
397	cs = ucp->uc_mcontext.mc_cs;
398	if (!CS_SECURE(cs)) {
399		printf("sigreturn: cs = 0x%x\n", cs);
400		ksiginfo_init_trap(&ksi);
401		ksi.ksi_signo = SIGBUS;
402		ksi.ksi_code = BUS_OBJERR;
403		ksi.ksi_trapno = T_PROTFLT;
404		ksi.ksi_addr = (void *)regs->tf_rip;
405		trapsignal(td, &ksi);
406		return (EINVAL);
407	}
408
409	ret = set_fpcontext(td, &ucp->uc_mcontext);
410	if (ret != 0)
411		return (ret);
412	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
413
414	PROC_LOCK(p);
415#if defined(COMPAT_43)
416	if (ucp->uc_mcontext.mc_onstack & 1)
417		td->td_sigstk.ss_flags |= SS_ONSTACK;
418	else
419		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
420#endif
421
422	td->td_sigmask = ucp->uc_sigmask;
423	SIG_CANTMASK(td->td_sigmask);
424	signotify(td);
425	PROC_UNLOCK(p);
426	td->td_pcb->pcb_flags |= PCB_FULLCTX;
427	return (EJUSTRETURN);
428}
429
430#ifdef COMPAT_FREEBSD4
431int
432freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
433{
434
435	return sigreturn(td, (struct sigreturn_args *)uap);
436}
437#endif
438
439
440/*
441 * Machine dependent boot() routine
442 *
443 * I haven't seen anything to put here yet
444 * Possibly some stuff might be grafted back here from boot()
445 */
446void
447cpu_boot(int howto)
448{
449}
450
451/* Get current clock frequency for the given cpu id. */
452int
453cpu_est_clockrate(int cpu_id, uint64_t *rate)
454{
455	register_t reg;
456	uint64_t tsc1, tsc2;
457
458	if (pcpu_find(cpu_id) == NULL || rate == NULL)
459		return (EINVAL);
460
461	/* If we're booting, trust the rate calibrated moments ago. */
462	if (cold) {
463		*rate = tsc_freq;
464		return (0);
465	}
466
467#ifdef SMP
468	/* Schedule ourselves on the indicated cpu. */
469	thread_lock(curthread);
470	sched_bind(curthread, cpu_id);
471	thread_unlock(curthread);
472#endif
473
474	/* Calibrate by measuring a short delay. */
475	reg = intr_disable();
476	tsc1 = rdtsc();
477	DELAY(1000);
478	tsc2 = rdtsc();
479	intr_restore(reg);
480
481#ifdef SMP
482	thread_lock(curthread);
483	sched_unbind(curthread);
484	thread_unlock(curthread);
485#endif
486
487	/*
488	 * Calculate the difference in readings, convert to Mhz, and
489	 * subtract 0.5% of the total.  Empirical testing has shown that
490	 * overhead in DELAY() works out to approximately this value.
491	 */
492	tsc2 -= tsc1;
493	*rate = tsc2 * 1000 - tsc2 * 5;
494	return (0);
495}
496
497/*
498 * Shutdown the CPU as much as possible
499 */
500void
501cpu_halt(void)
502{
503	for (;;)
504		__asm__ ("hlt");
505}
506
507/*
508 * Hook to idle the CPU when possible.  In the SMP case we default to
509 * off because a halted cpu will not currently pick up a new thread in the
510 * run queue until the next timer tick.  If turned on this will result in
511 * approximately a 4.2% loss in real time performance in buildworld tests
512 * (but improves user and sys times oddly enough), and saves approximately
513 * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
514 *
515 * XXX we need to have a cpu mask of idle cpus and generate an IPI or
516 * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
517 * Then we can have our cake and eat it too.
518 *
519 * XXX I'm turning it on for SMP as well by default for now.  It seems to
520 * help lock contention somewhat, and this is critical for HTT. -Peter
521 */
522static int	cpu_idle_hlt = 1;
523TUNABLE_INT("machdep.cpu_idle_hlt", &cpu_idle_hlt);
524SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
525    &cpu_idle_hlt, 0, "Idle loop HLT enable");
526
527static void
528cpu_idle_default(void)
529{
530	/*
531	 * we must absolutely guarentee that hlt is the
532	 * absolute next instruction after sti or we
533	 * introduce a timing window.
534	 */
535	__asm __volatile("sti; hlt");
536}
537
538/*
539 * Note that we have to be careful here to avoid a race between checking
540 * sched_runnable() and actually halting.  If we don't do this, we may waste
541 * the time between calling hlt and the next interrupt even though there
542 * is a runnable process.
543 */
544void
545cpu_idle(void)
546{
547
548#ifdef SMP
549	if (mp_grab_cpu_hlt())
550		return;
551#endif
552	if (cpu_idle_hlt) {
553		disable_intr();
554  		if (sched_runnable())
555			enable_intr();
556		else
557			(*cpu_idle_hook)();
558	}
559}
560
561/* Other subsystems (e.g., ACPI) can hook this later. */
562void (*cpu_idle_hook)(void) = cpu_idle_default;
563
564/*
565 * Clear registers on exec
566 */
567void
568exec_setregs(td, entry, stack, ps_strings)
569	struct thread *td;
570	u_long entry;
571	u_long stack;
572	u_long ps_strings;
573{
574	struct trapframe *regs = td->td_frame;
575	struct pcb *pcb = td->td_pcb;
576
577	critical_enter();
578	wrmsr(MSR_FSBASE, 0);
579	wrmsr(MSR_KGSBASE, 0);	/* User value while we're in the kernel */
580	pcb->pcb_fsbase = 0;
581	pcb->pcb_gsbase = 0;
582	critical_exit();
583	load_ds(_udatasel);
584	load_es(_udatasel);
585	load_fs(_udatasel);
586	load_gs(_udatasel);
587	pcb->pcb_ds = _udatasel;
588	pcb->pcb_es = _udatasel;
589	pcb->pcb_fs = _udatasel;
590	pcb->pcb_gs = _udatasel;
591
592	bzero((char *)regs, sizeof(struct trapframe));
593	regs->tf_rip = entry;
594	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
595	regs->tf_rdi = stack;		/* argv */
596	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
597	regs->tf_ss = _udatasel;
598	regs->tf_cs = _ucodesel;
599
600	/*
601	 * Reset the hardware debug registers if they were in use.
602	 * They won't have any meaning for the newly exec'd process.
603	 */
604	if (pcb->pcb_flags & PCB_DBREGS) {
605		pcb->pcb_dr0 = 0;
606		pcb->pcb_dr1 = 0;
607		pcb->pcb_dr2 = 0;
608		pcb->pcb_dr3 = 0;
609		pcb->pcb_dr6 = 0;
610		pcb->pcb_dr7 = 0;
611		if (pcb == PCPU_GET(curpcb)) {
612			/*
613			 * Clear the debug registers on the running
614			 * CPU, otherwise they will end up affecting
615			 * the next process we switch to.
616			 */
617			reset_dbregs();
618		}
619		pcb->pcb_flags &= ~PCB_DBREGS;
620	}
621
622	/*
623	 * Drop the FP state if we hold it, so that the process gets a
624	 * clean FP state if it uses the FPU again.
625	 */
626	fpstate_drop(td);
627}
628
629void
630cpu_setregs(void)
631{
632	register_t cr0;
633
634	cr0 = rcr0();
635	/*
636	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
637	 * BSP.  See the comments there about why we set them.
638	 */
639	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
640	load_cr0(cr0);
641}
642
643/*
644 * Initialize amd64 and configure to run kernel
645 */
646
647/*
648 * Initialize segments & interrupt table
649 */
650
651struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor table */
652static struct gate_descriptor idt0[NIDT];
653struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
654
655static char dblfault_stack[PAGE_SIZE] __aligned(16);
656
657struct amd64tss common_tss[MAXCPU];
658
659/* software prototypes -- in more palatable form */
660struct soft_segment_descriptor gdt_segs[] = {
661/* GNULL_SEL	0 Null Descriptor */
662{	0x0,			/* segment base address  */
663	0x0,			/* length */
664	0,			/* segment type */
665	0,			/* segment descriptor priority level */
666	0,			/* segment descriptor present */
667	0,			/* long */
668	0,			/* default 32 vs 16 bit size */
669	0  			/* limit granularity (byte/page units)*/ },
670/* GCODE_SEL	1 Code Descriptor for kernel */
671{	0x0,			/* segment base address  */
672	0xfffff,		/* length - all address space */
673	SDT_MEMERA,		/* segment type */
674	SEL_KPL,		/* segment descriptor priority level */
675	1,			/* segment descriptor present */
676	1,			/* long */
677	0,			/* default 32 vs 16 bit size */
678	1  			/* limit granularity (byte/page units)*/ },
679/* GDATA_SEL	2 Data Descriptor for kernel */
680{	0x0,			/* segment base address  */
681	0xfffff,		/* length - all address space */
682	SDT_MEMRWA,		/* segment type */
683	SEL_KPL,		/* segment descriptor priority level */
684	1,			/* segment descriptor present */
685	1,			/* long */
686	0,			/* default 32 vs 16 bit size */
687	1  			/* limit granularity (byte/page units)*/ },
688/* GUCODE32_SEL	3 32 bit Code Descriptor for user */
689{	0x0,			/* segment base address  */
690	0xfffff,		/* length - all address space */
691	SDT_MEMERA,		/* segment type */
692	SEL_UPL,		/* segment descriptor priority level */
693	1,			/* segment descriptor present */
694	0,			/* long */
695	1,			/* default 32 vs 16 bit size */
696	1  			/* limit granularity (byte/page units)*/ },
697/* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
698{	0x0,			/* segment base address  */
699	0xfffff,		/* length - all address space */
700	SDT_MEMRWA,		/* segment type */
701	SEL_UPL,		/* segment descriptor priority level */
702	1,			/* segment descriptor present */
703	0,			/* long */
704	1,			/* default 32 vs 16 bit size */
705	1  			/* limit granularity (byte/page units)*/ },
706/* GUCODE_SEL	5 64 bit Code Descriptor for user */
707{	0x0,			/* segment base address  */
708	0xfffff,		/* length - all address space */
709	SDT_MEMERA,		/* segment type */
710	SEL_UPL,		/* segment descriptor priority level */
711	1,			/* segment descriptor present */
712	1,			/* long */
713	0,			/* default 32 vs 16 bit size */
714	1  			/* limit granularity (byte/page units)*/ },
715/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
716{
717	0x0,			/* segment base address */
718	sizeof(struct amd64tss)-1,/* length - all address space */
719	SDT_SYSTSS,		/* segment type */
720	SEL_KPL,		/* segment descriptor priority level */
721	1,			/* segment descriptor present */
722	0,			/* long */
723	0,			/* unused - default 32 vs 16 bit size */
724	0  			/* limit granularity (byte/page units)*/ },
725/* Actually, the TSS is a system descriptor which is double size */
726{	0x0,			/* segment base address  */
727	0x0,			/* length */
728	0,			/* segment type */
729	0,			/* segment descriptor priority level */
730	0,			/* segment descriptor present */
731	0,			/* long */
732	0,			/* default 32 vs 16 bit size */
733	0  			/* limit granularity (byte/page units)*/ },
734/* GUGS32_SEL	8 32 bit GS Descriptor for user */
735{	0x0,			/* segment base address  */
736	0xfffff,		/* length - all address space */
737	SDT_MEMRWA,		/* segment type */
738	SEL_UPL,		/* segment descriptor priority level */
739	1,			/* segment descriptor present */
740	0,			/* long */
741	1,			/* default 32 vs 16 bit size */
742	1  			/* limit granularity (byte/page units)*/ },
743};
744
745void
746setidt(idx, func, typ, dpl, ist)
747	int idx;
748	inthand_t *func;
749	int typ;
750	int dpl;
751	int ist;
752{
753	struct gate_descriptor *ip;
754
755	ip = idt + idx;
756	ip->gd_looffset = (uintptr_t)func;
757	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
758	ip->gd_ist = ist;
759	ip->gd_xx = 0;
760	ip->gd_type = typ;
761	ip->gd_dpl = dpl;
762	ip->gd_p = 1;
763	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
764}
765
766extern inthand_t
767	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
768	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
769	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
770	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
771	IDTVEC(xmm), IDTVEC(dblfault),
772	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
773
774void
775sdtossd(sd, ssd)
776	struct user_segment_descriptor *sd;
777	struct soft_segment_descriptor *ssd;
778{
779
780	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
781	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
782	ssd->ssd_type  = sd->sd_type;
783	ssd->ssd_dpl   = sd->sd_dpl;
784	ssd->ssd_p     = sd->sd_p;
785	ssd->ssd_long  = sd->sd_long;
786	ssd->ssd_def32 = sd->sd_def32;
787	ssd->ssd_gran  = sd->sd_gran;
788}
789
790void
791ssdtosd(ssd, sd)
792	struct soft_segment_descriptor *ssd;
793	struct user_segment_descriptor *sd;
794{
795
796	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
797	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
798	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
799	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
800	sd->sd_type  = ssd->ssd_type;
801	sd->sd_dpl   = ssd->ssd_dpl;
802	sd->sd_p     = ssd->ssd_p;
803	sd->sd_long  = ssd->ssd_long;
804	sd->sd_def32 = ssd->ssd_def32;
805	sd->sd_gran  = ssd->ssd_gran;
806}
807
808void
809ssdtosyssd(ssd, sd)
810	struct soft_segment_descriptor *ssd;
811	struct system_segment_descriptor *sd;
812{
813
814	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
815	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
816	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
817	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
818	sd->sd_type  = ssd->ssd_type;
819	sd->sd_dpl   = ssd->ssd_dpl;
820	sd->sd_p     = ssd->ssd_p;
821	sd->sd_gran  = ssd->ssd_gran;
822}
823
824#if !defined(DEV_ATPIC) && defined(DEV_ISA)
825#include <isa/isavar.h>
826u_int
827isa_irq_pending(void)
828{
829
830	return (0);
831}
832#endif
833
834u_int basemem;
835
836/*
837 * Populate the (physmap) array with base/bound pairs describing the
838 * available physical memory in the system, then test this memory and
839 * build the phys_avail array describing the actually-available memory.
840 *
841 * If we cannot accurately determine the physical memory map, then use
842 * value from the 0xE801 call, and failing that, the RTC.
843 *
844 * Total memory size may be set by the kernel environment variable
845 * hw.physmem or the compile-time define MAXMEM.
846 *
847 * XXX first should be vm_paddr_t.
848 */
849static void
850getmemsize(caddr_t kmdp, u_int64_t first)
851{
852	int i, off, physmap_idx, pa_indx, da_indx;
853	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
854	u_long physmem_tunable;
855	pt_entry_t *pte;
856	struct bios_smap *smapbase, *smap, *smapend;
857	u_int32_t smapsize;
858	quad_t dcons_addr, dcons_size;
859
860	bzero(physmap, sizeof(physmap));
861	basemem = 0;
862	physmap_idx = 0;
863
864	/*
865	 * get memory map from INT 15:E820, kindly supplied by the loader.
866	 *
867	 * subr_module.c says:
868	 * "Consumer may safely assume that size value precedes data."
869	 * ie: an int32_t immediately precedes smap.
870	 */
871	smapbase = (struct bios_smap *)preload_search_info(kmdp,
872	    MODINFO_METADATA | MODINFOMD_SMAP);
873	if (smapbase == NULL)
874		panic("No BIOS smap info from loader!");
875
876	smapsize = *((u_int32_t *)smapbase - 1);
877	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
878
879	for (smap = smapbase; smap < smapend; smap++) {
880		if (boothowto & RB_VERBOSE)
881			printf("SMAP type=%02x base=%016lx len=%016lx\n",
882			    smap->type, smap->base, smap->length);
883
884		if (smap->type != 0x01)
885			continue;
886
887		if (smap->length == 0)
888			continue;
889
890		for (i = 0; i <= physmap_idx; i += 2) {
891			if (smap->base < physmap[i + 1]) {
892				if (boothowto & RB_VERBOSE)
893					printf(
894	"Overlapping or non-monotonic memory region, ignoring second region\n");
895				continue;
896			}
897		}
898
899		if (smap->base == physmap[physmap_idx + 1]) {
900			physmap[physmap_idx + 1] += smap->length;
901			continue;
902		}
903
904		physmap_idx += 2;
905		if (physmap_idx == PHYSMAP_SIZE) {
906			printf(
907		"Too many segments in the physical address map, giving up\n");
908			break;
909		}
910		physmap[physmap_idx] = smap->base;
911		physmap[physmap_idx + 1] = smap->base + smap->length;
912	}
913
914	/*
915	 * Find the 'base memory' segment for SMP
916	 */
917	basemem = 0;
918	for (i = 0; i <= physmap_idx; i += 2) {
919		if (physmap[i] == 0x00000000) {
920			basemem = physmap[i + 1] / 1024;
921			break;
922		}
923	}
924	if (basemem == 0)
925		panic("BIOS smap did not include a basemem segment!");
926
927#ifdef SMP
928	/* make hole for AP bootstrap code */
929	physmap[1] = mp_bootaddress(physmap[1] / 1024);
930#endif
931
932	/*
933	 * Maxmem isn't the "maximum memory", it's one larger than the
934	 * highest page of the physical address space.  It should be
935	 * called something like "Maxphyspage".  We may adjust this
936	 * based on ``hw.physmem'' and the results of the memory test.
937	 */
938	Maxmem = atop(physmap[physmap_idx + 1]);
939
940#ifdef MAXMEM
941	Maxmem = MAXMEM / 4;
942#endif
943
944	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
945		Maxmem = atop(physmem_tunable);
946
947	/*
948	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
949	 * in the system.
950	 */
951	if (Maxmem > atop(physmap[physmap_idx + 1]))
952		Maxmem = atop(physmap[physmap_idx + 1]);
953
954	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
955	    (boothowto & RB_VERBOSE))
956		printf("Physical memory use set to %ldK\n", Maxmem * 4);
957
958	/* call pmap initialization to make new kernel address space */
959	pmap_bootstrap(&first);
960
961	/*
962	 * Size up each available chunk of physical memory.
963	 */
964	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
965	pa_indx = 0;
966	da_indx = 1;
967	phys_avail[pa_indx++] = physmap[0];
968	phys_avail[pa_indx] = physmap[0];
969	dump_avail[da_indx] = physmap[0];
970	pte = CMAP1;
971
972	/*
973	 * Get dcons buffer address
974	 */
975	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
976	    getenv_quad("dcons.size", &dcons_size) == 0)
977		dcons_addr = 0;
978
979	/*
980	 * physmap is in bytes, so when converting to page boundaries,
981	 * round up the start address and round down the end address.
982	 */
983	for (i = 0; i <= physmap_idx; i += 2) {
984		vm_paddr_t end;
985
986		end = ptoa((vm_paddr_t)Maxmem);
987		if (physmap[i + 1] < end)
988			end = trunc_page(physmap[i + 1]);
989		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
990			int tmp, page_bad, full;
991			int *ptr = (int *)CADDR1;
992
993			full = FALSE;
994			/*
995			 * block out kernel memory as not available.
996			 */
997			if (pa >= 0x100000 && pa < first)
998				goto do_dump_avail;
999
1000			/*
1001			 * block out dcons buffer
1002			 */
1003			if (dcons_addr > 0
1004			    && pa >= trunc_page(dcons_addr)
1005			    && pa < dcons_addr + dcons_size)
1006				goto do_dump_avail;
1007
1008			page_bad = FALSE;
1009
1010			/*
1011			 * map page into kernel: valid, read/write,non-cacheable
1012			 */
1013			*pte = pa | PG_V | PG_RW | PG_N;
1014			invltlb();
1015
1016			tmp = *(int *)ptr;
1017			/*
1018			 * Test for alternating 1's and 0's
1019			 */
1020			*(volatile int *)ptr = 0xaaaaaaaa;
1021			if (*(volatile int *)ptr != 0xaaaaaaaa)
1022				page_bad = TRUE;
1023			/*
1024			 * Test for alternating 0's and 1's
1025			 */
1026			*(volatile int *)ptr = 0x55555555;
1027			if (*(volatile int *)ptr != 0x55555555)
1028				page_bad = TRUE;
1029			/*
1030			 * Test for all 1's
1031			 */
1032			*(volatile int *)ptr = 0xffffffff;
1033			if (*(volatile int *)ptr != 0xffffffff)
1034				page_bad = TRUE;
1035			/*
1036			 * Test for all 0's
1037			 */
1038			*(volatile int *)ptr = 0x0;
1039			if (*(volatile int *)ptr != 0x0)
1040				page_bad = TRUE;
1041			/*
1042			 * Restore original value.
1043			 */
1044			*(int *)ptr = tmp;
1045
1046			/*
1047			 * Adjust array of valid/good pages.
1048			 */
1049			if (page_bad == TRUE)
1050				continue;
1051			/*
1052			 * If this good page is a continuation of the
1053			 * previous set of good pages, then just increase
1054			 * the end pointer. Otherwise start a new chunk.
1055			 * Note that "end" points one higher than end,
1056			 * making the range >= start and < end.
1057			 * If we're also doing a speculative memory
1058			 * test and we at or past the end, bump up Maxmem
1059			 * so that we keep going. The first bad page
1060			 * will terminate the loop.
1061			 */
1062			if (phys_avail[pa_indx] == pa) {
1063				phys_avail[pa_indx] += PAGE_SIZE;
1064			} else {
1065				pa_indx++;
1066				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1067					printf(
1068		"Too many holes in the physical address space, giving up\n");
1069					pa_indx--;
1070					full = TRUE;
1071					goto do_dump_avail;
1072				}
1073				phys_avail[pa_indx++] = pa;	/* start */
1074				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1075			}
1076			physmem++;
1077do_dump_avail:
1078			if (dump_avail[da_indx] == pa) {
1079				dump_avail[da_indx] += PAGE_SIZE;
1080			} else {
1081				da_indx++;
1082				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1083					da_indx--;
1084					goto do_next;
1085				}
1086				dump_avail[da_indx++] = pa; /* start */
1087				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1088			}
1089do_next:
1090			if (full)
1091				break;
1092		}
1093	}
1094	*pte = 0;
1095	invltlb();
1096
1097	/*
1098	 * XXX
1099	 * The last chunk must contain at least one page plus the message
1100	 * buffer to avoid complicating other code (message buffer address
1101	 * calculation, etc.).
1102	 */
1103	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1104	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1105		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1106		phys_avail[pa_indx--] = 0;
1107		phys_avail[pa_indx--] = 0;
1108	}
1109
1110	Maxmem = atop(phys_avail[pa_indx]);
1111
1112	/* Trim off space for the message buffer. */
1113	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1114
1115	/* Map the message buffer. */
1116	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1117		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
1118		    off);
1119}
1120
1121u_int64_t
1122hammer_time(u_int64_t modulep, u_int64_t physfree)
1123{
1124	caddr_t kmdp;
1125	int gsel_tss, x;
1126	struct pcpu *pc;
1127	u_int64_t msr;
1128	char *env;
1129
1130	thread0.td_kstack = physfree + KERNBASE;
1131	bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
1132	physfree += KSTACK_PAGES * PAGE_SIZE;
1133	thread0.td_pcb = (struct pcb *)
1134	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1135
1136	/*
1137 	 * This may be done better later if it gets more high level
1138 	 * components in it. If so just link td->td_proc here.
1139	 */
1140	proc_linkup(&proc0, &thread0);
1141
1142	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1143	preload_bootstrap_relocate(KERNBASE);
1144	kmdp = preload_search_by_type("elf kernel");
1145	if (kmdp == NULL)
1146		kmdp = preload_search_by_type("elf64 kernel");
1147	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1148	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1149#ifdef DDB
1150	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1151	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1152#endif
1153
1154	/* Init basic tunables, hz etc */
1155	init_param1();
1156
1157	/*
1158	 * make gdt memory segments
1159	 */
1160	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1161
1162	for (x = 0; x < NGDT; x++) {
1163		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1164			ssdtosd(&gdt_segs[x], &gdt[x]);
1165	}
1166	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1167	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1168
1169	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1170	r_gdt.rd_base =  (long) gdt;
1171	lgdt(&r_gdt);
1172	pc = &__pcpu[0];
1173
1174	wrmsr(MSR_FSBASE, 0);		/* User value */
1175	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1176	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1177
1178	pcpu_init(pc, 0, sizeof(struct pcpu));
1179	PCPU_SET(prvspace, pc);
1180	PCPU_SET(curthread, &thread0);
1181	PCPU_SET(curpcb, thread0.td_pcb);
1182	PCPU_SET(curtid, thread0.td_tid);
1183	PCPU_SET(tssp, &common_tss[0]);
1184
1185	/*
1186	 * Initialize mutexes.
1187	 *
1188	 * icu_lock: in order to allow an interrupt to occur in a critical
1189	 * 	     section, to set pcpu->ipending (etc...) properly, we
1190	 *	     must be able to get the icu lock, so it can't be
1191	 *	     under witness.
1192	 */
1193	mutex_init();
1194	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1195
1196	/* exceptions */
1197	for (x = 0; x < NIDT; x++)
1198		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1199	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1200	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1201	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
1202 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1203	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1204	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1205	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1206	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1207	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1208	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1209	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1210	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1211	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1212	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1213	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1214	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1215	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1216	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1217	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1218
1219	r_idt.rd_limit = sizeof(idt0) - 1;
1220	r_idt.rd_base = (long) idt;
1221	lidt(&r_idt);
1222
1223	/*
1224	 * Initialize the i8254 before the console so that console
1225	 * initialization can use DELAY().
1226	 */
1227	i8254_init();
1228
1229	/*
1230	 * Initialize the console before we print anything out.
1231	 */
1232	cninit();
1233
1234#ifdef DEV_ISA
1235#ifdef DEV_ATPIC
1236	elcr_probe();
1237	atpic_startup();
1238#else
1239	/* Reset and mask the atpics and leave them shut down. */
1240	atpic_reset();
1241
1242	/*
1243	 * Point the ICU spurious interrupt vectors at the APIC spurious
1244	 * interrupt handler.
1245	 */
1246	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1247	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1248#endif
1249#else
1250#error "have you forgotten the isa device?";
1251#endif
1252
1253	kdb_init();
1254
1255#ifdef KDB
1256	if (boothowto & RB_KDB)
1257		kdb_enter("Boot flags requested debugger");
1258#endif
1259
1260	identify_cpu();		/* Final stage of CPU initialization */
1261	initializecpu();	/* Initialize CPU registers */
1262
1263	/* make an initial tss so cpu can get interrupt stack on syscall! */
1264	common_tss[0].tss_rsp0 = thread0.td_kstack + \
1265	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1266	/* Ensure the stack is aligned to 16 bytes */
1267	common_tss[0].tss_rsp0 &= ~0xFul;
1268	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1269
1270	/* doublefault stack space, runs on ist1 */
1271	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1272
1273	/* Set the IO permission bitmap (empty due to tss seg limit) */
1274	common_tss[0].tss_iobase = sizeof(struct amd64tss);
1275
1276	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1277	ltr(gsel_tss);
1278
1279	/* Set up the fast syscall stuff */
1280	msr = rdmsr(MSR_EFER) | EFER_SCE;
1281	wrmsr(MSR_EFER, msr);
1282	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1283	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1284	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1285	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1286	wrmsr(MSR_STAR, msr);
1287	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1288
1289	getmemsize(kmdp, physfree);
1290	init_param2(physmem);
1291
1292	/* now running on new page tables, configured,and u/iom is accessible */
1293
1294	msgbufinit(msgbufp, MSGBUF_SIZE);
1295	fpuinit();
1296
1297	/* transfer to user mode */
1298
1299	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1300	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1301	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1302
1303	/* setup proc 0's pcb */
1304	thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
1305	thread0.td_pcb->pcb_cr3 = KPML4phys;
1306	thread0.td_frame = &proc0_tf;
1307
1308        env = getenv("kernelname");
1309	if (env != NULL)
1310		strlcpy(kernelname, env, sizeof(kernelname));
1311
1312	/* Location of kernel stack for locore */
1313	return ((u_int64_t)thread0.td_pcb);
1314}
1315
1316void
1317cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1318{
1319
1320	pcpu->pc_acpi_id = 0xffffffff;
1321}
1322
1323void
1324spinlock_enter(void)
1325{
1326	struct thread *td;
1327
1328	td = curthread;
1329	if (td->td_md.md_spinlock_count == 0)
1330		td->td_md.md_saved_flags = intr_disable();
1331	td->td_md.md_spinlock_count++;
1332	critical_enter();
1333}
1334
1335void
1336spinlock_exit(void)
1337{
1338	struct thread *td;
1339
1340	td = curthread;
1341	critical_exit();
1342	td->td_md.md_spinlock_count--;
1343	if (td->td_md.md_spinlock_count == 0)
1344		intr_restore(td->td_md.md_saved_flags);
1345}
1346
1347/*
1348 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1349 * we want to start a backtrace from the function that caused us to enter
1350 * the debugger. We have the context in the trapframe, but base the trace
1351 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1352 * enough for a backtrace.
1353 */
1354void
1355makectx(struct trapframe *tf, struct pcb *pcb)
1356{
1357
1358	pcb->pcb_r12 = tf->tf_r12;
1359	pcb->pcb_r13 = tf->tf_r13;
1360	pcb->pcb_r14 = tf->tf_r14;
1361	pcb->pcb_r15 = tf->tf_r15;
1362	pcb->pcb_rbp = tf->tf_rbp;
1363	pcb->pcb_rbx = tf->tf_rbx;
1364	pcb->pcb_rip = tf->tf_rip;
1365	pcb->pcb_rsp = (ISPL(tf->tf_cs)) ? tf->tf_rsp : (long)(tf + 1) - 8;
1366}
1367
1368int
1369ptrace_set_pc(struct thread *td, unsigned long addr)
1370{
1371	td->td_frame->tf_rip = addr;
1372	return (0);
1373}
1374
1375int
1376ptrace_single_step(struct thread *td)
1377{
1378	td->td_frame->tf_rflags |= PSL_T;
1379	return (0);
1380}
1381
1382int
1383ptrace_clear_single_step(struct thread *td)
1384{
1385	td->td_frame->tf_rflags &= ~PSL_T;
1386	return (0);
1387}
1388
1389int
1390fill_regs(struct thread *td, struct reg *regs)
1391{
1392	struct trapframe *tp;
1393
1394	tp = td->td_frame;
1395	regs->r_r15 = tp->tf_r15;
1396	regs->r_r14 = tp->tf_r14;
1397	regs->r_r13 = tp->tf_r13;
1398	regs->r_r12 = tp->tf_r12;
1399	regs->r_r11 = tp->tf_r11;
1400	regs->r_r10 = tp->tf_r10;
1401	regs->r_r9  = tp->tf_r9;
1402	regs->r_r8  = tp->tf_r8;
1403	regs->r_rdi = tp->tf_rdi;
1404	regs->r_rsi = tp->tf_rsi;
1405	regs->r_rbp = tp->tf_rbp;
1406	regs->r_rbx = tp->tf_rbx;
1407	regs->r_rdx = tp->tf_rdx;
1408	regs->r_rcx = tp->tf_rcx;
1409	regs->r_rax = tp->tf_rax;
1410	regs->r_rip = tp->tf_rip;
1411	regs->r_cs = tp->tf_cs;
1412	regs->r_rflags = tp->tf_rflags;
1413	regs->r_rsp = tp->tf_rsp;
1414	regs->r_ss = tp->tf_ss;
1415	return (0);
1416}
1417
1418int
1419set_regs(struct thread *td, struct reg *regs)
1420{
1421	struct trapframe *tp;
1422	register_t rflags;
1423
1424	tp = td->td_frame;
1425	rflags = regs->r_rflags & 0xffffffff;
1426	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1427		return (EINVAL);
1428	tp->tf_r15 = regs->r_r15;
1429	tp->tf_r14 = regs->r_r14;
1430	tp->tf_r13 = regs->r_r13;
1431	tp->tf_r12 = regs->r_r12;
1432	tp->tf_r11 = regs->r_r11;
1433	tp->tf_r10 = regs->r_r10;
1434	tp->tf_r9  = regs->r_r9;
1435	tp->tf_r8  = regs->r_r8;
1436	tp->tf_rdi = regs->r_rdi;
1437	tp->tf_rsi = regs->r_rsi;
1438	tp->tf_rbp = regs->r_rbp;
1439	tp->tf_rbx = regs->r_rbx;
1440	tp->tf_rdx = regs->r_rdx;
1441	tp->tf_rcx = regs->r_rcx;
1442	tp->tf_rax = regs->r_rax;
1443	tp->tf_rip = regs->r_rip;
1444	tp->tf_cs = regs->r_cs;
1445	tp->tf_rflags = rflags;
1446	tp->tf_rsp = regs->r_rsp;
1447	tp->tf_ss = regs->r_ss;
1448	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1449	return (0);
1450}
1451
1452/* XXX check all this stuff! */
1453/* externalize from sv_xmm */
1454static void
1455fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1456{
1457	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1458	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1459	int i;
1460
1461	/* pcb -> fpregs */
1462	bzero(fpregs, sizeof(*fpregs));
1463
1464	/* FPU control/status */
1465	penv_fpreg->en_cw = penv_xmm->en_cw;
1466	penv_fpreg->en_sw = penv_xmm->en_sw;
1467	penv_fpreg->en_tw = penv_xmm->en_tw;
1468	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1469	penv_fpreg->en_rip = penv_xmm->en_rip;
1470	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1471	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1472	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1473
1474	/* FPU registers */
1475	for (i = 0; i < 8; ++i)
1476		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1477
1478	/* SSE registers */
1479	for (i = 0; i < 16; ++i)
1480		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1481}
1482
1483/* internalize from fpregs into sv_xmm */
1484static void
1485set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1486{
1487	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1488	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1489	int i;
1490
1491	/* fpregs -> pcb */
1492	/* FPU control/status */
1493	penv_xmm->en_cw = penv_fpreg->en_cw;
1494	penv_xmm->en_sw = penv_fpreg->en_sw;
1495	penv_xmm->en_tw = penv_fpreg->en_tw;
1496	penv_xmm->en_opcode = penv_fpreg->en_opcode;
1497	penv_xmm->en_rip = penv_fpreg->en_rip;
1498	penv_xmm->en_rdp = penv_fpreg->en_rdp;
1499	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1500	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
1501
1502	/* FPU registers */
1503	for (i = 0; i < 8; ++i)
1504		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1505
1506	/* SSE registers */
1507	for (i = 0; i < 16; ++i)
1508		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1509}
1510
1511/* externalize from td->pcb */
1512int
1513fill_fpregs(struct thread *td, struct fpreg *fpregs)
1514{
1515
1516	fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
1517	return (0);
1518}
1519
1520/* internalize to td->pcb */
1521int
1522set_fpregs(struct thread *td, struct fpreg *fpregs)
1523{
1524
1525	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
1526	return (0);
1527}
1528
1529/*
1530 * Get machine context.
1531 */
1532int
1533get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
1534{
1535	struct trapframe *tp;
1536
1537	tp = td->td_frame;
1538	PROC_LOCK(curthread->td_proc);
1539	mcp->mc_onstack = sigonstack(tp->tf_rsp);
1540	PROC_UNLOCK(curthread->td_proc);
1541	mcp->mc_r15 = tp->tf_r15;
1542	mcp->mc_r14 = tp->tf_r14;
1543	mcp->mc_r13 = tp->tf_r13;
1544	mcp->mc_r12 = tp->tf_r12;
1545	mcp->mc_r11 = tp->tf_r11;
1546	mcp->mc_r10 = tp->tf_r10;
1547	mcp->mc_r9  = tp->tf_r9;
1548	mcp->mc_r8  = tp->tf_r8;
1549	mcp->mc_rdi = tp->tf_rdi;
1550	mcp->mc_rsi = tp->tf_rsi;
1551	mcp->mc_rbp = tp->tf_rbp;
1552	mcp->mc_rbx = tp->tf_rbx;
1553	mcp->mc_rcx = tp->tf_rcx;
1554	mcp->mc_rflags = tp->tf_rflags;
1555	if (flags & GET_MC_CLEAR_RET) {
1556		mcp->mc_rax = 0;
1557		mcp->mc_rdx = 0;
1558		mcp->mc_rflags &= ~PSL_C;
1559	} else {
1560		mcp->mc_rax = tp->tf_rax;
1561		mcp->mc_rdx = tp->tf_rdx;
1562	}
1563	mcp->mc_rip = tp->tf_rip;
1564	mcp->mc_cs = tp->tf_cs;
1565	mcp->mc_rsp = tp->tf_rsp;
1566	mcp->mc_ss = tp->tf_ss;
1567	mcp->mc_len = sizeof(*mcp);
1568	get_fpcontext(td, mcp);
1569	return (0);
1570}
1571
1572/*
1573 * Set machine context.
1574 *
1575 * However, we don't set any but the user modifiable flags, and we won't
1576 * touch the cs selector.
1577 */
1578int
1579set_mcontext(struct thread *td, const mcontext_t *mcp)
1580{
1581	struct trapframe *tp;
1582	long rflags;
1583	int ret;
1584
1585	tp = td->td_frame;
1586	if (mcp->mc_len != sizeof(*mcp))
1587		return (EINVAL);
1588	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
1589	    (tp->tf_rflags & ~PSL_USERCHANGE);
1590	ret = set_fpcontext(td, mcp);
1591	if (ret != 0)
1592		return (ret);
1593	tp->tf_r15 = mcp->mc_r15;
1594	tp->tf_r14 = mcp->mc_r14;
1595	tp->tf_r13 = mcp->mc_r13;
1596	tp->tf_r12 = mcp->mc_r12;
1597	tp->tf_r11 = mcp->mc_r11;
1598	tp->tf_r10 = mcp->mc_r10;
1599	tp->tf_r9  = mcp->mc_r9;
1600	tp->tf_r8  = mcp->mc_r8;
1601	tp->tf_rdi = mcp->mc_rdi;
1602	tp->tf_rsi = mcp->mc_rsi;
1603	tp->tf_rbp = mcp->mc_rbp;
1604	tp->tf_rbx = mcp->mc_rbx;
1605	tp->tf_rdx = mcp->mc_rdx;
1606	tp->tf_rcx = mcp->mc_rcx;
1607	tp->tf_rax = mcp->mc_rax;
1608	tp->tf_rip = mcp->mc_rip;
1609	tp->tf_rflags = rflags;
1610	tp->tf_rsp = mcp->mc_rsp;
1611	tp->tf_ss = mcp->mc_ss;
1612	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1613	return (0);
1614}
1615
1616static void
1617get_fpcontext(struct thread *td, mcontext_t *mcp)
1618{
1619
1620	mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
1621	mcp->mc_fpformat = fpuformat();
1622}
1623
1624static int
1625set_fpcontext(struct thread *td, const mcontext_t *mcp)
1626{
1627	struct savefpu *fpstate;
1628
1629	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
1630		return (0);
1631	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
1632		return (EINVAL);
1633	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
1634		/* We don't care what state is left in the FPU or PCB. */
1635		fpstate_drop(td);
1636	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
1637	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
1638		/*
1639		 * XXX we violate the dubious requirement that fpusetregs()
1640		 * be called with interrupts disabled.
1641		 * XXX obsolete on trap-16 systems?
1642		 */
1643		fpstate = (struct savefpu *)&mcp->mc_fpstate;
1644		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
1645		fpusetregs(td, fpstate);
1646	} else
1647		return (EINVAL);
1648	return (0);
1649}
1650
1651void
1652fpstate_drop(struct thread *td)
1653{
1654	register_t s;
1655
1656	s = intr_disable();
1657	if (PCPU_GET(fpcurthread) == td)
1658		fpudrop();
1659	/*
1660	 * XXX force a full drop of the fpu.  The above only drops it if we
1661	 * owned it.
1662	 *
1663	 * XXX I don't much like fpugetregs()'s semantics of doing a full
1664	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
1665	 * We only need to drop to !PCB_INITDONE in sendsig().  But
1666	 * sendsig() is the only caller of fpugetregs()... perhaps we just
1667	 * have too many layers.
1668	 */
1669	curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
1670	intr_restore(s);
1671}
1672
1673int
1674fill_dbregs(struct thread *td, struct dbreg *dbregs)
1675{
1676	struct pcb *pcb;
1677
1678	if (td == NULL) {
1679		dbregs->dr[0] = rdr0();
1680		dbregs->dr[1] = rdr1();
1681		dbregs->dr[2] = rdr2();
1682		dbregs->dr[3] = rdr3();
1683		dbregs->dr[6] = rdr6();
1684		dbregs->dr[7] = rdr7();
1685	} else {
1686		pcb = td->td_pcb;
1687		dbregs->dr[0] = pcb->pcb_dr0;
1688		dbregs->dr[1] = pcb->pcb_dr1;
1689		dbregs->dr[2] = pcb->pcb_dr2;
1690		dbregs->dr[3] = pcb->pcb_dr3;
1691		dbregs->dr[6] = pcb->pcb_dr6;
1692		dbregs->dr[7] = pcb->pcb_dr7;
1693	}
1694	dbregs->dr[4] = 0;
1695	dbregs->dr[5] = 0;
1696	dbregs->dr[8] = 0;
1697	dbregs->dr[9] = 0;
1698	dbregs->dr[10] = 0;
1699	dbregs->dr[11] = 0;
1700	dbregs->dr[12] = 0;
1701	dbregs->dr[13] = 0;
1702	dbregs->dr[14] = 0;
1703	dbregs->dr[15] = 0;
1704	return (0);
1705}
1706
1707int
1708set_dbregs(struct thread *td, struct dbreg *dbregs)
1709{
1710	struct pcb *pcb;
1711	int i;
1712
1713	if (td == NULL) {
1714		load_dr0(dbregs->dr[0]);
1715		load_dr1(dbregs->dr[1]);
1716		load_dr2(dbregs->dr[2]);
1717		load_dr3(dbregs->dr[3]);
1718		load_dr6(dbregs->dr[6]);
1719		load_dr7(dbregs->dr[7]);
1720	} else {
1721		/*
1722		 * Don't let an illegal value for dr7 get set.  Specifically,
1723		 * check for undefined settings.  Setting these bit patterns
1724		 * result in undefined behaviour and can lead to an unexpected
1725		 * TRCTRAP or a general protection fault right here.
1726		 * Upper bits of dr6 and dr7 must not be set
1727		 */
1728		for (i = 0; i < 4; i++) {
1729			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
1730				return (EINVAL);
1731			if (td->td_frame->tf_cs == _ucode32sel &&
1732			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
1733				return (EINVAL);
1734		}
1735		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
1736		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
1737			return (EINVAL);
1738
1739		pcb = td->td_pcb;
1740
1741		/*
1742		 * Don't let a process set a breakpoint that is not within the
1743		 * process's address space.  If a process could do this, it
1744		 * could halt the system by setting a breakpoint in the kernel
1745		 * (if ddb was enabled).  Thus, we need to check to make sure
1746		 * that no breakpoints are being enabled for addresses outside
1747		 * process's address space.
1748		 *
1749		 * XXX - what about when the watched area of the user's
1750		 * address space is written into from within the kernel
1751		 * ... wouldn't that still cause a breakpoint to be generated
1752		 * from within kernel mode?
1753		 */
1754
1755		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
1756			/* dr0 is enabled */
1757			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
1758				return (EINVAL);
1759		}
1760		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
1761			/* dr1 is enabled */
1762			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
1763				return (EINVAL);
1764		}
1765		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
1766			/* dr2 is enabled */
1767			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
1768				return (EINVAL);
1769		}
1770		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
1771			/* dr3 is enabled */
1772			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
1773				return (EINVAL);
1774		}
1775
1776		pcb->pcb_dr0 = dbregs->dr[0];
1777		pcb->pcb_dr1 = dbregs->dr[1];
1778		pcb->pcb_dr2 = dbregs->dr[2];
1779		pcb->pcb_dr3 = dbregs->dr[3];
1780		pcb->pcb_dr6 = dbregs->dr[6];
1781		pcb->pcb_dr7 = dbregs->dr[7];
1782
1783		pcb->pcb_flags |= PCB_DBREGS;
1784	}
1785
1786	return (0);
1787}
1788
1789void
1790reset_dbregs(void)
1791{
1792
1793	load_dr7(0);	/* Turn off the control bits first */
1794	load_dr0(0);
1795	load_dr1(0);
1796	load_dr2(0);
1797	load_dr3(0);
1798	load_dr6(0);
1799}
1800
1801/*
1802 * Return > 0 if a hardware breakpoint has been hit, and the
1803 * breakpoint was in user space.  Return 0, otherwise.
1804 */
1805int
1806user_dbreg_trap(void)
1807{
1808        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
1809        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
1810        int nbp;            /* number of breakpoints that triggered */
1811        caddr_t addr[4];    /* breakpoint addresses */
1812        int i;
1813
1814        dr7 = rdr7();
1815        if ((dr7 & 0x000000ff) == 0) {
1816                /*
1817                 * all GE and LE bits in the dr7 register are zero,
1818                 * thus the trap couldn't have been caused by the
1819                 * hardware debug registers
1820                 */
1821                return 0;
1822        }
1823
1824        nbp = 0;
1825        dr6 = rdr6();
1826        bp = dr6 & 0x0000000f;
1827
1828        if (!bp) {
1829                /*
1830                 * None of the breakpoint bits are set meaning this
1831                 * trap was not caused by any of the debug registers
1832                 */
1833                return 0;
1834        }
1835
1836        /*
1837         * at least one of the breakpoints were hit, check to see
1838         * which ones and if any of them are user space addresses
1839         */
1840
1841        if (bp & 0x01) {
1842                addr[nbp++] = (caddr_t)rdr0();
1843        }
1844        if (bp & 0x02) {
1845                addr[nbp++] = (caddr_t)rdr1();
1846        }
1847        if (bp & 0x04) {
1848                addr[nbp++] = (caddr_t)rdr2();
1849        }
1850        if (bp & 0x08) {
1851                addr[nbp++] = (caddr_t)rdr3();
1852        }
1853
1854        for (i = 0; i < nbp; i++) {
1855                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
1856                        /*
1857                         * addr[i] is in user space
1858                         */
1859                        return nbp;
1860                }
1861        }
1862
1863        /*
1864         * None of the breakpoints are in user space.
1865         */
1866        return 0;
1867}
1868
1869#ifdef KDB
1870
1871/*
1872 * Provide inb() and outb() as functions.  They are normally only
1873 * available as macros calling inlined functions, thus cannot be
1874 * called from the debugger.
1875 *
1876 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1877 */
1878
1879#undef inb
1880#undef outb
1881
1882/* silence compiler warnings */
1883u_char inb(u_int);
1884void outb(u_int, u_char);
1885
1886u_char
1887inb(u_int port)
1888{
1889	u_char	data;
1890	/*
1891	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1892	 * %edx, while gcc generates inferior code (movw instead of movl)
1893	 * if we tell it to load (u_short) port.
1894	 */
1895	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1896	return (data);
1897}
1898
1899void
1900outb(u_int port, u_char data)
1901{
1902	u_char	al;
1903	/*
1904	 * Use an unnecessary assignment to help gcc's register allocator.
1905	 * This make a large difference for gcc-1.40 and a tiny difference
1906	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1907	 * best results.  gcc-2.6.0 can't handle this.
1908	 */
1909	al = data;
1910	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1911}
1912
1913#endif /* KDB */
1914