machdep.c revision 130224
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 130224 2004-06-08 01:02:52Z peter $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_msgbuf.h"
55#include "opt_perfmon.h"
56
57#include <sys/param.h>
58#include <sys/systm.h>
59#include <sys/sysproto.h>
60#include <sys/signalvar.h>
61#include <sys/imgact.h>
62#include <sys/kernel.h>
63#include <sys/ktr.h>
64#include <sys/linker.h>
65#include <sys/lock.h>
66#include <sys/malloc.h>
67#include <sys/mutex.h>
68#include <sys/pcpu.h>
69#include <sys/proc.h>
70#include <sys/bio.h>
71#include <sys/buf.h>
72#include <sys/reboot.h>
73#include <sys/callout.h>
74#include <sys/msgbuf.h>
75#include <sys/sched.h>
76#include <sys/sysent.h>
77#include <sys/sysctl.h>
78#include <sys/ucontext.h>
79#include <sys/vmmeter.h>
80#include <sys/bus.h>
81#include <sys/eventhandler.h>
82
83#include <vm/vm.h>
84#include <vm/vm_param.h>
85#include <vm/vm_kern.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_map.h>
89#include <vm/vm_pager.h>
90#include <vm/vm_extern.h>
91
92#include <sys/user.h>
93#include <sys/exec.h>
94#include <sys/cons.h>
95
96#include <ddb/ddb.h>
97
98#include <net/netisr.h>
99
100#include <machine/cpu.h>
101#include <machine/cputypes.h>
102#include <machine/reg.h>
103#include <machine/clock.h>
104#include <machine/specialreg.h>
105#include <machine/intr_machdep.h>
106#include <machine/md_var.h>
107#include <machine/metadata.h>
108#include <machine/proc.h>
109#ifdef PERFMON
110#include <machine/perfmon.h>
111#endif
112#include <machine/tss.h>
113#ifdef SMP
114#include <machine/smp.h>
115#endif
116
117#include <amd64/isa/icu.h>
118
119#include <isa/isareg.h>
120#include <isa/rtc.h>
121#include <sys/ptrace.h>
122#include <machine/sigframe.h>
123
124/* Sanity check for __curthread() */
125CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
126
127extern u_int64_t hammer_time(u_int64_t, u_int64_t);
128extern void dblfault_handler(void);
129
130extern void printcpuinfo(void);	/* XXX header file */
131extern void identify_cpu(void);
132extern void panicifcpuunsupported(void);
133
134#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
135#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
136
137static void cpu_startup(void *);
138static void get_fpcontext(struct thread *td, mcontext_t *mcp);
139static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
140SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
141
142int	_udatasel, _ucodesel, _ucode32sel;
143u_long	atdevbase;
144
145int cold = 1;
146
147long Maxmem = 0;
148
149vm_paddr_t phys_avail[20];
150
151/* must be 2 less so 0 0 can signal end of chunks */
152#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
153
154struct kva_md_info kmi;
155
156static struct trapframe proc0_tf;
157struct region_descriptor r_gdt, r_idt;
158
159struct pcpu __pcpu[MAXCPU];
160
161struct mtx icu_lock;
162
163#ifdef DDB
164void	*ksym_start, *ksym_end;
165#endif
166
167static void
168cpu_startup(dummy)
169	void *dummy;
170{
171	/*
172	 * Good {morning,afternoon,evening,night}.
173	 */
174	startrtclock();
175	printcpuinfo();
176	panicifcpuunsupported();
177#ifdef PERFMON
178	perfmon_init();
179#endif
180	printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
181	    ptoa((uintmax_t)Maxmem) / 1048576);
182	/*
183	 * Display any holes after the first chunk of extended memory.
184	 */
185	if (bootverbose) {
186		int indx;
187
188		printf("Physical memory chunk(s):\n");
189		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
190			vm_paddr_t size;
191
192			size = phys_avail[indx + 1] - phys_avail[indx];
193			printf(
194			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
195			    (uintmax_t)phys_avail[indx],
196			    (uintmax_t)phys_avail[indx + 1] - 1,
197			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
198		}
199	}
200
201	vm_ksubmap_init(&kmi);
202
203	printf("avail memory = %ju (%ju MB)\n",
204	    ptoa((uintmax_t)cnt.v_free_count),
205	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
206
207	/*
208	 * Set up buffers, so they can be used to read disk labels.
209	 */
210	bufinit();
211	vm_pager_bufferinit();
212
213	cpu_setregs();
214}
215
216/*
217 * Send an interrupt to process.
218 *
219 * Stack is set up to allow sigcode stored
220 * at top to call routine, followed by kcall
221 * to sigreturn routine below.  After sigreturn
222 * resets the signal mask, the stack, and the
223 * frame pointer, it returns to the user
224 * specified pc, psl.
225 */
226void
227sendsig(catcher, sig, mask, code)
228	sig_t catcher;
229	int sig;
230	sigset_t *mask;
231	u_long code;
232{
233	struct sigframe sf, *sfp;
234	struct proc *p;
235	struct thread *td;
236	struct sigacts *psp;
237	char *sp;
238	struct trapframe *regs;
239	int oonstack;
240
241	td = curthread;
242	p = td->td_proc;
243	PROC_LOCK_ASSERT(p, MA_OWNED);
244	psp = p->p_sigacts;
245	mtx_assert(&psp->ps_mtx, MA_OWNED);
246	regs = td->td_frame;
247	oonstack = sigonstack(regs->tf_rsp);
248
249	/* Save user context. */
250	bzero(&sf, sizeof(sf));
251	sf.sf_uc.uc_sigmask = *mask;
252	sf.sf_uc.uc_stack = td->td_sigstk;
253	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
254	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
255	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
256	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
257	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
258	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
259	fpstate_drop(td);
260
261	/* Allocate space for the signal handler context. */
262	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
263	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
264		sp = td->td_sigstk.ss_sp +
265		    td->td_sigstk.ss_size - sizeof(struct sigframe);
266#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
267		td->td_sigstk.ss_flags |= SS_ONSTACK;
268#endif
269	} else
270		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
271	/* Align to 16 bytes. */
272	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
273
274	/* Translate the signal if appropriate. */
275	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
276		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
277
278	/* Build the argument list for the signal handler. */
279	regs->tf_rdi = sig;			/* arg 1 in %rdi */
280	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
281	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
282		/* Signal handler installed with SA_SIGINFO. */
283		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
284		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
285
286		/* Fill in POSIX parts */
287		sf.sf_si.si_signo = sig;
288		sf.sf_si.si_code = code;
289		regs->tf_rcx = regs->tf_addr;	/* arg 4 in %rcx */
290	} else {
291		/* Old FreeBSD-style arguments. */
292		regs->tf_rsi = code;		/* arg 2 in %rsi */
293		regs->tf_rcx = regs->tf_addr;	/* arg 4 in %rcx */
294		sf.sf_ahu.sf_handler = catcher;
295	}
296	mtx_unlock(&psp->ps_mtx);
297	PROC_UNLOCK(p);
298
299	/*
300	 * Copy the sigframe out to the user's stack.
301	 */
302	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
303#ifdef DEBUG
304		printf("process %ld has trashed its stack\n", (long)p->p_pid);
305#endif
306		PROC_LOCK(p);
307		sigexit(td, SIGILL);
308	}
309
310	regs->tf_rsp = (long)sfp;
311	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
312	regs->tf_rflags &= ~PSL_T;
313	regs->tf_cs = _ucodesel;
314	PROC_LOCK(p);
315	mtx_lock(&psp->ps_mtx);
316}
317
318/*
319 * Build siginfo_t for SA thread
320 */
321void
322cpu_thread_siginfo(int sig, u_long code, siginfo_t *si)
323{
324	struct proc *p;
325	struct thread *td;
326	struct trapframe *regs;
327
328	td = curthread;
329	p = td->td_proc;
330	regs = td->td_frame;
331	PROC_LOCK_ASSERT(p, MA_OWNED);
332
333	bzero(si, sizeof(*si));
334	si->si_signo = sig;
335	si->si_code = code;
336	si->si_addr = (void *)regs->tf_addr;
337	/* XXXKSE fill other fields */
338}
339
340/*
341 * System call to cleanup state after a signal
342 * has been taken.  Reset signal mask and
343 * stack state from context left by sendsig (above).
344 * Return to previous pc and psl as specified by
345 * context left by sendsig. Check carefully to
346 * make sure that the user has not modified the
347 * state to gain improper privileges.
348 *
349 * MPSAFE
350 */
351int
352sigreturn(td, uap)
353	struct thread *td;
354	struct sigreturn_args /* {
355		const __ucontext *sigcntxp;
356	} */ *uap;
357{
358	ucontext_t uc;
359	struct proc *p = td->td_proc;
360	struct trapframe *regs;
361	const ucontext_t *ucp;
362	long rflags;
363	int cs, error, ret;
364
365	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
366	if (error != 0)
367		return (error);
368	ucp = &uc;
369	regs = td->td_frame;
370	rflags = ucp->uc_mcontext.mc_rflags;
371	/*
372	 * Don't allow users to change privileged or reserved flags.
373	 */
374	/*
375	 * XXX do allow users to change the privileged flag PSL_RF.
376	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
377	 * should sometimes set it there too.  tf_rflags is kept in
378	 * the signal context during signal handling and there is no
379	 * other place to remember it, so the PSL_RF bit may be
380	 * corrupted by the signal handler without us knowing.
381	 * Corruption of the PSL_RF bit at worst causes one more or
382	 * one less debugger trap, so allowing it is fairly harmless.
383	 */
384	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
385		printf("sigreturn: rflags = 0x%lx\n", rflags);
386		return (EINVAL);
387	}
388
389	/*
390	 * Don't allow users to load a valid privileged %cs.  Let the
391	 * hardware check for invalid selectors, excess privilege in
392	 * other selectors, invalid %eip's and invalid %esp's.
393	 */
394	cs = ucp->uc_mcontext.mc_cs;
395	if (!CS_SECURE(cs)) {
396		printf("sigreturn: cs = 0x%x\n", cs);
397		trapsignal(td, SIGBUS, T_PROTFLT);
398		return (EINVAL);
399	}
400
401	ret = set_fpcontext(td, &ucp->uc_mcontext);
402	if (ret != 0)
403		return (ret);
404	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
405
406	PROC_LOCK(p);
407#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
408	if (ucp->uc_mcontext.mc_onstack & 1)
409		td->td_sigstk.ss_flags |= SS_ONSTACK;
410	else
411		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
412#endif
413
414	td->td_sigmask = ucp->uc_sigmask;
415	SIG_CANTMASK(td->td_sigmask);
416	signotify(td);
417	PROC_UNLOCK(p);
418	td->td_pcb->pcb_flags |= PCB_FULLCTX;
419	return (EJUSTRETURN);
420}
421
422#ifdef COMPAT_FREEBSD4
423int
424freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
425{
426
427	return sigreturn(td, (struct sigreturn_args *)uap);
428}
429#endif
430
431
432/*
433 * Machine dependent boot() routine
434 *
435 * I haven't seen anything to put here yet
436 * Possibly some stuff might be grafted back here from boot()
437 */
438void
439cpu_boot(int howto)
440{
441}
442
443/*
444 * Shutdown the CPU as much as possible
445 */
446void
447cpu_halt(void)
448{
449	for (;;)
450		__asm__ ("hlt");
451}
452
453/*
454 * Hook to idle the CPU when possible.  In the SMP case we default to
455 * off because a halted cpu will not currently pick up a new thread in the
456 * run queue until the next timer tick.  If turned on this will result in
457 * approximately a 4.2% loss in real time performance in buildworld tests
458 * (but improves user and sys times oddly enough), and saves approximately
459 * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
460 *
461 * XXX we need to have a cpu mask of idle cpus and generate an IPI or
462 * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
463 * Then we can have our cake and eat it too.
464 *
465 * XXX I'm turning it on for SMP as well by default for now.  It seems to
466 * help lock contention somewhat, and this is critical for HTT. -Peter
467 */
468static int	cpu_idle_hlt = 1;
469SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
470    &cpu_idle_hlt, 0, "Idle loop HLT enable");
471
472static void
473cpu_idle_default(void)
474{
475	/*
476	 * we must absolutely guarentee that hlt is the
477	 * absolute next instruction after sti or we
478	 * introduce a timing window.
479	 */
480	__asm __volatile("sti; hlt");
481}
482
483/*
484 * Note that we have to be careful here to avoid a race between checking
485 * sched_runnable() and actually halting.  If we don't do this, we may waste
486 * the time between calling hlt and the next interrupt even though there
487 * is a runnable process.
488 */
489void
490cpu_idle(void)
491{
492
493	if (cpu_idle_hlt) {
494		disable_intr();
495  		if (sched_runnable())
496			enable_intr();
497		else
498			(*cpu_idle_hook)();
499	}
500}
501
502/* Other subsystems (e.g., ACPI) can hook this later. */
503void (*cpu_idle_hook)(void) = cpu_idle_default;
504
505/*
506 * Clear registers on exec
507 */
508void
509exec_setregs(td, entry, stack, ps_strings)
510	struct thread *td;
511	u_long entry;
512	u_long stack;
513	u_long ps_strings;
514{
515	struct trapframe *regs = td->td_frame;
516	struct pcb *pcb = td->td_pcb;
517
518	wrmsr(MSR_FSBASE, 0);
519	wrmsr(MSR_KGSBASE, 0);	/* User value while we're in the kernel */
520	pcb->pcb_fsbase = 0;
521	pcb->pcb_gsbase = 0;
522	load_ds(_udatasel);
523	load_es(_udatasel);
524	load_fs(_udatasel);
525	load_gs(_udatasel);
526	pcb->pcb_ds = _udatasel;
527	pcb->pcb_es = _udatasel;
528	pcb->pcb_fs = _udatasel;
529	pcb->pcb_gs = _udatasel;
530
531	bzero((char *)regs, sizeof(struct trapframe));
532	regs->tf_rip = entry;
533	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
534	regs->tf_rdi = stack;		/* argv */
535	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
536	regs->tf_ss = _udatasel;
537	regs->tf_cs = _ucodesel;
538
539	/*
540	 * Reset the hardware debug registers if they were in use.
541	 * They won't have any meaning for the newly exec'd process.
542	 */
543	if (pcb->pcb_flags & PCB_DBREGS) {
544		pcb->pcb_dr0 = 0;
545		pcb->pcb_dr1 = 0;
546		pcb->pcb_dr2 = 0;
547		pcb->pcb_dr3 = 0;
548		pcb->pcb_dr6 = 0;
549		pcb->pcb_dr7 = 0;
550		if (pcb == PCPU_GET(curpcb)) {
551			/*
552			 * Clear the debug registers on the running
553			 * CPU, otherwise they will end up affecting
554			 * the next process we switch to.
555			 */
556			reset_dbregs();
557		}
558		pcb->pcb_flags &= ~PCB_DBREGS;
559	}
560
561	/*
562	 * Arrange to trap the next fpu or `fwait' instruction (see fpu.c
563	 * for why fwait must be trapped at least if there is an fpu or an
564	 * emulator).  This is mainly to handle the case where npx0 is not
565	 * configured, since the fpu routines normally set up the trap
566	 * otherwise.  It should be done only at boot time, but doing it
567	 * here allows modifying `fpu_exists' for testing the emulator on
568	 * systems with an fpu.
569	 */
570	load_cr0(rcr0() | CR0_MP | CR0_TS);
571
572	/* Initialize the fpu (if any) for the current process. */
573	/*
574	 * XXX the above load_cr0() also initializes it and is a layering
575	 * violation.  It drops the fpu state partially
576	 * and this would be fatal if we were interrupted now, and decided
577	 * to force the state to the pcb, and checked the invariant
578	 * (CR0_TS clear) if and only if PCPU_GET(fpcurthread) != NULL).
579	 * ALL of this can happen except the check.  The check used to
580	 * happen and be fatal later when we didn't complete the drop
581	 * before returning to user mode.  This should be fixed properly
582	 * soon.
583	 */
584	fpstate_drop(td);
585}
586
587void
588cpu_setregs(void)
589{
590	register_t cr0;
591
592	cr0 = rcr0();
593	cr0 |= CR0_NE;			/* Done by fpuinit() */
594	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
595	cr0 |= CR0_WP | CR0_AM;
596	load_cr0(cr0);
597}
598
599static int
600sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
601{
602	int error;
603	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
604		req);
605	if (!error && req->newptr)
606		resettodr();
607	return (error);
608}
609
610SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
611	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
612
613SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
614	CTLFLAG_RW, &disable_rtc_set, 0, "");
615
616SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
617	CTLFLAG_RW, &wall_cmos_clock, 0, "");
618
619/*
620 * Initialize 386 and configure to run kernel
621 */
622
623/*
624 * Initialize segments & interrupt table
625 */
626
627struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor table */
628static struct gate_descriptor idt0[NIDT];
629struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
630
631static char dblfault_stack[PAGE_SIZE] __aligned(16);
632
633struct amd64tss common_tss[MAXCPU];
634
635/* software prototypes -- in more palatable form */
636struct soft_segment_descriptor gdt_segs[] = {
637/* GNULL_SEL	0 Null Descriptor */
638{	0x0,			/* segment base address  */
639	0x0,			/* length */
640	0,			/* segment type */
641	0,			/* segment descriptor priority level */
642	0,			/* segment descriptor present */
643	0,			/* long */
644	0,			/* default 32 vs 16 bit size */
645	0  			/* limit granularity (byte/page units)*/ },
646/* GCODE_SEL	1 Code Descriptor for kernel */
647{	0x0,			/* segment base address  */
648	0xfffff,		/* length - all address space */
649	SDT_MEMERA,		/* segment type */
650	SEL_KPL,		/* segment descriptor priority level */
651	1,			/* segment descriptor present */
652	1,			/* long */
653	0,			/* default 32 vs 16 bit size */
654	1  			/* limit granularity (byte/page units)*/ },
655/* GDATA_SEL	2 Data Descriptor for kernel */
656{	0x0,			/* segment base address  */
657	0xfffff,		/* length - all address space */
658	SDT_MEMRWA,		/* segment type */
659	SEL_KPL,		/* segment descriptor priority level */
660	1,			/* segment descriptor present */
661	1,			/* long */
662	0,			/* default 32 vs 16 bit size */
663	1  			/* limit granularity (byte/page units)*/ },
664/* GUCODE32_SEL	3 32 bit Code Descriptor for user */
665{	0x0,			/* segment base address  */
666	0xfffff,		/* length - all address space */
667	SDT_MEMERA,		/* segment type */
668	SEL_UPL,		/* segment descriptor priority level */
669	1,			/* segment descriptor present */
670	0,			/* long */
671	1,			/* default 32 vs 16 bit size */
672	1  			/* limit granularity (byte/page units)*/ },
673/* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
674{	0x0,			/* segment base address  */
675	0xfffff,		/* length - all address space */
676	SDT_MEMRWA,		/* segment type */
677	SEL_UPL,		/* segment descriptor priority level */
678	1,			/* segment descriptor present */
679	0,			/* long */
680	1,			/* default 32 vs 16 bit size */
681	1  			/* limit granularity (byte/page units)*/ },
682/* GUCODE_SEL	5 64 bit Code Descriptor for user */
683{	0x0,			/* segment base address  */
684	0xfffff,		/* length - all address space */
685	SDT_MEMERA,		/* segment type */
686	SEL_UPL,		/* segment descriptor priority level */
687	1,			/* segment descriptor present */
688	1,			/* long */
689	0,			/* default 32 vs 16 bit size */
690	1  			/* limit granularity (byte/page units)*/ },
691/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
692{
693	0x0,			/* segment base address */
694	sizeof(struct amd64tss)-1,/* length - all address space */
695	SDT_SYSTSS,		/* segment type */
696	SEL_KPL,		/* segment descriptor priority level */
697	1,			/* segment descriptor present */
698	0,			/* long */
699	0,			/* unused - default 32 vs 16 bit size */
700	0  			/* limit granularity (byte/page units)*/ },
701/* Actually, the TSS is a system descriptor which is double size */
702{	0x0,			/* segment base address  */
703	0x0,			/* length */
704	0,			/* segment type */
705	0,			/* segment descriptor priority level */
706	0,			/* segment descriptor present */
707	0,			/* long */
708	0,			/* default 32 vs 16 bit size */
709	0  			/* limit granularity (byte/page units)*/ },
710};
711
712void
713setidt(idx, func, typ, dpl, ist)
714	int idx;
715	inthand_t *func;
716	int typ;
717	int dpl;
718	int ist;
719{
720	struct gate_descriptor *ip;
721
722	ip = idt + idx;
723	ip->gd_looffset = (uintptr_t)func;
724	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
725	ip->gd_ist = ist;
726	ip->gd_xx = 0;
727	ip->gd_type = typ;
728	ip->gd_dpl = dpl;
729	ip->gd_p = 1;
730	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
731}
732
733#define	IDTVEC(name)	__CONCAT(X,name)
734
735extern inthand_t
736	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
737	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
738	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
739	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
740	IDTVEC(xmm), IDTVEC(dblfault),
741	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
742
743void
744sdtossd(sd, ssd)
745	struct user_segment_descriptor *sd;
746	struct soft_segment_descriptor *ssd;
747{
748
749	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
750	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
751	ssd->ssd_type  = sd->sd_type;
752	ssd->ssd_dpl   = sd->sd_dpl;
753	ssd->ssd_p     = sd->sd_p;
754	ssd->ssd_long  = sd->sd_long;
755	ssd->ssd_def32 = sd->sd_def32;
756	ssd->ssd_gran  = sd->sd_gran;
757}
758
759void
760ssdtosd(ssd, sd)
761	struct soft_segment_descriptor *ssd;
762	struct user_segment_descriptor *sd;
763{
764
765	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
766	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
767	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
768	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
769	sd->sd_type  = ssd->ssd_type;
770	sd->sd_dpl   = ssd->ssd_dpl;
771	sd->sd_p     = ssd->ssd_p;
772	sd->sd_long  = ssd->ssd_long;
773	sd->sd_def32 = ssd->ssd_def32;
774	sd->sd_gran  = ssd->ssd_gran;
775}
776
777void
778ssdtosyssd(ssd, sd)
779	struct soft_segment_descriptor *ssd;
780	struct system_segment_descriptor *sd;
781{
782
783	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
784	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
785	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
786	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
787	sd->sd_type  = ssd->ssd_type;
788	sd->sd_dpl   = ssd->ssd_dpl;
789	sd->sd_p     = ssd->ssd_p;
790	sd->sd_gran  = ssd->ssd_gran;
791}
792
793#if !defined(DEV_ATPIC) && defined(DEV_ISA)
794#include <isa/isavar.h>
795u_int
796isa_irq_pending(void)
797{
798
799	return (0);
800}
801#endif
802
803#define PHYSMAP_SIZE	(2 * 8)
804
805struct bios_smap {
806	u_int64_t	base;
807	u_int64_t	length;
808	u_int32_t	type;
809} __packed;
810
811u_int basemem;
812
813/*
814 * Populate the (physmap) array with base/bound pairs describing the
815 * available physical memory in the system, then test this memory and
816 * build the phys_avail array describing the actually-available memory.
817 *
818 * If we cannot accurately determine the physical memory map, then use
819 * value from the 0xE801 call, and failing that, the RTC.
820 *
821 * Total memory size may be set by the kernel environment variable
822 * hw.physmem or the compile-time define MAXMEM.
823 *
824 * XXX first should be vm_paddr_t.
825 */
826static void
827getmemsize(caddr_t kmdp, u_int64_t first)
828{
829	int i, physmap_idx, pa_indx;
830	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
831	pt_entry_t *pte;
832	char *cp;
833	struct bios_smap *smapbase, *smap, *smapend;
834	u_int32_t smapsize;
835
836	bzero(physmap, sizeof(physmap));
837	basemem = 0;
838	physmap_idx = 0;
839
840	/*
841	 * get memory map from INT 15:E820, kindly supplied by the loader.
842	 *
843	 * subr_module.c says:
844	 * "Consumer may safely assume that size value precedes data."
845	 * ie: an int32_t immediately precedes smap.
846	 */
847	smapbase = (struct bios_smap *)preload_search_info(kmdp,
848	    MODINFO_METADATA | MODINFOMD_SMAP);
849	if (smapbase == NULL)
850		panic("No BIOS smap info from loader!");
851
852	smapsize = *((u_int32_t *)smapbase - 1);
853	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
854
855	for (smap = smapbase; smap < smapend; smap++) {
856		if (boothowto & RB_VERBOSE)
857			printf("SMAP type=%02x base=%016lx len=%016lx\n",
858			    smap->type, smap->base, smap->length);
859
860		if (smap->type != 0x01)
861			continue;
862
863		if (smap->length == 0)
864			continue;
865
866		for (i = 0; i <= physmap_idx; i += 2) {
867			if (smap->base < physmap[i + 1]) {
868				if (boothowto & RB_VERBOSE)
869					printf(
870	"Overlapping or non-montonic memory region, ignoring second region\n");
871				goto next_run;
872			}
873		}
874
875		if (smap->base == physmap[physmap_idx + 1]) {
876			physmap[physmap_idx + 1] += smap->length;
877next_run:
878			continue;
879		}
880
881		physmap_idx += 2;
882		if (physmap_idx == PHYSMAP_SIZE) {
883			printf(
884		"Too many segments in the physical address map, giving up\n");
885			break;
886		}
887		physmap[physmap_idx] = smap->base;
888		physmap[physmap_idx + 1] = smap->base + smap->length;
889	}
890
891	/*
892	 * Find the 'base memory' segment for SMP
893	 */
894	basemem = 0;
895	for (i = 0; i <= physmap_idx; i += 2) {
896		if (physmap[i] == 0x00000000) {
897			basemem = physmap[i + 1] / 1024;
898			break;
899		}
900	}
901	if (basemem == 0)
902		panic("BIOS smap did not include a basemem segment!");
903
904#ifdef SMP
905	/* make hole for AP bootstrap code */
906	physmap[1] = mp_bootaddress(physmap[1] / 1024);
907#endif
908
909	/*
910	 * Maxmem isn't the "maximum memory", it's one larger than the
911	 * highest page of the physical address space.  It should be
912	 * called something like "Maxphyspage".  We may adjust this
913	 * based on ``hw.physmem'' and the results of the memory test.
914	 */
915	Maxmem = atop(physmap[physmap_idx + 1]);
916
917#ifdef MAXMEM
918	Maxmem = MAXMEM / 4;
919#endif
920
921	/*
922	 * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
923	 * for the appropriate modifiers.  This overrides MAXMEM.
924	 */
925	cp = getenv("hw.physmem");
926	if (cp != NULL) {
927		u_int64_t AllowMem, sanity;
928		char *ep;
929
930		sanity = AllowMem = strtouq(cp, &ep, 0);
931		if ((ep != cp) && (*ep != 0)) {
932			switch(*ep) {
933			case 'g':
934			case 'G':
935				AllowMem <<= 10;
936			case 'm':
937			case 'M':
938				AllowMem <<= 10;
939			case 'k':
940			case 'K':
941				AllowMem <<= 10;
942				break;
943			default:
944				AllowMem = sanity = 0;
945			}
946			if (AllowMem < sanity)
947				AllowMem = 0;
948		}
949		if (AllowMem == 0)
950			printf("Ignoring invalid memory size of '%s'\n", cp);
951		else
952			Maxmem = atop(AllowMem);
953		freeenv(cp);
954	}
955
956	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
957	    (boothowto & RB_VERBOSE))
958		printf("Physical memory use set to %ldK\n", Maxmem * 4);
959
960	/*
961	 * If Maxmem has been increased beyond what the system has detected,
962	 * extend the last memory segment to the new limit.
963	 */
964	if (atop(physmap[physmap_idx + 1]) < Maxmem)
965		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
966
967	/* call pmap initialization to make new kernel address space */
968	pmap_bootstrap(&first);
969
970	/*
971	 * Size up each available chunk of physical memory.
972	 */
973	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
974	pa_indx = 0;
975	phys_avail[pa_indx++] = physmap[0];
976	phys_avail[pa_indx] = physmap[0];
977	pte = CMAP1;
978
979	/*
980	 * physmap is in bytes, so when converting to page boundaries,
981	 * round up the start address and round down the end address.
982	 */
983	for (i = 0; i <= physmap_idx; i += 2) {
984		vm_paddr_t end;
985
986		end = ptoa((vm_paddr_t)Maxmem);
987		if (physmap[i + 1] < end)
988			end = trunc_page(physmap[i + 1]);
989		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
990			int tmp, page_bad;
991			int *ptr = (int *)CADDR1;
992
993			/*
994			 * block out kernel memory as not available.
995			 */
996			if (pa >= 0x100000 && pa < first)
997				continue;
998
999			page_bad = FALSE;
1000
1001			/*
1002			 * map page into kernel: valid, read/write,non-cacheable
1003			 */
1004			*pte = pa | PG_V | PG_RW | PG_N;
1005			invltlb();
1006
1007			tmp = *(int *)ptr;
1008			/*
1009			 * Test for alternating 1's and 0's
1010			 */
1011			*(volatile int *)ptr = 0xaaaaaaaa;
1012			if (*(volatile int *)ptr != 0xaaaaaaaa)
1013				page_bad = TRUE;
1014			/*
1015			 * Test for alternating 0's and 1's
1016			 */
1017			*(volatile int *)ptr = 0x55555555;
1018			if (*(volatile int *)ptr != 0x55555555)
1019				page_bad = TRUE;
1020			/*
1021			 * Test for all 1's
1022			 */
1023			*(volatile int *)ptr = 0xffffffff;
1024			if (*(volatile int *)ptr != 0xffffffff)
1025				page_bad = TRUE;
1026			/*
1027			 * Test for all 0's
1028			 */
1029			*(volatile int *)ptr = 0x0;
1030			if (*(volatile int *)ptr != 0x0)
1031				page_bad = TRUE;
1032			/*
1033			 * Restore original value.
1034			 */
1035			*(int *)ptr = tmp;
1036
1037			/*
1038			 * Adjust array of valid/good pages.
1039			 */
1040			if (page_bad == TRUE)
1041				continue;
1042			/*
1043			 * If this good page is a continuation of the
1044			 * previous set of good pages, then just increase
1045			 * the end pointer. Otherwise start a new chunk.
1046			 * Note that "end" points one higher than end,
1047			 * making the range >= start and < end.
1048			 * If we're also doing a speculative memory
1049			 * test and we at or past the end, bump up Maxmem
1050			 * so that we keep going. The first bad page
1051			 * will terminate the loop.
1052			 */
1053			if (phys_avail[pa_indx] == pa) {
1054				phys_avail[pa_indx] += PAGE_SIZE;
1055			} else {
1056				pa_indx++;
1057				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1058					printf(
1059		"Too many holes in the physical address space, giving up\n");
1060					pa_indx--;
1061					break;
1062				}
1063				phys_avail[pa_indx++] = pa;	/* start */
1064				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1065			}
1066			physmem++;
1067		}
1068	}
1069	*pte = 0;
1070	invltlb();
1071
1072	/*
1073	 * XXX
1074	 * The last chunk must contain at least one page plus the message
1075	 * buffer to avoid complicating other code (message buffer address
1076	 * calculation, etc.).
1077	 */
1078	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1079	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1080		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1081		phys_avail[pa_indx--] = 0;
1082		phys_avail[pa_indx--] = 0;
1083	}
1084
1085	Maxmem = atop(phys_avail[pa_indx]);
1086
1087	/* Trim off space for the message buffer. */
1088	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1089
1090	avail_end = phys_avail[pa_indx];
1091}
1092
1093u_int64_t
1094hammer_time(u_int64_t modulep, u_int64_t physfree)
1095{
1096	caddr_t kmdp;
1097	int gsel_tss, off, x;
1098	struct pcpu *pc;
1099	u_int64_t msr;
1100	char *env;
1101
1102#ifdef DEV_ISA
1103	/* Preemptively mask the atpics and leave them shut down */
1104	outb(IO_ICU1 + ICU_IMR_OFFSET, 0xff);
1105	outb(IO_ICU2 + ICU_IMR_OFFSET, 0xff);
1106#else
1107#error "have you forgotten the isa device?";
1108#endif
1109
1110	proc0.p_uarea = (struct user *)(physfree + KERNBASE);
1111	bzero(proc0.p_uarea, UAREA_PAGES * PAGE_SIZE);
1112	physfree += UAREA_PAGES * PAGE_SIZE;
1113	thread0.td_kstack = physfree + KERNBASE;
1114	bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
1115	physfree += KSTACK_PAGES * PAGE_SIZE;
1116	thread0.td_pcb = (struct pcb *)
1117	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1118
1119	atdevbase = ISA_HOLE_START + KERNBASE;
1120
1121	/*
1122 	 * This may be done better later if it gets more high level
1123 	 * components in it. If so just link td->td_proc here.
1124	 */
1125	proc_linkup(&proc0, &ksegrp0, &kse0, &thread0);
1126
1127	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1128	preload_bootstrap_relocate(KERNBASE);
1129	kmdp = preload_search_by_type("elf kernel");
1130	if (kmdp == NULL)
1131		kmdp = preload_search_by_type("elf64 kernel");
1132	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1133	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1134#ifdef DDB
1135	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, void *);
1136	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, void *);
1137#endif
1138
1139	/* Init basic tunables, hz etc */
1140	init_param1();
1141
1142	/*
1143	 * make gdt memory segments
1144	 */
1145	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1146
1147	for (x = 0; x < NGDT; x++) {
1148		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1149			ssdtosd(&gdt_segs[x], &gdt[x]);
1150	}
1151	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1152	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1153
1154	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1155	r_gdt.rd_base =  (long) gdt;
1156	lgdt(&r_gdt);
1157	pc = &__pcpu[0];
1158
1159	wrmsr(MSR_FSBASE, 0);		/* User value */
1160	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1161	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1162
1163	pcpu_init(pc, 0, sizeof(struct pcpu));
1164	PCPU_SET(prvspace, pc);
1165	PCPU_SET(curthread, &thread0);
1166	PCPU_SET(curpcb, thread0.td_pcb);
1167	PCPU_SET(tssp, &common_tss[0]);
1168
1169	/*
1170	 * Initialize mutexes.
1171	 *
1172	 * icu_lock: in order to allow an interrupt to occur in a critical
1173	 * 	     section, to set pcpu->ipending (etc...) properly, we
1174	 *	     must be able to get the icu lock, so it can't be
1175	 *	     under witness.
1176	 */
1177	mutex_init();
1178	mtx_init(&clock_lock, "clk", NULL, MTX_SPIN);
1179	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1180
1181	/* exceptions */
1182	for (x = 0; x < NIDT; x++)
1183		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1184	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1185	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1186	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 0);
1187 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1188	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1189	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1190	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1191	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1192	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1193	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1194	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1195	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1196	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1197	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1198	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1199	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1200	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1201	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1202	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1203
1204	r_idt.rd_limit = sizeof(idt0) - 1;
1205	r_idt.rd_base = (long) idt;
1206	lidt(&r_idt);
1207
1208	/*
1209	 * Initialize the console before we print anything out.
1210	 */
1211	cninit();
1212
1213#ifdef DEV_ATPIC
1214	atpic_startup();
1215#endif
1216
1217#ifdef DDB
1218	kdb_init();
1219	if (boothowto & RB_KDB)
1220		Debugger("Boot flags requested debugger");
1221#endif
1222
1223	identify_cpu();		/* Final stage of CPU initialization */
1224	initializecpu();	/* Initialize CPU registers */
1225
1226	/* make an initial tss so cpu can get interrupt stack on syscall! */
1227	common_tss[0].tss_rsp0 = thread0.td_kstack + \
1228	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1229	/* Ensure the stack is aligned to 16 bytes */
1230	common_tss[0].tss_rsp0 &= ~0xFul;
1231	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1232
1233	/* doublefault stack space, runs on ist1 */
1234	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1235
1236	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1237	ltr(gsel_tss);
1238
1239	/* Set up the fast syscall stuff */
1240	msr = rdmsr(MSR_EFER) | EFER_SCE;
1241	wrmsr(MSR_EFER, msr);
1242	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1243	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1244	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1245	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1246	wrmsr(MSR_STAR, msr);
1247	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1248
1249	getmemsize(kmdp, physfree);
1250	init_param2(physmem);
1251
1252	/* now running on new page tables, configured,and u/iom is accessible */
1253
1254	/* Map the message buffer. */
1255	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1256		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1257
1258	msgbufinit(msgbufp, MSGBUF_SIZE);
1259	fpuinit();
1260
1261	/* transfer to user mode */
1262
1263	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1264	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1265	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1266
1267	/* setup proc 0's pcb */
1268	thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
1269	thread0.td_pcb->pcb_cr3 = KPML4phys;
1270	thread0.td_frame = &proc0_tf;
1271
1272        env = getenv("kernelname");
1273	if (env != NULL)
1274		strlcpy(kernelname, env, sizeof(kernelname));
1275
1276	/* Location of kernel stack for locore */
1277	return ((u_int64_t)thread0.td_pcb);
1278}
1279
1280void
1281cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1282{
1283
1284	pcpu->pc_acpi_id = 0xffffffff;
1285}
1286
1287int
1288ptrace_set_pc(struct thread *td, unsigned long addr)
1289{
1290	td->td_frame->tf_rip = addr;
1291	return (0);
1292}
1293
1294int
1295ptrace_single_step(struct thread *td)
1296{
1297	td->td_frame->tf_rflags |= PSL_T;
1298	return (0);
1299}
1300
1301int
1302fill_regs(struct thread *td, struct reg *regs)
1303{
1304	struct pcb *pcb;
1305	struct trapframe *tp;
1306
1307	tp = td->td_frame;
1308	regs->r_r15 = tp->tf_r15;
1309	regs->r_r14 = tp->tf_r14;
1310	regs->r_r13 = tp->tf_r13;
1311	regs->r_r12 = tp->tf_r12;
1312	regs->r_r11 = tp->tf_r11;
1313	regs->r_r10 = tp->tf_r10;
1314	regs->r_r9  = tp->tf_r9;
1315	regs->r_r8  = tp->tf_r8;
1316	regs->r_rdi = tp->tf_rdi;
1317	regs->r_rsi = tp->tf_rsi;
1318	regs->r_rbp = tp->tf_rbp;
1319	regs->r_rbx = tp->tf_rbx;
1320	regs->r_rdx = tp->tf_rdx;
1321	regs->r_rcx = tp->tf_rcx;
1322	regs->r_rax = tp->tf_rax;
1323	regs->r_rip = tp->tf_rip;
1324	regs->r_cs = tp->tf_cs;
1325	regs->r_rflags = tp->tf_rflags;
1326	regs->r_rsp = tp->tf_rsp;
1327	regs->r_ss = tp->tf_ss;
1328	pcb = td->td_pcb;
1329	return (0);
1330}
1331
1332int
1333set_regs(struct thread *td, struct reg *regs)
1334{
1335	struct pcb *pcb;
1336	struct trapframe *tp;
1337
1338	tp = td->td_frame;
1339	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
1340	    !CS_SECURE(regs->r_cs))
1341		return (EINVAL);
1342	tp->tf_r15 = regs->r_r15;
1343	tp->tf_r14 = regs->r_r14;
1344	tp->tf_r13 = regs->r_r13;
1345	tp->tf_r12 = regs->r_r12;
1346	tp->tf_r11 = regs->r_r11;
1347	tp->tf_r10 = regs->r_r10;
1348	tp->tf_r9  = regs->r_r9;
1349	tp->tf_r8  = regs->r_r8;
1350	tp->tf_rdi = regs->r_rdi;
1351	tp->tf_rsi = regs->r_rsi;
1352	tp->tf_rbp = regs->r_rbp;
1353	tp->tf_rbx = regs->r_rbx;
1354	tp->tf_rdx = regs->r_rdx;
1355	tp->tf_rcx = regs->r_rcx;
1356	tp->tf_rax = regs->r_rax;
1357	tp->tf_rip = regs->r_rip;
1358	tp->tf_cs = regs->r_cs;
1359	tp->tf_rflags = regs->r_rflags;
1360	tp->tf_rsp = regs->r_rsp;
1361	tp->tf_ss = regs->r_ss;
1362	pcb = td->td_pcb;
1363	return (0);
1364}
1365
1366/* XXX check all this stuff! */
1367/* externalize from sv_xmm */
1368static void
1369fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1370{
1371	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1372	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1373	int i;
1374
1375	/* pcb -> fpregs */
1376	bzero(fpregs, sizeof(*fpregs));
1377
1378	/* FPU control/status */
1379	penv_fpreg->en_cw = penv_xmm->en_cw;
1380	penv_fpreg->en_sw = penv_xmm->en_sw;
1381	penv_fpreg->en_tw = penv_xmm->en_tw;
1382	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1383	penv_fpreg->en_rip = penv_xmm->en_rip;
1384	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1385	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1386	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1387
1388	/* FPU registers */
1389	for (i = 0; i < 8; ++i)
1390		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1391
1392	/* SSE registers */
1393	for (i = 0; i < 16; ++i)
1394		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1395}
1396
1397/* internalize from fpregs into sv_xmm */
1398static void
1399set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1400{
1401	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1402	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1403	int i;
1404
1405	/* fpregs -> pcb */
1406	/* FPU control/status */
1407	penv_xmm->en_cw = penv_fpreg->en_cw;
1408	penv_xmm->en_sw = penv_fpreg->en_sw;
1409	penv_xmm->en_tw = penv_fpreg->en_tw;
1410	penv_xmm->en_opcode = penv_fpreg->en_opcode;
1411	penv_xmm->en_rip = penv_fpreg->en_rip;
1412	penv_xmm->en_rdp = penv_fpreg->en_rdp;
1413	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1414	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask;
1415
1416	/* FPU registers */
1417	for (i = 0; i < 8; ++i)
1418		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1419
1420	/* SSE registers */
1421	for (i = 0; i < 16; ++i)
1422		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1423}
1424
1425/* externalize from td->pcb */
1426int
1427fill_fpregs(struct thread *td, struct fpreg *fpregs)
1428{
1429
1430	fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
1431	return (0);
1432}
1433
1434/* internalize to td->pcb */
1435int
1436set_fpregs(struct thread *td, struct fpreg *fpregs)
1437{
1438
1439	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
1440	return (0);
1441}
1442
1443/*
1444 * Get machine context.
1445 */
1446int
1447get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
1448{
1449	struct trapframe *tp;
1450
1451	tp = td->td_frame;
1452	PROC_LOCK(curthread->td_proc);
1453	mcp->mc_onstack = sigonstack(tp->tf_rsp);
1454	PROC_UNLOCK(curthread->td_proc);
1455	mcp->mc_r15 = tp->tf_r15;
1456	mcp->mc_r14 = tp->tf_r14;
1457	mcp->mc_r13 = tp->tf_r13;
1458	mcp->mc_r12 = tp->tf_r12;
1459	mcp->mc_r11 = tp->tf_r11;
1460	mcp->mc_r10 = tp->tf_r10;
1461	mcp->mc_r9  = tp->tf_r9;
1462	mcp->mc_r8  = tp->tf_r8;
1463	mcp->mc_rdi = tp->tf_rdi;
1464	mcp->mc_rsi = tp->tf_rsi;
1465	mcp->mc_rbp = tp->tf_rbp;
1466	mcp->mc_rbx = tp->tf_rbx;
1467	mcp->mc_rcx = tp->tf_rcx;
1468	if (flags & GET_MC_CLEAR_RET) {
1469		mcp->mc_rax = 0;
1470		mcp->mc_rdx = 0;
1471	} else {
1472		mcp->mc_rax = tp->tf_rax;
1473		mcp->mc_rdx = tp->tf_rdx;
1474	}
1475	mcp->mc_rip = tp->tf_rip;
1476	mcp->mc_cs = tp->tf_cs;
1477	mcp->mc_rflags = tp->tf_rflags;
1478	mcp->mc_rsp = tp->tf_rsp;
1479	mcp->mc_ss = tp->tf_ss;
1480	mcp->mc_len = sizeof(*mcp);
1481	get_fpcontext(td, mcp);
1482	return (0);
1483}
1484
1485/*
1486 * Set machine context.
1487 *
1488 * However, we don't set any but the user modifiable flags, and we won't
1489 * touch the cs selector.
1490 */
1491int
1492set_mcontext(struct thread *td, const mcontext_t *mcp)
1493{
1494	struct trapframe *tp;
1495	long rflags;
1496	int ret;
1497
1498	tp = td->td_frame;
1499	if (mcp->mc_len != sizeof(*mcp))
1500		return (EINVAL);
1501	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
1502	    (tp->tf_rflags & ~PSL_USERCHANGE);
1503	ret = set_fpcontext(td, mcp);
1504	if (ret != 0)
1505		return (ret);
1506	tp->tf_r15 = mcp->mc_r15;
1507	tp->tf_r14 = mcp->mc_r14;
1508	tp->tf_r13 = mcp->mc_r13;
1509	tp->tf_r12 = mcp->mc_r12;
1510	tp->tf_r11 = mcp->mc_r11;
1511	tp->tf_r10 = mcp->mc_r10;
1512	tp->tf_r9  = mcp->mc_r9;
1513	tp->tf_r8  = mcp->mc_r8;
1514	tp->tf_rdi = mcp->mc_rdi;
1515	tp->tf_rsi = mcp->mc_rsi;
1516	tp->tf_rbp = mcp->mc_rbp;
1517	tp->tf_rbx = mcp->mc_rbx;
1518	tp->tf_rdx = mcp->mc_rdx;
1519	tp->tf_rcx = mcp->mc_rcx;
1520	tp->tf_rax = mcp->mc_rax;
1521	tp->tf_rip = mcp->mc_rip;
1522	tp->tf_rflags = rflags;
1523	tp->tf_rsp = mcp->mc_rsp;
1524	tp->tf_ss = mcp->mc_ss;
1525	return (0);
1526}
1527
1528static void
1529get_fpcontext(struct thread *td, mcontext_t *mcp)
1530{
1531
1532	mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
1533	mcp->mc_fpformat = fpuformat();
1534}
1535
1536static int
1537set_fpcontext(struct thread *td, const mcontext_t *mcp)
1538{
1539
1540	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
1541		return (0);
1542	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
1543		return (EINVAL);
1544	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
1545		/* We don't care what state is left in the FPU or PCB. */
1546		fpstate_drop(td);
1547	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
1548	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
1549		/*
1550		 * XXX we violate the dubious requirement that fpusetregs()
1551		 * be called with interrupts disabled.
1552		 * XXX obsolete on trap-16 systems?
1553		 */
1554		fpusetregs(td, (struct savefpu *)&mcp->mc_fpstate);
1555	} else
1556		return (EINVAL);
1557	return (0);
1558}
1559
1560void
1561fpstate_drop(struct thread *td)
1562{
1563	register_t s;
1564
1565	s = intr_disable();
1566	if (PCPU_GET(fpcurthread) == td)
1567		fpudrop();
1568	/*
1569	 * XXX force a full drop of the fpu.  The above only drops it if we
1570	 * owned it.
1571	 *
1572	 * XXX I don't much like fpugetregs()'s semantics of doing a full
1573	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
1574	 * We only need to drop to !PCB_INITDONE in sendsig().  But
1575	 * sendsig() is the only caller of fpugetregs()... perhaps we just
1576	 * have too many layers.
1577	 */
1578	curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
1579	intr_restore(s);
1580}
1581
1582int
1583fill_dbregs(struct thread *td, struct dbreg *dbregs)
1584{
1585	struct pcb *pcb;
1586
1587	if (td == NULL) {
1588		dbregs->dr[0] = rdr0();
1589		dbregs->dr[1] = rdr1();
1590		dbregs->dr[2] = rdr2();
1591		dbregs->dr[3] = rdr3();
1592		dbregs->dr[6] = rdr6();
1593		dbregs->dr[7] = rdr7();
1594	} else {
1595		pcb = td->td_pcb;
1596		dbregs->dr[0] = pcb->pcb_dr0;
1597		dbregs->dr[1] = pcb->pcb_dr1;
1598		dbregs->dr[2] = pcb->pcb_dr2;
1599		dbregs->dr[3] = pcb->pcb_dr3;
1600		dbregs->dr[6] = pcb->pcb_dr6;
1601		dbregs->dr[7] = pcb->pcb_dr7;
1602	}
1603	dbregs->dr[4] = 0;
1604	dbregs->dr[5] = 0;
1605	dbregs->dr[8] = 0;
1606	dbregs->dr[9] = 0;
1607	dbregs->dr[10] = 0;
1608	dbregs->dr[11] = 0;
1609	dbregs->dr[12] = 0;
1610	dbregs->dr[13] = 0;
1611	dbregs->dr[14] = 0;
1612	dbregs->dr[15] = 0;
1613	return (0);
1614}
1615
1616int
1617set_dbregs(struct thread *td, struct dbreg *dbregs)
1618{
1619	struct pcb *pcb;
1620	int i;
1621	u_int64_t mask1, mask2;
1622
1623	if (td == NULL) {
1624		load_dr0(dbregs->dr[0]);
1625		load_dr1(dbregs->dr[1]);
1626		load_dr2(dbregs->dr[2]);
1627		load_dr3(dbregs->dr[3]);
1628		load_dr6(dbregs->dr[6]);
1629		load_dr7(dbregs->dr[7]);
1630	} else {
1631		/*
1632		 * Don't let an illegal value for dr7 get set.  Specifically,
1633		 * check for undefined settings.  Setting these bit patterns
1634		 * result in undefined behaviour and can lead to an unexpected
1635		 * TRCTRAP or a general protection fault right here.
1636		 */
1637		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
1638		     i++, mask1 <<= 2, mask2 <<= 2)
1639			if ((dbregs->dr[7] & mask1) == mask2)
1640				return (EINVAL);
1641
1642		pcb = td->td_pcb;
1643
1644		/*
1645		 * Don't let a process set a breakpoint that is not within the
1646		 * process's address space.  If a process could do this, it
1647		 * could halt the system by setting a breakpoint in the kernel
1648		 * (if ddb was enabled).  Thus, we need to check to make sure
1649		 * that no breakpoints are being enabled for addresses outside
1650		 * process's address space, unless, perhaps, we were called by
1651		 * uid 0.
1652		 *
1653		 * XXX - what about when the watched area of the user's
1654		 * address space is written into from within the kernel
1655		 * ... wouldn't that still cause a breakpoint to be generated
1656		 * from within kernel mode?
1657		 */
1658
1659		if (suser(td) != 0) {
1660			if (dbregs->dr[7] & 0x3) {
1661				/* dr0 is enabled */
1662				if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
1663					return (EINVAL);
1664			}
1665			if (dbregs->dr[7] & 0x3<<2) {
1666				/* dr1 is enabled */
1667				if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
1668					return (EINVAL);
1669			}
1670			if (dbregs->dr[7] & 0x3<<4) {
1671				/* dr2 is enabled */
1672				if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
1673					return (EINVAL);
1674			}
1675			if (dbregs->dr[7] & 0x3<<6) {
1676				/* dr3 is enabled */
1677				if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
1678					return (EINVAL);
1679			}
1680		}
1681
1682		pcb->pcb_dr0 = dbregs->dr[0];
1683		pcb->pcb_dr1 = dbregs->dr[1];
1684		pcb->pcb_dr2 = dbregs->dr[2];
1685		pcb->pcb_dr3 = dbregs->dr[3];
1686		pcb->pcb_dr6 = dbregs->dr[6];
1687		pcb->pcb_dr7 = dbregs->dr[7];
1688
1689		pcb->pcb_flags |= PCB_DBREGS;
1690	}
1691
1692	return (0);
1693}
1694
1695void
1696reset_dbregs(void)
1697{
1698
1699	load_dr7(0);	/* Turn off the control bits first */
1700	load_dr0(0);
1701	load_dr1(0);
1702	load_dr2(0);
1703	load_dr3(0);
1704	load_dr6(0);
1705}
1706
1707/*
1708 * Return > 0 if a hardware breakpoint has been hit, and the
1709 * breakpoint was in user space.  Return 0, otherwise.
1710 */
1711int
1712user_dbreg_trap(void)
1713{
1714        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
1715        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
1716        int nbp;            /* number of breakpoints that triggered */
1717        caddr_t addr[4];    /* breakpoint addresses */
1718        int i;
1719
1720        dr7 = rdr7();
1721        if ((dr7 & 0x000000ff) == 0) {
1722                /*
1723                 * all GE and LE bits in the dr7 register are zero,
1724                 * thus the trap couldn't have been caused by the
1725                 * hardware debug registers
1726                 */
1727                return 0;
1728        }
1729
1730        nbp = 0;
1731        dr6 = rdr6();
1732        bp = dr6 & 0x0000000f;
1733
1734        if (!bp) {
1735                /*
1736                 * None of the breakpoint bits are set meaning this
1737                 * trap was not caused by any of the debug registers
1738                 */
1739                return 0;
1740        }
1741
1742        /*
1743         * at least one of the breakpoints were hit, check to see
1744         * which ones and if any of them are user space addresses
1745         */
1746
1747        if (bp & 0x01) {
1748                addr[nbp++] = (caddr_t)rdr0();
1749        }
1750        if (bp & 0x02) {
1751                addr[nbp++] = (caddr_t)rdr1();
1752        }
1753        if (bp & 0x04) {
1754                addr[nbp++] = (caddr_t)rdr2();
1755        }
1756        if (bp & 0x08) {
1757                addr[nbp++] = (caddr_t)rdr3();
1758        }
1759
1760        for (i=0; i<nbp; i++) {
1761                if (addr[i] <
1762                    (caddr_t)VM_MAXUSER_ADDRESS) {
1763                        /*
1764                         * addr[i] is in user space
1765                         */
1766                        return nbp;
1767                }
1768        }
1769
1770        /*
1771         * None of the breakpoints are in user space.
1772         */
1773        return 0;
1774}
1775
1776#ifndef DDB
1777void
1778Debugger(const char *msg)
1779{
1780	printf("Debugger(\"%s\") called.\n", msg);
1781}
1782#endif /* no DDB */
1783
1784#ifdef DDB
1785
1786/*
1787 * Provide inb() and outb() as functions.  They are normally only
1788 * available as macros calling inlined functions, thus cannot be
1789 * called inside DDB.
1790 *
1791 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1792 */
1793
1794#undef inb
1795#undef outb
1796
1797/* silence compiler warnings */
1798u_char inb(u_int);
1799void outb(u_int, u_char);
1800
1801u_char
1802inb(u_int port)
1803{
1804	u_char	data;
1805	/*
1806	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1807	 * %edx, while gcc generates inferior code (movw instead of movl)
1808	 * if we tell it to load (u_short) port.
1809	 */
1810	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1811	return (data);
1812}
1813
1814void
1815outb(u_int port, u_char data)
1816{
1817	u_char	al;
1818	/*
1819	 * Use an unnecessary assignment to help gcc's register allocator.
1820	 * This make a large difference for gcc-1.40 and a tiny difference
1821	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1822	 * best results.  gcc-2.6.0 can't handle this.
1823	 */
1824	al = data;
1825	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1826}
1827
1828#endif /* DDB */
1829