machdep.c revision 152651
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 152651 2005-11-21 18:39:17Z jhb $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_msgbuf.h"
55#include "opt_perfmon.h"
56
57#include <sys/param.h>
58#include <sys/proc.h>
59#include <sys/systm.h>
60#include <sys/bio.h>
61#include <sys/buf.h>
62#include <sys/bus.h>
63#include <sys/callout.h>
64#include <sys/cons.h>
65#include <sys/cpu.h>
66#include <sys/eventhandler.h>
67#include <sys/exec.h>
68#include <sys/imgact.h>
69#include <sys/kdb.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/linker.h>
73#include <sys/lock.h>
74#include <sys/malloc.h>
75#include <sys/memrange.h>
76#include <sys/msgbuf.h>
77#include <sys/mutex.h>
78#include <sys/pcpu.h>
79#include <sys/ptrace.h>
80#include <sys/reboot.h>
81#include <sys/sched.h>
82#include <sys/signalvar.h>
83#include <sys/sysctl.h>
84#include <sys/sysent.h>
85#include <sys/sysproto.h>
86#include <sys/ucontext.h>
87#include <sys/vmmeter.h>
88
89#include <vm/vm.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_object.h>
95#include <vm/vm_pager.h>
96#include <vm/vm_param.h>
97
98#ifdef DDB
99#ifndef KDB
100#error KDB must be enabled in order for DDB to work!
101#endif
102#endif
103#include <ddb/ddb.h>
104
105#include <net/netisr.h>
106
107#include <machine/clock.h>
108#include <machine/cpu.h>
109#include <machine/cputypes.h>
110#include <machine/intr_machdep.h>
111#include <machine/md_var.h>
112#include <machine/metadata.h>
113#include <machine/pc/bios.h>
114#include <machine/pcb.h>
115#include <machine/proc.h>
116#include <machine/reg.h>
117#include <machine/sigframe.h>
118#include <machine/specialreg.h>
119#ifdef PERFMON
120#include <machine/perfmon.h>
121#endif
122#include <machine/tss.h>
123#ifdef SMP
124#include <machine/smp.h>
125#endif
126
127#include <dev/ic/i8259.h>
128#include <amd64/isa/icu.h>
129#include <machine/apicvar.h>
130
131#include <isa/isareg.h>
132#include <isa/rtc.h>
133
134/* Sanity check for __curthread() */
135CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
136
137extern u_int64_t hammer_time(u_int64_t, u_int64_t);
138extern void dblfault_handler(void);
139
140extern void printcpuinfo(void);	/* XXX header file */
141extern void identify_cpu(void);
142extern void panicifcpuunsupported(void);
143
144#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
145#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
146
147static void cpu_startup(void *);
148static void get_fpcontext(struct thread *td, mcontext_t *mcp);
149static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
150SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
151
152#ifdef DDB
153extern vm_offset_t ksym_start, ksym_end;
154#endif
155
156int	_udatasel, _ucodesel, _ucode32sel;
157
158int cold = 1;
159
160long Maxmem = 0;
161long realmem = 0;
162
163vm_paddr_t phys_avail[20];
164vm_paddr_t dump_avail[20];
165
166/* must be 2 less so 0 0 can signal end of chunks */
167#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
168#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
169
170struct kva_md_info kmi;
171
172static struct trapframe proc0_tf;
173struct region_descriptor r_gdt, r_idt;
174
175struct pcpu __pcpu[MAXCPU];
176
177struct mtx icu_lock;
178
179struct mem_range_softc mem_range_softc;
180
181static void
182cpu_startup(dummy)
183	void *dummy;
184{
185	/*
186	 * Good {morning,afternoon,evening,night}.
187	 */
188	startrtclock();
189	printcpuinfo();
190	panicifcpuunsupported();
191#ifdef PERFMON
192	perfmon_init();
193#endif
194	printf("usable memory  = %ju (%ju MB)\n", ptoa((uintmax_t)physmem),
195	    ptoa((uintmax_t)physmem) / 1048576);
196	realmem = Maxmem;
197	/*
198	 * Display any holes after the first chunk of extended memory.
199	 */
200	if (bootverbose) {
201		int indx;
202
203		printf("Physical memory chunk(s):\n");
204		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
205			vm_paddr_t size;
206
207			size = phys_avail[indx + 1] - phys_avail[indx];
208			printf(
209			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
210			    (uintmax_t)phys_avail[indx],
211			    (uintmax_t)phys_avail[indx + 1] - 1,
212			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
213		}
214	}
215
216	vm_ksubmap_init(&kmi);
217
218	printf("avail memory = %ju (%ju MB)\n",
219	    ptoa((uintmax_t)cnt.v_free_count),
220	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
221
222	/*
223	 * Set up buffers, so they can be used to read disk labels.
224	 */
225	bufinit();
226	vm_pager_bufferinit();
227
228	cpu_setregs();
229}
230
231/*
232 * Send an interrupt to process.
233 *
234 * Stack is set up to allow sigcode stored
235 * at top to call routine, followed by kcall
236 * to sigreturn routine below.  After sigreturn
237 * resets the signal mask, the stack, and the
238 * frame pointer, it returns to the user
239 * specified pc, psl.
240 */
241void
242sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
243{
244	struct sigframe sf, *sfp;
245	struct proc *p;
246	struct thread *td;
247	struct sigacts *psp;
248	char *sp;
249	struct trapframe *regs;
250	int oonstack;
251	int sig;
252
253	td = curthread;
254	p = td->td_proc;
255	PROC_LOCK_ASSERT(p, MA_OWNED);
256	sig = ksi->ksi_signo;
257	psp = p->p_sigacts;
258	mtx_assert(&psp->ps_mtx, MA_OWNED);
259	regs = td->td_frame;
260	oonstack = sigonstack(regs->tf_rsp);
261
262	/* Save user context. */
263	bzero(&sf, sizeof(sf));
264	sf.sf_uc.uc_sigmask = *mask;
265	sf.sf_uc.uc_stack = td->td_sigstk;
266	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
267	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
268	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
269	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
270	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
271	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
272	fpstate_drop(td);
273
274	/* Allocate space for the signal handler context. */
275	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
276	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
277		sp = td->td_sigstk.ss_sp +
278		    td->td_sigstk.ss_size - sizeof(struct sigframe);
279#if defined(COMPAT_43)
280		td->td_sigstk.ss_flags |= SS_ONSTACK;
281#endif
282	} else
283		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
284	/* Align to 16 bytes. */
285	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
286
287	/* Translate the signal if appropriate. */
288	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
289		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
290
291	/* Build the argument list for the signal handler. */
292	regs->tf_rdi = sig;			/* arg 1 in %rdi */
293	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
294	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
295		/* Signal handler installed with SA_SIGINFO. */
296		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
297		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
298
299		/* Fill in POSIX parts */
300		sf.sf_si = ksi->ksi_info;
301		sf.sf_si.si_signo = sig; /* maybe a translated signal */
302		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
303	} else {
304		/* Old FreeBSD-style arguments. */
305		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
306		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
307		sf.sf_ahu.sf_handler = catcher;
308	}
309	mtx_unlock(&psp->ps_mtx);
310	PROC_UNLOCK(p);
311
312	/*
313	 * Copy the sigframe out to the user's stack.
314	 */
315	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
316#ifdef DEBUG
317		printf("process %ld has trashed its stack\n", (long)p->p_pid);
318#endif
319		PROC_LOCK(p);
320		sigexit(td, SIGILL);
321	}
322
323	regs->tf_rsp = (long)sfp;
324	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
325	regs->tf_rflags &= ~PSL_T;
326	regs->tf_cs = _ucodesel;
327	PROC_LOCK(p);
328	mtx_lock(&psp->ps_mtx);
329}
330
331/*
332 * System call to cleanup state after a signal
333 * has been taken.  Reset signal mask and
334 * stack state from context left by sendsig (above).
335 * Return to previous pc and psl as specified by
336 * context left by sendsig. Check carefully to
337 * make sure that the user has not modified the
338 * state to gain improper privileges.
339 *
340 * MPSAFE
341 */
342int
343sigreturn(td, uap)
344	struct thread *td;
345	struct sigreturn_args /* {
346		const __ucontext *sigcntxp;
347	} */ *uap;
348{
349	ucontext_t uc;
350	struct proc *p = td->td_proc;
351	struct trapframe *regs;
352	const ucontext_t *ucp;
353	long rflags;
354	int cs, error, ret;
355	ksiginfo_t ksi;
356
357	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
358	if (error != 0)
359		return (error);
360	ucp = &uc;
361	regs = td->td_frame;
362	rflags = ucp->uc_mcontext.mc_rflags;
363	/*
364	 * Don't allow users to change privileged or reserved flags.
365	 */
366	/*
367	 * XXX do allow users to change the privileged flag PSL_RF.
368	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
369	 * should sometimes set it there too.  tf_rflags is kept in
370	 * the signal context during signal handling and there is no
371	 * other place to remember it, so the PSL_RF bit may be
372	 * corrupted by the signal handler without us knowing.
373	 * Corruption of the PSL_RF bit at worst causes one more or
374	 * one less debugger trap, so allowing it is fairly harmless.
375	 */
376	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
377		printf("sigreturn: rflags = 0x%lx\n", rflags);
378		return (EINVAL);
379	}
380
381	/*
382	 * Don't allow users to load a valid privileged %cs.  Let the
383	 * hardware check for invalid selectors, excess privilege in
384	 * other selectors, invalid %eip's and invalid %esp's.
385	 */
386	cs = ucp->uc_mcontext.mc_cs;
387	if (!CS_SECURE(cs)) {
388		printf("sigreturn: cs = 0x%x\n", cs);
389		ksiginfo_init_trap(&ksi);
390		ksi.ksi_signo = SIGBUS;
391		ksi.ksi_code = BUS_OBJERR;
392		ksi.ksi_trapno = T_PROTFLT;
393		ksi.ksi_addr = (void *)regs->tf_rip;
394		trapsignal(td, &ksi);
395		return (EINVAL);
396	}
397
398	ret = set_fpcontext(td, &ucp->uc_mcontext);
399	if (ret != 0)
400		return (ret);
401	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
402
403	PROC_LOCK(p);
404#if defined(COMPAT_43)
405	if (ucp->uc_mcontext.mc_onstack & 1)
406		td->td_sigstk.ss_flags |= SS_ONSTACK;
407	else
408		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
409#endif
410
411	td->td_sigmask = ucp->uc_sigmask;
412	SIG_CANTMASK(td->td_sigmask);
413	signotify(td);
414	PROC_UNLOCK(p);
415	td->td_pcb->pcb_flags |= PCB_FULLCTX;
416	return (EJUSTRETURN);
417}
418
419#ifdef COMPAT_FREEBSD4
420int
421freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
422{
423
424	return sigreturn(td, (struct sigreturn_args *)uap);
425}
426#endif
427
428
429/*
430 * Machine dependent boot() routine
431 *
432 * I haven't seen anything to put here yet
433 * Possibly some stuff might be grafted back here from boot()
434 */
435void
436cpu_boot(int howto)
437{
438}
439
440/* Get current clock frequency for the given cpu id. */
441int
442cpu_est_clockrate(int cpu_id, uint64_t *rate)
443{
444	register_t reg;
445	uint64_t tsc1, tsc2;
446
447	if (pcpu_find(cpu_id) == NULL || rate == NULL)
448		return (EINVAL);
449
450	/* If we're booting, trust the rate calibrated moments ago. */
451	if (cold) {
452		*rate = tsc_freq;
453		return (0);
454	}
455
456#ifdef SMP
457	/* Schedule ourselves on the indicated cpu. */
458	mtx_lock_spin(&sched_lock);
459	sched_bind(curthread, cpu_id);
460	mtx_unlock_spin(&sched_lock);
461#endif
462
463	/* Calibrate by measuring a short delay. */
464	reg = intr_disable();
465	tsc1 = rdtsc();
466	DELAY(1000);
467	tsc2 = rdtsc();
468	intr_restore(reg);
469
470#ifdef SMP
471	mtx_lock_spin(&sched_lock);
472	sched_unbind(curthread);
473	mtx_unlock_spin(&sched_lock);
474#endif
475
476	/*
477	 * Calculate the difference in readings, convert to Mhz, and
478	 * subtract 0.5% of the total.  Empirical testing has shown that
479	 * overhead in DELAY() works out to approximately this value.
480	 */
481	tsc2 -= tsc1;
482	*rate = tsc2 * 1000 - tsc2 * 5;
483	return (0);
484}
485
486/*
487 * Shutdown the CPU as much as possible
488 */
489void
490cpu_halt(void)
491{
492	for (;;)
493		__asm__ ("hlt");
494}
495
496/*
497 * Hook to idle the CPU when possible.  In the SMP case we default to
498 * off because a halted cpu will not currently pick up a new thread in the
499 * run queue until the next timer tick.  If turned on this will result in
500 * approximately a 4.2% loss in real time performance in buildworld tests
501 * (but improves user and sys times oddly enough), and saves approximately
502 * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
503 *
504 * XXX we need to have a cpu mask of idle cpus and generate an IPI or
505 * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
506 * Then we can have our cake and eat it too.
507 *
508 * XXX I'm turning it on for SMP as well by default for now.  It seems to
509 * help lock contention somewhat, and this is critical for HTT. -Peter
510 */
511static int	cpu_idle_hlt = 1;
512SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
513    &cpu_idle_hlt, 0, "Idle loop HLT enable");
514
515static void
516cpu_idle_default(void)
517{
518	/*
519	 * we must absolutely guarentee that hlt is the
520	 * absolute next instruction after sti or we
521	 * introduce a timing window.
522	 */
523	__asm __volatile("sti; hlt");
524}
525
526/*
527 * Note that we have to be careful here to avoid a race between checking
528 * sched_runnable() and actually halting.  If we don't do this, we may waste
529 * the time between calling hlt and the next interrupt even though there
530 * is a runnable process.
531 */
532void
533cpu_idle(void)
534{
535
536#ifdef SMP
537	if (mp_grab_cpu_hlt())
538		return;
539#endif
540	if (cpu_idle_hlt) {
541		disable_intr();
542  		if (sched_runnable())
543			enable_intr();
544		else
545			(*cpu_idle_hook)();
546	}
547}
548
549/* Other subsystems (e.g., ACPI) can hook this later. */
550void (*cpu_idle_hook)(void) = cpu_idle_default;
551
552/*
553 * Clear registers on exec
554 */
555void
556exec_setregs(td, entry, stack, ps_strings)
557	struct thread *td;
558	u_long entry;
559	u_long stack;
560	u_long ps_strings;
561{
562	struct trapframe *regs = td->td_frame;
563	struct pcb *pcb = td->td_pcb;
564
565	critical_enter();
566	wrmsr(MSR_FSBASE, 0);
567	wrmsr(MSR_KGSBASE, 0);	/* User value while we're in the kernel */
568	pcb->pcb_fsbase = 0;
569	pcb->pcb_gsbase = 0;
570	critical_exit();
571	load_ds(_udatasel);
572	load_es(_udatasel);
573	load_fs(_udatasel);
574	load_gs(_udatasel);
575	pcb->pcb_ds = _udatasel;
576	pcb->pcb_es = _udatasel;
577	pcb->pcb_fs = _udatasel;
578	pcb->pcb_gs = _udatasel;
579
580	bzero((char *)regs, sizeof(struct trapframe));
581	regs->tf_rip = entry;
582	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
583	regs->tf_rdi = stack;		/* argv */
584	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
585	regs->tf_ss = _udatasel;
586	regs->tf_cs = _ucodesel;
587
588	/*
589	 * Reset the hardware debug registers if they were in use.
590	 * They won't have any meaning for the newly exec'd process.
591	 */
592	if (pcb->pcb_flags & PCB_DBREGS) {
593		pcb->pcb_dr0 = 0;
594		pcb->pcb_dr1 = 0;
595		pcb->pcb_dr2 = 0;
596		pcb->pcb_dr3 = 0;
597		pcb->pcb_dr6 = 0;
598		pcb->pcb_dr7 = 0;
599		if (pcb == PCPU_GET(curpcb)) {
600			/*
601			 * Clear the debug registers on the running
602			 * CPU, otherwise they will end up affecting
603			 * the next process we switch to.
604			 */
605			reset_dbregs();
606		}
607		pcb->pcb_flags &= ~PCB_DBREGS;
608	}
609
610	/*
611	 * Drop the FP state if we hold it, so that the process gets a
612	 * clean FP state if it uses the FPU again.
613	 */
614	fpstate_drop(td);
615}
616
617void
618cpu_setregs(void)
619{
620	register_t cr0;
621
622	cr0 = rcr0();
623	/*
624	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
625	 * BSP.  See the comments there about why we set them.
626	 */
627	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
628	load_cr0(cr0);
629}
630
631static int
632sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
633{
634	int error;
635	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
636		req);
637	if (!error && req->newptr)
638		resettodr();
639	return (error);
640}
641
642SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
643	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
644
645SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
646	CTLFLAG_RW, &disable_rtc_set, 0, "");
647
648SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
649	CTLFLAG_RW, &wall_cmos_clock, 0, "");
650
651/*
652 * Initialize amd64 and configure to run kernel
653 */
654
655/*
656 * Initialize segments & interrupt table
657 */
658
659struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor table */
660static struct gate_descriptor idt0[NIDT];
661struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
662
663static char dblfault_stack[PAGE_SIZE] __aligned(16);
664
665struct amd64tss common_tss[MAXCPU];
666
667/* software prototypes -- in more palatable form */
668struct soft_segment_descriptor gdt_segs[] = {
669/* GNULL_SEL	0 Null Descriptor */
670{	0x0,			/* segment base address  */
671	0x0,			/* length */
672	0,			/* segment type */
673	0,			/* segment descriptor priority level */
674	0,			/* segment descriptor present */
675	0,			/* long */
676	0,			/* default 32 vs 16 bit size */
677	0  			/* limit granularity (byte/page units)*/ },
678/* GCODE_SEL	1 Code Descriptor for kernel */
679{	0x0,			/* segment base address  */
680	0xfffff,		/* length - all address space */
681	SDT_MEMERA,		/* segment type */
682	SEL_KPL,		/* segment descriptor priority level */
683	1,			/* segment descriptor present */
684	1,			/* long */
685	0,			/* default 32 vs 16 bit size */
686	1  			/* limit granularity (byte/page units)*/ },
687/* GDATA_SEL	2 Data Descriptor for kernel */
688{	0x0,			/* segment base address  */
689	0xfffff,		/* length - all address space */
690	SDT_MEMRWA,		/* segment type */
691	SEL_KPL,		/* segment descriptor priority level */
692	1,			/* segment descriptor present */
693	1,			/* long */
694	0,			/* default 32 vs 16 bit size */
695	1  			/* limit granularity (byte/page units)*/ },
696/* GUCODE32_SEL	3 32 bit Code Descriptor for user */
697{	0x0,			/* segment base address  */
698	0xfffff,		/* length - all address space */
699	SDT_MEMERA,		/* segment type */
700	SEL_UPL,		/* segment descriptor priority level */
701	1,			/* segment descriptor present */
702	0,			/* long */
703	1,			/* default 32 vs 16 bit size */
704	1  			/* limit granularity (byte/page units)*/ },
705/* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
706{	0x0,			/* segment base address  */
707	0xfffff,		/* length - all address space */
708	SDT_MEMRWA,		/* segment type */
709	SEL_UPL,		/* segment descriptor priority level */
710	1,			/* segment descriptor present */
711	0,			/* long */
712	1,			/* default 32 vs 16 bit size */
713	1  			/* limit granularity (byte/page units)*/ },
714/* GUCODE_SEL	5 64 bit Code Descriptor for user */
715{	0x0,			/* segment base address  */
716	0xfffff,		/* length - all address space */
717	SDT_MEMERA,		/* segment type */
718	SEL_UPL,		/* segment descriptor priority level */
719	1,			/* segment descriptor present */
720	1,			/* long */
721	0,			/* default 32 vs 16 bit size */
722	1  			/* limit granularity (byte/page units)*/ },
723/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
724{
725	0x0,			/* segment base address */
726	sizeof(struct amd64tss)-1,/* length - all address space */
727	SDT_SYSTSS,		/* segment type */
728	SEL_KPL,		/* segment descriptor priority level */
729	1,			/* segment descriptor present */
730	0,			/* long */
731	0,			/* unused - default 32 vs 16 bit size */
732	0  			/* limit granularity (byte/page units)*/ },
733/* Actually, the TSS is a system descriptor which is double size */
734{	0x0,			/* segment base address  */
735	0x0,			/* length */
736	0,			/* segment type */
737	0,			/* segment descriptor priority level */
738	0,			/* segment descriptor present */
739	0,			/* long */
740	0,			/* default 32 vs 16 bit size */
741	0  			/* limit granularity (byte/page units)*/ },
742};
743
744void
745setidt(idx, func, typ, dpl, ist)
746	int idx;
747	inthand_t *func;
748	int typ;
749	int dpl;
750	int ist;
751{
752	struct gate_descriptor *ip;
753
754	ip = idt + idx;
755	ip->gd_looffset = (uintptr_t)func;
756	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
757	ip->gd_ist = ist;
758	ip->gd_xx = 0;
759	ip->gd_type = typ;
760	ip->gd_dpl = dpl;
761	ip->gd_p = 1;
762	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
763}
764
765#define	IDTVEC(name)	__CONCAT(X,name)
766
767extern inthand_t
768	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
769	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
770	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
771	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
772	IDTVEC(xmm), IDTVEC(dblfault),
773	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
774
775void
776sdtossd(sd, ssd)
777	struct user_segment_descriptor *sd;
778	struct soft_segment_descriptor *ssd;
779{
780
781	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
782	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
783	ssd->ssd_type  = sd->sd_type;
784	ssd->ssd_dpl   = sd->sd_dpl;
785	ssd->ssd_p     = sd->sd_p;
786	ssd->ssd_long  = sd->sd_long;
787	ssd->ssd_def32 = sd->sd_def32;
788	ssd->ssd_gran  = sd->sd_gran;
789}
790
791void
792ssdtosd(ssd, sd)
793	struct soft_segment_descriptor *ssd;
794	struct user_segment_descriptor *sd;
795{
796
797	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
798	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
799	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
800	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
801	sd->sd_type  = ssd->ssd_type;
802	sd->sd_dpl   = ssd->ssd_dpl;
803	sd->sd_p     = ssd->ssd_p;
804	sd->sd_long  = ssd->ssd_long;
805	sd->sd_def32 = ssd->ssd_def32;
806	sd->sd_gran  = ssd->ssd_gran;
807}
808
809void
810ssdtosyssd(ssd, sd)
811	struct soft_segment_descriptor *ssd;
812	struct system_segment_descriptor *sd;
813{
814
815	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
816	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
817	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
818	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
819	sd->sd_type  = ssd->ssd_type;
820	sd->sd_dpl   = ssd->ssd_dpl;
821	sd->sd_p     = ssd->ssd_p;
822	sd->sd_gran  = ssd->ssd_gran;
823}
824
825#if !defined(DEV_ATPIC) && defined(DEV_ISA)
826#include <isa/isavar.h>
827u_int
828isa_irq_pending(void)
829{
830
831	return (0);
832}
833#endif
834
835#define PHYSMAP_SIZE	(2 * 20)
836
837u_int basemem;
838
839/*
840 * Populate the (physmap) array with base/bound pairs describing the
841 * available physical memory in the system, then test this memory and
842 * build the phys_avail array describing the actually-available memory.
843 *
844 * If we cannot accurately determine the physical memory map, then use
845 * value from the 0xE801 call, and failing that, the RTC.
846 *
847 * Total memory size may be set by the kernel environment variable
848 * hw.physmem or the compile-time define MAXMEM.
849 *
850 * XXX first should be vm_paddr_t.
851 */
852static void
853getmemsize(caddr_t kmdp, u_int64_t first)
854{
855	int i, physmap_idx, pa_indx, da_indx;
856	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
857	u_long physmem_tunable;
858	pt_entry_t *pte;
859	struct bios_smap *smapbase, *smap, *smapend;
860	u_int32_t smapsize;
861	quad_t dcons_addr, dcons_size;
862
863	bzero(physmap, sizeof(physmap));
864	basemem = 0;
865	physmap_idx = 0;
866
867	/*
868	 * get memory map from INT 15:E820, kindly supplied by the loader.
869	 *
870	 * subr_module.c says:
871	 * "Consumer may safely assume that size value precedes data."
872	 * ie: an int32_t immediately precedes smap.
873	 */
874	smapbase = (struct bios_smap *)preload_search_info(kmdp,
875	    MODINFO_METADATA | MODINFOMD_SMAP);
876	if (smapbase == NULL)
877		panic("No BIOS smap info from loader!");
878
879	smapsize = *((u_int32_t *)smapbase - 1);
880	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
881
882	for (smap = smapbase; smap < smapend; smap++) {
883		if (boothowto & RB_VERBOSE)
884			printf("SMAP type=%02x base=%016lx len=%016lx\n",
885			    smap->type, smap->base, smap->length);
886
887		if (smap->type != 0x01)
888			continue;
889
890		if (smap->length == 0)
891			continue;
892
893		for (i = 0; i <= physmap_idx; i += 2) {
894			if (smap->base < physmap[i + 1]) {
895				if (boothowto & RB_VERBOSE)
896					printf(
897	"Overlapping or non-montonic memory region, ignoring second region\n");
898				continue;
899			}
900		}
901
902		if (smap->base == physmap[physmap_idx + 1]) {
903			physmap[physmap_idx + 1] += smap->length;
904			continue;
905		}
906
907		physmap_idx += 2;
908		if (physmap_idx == PHYSMAP_SIZE) {
909			printf(
910		"Too many segments in the physical address map, giving up\n");
911			break;
912		}
913		physmap[physmap_idx] = smap->base;
914		physmap[physmap_idx + 1] = smap->base + smap->length;
915	}
916
917	/*
918	 * Find the 'base memory' segment for SMP
919	 */
920	basemem = 0;
921	for (i = 0; i <= physmap_idx; i += 2) {
922		if (physmap[i] == 0x00000000) {
923			basemem = physmap[i + 1] / 1024;
924			break;
925		}
926	}
927	if (basemem == 0)
928		panic("BIOS smap did not include a basemem segment!");
929
930#ifdef SMP
931	/* make hole for AP bootstrap code */
932	physmap[1] = mp_bootaddress(physmap[1] / 1024);
933#endif
934
935	/*
936	 * Maxmem isn't the "maximum memory", it's one larger than the
937	 * highest page of the physical address space.  It should be
938	 * called something like "Maxphyspage".  We may adjust this
939	 * based on ``hw.physmem'' and the results of the memory test.
940	 */
941	Maxmem = atop(physmap[physmap_idx + 1]);
942
943#ifdef MAXMEM
944	Maxmem = MAXMEM / 4;
945#endif
946
947	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
948		Maxmem = atop(physmem_tunable);
949
950	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
951	    (boothowto & RB_VERBOSE))
952		printf("Physical memory use set to %ldK\n", Maxmem * 4);
953
954	/*
955	 * If Maxmem has been increased beyond what the system has detected,
956	 * extend the last memory segment to the new limit.
957	 */
958	if (atop(physmap[physmap_idx + 1]) < Maxmem)
959		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
960
961	/* call pmap initialization to make new kernel address space */
962	pmap_bootstrap(&first);
963
964	/*
965	 * Size up each available chunk of physical memory.
966	 */
967	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
968	pa_indx = 0;
969	da_indx = 1;
970	phys_avail[pa_indx++] = physmap[0];
971	phys_avail[pa_indx] = physmap[0];
972	dump_avail[da_indx] = physmap[0];
973	pte = CMAP1;
974
975	/*
976	 * Get dcons buffer address
977	 */
978	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
979	    getenv_quad("dcons.size", &dcons_size) == 0)
980		dcons_addr = 0;
981
982	/*
983	 * physmap is in bytes, so when converting to page boundaries,
984	 * round up the start address and round down the end address.
985	 */
986	for (i = 0; i <= physmap_idx; i += 2) {
987		vm_paddr_t end;
988
989		end = ptoa((vm_paddr_t)Maxmem);
990		if (physmap[i + 1] < end)
991			end = trunc_page(physmap[i + 1]);
992		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
993			int tmp, page_bad, full;
994			int *ptr = (int *)CADDR1;
995
996			full = FALSE;
997			/*
998			 * block out kernel memory as not available.
999			 */
1000			if (pa >= 0x100000 && pa < first)
1001				goto do_dump_avail;
1002
1003			/*
1004			 * block out dcons buffer
1005			 */
1006			if (dcons_addr > 0
1007			    && pa >= trunc_page(dcons_addr)
1008			    && pa < dcons_addr + dcons_size)
1009				goto do_dump_avail;
1010
1011			page_bad = FALSE;
1012
1013			/*
1014			 * map page into kernel: valid, read/write,non-cacheable
1015			 */
1016			*pte = pa | PG_V | PG_RW | PG_N;
1017			invltlb();
1018
1019			tmp = *(int *)ptr;
1020			/*
1021			 * Test for alternating 1's and 0's
1022			 */
1023			*(volatile int *)ptr = 0xaaaaaaaa;
1024			if (*(volatile int *)ptr != 0xaaaaaaaa)
1025				page_bad = TRUE;
1026			/*
1027			 * Test for alternating 0's and 1's
1028			 */
1029			*(volatile int *)ptr = 0x55555555;
1030			if (*(volatile int *)ptr != 0x55555555)
1031				page_bad = TRUE;
1032			/*
1033			 * Test for all 1's
1034			 */
1035			*(volatile int *)ptr = 0xffffffff;
1036			if (*(volatile int *)ptr != 0xffffffff)
1037				page_bad = TRUE;
1038			/*
1039			 * Test for all 0's
1040			 */
1041			*(volatile int *)ptr = 0x0;
1042			if (*(volatile int *)ptr != 0x0)
1043				page_bad = TRUE;
1044			/*
1045			 * Restore original value.
1046			 */
1047			*(int *)ptr = tmp;
1048
1049			/*
1050			 * Adjust array of valid/good pages.
1051			 */
1052			if (page_bad == TRUE)
1053				continue;
1054			/*
1055			 * If this good page is a continuation of the
1056			 * previous set of good pages, then just increase
1057			 * the end pointer. Otherwise start a new chunk.
1058			 * Note that "end" points one higher than end,
1059			 * making the range >= start and < end.
1060			 * If we're also doing a speculative memory
1061			 * test and we at or past the end, bump up Maxmem
1062			 * so that we keep going. The first bad page
1063			 * will terminate the loop.
1064			 */
1065			if (phys_avail[pa_indx] == pa) {
1066				phys_avail[pa_indx] += PAGE_SIZE;
1067			} else {
1068				pa_indx++;
1069				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1070					printf(
1071		"Too many holes in the physical address space, giving up\n");
1072					pa_indx--;
1073					full = TRUE;
1074					goto do_dump_avail;
1075				}
1076				phys_avail[pa_indx++] = pa;	/* start */
1077				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1078			}
1079			physmem++;
1080do_dump_avail:
1081			if (dump_avail[da_indx] == pa) {
1082				dump_avail[da_indx] += PAGE_SIZE;
1083			} else {
1084				da_indx++;
1085				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1086					da_indx--;
1087					goto do_next;
1088				}
1089				dump_avail[da_indx++] = pa; /* start */
1090				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1091			}
1092do_next:
1093			if (full)
1094				break;
1095		}
1096	}
1097	*pte = 0;
1098	invltlb();
1099
1100	/*
1101	 * XXX
1102	 * The last chunk must contain at least one page plus the message
1103	 * buffer to avoid complicating other code (message buffer address
1104	 * calculation, etc.).
1105	 */
1106	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1107	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1108		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1109		phys_avail[pa_indx--] = 0;
1110		phys_avail[pa_indx--] = 0;
1111	}
1112
1113	Maxmem = atop(phys_avail[pa_indx]);
1114
1115	/* Trim off space for the message buffer. */
1116	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1117
1118	avail_end = phys_avail[pa_indx];
1119}
1120
1121u_int64_t
1122hammer_time(u_int64_t modulep, u_int64_t physfree)
1123{
1124	caddr_t kmdp;
1125	int gsel_tss, off, x;
1126	struct pcpu *pc;
1127	u_int64_t msr;
1128	char *env;
1129
1130	thread0.td_kstack = physfree + KERNBASE;
1131	bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
1132	physfree += KSTACK_PAGES * PAGE_SIZE;
1133	thread0.td_pcb = (struct pcb *)
1134	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1135
1136	/*
1137 	 * This may be done better later if it gets more high level
1138 	 * components in it. If so just link td->td_proc here.
1139	 */
1140	proc_linkup(&proc0, &ksegrp0, &thread0);
1141
1142	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1143	preload_bootstrap_relocate(KERNBASE);
1144	kmdp = preload_search_by_type("elf kernel");
1145	if (kmdp == NULL)
1146		kmdp = preload_search_by_type("elf64 kernel");
1147	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1148	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1149#ifdef DDB
1150	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1151	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1152#endif
1153
1154	/* Init basic tunables, hz etc */
1155	init_param1();
1156
1157	/*
1158	 * make gdt memory segments
1159	 */
1160	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1161
1162	for (x = 0; x < NGDT; x++) {
1163		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1164			ssdtosd(&gdt_segs[x], &gdt[x]);
1165	}
1166	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1167	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1168
1169	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1170	r_gdt.rd_base =  (long) gdt;
1171	lgdt(&r_gdt);
1172	pc = &__pcpu[0];
1173
1174	wrmsr(MSR_FSBASE, 0);		/* User value */
1175	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1176	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1177
1178	pcpu_init(pc, 0, sizeof(struct pcpu));
1179	PCPU_SET(prvspace, pc);
1180	PCPU_SET(curthread, &thread0);
1181	PCPU_SET(curpcb, thread0.td_pcb);
1182	PCPU_SET(tssp, &common_tss[0]);
1183
1184	/*
1185	 * Initialize mutexes.
1186	 *
1187	 * icu_lock: in order to allow an interrupt to occur in a critical
1188	 * 	     section, to set pcpu->ipending (etc...) properly, we
1189	 *	     must be able to get the icu lock, so it can't be
1190	 *	     under witness.
1191	 */
1192	mutex_init();
1193	mtx_init(&clock_lock, "clk", NULL, MTX_SPIN);
1194	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1195
1196	/* exceptions */
1197	for (x = 0; x < NIDT; x++)
1198		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1199	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1200	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1201	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 0);
1202 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1203	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1204	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1205	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1206	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1207	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1208	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1209	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1210	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1211	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1212	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1213	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1214	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1215	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1216	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1217	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1218
1219	r_idt.rd_limit = sizeof(idt0) - 1;
1220	r_idt.rd_base = (long) idt;
1221	lidt(&r_idt);
1222
1223	/*
1224	 * Initialize the console before we print anything out.
1225	 */
1226	cninit();
1227
1228#ifdef DEV_ISA
1229#ifdef DEV_ATPIC
1230	elcr_probe();
1231	atpic_startup();
1232#else
1233	/* Reset and mask the atpics and leave them shut down. */
1234	outb(IO_ICU1, ICW1_RESET | ICW1_IC4);
1235	outb(IO_ICU1 + ICU_IMR_OFFSET, IDT_IO_INTS);
1236	outb(IO_ICU1 + ICU_IMR_OFFSET, 1 << 2);
1237	outb(IO_ICU1 + ICU_IMR_OFFSET, ICW4_8086);
1238	outb(IO_ICU1 + ICU_IMR_OFFSET, 0xff);
1239	outb(IO_ICU1, OCW3_SEL | OCW3_RR);
1240
1241	outb(IO_ICU2, ICW1_RESET | ICW1_IC4);
1242	outb(IO_ICU2 + ICU_IMR_OFFSET, IDT_IO_INTS + 8);
1243	outb(IO_ICU2 + ICU_IMR_OFFSET, 2);
1244	outb(IO_ICU2 + ICU_IMR_OFFSET, ICW4_8086);
1245	outb(IO_ICU2 + ICU_IMR_OFFSET, 0xff);
1246	outb(IO_ICU2, OCW3_SEL | OCW3_RR);
1247
1248	/*
1249	 * Point the ICU spurious interrupt vectors at the APIC spurious
1250	 * interrupt handler.
1251	 */
1252	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1253	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1254#endif
1255#else
1256#error "have you forgotten the isa device?";
1257#endif
1258
1259	kdb_init();
1260
1261#ifdef KDB
1262	if (boothowto & RB_KDB)
1263		kdb_enter("Boot flags requested debugger");
1264#endif
1265
1266	identify_cpu();		/* Final stage of CPU initialization */
1267	initializecpu();	/* Initialize CPU registers */
1268
1269	/* make an initial tss so cpu can get interrupt stack on syscall! */
1270	common_tss[0].tss_rsp0 = thread0.td_kstack + \
1271	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1272	/* Ensure the stack is aligned to 16 bytes */
1273	common_tss[0].tss_rsp0 &= ~0xFul;
1274	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1275
1276	/* doublefault stack space, runs on ist1 */
1277	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1278
1279	/* Set the IO permission bitmap (empty due to tss seg limit) */
1280	common_tss[0].tss_iobase = sizeof(struct amd64tss);
1281
1282	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1283	ltr(gsel_tss);
1284
1285	/* Set up the fast syscall stuff */
1286	msr = rdmsr(MSR_EFER) | EFER_SCE;
1287	wrmsr(MSR_EFER, msr);
1288	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1289	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1290	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1291	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1292	wrmsr(MSR_STAR, msr);
1293	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1294
1295	getmemsize(kmdp, physfree);
1296	init_param2(physmem);
1297
1298	/* now running on new page tables, configured,and u/iom is accessible */
1299
1300	/* Map the message buffer. */
1301	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1302		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1303
1304	msgbufinit(msgbufp, MSGBUF_SIZE);
1305	fpuinit();
1306
1307	/* transfer to user mode */
1308
1309	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1310	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1311	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1312
1313	/* setup proc 0's pcb */
1314	thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
1315	thread0.td_pcb->pcb_cr3 = KPML4phys;
1316	thread0.td_frame = &proc0_tf;
1317
1318        env = getenv("kernelname");
1319	if (env != NULL)
1320		strlcpy(kernelname, env, sizeof(kernelname));
1321
1322	/* Location of kernel stack for locore */
1323	return ((u_int64_t)thread0.td_pcb);
1324}
1325
1326void
1327cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1328{
1329
1330	pcpu->pc_acpi_id = 0xffffffff;
1331}
1332
1333void
1334spinlock_enter(void)
1335{
1336	struct thread *td;
1337
1338	td = curthread;
1339	if (td->td_md.md_spinlock_count == 0)
1340		td->td_md.md_saved_flags = intr_disable();
1341	td->td_md.md_spinlock_count++;
1342	critical_enter();
1343}
1344
1345void
1346spinlock_exit(void)
1347{
1348	struct thread *td;
1349
1350	td = curthread;
1351	critical_exit();
1352	td->td_md.md_spinlock_count--;
1353	if (td->td_md.md_spinlock_count == 0)
1354		intr_restore(td->td_md.md_saved_flags);
1355}
1356
1357/*
1358 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1359 * we want to start a backtrace from the function that caused us to enter
1360 * the debugger. We have the context in the trapframe, but base the trace
1361 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1362 * enough for a backtrace.
1363 */
1364void
1365makectx(struct trapframe *tf, struct pcb *pcb)
1366{
1367
1368	pcb->pcb_r12 = tf->tf_r12;
1369	pcb->pcb_r13 = tf->tf_r13;
1370	pcb->pcb_r14 = tf->tf_r14;
1371	pcb->pcb_r15 = tf->tf_r15;
1372	pcb->pcb_rbp = tf->tf_rbp;
1373	pcb->pcb_rbx = tf->tf_rbx;
1374	pcb->pcb_rip = tf->tf_rip;
1375	pcb->pcb_rsp = (ISPL(tf->tf_cs)) ? tf->tf_rsp : (long)(tf + 1) - 8;
1376}
1377
1378int
1379ptrace_set_pc(struct thread *td, unsigned long addr)
1380{
1381	td->td_frame->tf_rip = addr;
1382	return (0);
1383}
1384
1385int
1386ptrace_single_step(struct thread *td)
1387{
1388	td->td_frame->tf_rflags |= PSL_T;
1389	return (0);
1390}
1391
1392int
1393ptrace_clear_single_step(struct thread *td)
1394{
1395	td->td_frame->tf_rflags &= ~PSL_T;
1396	return (0);
1397}
1398
1399int
1400fill_regs(struct thread *td, struct reg *regs)
1401{
1402	struct trapframe *tp;
1403
1404	tp = td->td_frame;
1405	regs->r_r15 = tp->tf_r15;
1406	regs->r_r14 = tp->tf_r14;
1407	regs->r_r13 = tp->tf_r13;
1408	regs->r_r12 = tp->tf_r12;
1409	regs->r_r11 = tp->tf_r11;
1410	regs->r_r10 = tp->tf_r10;
1411	regs->r_r9  = tp->tf_r9;
1412	regs->r_r8  = tp->tf_r8;
1413	regs->r_rdi = tp->tf_rdi;
1414	regs->r_rsi = tp->tf_rsi;
1415	regs->r_rbp = tp->tf_rbp;
1416	regs->r_rbx = tp->tf_rbx;
1417	regs->r_rdx = tp->tf_rdx;
1418	regs->r_rcx = tp->tf_rcx;
1419	regs->r_rax = tp->tf_rax;
1420	regs->r_rip = tp->tf_rip;
1421	regs->r_cs = tp->tf_cs;
1422	regs->r_rflags = tp->tf_rflags;
1423	regs->r_rsp = tp->tf_rsp;
1424	regs->r_ss = tp->tf_ss;
1425	return (0);
1426}
1427
1428int
1429set_regs(struct thread *td, struct reg *regs)
1430{
1431	struct trapframe *tp;
1432	register_t rflags;
1433
1434	tp = td->td_frame;
1435	rflags = regs->r_rflags & 0xffffffff;
1436	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1437		return (EINVAL);
1438	tp->tf_r15 = regs->r_r15;
1439	tp->tf_r14 = regs->r_r14;
1440	tp->tf_r13 = regs->r_r13;
1441	tp->tf_r12 = regs->r_r12;
1442	tp->tf_r11 = regs->r_r11;
1443	tp->tf_r10 = regs->r_r10;
1444	tp->tf_r9  = regs->r_r9;
1445	tp->tf_r8  = regs->r_r8;
1446	tp->tf_rdi = regs->r_rdi;
1447	tp->tf_rsi = regs->r_rsi;
1448	tp->tf_rbp = regs->r_rbp;
1449	tp->tf_rbx = regs->r_rbx;
1450	tp->tf_rdx = regs->r_rdx;
1451	tp->tf_rcx = regs->r_rcx;
1452	tp->tf_rax = regs->r_rax;
1453	tp->tf_rip = regs->r_rip;
1454	tp->tf_cs = regs->r_cs;
1455	tp->tf_rflags = rflags;
1456	tp->tf_rsp = regs->r_rsp;
1457	tp->tf_ss = regs->r_ss;
1458	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1459	return (0);
1460}
1461
1462/* XXX check all this stuff! */
1463/* externalize from sv_xmm */
1464static void
1465fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1466{
1467	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1468	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1469	int i;
1470
1471	/* pcb -> fpregs */
1472	bzero(fpregs, sizeof(*fpregs));
1473
1474	/* FPU control/status */
1475	penv_fpreg->en_cw = penv_xmm->en_cw;
1476	penv_fpreg->en_sw = penv_xmm->en_sw;
1477	penv_fpreg->en_tw = penv_xmm->en_tw;
1478	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1479	penv_fpreg->en_rip = penv_xmm->en_rip;
1480	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1481	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1482	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1483
1484	/* FPU registers */
1485	for (i = 0; i < 8; ++i)
1486		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1487
1488	/* SSE registers */
1489	for (i = 0; i < 16; ++i)
1490		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1491}
1492
1493/* internalize from fpregs into sv_xmm */
1494static void
1495set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1496{
1497	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1498	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1499	int i;
1500
1501	/* fpregs -> pcb */
1502	/* FPU control/status */
1503	penv_xmm->en_cw = penv_fpreg->en_cw;
1504	penv_xmm->en_sw = penv_fpreg->en_sw;
1505	penv_xmm->en_tw = penv_fpreg->en_tw;
1506	penv_xmm->en_opcode = penv_fpreg->en_opcode;
1507	penv_xmm->en_rip = penv_fpreg->en_rip;
1508	penv_xmm->en_rdp = penv_fpreg->en_rdp;
1509	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1510	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask;
1511
1512	/* FPU registers */
1513	for (i = 0; i < 8; ++i)
1514		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1515
1516	/* SSE registers */
1517	for (i = 0; i < 16; ++i)
1518		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1519}
1520
1521/* externalize from td->pcb */
1522int
1523fill_fpregs(struct thread *td, struct fpreg *fpregs)
1524{
1525
1526	fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
1527	return (0);
1528}
1529
1530/* internalize to td->pcb */
1531int
1532set_fpregs(struct thread *td, struct fpreg *fpregs)
1533{
1534
1535	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
1536	return (0);
1537}
1538
1539/*
1540 * Get machine context.
1541 */
1542int
1543get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
1544{
1545	struct trapframe *tp;
1546
1547	tp = td->td_frame;
1548	PROC_LOCK(curthread->td_proc);
1549	mcp->mc_onstack = sigonstack(tp->tf_rsp);
1550	PROC_UNLOCK(curthread->td_proc);
1551	mcp->mc_r15 = tp->tf_r15;
1552	mcp->mc_r14 = tp->tf_r14;
1553	mcp->mc_r13 = tp->tf_r13;
1554	mcp->mc_r12 = tp->tf_r12;
1555	mcp->mc_r11 = tp->tf_r11;
1556	mcp->mc_r10 = tp->tf_r10;
1557	mcp->mc_r9  = tp->tf_r9;
1558	mcp->mc_r8  = tp->tf_r8;
1559	mcp->mc_rdi = tp->tf_rdi;
1560	mcp->mc_rsi = tp->tf_rsi;
1561	mcp->mc_rbp = tp->tf_rbp;
1562	mcp->mc_rbx = tp->tf_rbx;
1563	mcp->mc_rcx = tp->tf_rcx;
1564	if (flags & GET_MC_CLEAR_RET) {
1565		mcp->mc_rax = 0;
1566		mcp->mc_rdx = 0;
1567	} else {
1568		mcp->mc_rax = tp->tf_rax;
1569		mcp->mc_rdx = tp->tf_rdx;
1570	}
1571	mcp->mc_rip = tp->tf_rip;
1572	mcp->mc_cs = tp->tf_cs;
1573	mcp->mc_rflags = tp->tf_rflags;
1574	mcp->mc_rsp = tp->tf_rsp;
1575	mcp->mc_ss = tp->tf_ss;
1576	mcp->mc_len = sizeof(*mcp);
1577	get_fpcontext(td, mcp);
1578	return (0);
1579}
1580
1581/*
1582 * Set machine context.
1583 *
1584 * However, we don't set any but the user modifiable flags, and we won't
1585 * touch the cs selector.
1586 */
1587int
1588set_mcontext(struct thread *td, const mcontext_t *mcp)
1589{
1590	struct trapframe *tp;
1591	long rflags;
1592	int ret;
1593
1594	tp = td->td_frame;
1595	if (mcp->mc_len != sizeof(*mcp))
1596		return (EINVAL);
1597	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
1598	    (tp->tf_rflags & ~PSL_USERCHANGE);
1599	ret = set_fpcontext(td, mcp);
1600	if (ret != 0)
1601		return (ret);
1602	tp->tf_r15 = mcp->mc_r15;
1603	tp->tf_r14 = mcp->mc_r14;
1604	tp->tf_r13 = mcp->mc_r13;
1605	tp->tf_r12 = mcp->mc_r12;
1606	tp->tf_r11 = mcp->mc_r11;
1607	tp->tf_r10 = mcp->mc_r10;
1608	tp->tf_r9  = mcp->mc_r9;
1609	tp->tf_r8  = mcp->mc_r8;
1610	tp->tf_rdi = mcp->mc_rdi;
1611	tp->tf_rsi = mcp->mc_rsi;
1612	tp->tf_rbp = mcp->mc_rbp;
1613	tp->tf_rbx = mcp->mc_rbx;
1614	tp->tf_rdx = mcp->mc_rdx;
1615	tp->tf_rcx = mcp->mc_rcx;
1616	tp->tf_rax = mcp->mc_rax;
1617	tp->tf_rip = mcp->mc_rip;
1618	tp->tf_rflags = rflags;
1619	tp->tf_rsp = mcp->mc_rsp;
1620	tp->tf_ss = mcp->mc_ss;
1621	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1622	return (0);
1623}
1624
1625static void
1626get_fpcontext(struct thread *td, mcontext_t *mcp)
1627{
1628
1629	mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
1630	mcp->mc_fpformat = fpuformat();
1631}
1632
1633static int
1634set_fpcontext(struct thread *td, const mcontext_t *mcp)
1635{
1636
1637	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
1638		return (0);
1639	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
1640		return (EINVAL);
1641	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
1642		/* We don't care what state is left in the FPU or PCB. */
1643		fpstate_drop(td);
1644	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
1645	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
1646		/*
1647		 * XXX we violate the dubious requirement that fpusetregs()
1648		 * be called with interrupts disabled.
1649		 * XXX obsolete on trap-16 systems?
1650		 */
1651		fpusetregs(td, (struct savefpu *)&mcp->mc_fpstate);
1652	} else
1653		return (EINVAL);
1654	return (0);
1655}
1656
1657void
1658fpstate_drop(struct thread *td)
1659{
1660	register_t s;
1661
1662	s = intr_disable();
1663	if (PCPU_GET(fpcurthread) == td)
1664		fpudrop();
1665	/*
1666	 * XXX force a full drop of the fpu.  The above only drops it if we
1667	 * owned it.
1668	 *
1669	 * XXX I don't much like fpugetregs()'s semantics of doing a full
1670	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
1671	 * We only need to drop to !PCB_INITDONE in sendsig().  But
1672	 * sendsig() is the only caller of fpugetregs()... perhaps we just
1673	 * have too many layers.
1674	 */
1675	curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
1676	intr_restore(s);
1677}
1678
1679int
1680fill_dbregs(struct thread *td, struct dbreg *dbregs)
1681{
1682	struct pcb *pcb;
1683
1684	if (td == NULL) {
1685		dbregs->dr[0] = rdr0();
1686		dbregs->dr[1] = rdr1();
1687		dbregs->dr[2] = rdr2();
1688		dbregs->dr[3] = rdr3();
1689		dbregs->dr[6] = rdr6();
1690		dbregs->dr[7] = rdr7();
1691	} else {
1692		pcb = td->td_pcb;
1693		dbregs->dr[0] = pcb->pcb_dr0;
1694		dbregs->dr[1] = pcb->pcb_dr1;
1695		dbregs->dr[2] = pcb->pcb_dr2;
1696		dbregs->dr[3] = pcb->pcb_dr3;
1697		dbregs->dr[6] = pcb->pcb_dr6;
1698		dbregs->dr[7] = pcb->pcb_dr7;
1699	}
1700	dbregs->dr[4] = 0;
1701	dbregs->dr[5] = 0;
1702	dbregs->dr[8] = 0;
1703	dbregs->dr[9] = 0;
1704	dbregs->dr[10] = 0;
1705	dbregs->dr[11] = 0;
1706	dbregs->dr[12] = 0;
1707	dbregs->dr[13] = 0;
1708	dbregs->dr[14] = 0;
1709	dbregs->dr[15] = 0;
1710	return (0);
1711}
1712
1713int
1714set_dbregs(struct thread *td, struct dbreg *dbregs)
1715{
1716	struct pcb *pcb;
1717	int i;
1718	u_int64_t mask1, mask2;
1719
1720	if (td == NULL) {
1721		load_dr0(dbregs->dr[0]);
1722		load_dr1(dbregs->dr[1]);
1723		load_dr2(dbregs->dr[2]);
1724		load_dr3(dbregs->dr[3]);
1725		load_dr6(dbregs->dr[6]);
1726		load_dr7(dbregs->dr[7]);
1727	} else {
1728		/*
1729		 * Don't let an illegal value for dr7 get set.  Specifically,
1730		 * check for undefined settings.  Setting these bit patterns
1731		 * result in undefined behaviour and can lead to an unexpected
1732		 * TRCTRAP or a general protection fault right here.
1733		 * Upper bits of dr6 and dr7 must not be set
1734		 */
1735		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
1736		     i++, mask1 <<= 2, mask2 <<= 2)
1737			if ((dbregs->dr[7] & mask1) == mask2)
1738				return (EINVAL);
1739		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
1740		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
1741			return (EINVAL);
1742
1743		pcb = td->td_pcb;
1744
1745		/*
1746		 * Don't let a process set a breakpoint that is not within the
1747		 * process's address space.  If a process could do this, it
1748		 * could halt the system by setting a breakpoint in the kernel
1749		 * (if ddb was enabled).  Thus, we need to check to make sure
1750		 * that no breakpoints are being enabled for addresses outside
1751		 * process's address space, unless, perhaps, we were called by
1752		 * uid 0.
1753		 *
1754		 * XXX - what about when the watched area of the user's
1755		 * address space is written into from within the kernel
1756		 * ... wouldn't that still cause a breakpoint to be generated
1757		 * from within kernel mode?
1758		 */
1759
1760		if (suser(td) != 0) {
1761			if (dbregs->dr[7] & 0x3) {
1762				/* dr0 is enabled */
1763				if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
1764					return (EINVAL);
1765			}
1766			if (dbregs->dr[7] & 0x3<<2) {
1767				/* dr1 is enabled */
1768				if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
1769					return (EINVAL);
1770			}
1771			if (dbregs->dr[7] & 0x3<<4) {
1772				/* dr2 is enabled */
1773				if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
1774					return (EINVAL);
1775			}
1776			if (dbregs->dr[7] & 0x3<<6) {
1777				/* dr3 is enabled */
1778				if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
1779					return (EINVAL);
1780			}
1781		}
1782
1783		pcb->pcb_dr0 = dbregs->dr[0];
1784		pcb->pcb_dr1 = dbregs->dr[1];
1785		pcb->pcb_dr2 = dbregs->dr[2];
1786		pcb->pcb_dr3 = dbregs->dr[3];
1787		pcb->pcb_dr6 = dbregs->dr[6];
1788		pcb->pcb_dr7 = dbregs->dr[7];
1789
1790		pcb->pcb_flags |= PCB_DBREGS;
1791	}
1792
1793	return (0);
1794}
1795
1796void
1797reset_dbregs(void)
1798{
1799
1800	load_dr7(0);	/* Turn off the control bits first */
1801	load_dr0(0);
1802	load_dr1(0);
1803	load_dr2(0);
1804	load_dr3(0);
1805	load_dr6(0);
1806}
1807
1808/*
1809 * Return > 0 if a hardware breakpoint has been hit, and the
1810 * breakpoint was in user space.  Return 0, otherwise.
1811 */
1812int
1813user_dbreg_trap(void)
1814{
1815        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
1816        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
1817        int nbp;            /* number of breakpoints that triggered */
1818        caddr_t addr[4];    /* breakpoint addresses */
1819        int i;
1820
1821        dr7 = rdr7();
1822        if ((dr7 & 0x000000ff) == 0) {
1823                /*
1824                 * all GE and LE bits in the dr7 register are zero,
1825                 * thus the trap couldn't have been caused by the
1826                 * hardware debug registers
1827                 */
1828                return 0;
1829        }
1830
1831        nbp = 0;
1832        dr6 = rdr6();
1833        bp = dr6 & 0x0000000f;
1834
1835        if (!bp) {
1836                /*
1837                 * None of the breakpoint bits are set meaning this
1838                 * trap was not caused by any of the debug registers
1839                 */
1840                return 0;
1841        }
1842
1843        /*
1844         * at least one of the breakpoints were hit, check to see
1845         * which ones and if any of them are user space addresses
1846         */
1847
1848        if (bp & 0x01) {
1849                addr[nbp++] = (caddr_t)rdr0();
1850        }
1851        if (bp & 0x02) {
1852                addr[nbp++] = (caddr_t)rdr1();
1853        }
1854        if (bp & 0x04) {
1855                addr[nbp++] = (caddr_t)rdr2();
1856        }
1857        if (bp & 0x08) {
1858                addr[nbp++] = (caddr_t)rdr3();
1859        }
1860
1861        for (i=0; i<nbp; i++) {
1862                if (addr[i] <
1863                    (caddr_t)VM_MAXUSER_ADDRESS) {
1864                        /*
1865                         * addr[i] is in user space
1866                         */
1867                        return nbp;
1868                }
1869        }
1870
1871        /*
1872         * None of the breakpoints are in user space.
1873         */
1874        return 0;
1875}
1876
1877#ifdef KDB
1878
1879/*
1880 * Provide inb() and outb() as functions.  They are normally only
1881 * available as macros calling inlined functions, thus cannot be
1882 * called from the debugger.
1883 *
1884 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1885 */
1886
1887#undef inb
1888#undef outb
1889
1890/* silence compiler warnings */
1891u_char inb(u_int);
1892void outb(u_int, u_char);
1893
1894u_char
1895inb(u_int port)
1896{
1897	u_char	data;
1898	/*
1899	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1900	 * %edx, while gcc generates inferior code (movw instead of movl)
1901	 * if we tell it to load (u_short) port.
1902	 */
1903	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1904	return (data);
1905}
1906
1907void
1908outb(u_int port, u_char data)
1909{
1910	u_char	al;
1911	/*
1912	 * Use an unnecessary assignment to help gcc's register allocator.
1913	 * This make a large difference for gcc-1.40 and a tiny difference
1914	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1915	 * best results.  gcc-2.6.0 can't handle this.
1916	 */
1917	al = data;
1918	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1919}
1920
1921#endif /* KDB */
1922