machdep.c revision 117961
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 117961 2003-07-24 08:51:22Z davidxu $
39 */
40
41#include "opt_atalk.h"
42#include "opt_compat.h"
43#include "opt_cpu.h"
44#include "opt_ddb.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_isa.h"
48#include "opt_maxmem.h"
49#include "opt_msgbuf.h"
50#include "opt_perfmon.h"
51#include "opt_kstack_pages.h"
52
53#include <sys/param.h>
54#include <sys/systm.h>
55#include <sys/sysproto.h>
56#include <sys/signalvar.h>
57#include <sys/imgact.h>
58#include <sys/kernel.h>
59#include <sys/ktr.h>
60#include <sys/linker.h>
61#include <sys/lock.h>
62#include <sys/malloc.h>
63#include <sys/mutex.h>
64#include <sys/pcpu.h>
65#include <sys/proc.h>
66#include <sys/bio.h>
67#include <sys/buf.h>
68#include <sys/reboot.h>
69#include <sys/callout.h>
70#include <sys/msgbuf.h>
71#include <sys/sched.h>
72#include <sys/sysent.h>
73#include <sys/sysctl.h>
74#include <sys/ucontext.h>
75#include <sys/vmmeter.h>
76#include <sys/bus.h>
77#include <sys/eventhandler.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_map.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88#include <sys/user.h>
89#include <sys/exec.h>
90#include <sys/cons.h>
91
92#include <ddb/ddb.h>
93
94#include <net/netisr.h>
95
96#include <machine/cpu.h>
97#include <machine/cputypes.h>
98#include <machine/reg.h>
99#include <machine/clock.h>
100#include <machine/specialreg.h>
101#include <machine/md_var.h>
102#include <machine/metadata.h>
103#include <machine/proc.h>
104#ifdef PERFMON
105#include <machine/perfmon.h>
106#endif
107#include <machine/tss.h>
108
109#include <amd64/isa/icu.h>
110#include <amd64/isa/intr_machdep.h>
111#include <isa/rtc.h>
112#include <sys/ptrace.h>
113#include <machine/sigframe.h>
114
115extern u_int64_t hammer_time(u_int64_t, u_int64_t);
116extern void dblfault_handler(void);
117
118extern void printcpuinfo(void);	/* XXX header file */
119extern void identify_cpu(void);
120extern void panicifcpuunsupported(void);
121extern void initializecpu(void);
122
123#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
124#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
125
126static void cpu_startup(void *);
127static void get_fpcontext(struct thread *td, mcontext_t *mcp);
128static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
129SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
130
131int	_udatasel, _ucodesel, _ucode32sel;
132u_long	atdevbase;
133
134int cold = 1;
135
136long Maxmem = 0;
137
138vm_paddr_t phys_avail[10];
139
140/* must be 2 less so 0 0 can signal end of chunks */
141#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
142
143struct kva_md_info kmi;
144
145static struct trapframe proc0_tf;
146static struct pcpu __pcpu;
147
148struct mtx icu_lock;
149
150static void
151cpu_startup(dummy)
152	void *dummy;
153{
154	/*
155	 * Good {morning,afternoon,evening,night}.
156	 */
157	startrtclock();
158	printcpuinfo();
159	panicifcpuunsupported();
160#ifdef PERFMON
161	perfmon_init();
162#endif
163	printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
164	    ptoa((uintmax_t)Maxmem) / 1048576);
165	/*
166	 * Display any holes after the first chunk of extended memory.
167	 */
168	if (bootverbose) {
169		int indx;
170
171		printf("Physical memory chunk(s):\n");
172		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
173			vm_paddr_t size;
174
175			size = phys_avail[indx + 1] - phys_avail[indx];
176			printf(
177			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
178			    (uintmax_t)phys_avail[indx],
179			    (uintmax_t)phys_avail[indx + 1] - 1,
180			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
181		}
182	}
183
184	vm_ksubmap_init(&kmi);
185
186	printf("avail memory = %ju (%ju MB)\n",
187	    ptoa((uintmax_t)cnt.v_free_count),
188	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
189
190	/*
191	 * Set up buffers, so they can be used to read disk labels.
192	 */
193	bufinit();
194	vm_pager_bufferinit();
195
196	/* For SMP, we delay the cpu_setregs() until after SMP startup. */
197	cpu_setregs();
198}
199
200/*
201 * Send an interrupt to process.
202 *
203 * Stack is set up to allow sigcode stored
204 * at top to call routine, followed by kcall
205 * to sigreturn routine below.  After sigreturn
206 * resets the signal mask, the stack, and the
207 * frame pointer, it returns to the user
208 * specified pc, psl.
209 */
210void
211sendsig(catcher, sig, mask, code)
212	sig_t catcher;
213	int sig;
214	sigset_t *mask;
215	u_long code;
216{
217	struct sigframe sf, *sfp;
218	struct proc *p;
219	struct thread *td;
220	struct sigacts *psp;
221	char *sp;
222	struct trapframe *regs;
223	int oonstack;
224
225	td = curthread;
226	p = td->td_proc;
227	PROC_LOCK_ASSERT(p, MA_OWNED);
228	psp = p->p_sigacts;
229	mtx_assert(&psp->ps_mtx, MA_OWNED);
230	regs = td->td_frame;
231	oonstack = sigonstack(regs->tf_rsp);
232
233	/* Save user context. */
234	bzero(&sf, sizeof(sf));
235	sf.sf_uc.uc_sigmask = *mask;
236	sf.sf_uc.uc_stack = p->p_sigstk;
237	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
238	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
239	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
240	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
241	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
242	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
243	fpstate_drop(td);
244
245	/* Allocate space for the signal handler context. */
246	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
247	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
248		sp = p->p_sigstk.ss_sp +
249		    p->p_sigstk.ss_size - sizeof(struct sigframe);
250#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
251		p->p_sigstk.ss_flags |= SS_ONSTACK;
252#endif
253	} else
254		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
255	/* Align to 16 bytes. */
256	sfp = (struct sigframe *)((unsigned long)sp & ~0xF);
257
258	/* Translate the signal if appropriate. */
259	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
260		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
261
262	/* Build the argument list for the signal handler. */
263	regs->tf_rdi = sig;			/* arg 1 in %rdi */
264	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
265	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
266		/* Signal handler installed with SA_SIGINFO. */
267		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
268		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
269
270		/* Fill in POSIX parts */
271		sf.sf_si.si_signo = sig;
272		sf.sf_si.si_code = code;
273		regs->tf_rcx = regs->tf_addr;	/* arg 4 in %rcx */
274	} else {
275		/* Old FreeBSD-style arguments. */
276		regs->tf_rsi = code;		/* arg 2 in %rsi */
277		regs->tf_rcx = regs->tf_addr;	/* arg 4 in %rcx */
278		sf.sf_ahu.sf_handler = catcher;
279	}
280	mtx_unlock(&psp->ps_mtx);
281	PROC_UNLOCK(p);
282
283	/*
284	 * Copy the sigframe out to the user's stack.
285	 */
286	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
287#ifdef DEBUG
288		printf("process %ld has trashed its stack\n", (long)p->p_pid);
289#endif
290		PROC_LOCK(p);
291		sigexit(td, SIGILL);
292	}
293
294	regs->tf_rsp = (long)sfp;
295	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
296	regs->tf_rflags &= ~PSL_T;
297	regs->tf_cs = _ucodesel;
298	PROC_LOCK(p);
299	mtx_lock(&psp->ps_mtx);
300}
301
302/*
303 * Build siginfo_t for SA thread
304 */
305void
306cpu_thread_siginfo(int sig, u_long code, siginfo_t *si)
307{
308	struct proc *p;
309	struct thread *td;
310	struct trapframe *regs;
311
312	td = curthread;
313	p = td->td_proc;
314	regs = td->td_frame;
315	PROC_LOCK_ASSERT(p, MA_OWNED);
316
317	bzero(si, sizeof(*si));
318	si->si_signo = sig;
319	si->si_code = code;
320	si->si_addr = (void *)regs->tf_addr;
321	/* XXXKSE fill other fields */
322}
323
324/*
325 * System call to cleanup state after a signal
326 * has been taken.  Reset signal mask and
327 * stack state from context left by sendsig (above).
328 * Return to previous pc and psl as specified by
329 * context left by sendsig. Check carefully to
330 * make sure that the user has not modified the
331 * state to gain improper privileges.
332 *
333 * MPSAFE
334 */
335int
336sigreturn(td, uap)
337	struct thread *td;
338	struct sigreturn_args /* {
339		const __ucontext *sigcntxp;
340	} */ *uap;
341{
342	ucontext_t uc;
343	struct proc *p = td->td_proc;
344	struct trapframe *regs;
345	const ucontext_t *ucp;
346	long rflags;
347	int cs, error, ret;
348
349	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
350	if (error != 0)
351		return (error);
352	ucp = &uc;
353	regs = td->td_frame;
354	rflags = ucp->uc_mcontext.mc_rflags;
355	/*
356	 * Don't allow users to change privileged or reserved flags.
357	 */
358	/*
359	 * XXX do allow users to change the privileged flag PSL_RF.
360	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
361	 * should sometimes set it there too.  tf_rflags is kept in
362	 * the signal context during signal handling and there is no
363	 * other place to remember it, so the PSL_RF bit may be
364	 * corrupted by the signal handler without us knowing.
365	 * Corruption of the PSL_RF bit at worst causes one more or
366	 * one less debugger trap, so allowing it is fairly harmless.
367	 */
368	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
369		printf("sigreturn: rflags = 0x%lx\n", rflags);
370		return (EINVAL);
371	}
372
373	/*
374	 * Don't allow users to load a valid privileged %cs.  Let the
375	 * hardware check for invalid selectors, excess privilege in
376	 * other selectors, invalid %eip's and invalid %esp's.
377	 */
378	cs = ucp->uc_mcontext.mc_cs;
379	if (!CS_SECURE(cs)) {
380		printf("sigreturn: cs = 0x%x\n", cs);
381		trapsignal(td, SIGBUS, T_PROTFLT);
382		return (EINVAL);
383	}
384
385	ret = set_fpcontext(td, &ucp->uc_mcontext);
386	if (ret != 0)
387		return (ret);
388	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
389
390	PROC_LOCK(p);
391#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
392	if (ucp->uc_mcontext.mc_onstack & 1)
393		p->p_sigstk.ss_flags |= SS_ONSTACK;
394	else
395		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
396#endif
397
398	td->td_sigmask = ucp->uc_sigmask;
399	SIG_CANTMASK(td->td_sigmask);
400	signotify(td);
401	PROC_UNLOCK(p);
402	td->td_pcb->pcb_flags |= PCB_FULLCTX;
403	return (EJUSTRETURN);
404}
405
406#ifdef COMPAT_FREEBSD4
407int
408freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
409{
410
411	return sigreturn(td, (struct sigreturn_args *)uap);
412}
413#endif
414
415
416/*
417 * Machine dependent boot() routine
418 *
419 * I haven't seen anything to put here yet
420 * Possibly some stuff might be grafted back here from boot()
421 */
422void
423cpu_boot(int howto)
424{
425}
426
427/*
428 * Shutdown the CPU as much as possible
429 */
430void
431cpu_halt(void)
432{
433	for (;;)
434		__asm__ ("hlt");
435}
436
437/*
438 * Hook to idle the CPU when possible.  In the SMP case we default to
439 * off because a halted cpu will not currently pick up a new thread in the
440 * run queue until the next timer tick.  If turned on this will result in
441 * approximately a 4.2% loss in real time performance in buildworld tests
442 * (but improves user and sys times oddly enough), and saves approximately
443 * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
444 *
445 * XXX we need to have a cpu mask of idle cpus and generate an IPI or
446 * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
447 * Then we can have our cake and eat it too.
448 *
449 * XXX I'm turning it on for SMP as well by default for now.  It seems to
450 * help lock contention somewhat, and this is critical for HTT. -Peter
451 */
452static int	cpu_idle_hlt = 1;
453SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
454    &cpu_idle_hlt, 0, "Idle loop HLT enable");
455
456/*
457 * Note that we have to be careful here to avoid a race between checking
458 * sched_runnable() and actually halting.  If we don't do this, we may waste
459 * the time between calling hlt and the next interrupt even though there
460 * is a runnable process.
461 */
462void
463cpu_idle(void)
464{
465
466	if (cpu_idle_hlt) {
467		disable_intr();
468  		if (sched_runnable()) {
469			enable_intr();
470		} else {
471			/*
472			 * we must absolutely guarentee that hlt is the
473			 * absolute next instruction after sti or we
474			 * introduce a timing window.
475			 */
476			__asm __volatile("sti; hlt");
477		}
478	}
479}
480
481/*
482 * Clear registers on exec
483 */
484void
485exec_setregs(td, entry, stack, ps_strings)
486	struct thread *td;
487	u_long entry;
488	u_long stack;
489	u_long ps_strings;
490{
491	struct trapframe *regs = td->td_frame;
492	struct pcb *pcb = td->td_pcb;
493
494	wrmsr(MSR_FSBASE, 0);
495	wrmsr(MSR_KGSBASE, 0);	/* User value while we're in the kernel */
496	pcb->pcb_fsbase = 0;
497	pcb->pcb_gsbase = 0;
498	load_ds(_udatasel);
499	load_es(_udatasel);
500	load_fs(_udatasel);
501	load_gs(_udatasel);
502	pcb->pcb_ds = _udatasel;
503	pcb->pcb_es = _udatasel;
504	pcb->pcb_fs = _udatasel;
505	pcb->pcb_gs = _udatasel;
506
507	bzero((char *)regs, sizeof(struct trapframe));
508	regs->tf_rip = entry;
509	/* This strangeness is to ensure alignment after the implied return address */
510	regs->tf_rsp = ((stack - 8) & ~0xF) + 8;
511	regs->tf_rdi = stack;		/* argv */
512	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
513	regs->tf_ss = _udatasel;
514	regs->tf_cs = _ucodesel;
515
516	/*
517	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
518	 * for why fwait must be trapped at least if there is an npx or an
519	 * emulator).  This is mainly to handle the case where npx0 is not
520	 * configured, since the npx routines normally set up the trap
521	 * otherwise.  It should be done only at boot time, but doing it
522	 * here allows modifying `npx_exists' for testing the emulator on
523	 * systems with an npx.
524	 */
525	load_cr0(rcr0() | CR0_MP | CR0_TS);
526
527	/* Initialize the npx (if any) for the current process. */
528	/*
529	 * XXX the above load_cr0() also initializes it and is a layering
530	 * violation if NPX is configured.  It drops the npx partially
531	 * and this would be fatal if we were interrupted now, and decided
532	 * to force the state to the pcb, and checked the invariant
533	 * (CR0_TS clear) if and only if PCPU_GET(fpcurthread) != NULL).
534	 * ALL of this can happen except the check.  The check used to
535	 * happen and be fatal later when we didn't complete the drop
536	 * before returning to user mode.  This should be fixed properly
537	 * soon.
538	 */
539	fpstate_drop(td);
540}
541
542void
543cpu_setregs(void)
544{
545	register_t cr0;
546
547	cr0 = rcr0();
548	cr0 |= CR0_NE;			/* Done by npxinit() */
549	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
550	cr0 |= CR0_WP | CR0_AM;
551	load_cr0(cr0);
552}
553
554static int
555sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
556{
557	int error;
558	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
559		req);
560	if (!error && req->newptr)
561		resettodr();
562	return (error);
563}
564
565SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
566	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
567
568SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
569	CTLFLAG_RW, &disable_rtc_set, 0, "");
570
571SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
572	CTLFLAG_RW, &wall_cmos_clock, 0, "");
573
574/*
575 * Initialize 386 and configure to run kernel
576 */
577
578/*
579 * Initialize segments & interrupt table
580 */
581
582struct user_segment_descriptor gdt[NGDT];/* global descriptor table */
583static struct gate_descriptor idt0[NIDT];
584struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
585
586static char dblfault_stack[PAGE_SIZE] __aligned(16);
587
588struct amd64tss common_tss;
589
590/* software prototypes -- in more palatable form */
591struct soft_segment_descriptor gdt_segs[] = {
592/* GNULL_SEL	0 Null Descriptor */
593{	0x0,			/* segment base address  */
594	0x0,			/* length */
595	0,			/* segment type */
596	0,			/* segment descriptor priority level */
597	0,			/* segment descriptor present */
598	0,			/* long */
599	0,			/* default 32 vs 16 bit size */
600	0  			/* limit granularity (byte/page units)*/ },
601/* GCODE_SEL	1 Code Descriptor for kernel */
602{	0x0,			/* segment base address  */
603	0xfffff,		/* length - all address space */
604	SDT_MEMERA,		/* segment type */
605	SEL_KPL,		/* segment descriptor priority level */
606	1,			/* segment descriptor present */
607	1,			/* long */
608	0,			/* default 32 vs 16 bit size */
609	1  			/* limit granularity (byte/page units)*/ },
610/* GDATA_SEL	2 Data Descriptor for kernel */
611{	0x0,			/* segment base address  */
612	0xfffff,		/* length - all address space */
613	SDT_MEMRWA,		/* segment type */
614	SEL_KPL,		/* segment descriptor priority level */
615	1,			/* segment descriptor present */
616	1,			/* long */
617	0,			/* default 32 vs 16 bit size */
618	1  			/* limit granularity (byte/page units)*/ },
619/* GUCODE32_SEL	3 32 bit Code Descriptor for user */
620{	0x0,			/* segment base address  */
621	0xfffff,		/* length - all address space */
622	SDT_MEMERA,		/* segment type */
623	SEL_UPL,		/* segment descriptor priority level */
624	1,			/* segment descriptor present */
625	0,			/* long */
626	1,			/* default 32 vs 16 bit size */
627	1  			/* limit granularity (byte/page units)*/ },
628/* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
629{	0x0,			/* segment base address  */
630	0xfffff,		/* length - all address space */
631	SDT_MEMRWA,		/* segment type */
632	SEL_UPL,		/* segment descriptor priority level */
633	1,			/* segment descriptor present */
634	0,			/* long */
635	1,			/* default 32 vs 16 bit size */
636	1  			/* limit granularity (byte/page units)*/ },
637/* GUCODE_SEL	5 64 bit Code Descriptor for user */
638{	0x0,			/* segment base address  */
639	0xfffff,		/* length - all address space */
640	SDT_MEMERA,		/* segment type */
641	SEL_UPL,		/* segment descriptor priority level */
642	1,			/* segment descriptor present */
643	1,			/* long */
644	0,			/* default 32 vs 16 bit size */
645	1  			/* limit granularity (byte/page units)*/ },
646/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
647{
648	0x0,			/* segment base address */
649	sizeof(struct amd64tss)-1,/* length - all address space */
650	SDT_SYSTSS,		/* segment type */
651	SEL_KPL,		/* segment descriptor priority level */
652	1,			/* segment descriptor present */
653	0,			/* long */
654	0,			/* unused - default 32 vs 16 bit size */
655	0  			/* limit granularity (byte/page units)*/ },
656/* Actually, the TSS is a system descriptor which is double size */
657{	0x0,			/* segment base address  */
658	0x0,			/* length */
659	0,			/* segment type */
660	0,			/* segment descriptor priority level */
661	0,			/* segment descriptor present */
662	0,			/* long */
663	0,			/* default 32 vs 16 bit size */
664	0  			/* limit granularity (byte/page units)*/ },
665};
666
667void
668setidt(idx, func, typ, dpl, ist)
669	int idx;
670	inthand_t *func;
671	int typ;
672	int dpl;
673	int ist;
674{
675	struct gate_descriptor *ip;
676
677	ip = idt + idx;
678	ip->gd_looffset = (uintptr_t)func;
679	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
680	ip->gd_ist = ist;
681	ip->gd_xx = 0;
682	ip->gd_type = typ;
683	ip->gd_dpl = dpl;
684	ip->gd_p = 1;
685	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
686}
687
688#define	IDTVEC(name)	__CONCAT(X,name)
689
690extern inthand_t
691	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
692	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
693	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
694	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
695	IDTVEC(xmm), IDTVEC(dblfault),
696	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
697
698void
699sdtossd(sd, ssd)
700	struct user_segment_descriptor *sd;
701	struct soft_segment_descriptor *ssd;
702{
703
704	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
705	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
706	ssd->ssd_type  = sd->sd_type;
707	ssd->ssd_dpl   = sd->sd_dpl;
708	ssd->ssd_p     = sd->sd_p;
709	ssd->ssd_long  = sd->sd_long;
710	ssd->ssd_def32 = sd->sd_def32;
711	ssd->ssd_gran  = sd->sd_gran;
712}
713
714void
715ssdtosd(ssd, sd)
716	struct soft_segment_descriptor *ssd;
717	struct user_segment_descriptor *sd;
718{
719
720	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
721	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
722	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
723	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
724	sd->sd_type  = ssd->ssd_type;
725	sd->sd_dpl   = ssd->ssd_dpl;
726	sd->sd_p     = ssd->ssd_p;
727	sd->sd_long  = ssd->ssd_long;
728	sd->sd_def32 = ssd->ssd_def32;
729	sd->sd_gran  = ssd->ssd_gran;
730}
731
732void
733ssdtosyssd(ssd, sd)
734	struct soft_segment_descriptor *ssd;
735	struct system_segment_descriptor *sd;
736{
737
738	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
739	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
740	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
741	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
742	sd->sd_type  = ssd->ssd_type;
743	sd->sd_dpl   = ssd->ssd_dpl;
744	sd->sd_p     = ssd->ssd_p;
745	sd->sd_gran  = ssd->ssd_gran;
746}
747
748
749#define PHYSMAP_SIZE	(2 * 8)
750
751struct bios_smap {
752	u_int64_t	base;
753	u_int64_t	length;
754	u_int32_t	type;
755} __packed;
756
757/*
758 * Populate the (physmap) array with base/bound pairs describing the
759 * available physical memory in the system, then test this memory and
760 * build the phys_avail array describing the actually-available memory.
761 *
762 * If we cannot accurately determine the physical memory map, then use
763 * value from the 0xE801 call, and failing that, the RTC.
764 *
765 * Total memory size may be set by the kernel environment variable
766 * hw.physmem or the compile-time define MAXMEM.
767 *
768 * XXX first should be vm_paddr_t.
769 */
770static void
771getmemsize(caddr_t kmdp, u_int64_t first)
772{
773	int i, physmap_idx, pa_indx;
774	u_int basemem, extmem;
775	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
776	pt_entry_t *pte;
777	char *cp;
778	struct bios_smap *smapbase, *smap, *smapend;
779	u_int32_t smapsize;
780
781	bzero(physmap, sizeof(physmap));
782	basemem = 0;
783	physmap_idx = 0;
784
785	/*
786	 * get memory map from INT 15:E820, kindly supplied by the loader.
787	 *
788	 * subr_module.c says:
789	 * "Consumer may safely assume that size value precedes data."
790	 * ie: an int32_t immediately precedes smap.
791	 */
792	smapbase = (struct bios_smap *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_SMAP);
793	if (smapbase == 0)
794		smapbase = (struct bios_smap *)preload_search_info(kmdp, MODINFO_METADATA | 0x0009);	/* Old value for MODINFOMD_SMAP */
795	if (smapbase == 0) {
796		panic("No BIOS smap info from loader!");
797		goto deep_shit;
798	}
799	smapsize = *((u_int32_t *)smapbase - 1);
800	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
801
802	for (smap = smapbase; smap < smapend; smap++) {
803		if (boothowto & RB_VERBOSE)
804			printf("SMAP type=%02x base=%016lx len=%016lx\n",
805			    smap->type, smap->base, smap->length);
806
807		if (smap->type != 0x01) {
808			continue;
809		}
810
811		if (smap->length == 0) {
812next_run:
813			continue;
814		}
815
816		for (i = 0; i <= physmap_idx; i += 2) {
817			if (smap->base < physmap[i + 1]) {
818				if (boothowto & RB_VERBOSE)
819					printf(
820	"Overlapping or non-montonic memory region, ignoring second region\n");
821				goto next_run;
822			}
823		}
824
825		if (smap->base == physmap[physmap_idx + 1]) {
826			physmap[physmap_idx + 1] += smap->length;
827			continue;
828		}
829
830		physmap_idx += 2;
831		if (physmap_idx == PHYSMAP_SIZE) {
832			printf(
833		"Too many segments in the physical address map, giving up\n");
834			break;
835		}
836		physmap[physmap_idx] = smap->base;
837		physmap[physmap_idx + 1] = smap->base + smap->length;
838	}
839
840	/*
841	 * Perform "base memory" related probes & setup based on SMAP
842	 */
843deep_shit:
844	if (basemem == 0) {
845		for (i = 0; i <= physmap_idx; i += 2) {
846			if (physmap[i] == 0x00000000) {
847				basemem = physmap[i + 1] / 1024;
848				break;
849			}
850		}
851
852		if (basemem == 0) {
853			basemem = rtcin(RTC_BASELO) + (rtcin(RTC_BASEHI) << 8);
854		}
855
856		if (basemem == 0) {
857			basemem = 640;
858		}
859
860		if (basemem > 640) {
861			printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
862				basemem);
863			basemem = 640;
864		}
865
866#if 0
867		for (pa = trunc_page(basemem * 1024);
868		     pa < ISA_HOLE_START; pa += PAGE_SIZE)
869			pmap_kenter(KERNBASE + pa, pa);
870#endif
871	}
872
873	if (physmap[1] != 0)
874		goto physmap_done;
875
876	/*
877	 * Prefer the RTC value for extended memory.
878	 */
879	extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
880
881	/*
882	 * Special hack for chipsets that still remap the 384k hole when
883	 * there's 16MB of memory - this really confuses people that
884	 * are trying to use bus mastering ISA controllers with the
885	 * "16MB limit"; they only have 16MB, but the remapping puts
886	 * them beyond the limit.
887	 *
888	 * If extended memory is between 15-16MB (16-17MB phys address range),
889	 *	chop it to 15MB.
890	 */
891	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
892		extmem = 15 * 1024;
893
894	physmap[0] = 0;
895	physmap[1] = basemem * 1024;
896	physmap_idx = 2;
897	physmap[physmap_idx] = 0x100000;
898	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
899
900physmap_done:
901	/*
902	 * Now, physmap contains a map of physical memory.
903	 */
904	/*
905	 * Maxmem isn't the "maximum memory", it's one larger than the
906	 * highest page of the physical address space.  It should be
907	 * called something like "Maxphyspage".  We may adjust this
908	 * based on ``hw.physmem'' and the results of the memory test.
909	 */
910	Maxmem = atop(physmap[physmap_idx + 1]);
911
912#ifdef MAXMEM
913	Maxmem = MAXMEM / 4;
914#endif
915
916	/*
917	 * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
918	 * for the appropriate modifiers.  This overrides MAXMEM.
919	 */
920	if ((cp = getenv("hw.physmem")) != NULL) {
921		u_int64_t AllowMem, sanity;
922		char *ep;
923
924		sanity = AllowMem = strtouq(cp, &ep, 0);
925		if ((ep != cp) && (*ep != 0)) {
926			switch(*ep) {
927			case 'g':
928			case 'G':
929				AllowMem <<= 10;
930			case 'm':
931			case 'M':
932				AllowMem <<= 10;
933			case 'k':
934			case 'K':
935				AllowMem <<= 10;
936				break;
937			default:
938				AllowMem = sanity = 0;
939			}
940			if (AllowMem < sanity)
941				AllowMem = 0;
942		}
943		if (AllowMem == 0)
944			printf("Ignoring invalid memory size of '%s'\n", cp);
945		else
946			Maxmem = atop(AllowMem);
947		freeenv(cp);
948	}
949
950	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
951	    (boothowto & RB_VERBOSE))
952		printf("Physical memory use set to %ldK\n", Maxmem * 4);
953
954	/*
955	 * If Maxmem has been increased beyond what the system has detected,
956	 * extend the last memory segment to the new limit.
957	 */
958	if (atop(physmap[physmap_idx + 1]) < Maxmem)
959		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
960
961	/* call pmap initialization to make new kernel address space */
962	pmap_bootstrap(&first);
963
964	/*
965	 * Size up each available chunk of physical memory.
966	 */
967	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
968	pa_indx = 0;
969	phys_avail[pa_indx++] = physmap[0];
970	phys_avail[pa_indx] = physmap[0];
971	pte = CMAP1;
972
973	/*
974	 * physmap is in bytes, so when converting to page boundaries,
975	 * round up the start address and round down the end address.
976	 */
977	for (i = 0; i <= physmap_idx; i += 2) {
978		vm_paddr_t end;
979
980		end = ptoa((vm_paddr_t)Maxmem);
981		if (physmap[i + 1] < end)
982			end = trunc_page(physmap[i + 1]);
983		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
984			int tmp, page_bad;
985			int *ptr = (int *)CADDR1;
986
987			/*
988			 * block out kernel memory as not available.
989			 */
990			if (pa >= 0x100000 && pa < first)
991				continue;
992
993			page_bad = FALSE;
994
995			/*
996			 * map page into kernel: valid, read/write,non-cacheable
997			 */
998			*pte = pa | PG_V | PG_RW | PG_N;
999			invltlb();
1000
1001			tmp = *(int *)ptr;
1002			/*
1003			 * Test for alternating 1's and 0's
1004			 */
1005			*(volatile int *)ptr = 0xaaaaaaaa;
1006			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1007				page_bad = TRUE;
1008			}
1009			/*
1010			 * Test for alternating 0's and 1's
1011			 */
1012			*(volatile int *)ptr = 0x55555555;
1013			if (*(volatile int *)ptr != 0x55555555) {
1014			page_bad = TRUE;
1015			}
1016			/*
1017			 * Test for all 1's
1018			 */
1019			*(volatile int *)ptr = 0xffffffff;
1020			if (*(volatile int *)ptr != 0xffffffff) {
1021				page_bad = TRUE;
1022			}
1023			/*
1024			 * Test for all 0's
1025			 */
1026			*(volatile int *)ptr = 0x0;
1027			if (*(volatile int *)ptr != 0x0) {
1028				page_bad = TRUE;
1029			}
1030			/*
1031			 * Restore original value.
1032			 */
1033			*(int *)ptr = tmp;
1034
1035			/*
1036			 * Adjust array of valid/good pages.
1037			 */
1038			if (page_bad == TRUE) {
1039				continue;
1040			}
1041			/*
1042			 * If this good page is a continuation of the
1043			 * previous set of good pages, then just increase
1044			 * the end pointer. Otherwise start a new chunk.
1045			 * Note that "end" points one higher than end,
1046			 * making the range >= start and < end.
1047			 * If we're also doing a speculative memory
1048			 * test and we at or past the end, bump up Maxmem
1049			 * so that we keep going. The first bad page
1050			 * will terminate the loop.
1051			 */
1052			if (phys_avail[pa_indx] == pa) {
1053				phys_avail[pa_indx] += PAGE_SIZE;
1054			} else {
1055				pa_indx++;
1056				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1057					printf(
1058		"Too many holes in the physical address space, giving up\n");
1059					pa_indx--;
1060					break;
1061				}
1062				phys_avail[pa_indx++] = pa;	/* start */
1063				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1064			}
1065			physmem++;
1066		}
1067	}
1068	*pte = 0;
1069	invltlb();
1070
1071	/*
1072	 * XXX
1073	 * The last chunk must contain at least one page plus the message
1074	 * buffer to avoid complicating other code (message buffer address
1075	 * calculation, etc.).
1076	 */
1077	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1078	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1079		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1080		phys_avail[pa_indx--] = 0;
1081		phys_avail[pa_indx--] = 0;
1082	}
1083
1084	Maxmem = atop(phys_avail[pa_indx]);
1085
1086	/* Trim off space for the message buffer. */
1087	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1088
1089	avail_end = phys_avail[pa_indx];
1090}
1091
1092u_int64_t
1093hammer_time(u_int64_t modulep, u_int64_t physfree)
1094{
1095	caddr_t kmdp;
1096	int gsel_tss, off, x;
1097	struct region_descriptor r_gdt, r_idt;
1098	struct pcpu *pc;
1099	u_int64_t msr;
1100	char *env;
1101
1102	/* Turn on PTE NX (no execute) bit */
1103	msr = rdmsr(MSR_EFER) | EFER_NXE;
1104	wrmsr(MSR_EFER, msr);
1105
1106	proc0.p_uarea = (struct user *)(physfree + KERNBASE);
1107	bzero(proc0.p_uarea, UAREA_PAGES * PAGE_SIZE);
1108	physfree += UAREA_PAGES * PAGE_SIZE;
1109	thread0.td_kstack = physfree + KERNBASE;
1110	bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
1111	physfree += KSTACK_PAGES * PAGE_SIZE;
1112	thread0.td_pcb = (struct pcb *)
1113	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1114
1115	atdevbase = ISA_HOLE_START + KERNBASE;
1116
1117	/*
1118 	 * This may be done better later if it gets more high level
1119 	 * components in it. If so just link td->td_proc here.
1120	 */
1121	proc_linkup(&proc0, &ksegrp0, &kse0, &thread0);
1122
1123	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1124	preload_bootstrap_relocate(KERNBASE);
1125	kmdp = preload_search_by_type("elf kernel");
1126	if (kmdp == NULL)
1127		kmdp = preload_search_by_type("elf64 kernel");
1128	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1129	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1130
1131	/* Init basic tunables, hz etc */
1132	init_param1();
1133
1134	/*
1135	 * make gdt memory segments
1136	 */
1137	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss;
1138
1139	for (x = 0; x < NGDT; x++) {
1140		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1141			ssdtosd(&gdt_segs[x], &gdt[x]);
1142	}
1143	ssdtosyssd(&gdt_segs[GPROC0_SEL], (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1144
1145	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1146	r_gdt.rd_base =  (long) gdt;
1147	lgdt(&r_gdt);
1148	pc = &__pcpu;
1149
1150	wrmsr(MSR_FSBASE, 0);		/* User value */
1151	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1152	wrmsr(MSR_KGSBASE, 0);		/* User value while we're in the kernel */
1153
1154	pcpu_init(pc, 0, sizeof(struct pcpu));
1155	PCPU_SET(prvspace, pc);
1156	PCPU_SET(curthread, &thread0);
1157
1158	/*
1159	 * Initialize mutexes.
1160	 *
1161	 * icu_lock: in order to allow an interrupt to occur in a critical
1162	 * 	     section, to set pcpu->ipending (etc...) properly, we
1163	 *	     must be able to get the icu lock, so it can't be
1164	 *	     under witness.
1165	 */
1166	mutex_init();
1167	mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_RECURSE);
1168	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1169
1170	/* exceptions */
1171	for (x = 0; x < NIDT; x++)
1172		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1173	setidt(0, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1174	setidt(1, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1175	setidt(2, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 0);
1176 	setidt(3, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1177	setidt(4, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1178	setidt(5, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1179	setidt(6, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1180	setidt(7, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1181	setidt(8, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1182	setidt(9, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1183	setidt(10, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1184	setidt(11, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1185	setidt(12, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1186	setidt(13, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1187	setidt(14, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1188	setidt(15, &IDTVEC(rsvd),  SDT_SYSIGT, SEL_KPL, 0);
1189	setidt(16, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1190	setidt(17, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1191	setidt(18, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1192	setidt(19, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1193
1194	r_idt.rd_limit = sizeof(idt0) - 1;
1195	r_idt.rd_base = (long) idt;
1196	lidt(&r_idt);
1197
1198	/*
1199	 * Initialize the console before we print anything out.
1200	 */
1201	cninit();
1202
1203#ifdef DEV_ISA
1204	isa_defaultirq();
1205#endif
1206
1207#ifdef DDB
1208	kdb_init();
1209	if (boothowto & RB_KDB)
1210		Debugger("Boot flags requested debugger");
1211#endif
1212
1213	identify_cpu();		/* Final stage of CPU initialization */
1214	initializecpu();	/* Initialize CPU registers */
1215
1216	/* make an initial tss so cpu can get interrupt stack on syscall! */
1217	common_tss.tss_rsp0 = thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1218
1219	/* doublefault stack space, runs on ist1 */
1220	common_tss.tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1221
1222	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1223	ltr(gsel_tss);
1224
1225	/* Set up the fast syscall stuff */
1226	msr = rdmsr(MSR_EFER) | EFER_SCE;
1227	wrmsr(MSR_EFER, msr);
1228	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1229	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1230	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1231	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1232	wrmsr(MSR_STAR, msr);
1233	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1234
1235	getmemsize(kmdp, physfree);
1236	init_param2(physmem);
1237
1238	/* now running on new page tables, configured,and u/iom is accessible */
1239
1240	/* Map the message buffer. */
1241	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1242		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1243
1244	msgbufinit(msgbufp, MSGBUF_SIZE);
1245
1246	/* transfer to user mode */
1247
1248	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1249	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1250	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1251
1252	/* setup proc 0's pcb */
1253	thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
1254	thread0.td_pcb->pcb_cr3 = KPML4phys;
1255	thread0.td_frame = &proc0_tf;
1256
1257        env = getenv("kernelname");
1258	if (env != NULL)
1259		strlcpy(kernelname, env, sizeof(kernelname));
1260
1261	/* Location of kernel stack for locore */
1262	return ((u_int64_t)thread0.td_pcb);
1263}
1264
1265void
1266cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1267{
1268}
1269
1270int
1271ptrace_set_pc(struct thread *td, unsigned long addr)
1272{
1273	td->td_frame->tf_rip = addr;
1274	return (0);
1275}
1276
1277int
1278ptrace_single_step(struct thread *td)
1279{
1280	td->td_frame->tf_rflags |= PSL_T;
1281	return (0);
1282}
1283
1284int
1285fill_regs(struct thread *td, struct reg *regs)
1286{
1287	struct pcb *pcb;
1288	struct trapframe *tp;
1289
1290	tp = td->td_frame;
1291	regs->r_r15 = tp->tf_r15;
1292	regs->r_r14 = tp->tf_r14;
1293	regs->r_r13 = tp->tf_r13;
1294	regs->r_r12 = tp->tf_r12;
1295	regs->r_r11 = tp->tf_r11;
1296	regs->r_r10 = tp->tf_r10;
1297	regs->r_r9  = tp->tf_r9;
1298	regs->r_r8  = tp->tf_r8;
1299	regs->r_rdi = tp->tf_rdi;
1300	regs->r_rsi = tp->tf_rsi;
1301	regs->r_rbp = tp->tf_rbp;
1302	regs->r_rbx = tp->tf_rbx;
1303	regs->r_rdx = tp->tf_rdx;
1304	regs->r_rcx = tp->tf_rcx;
1305	regs->r_rax = tp->tf_rax;
1306	regs->r_rip = tp->tf_rip;
1307	regs->r_cs = tp->tf_cs;
1308	regs->r_rflags = tp->tf_rflags;
1309	regs->r_rsp = tp->tf_rsp;
1310	regs->r_ss = tp->tf_ss;
1311	pcb = td->td_pcb;
1312	return (0);
1313}
1314
1315int
1316set_regs(struct thread *td, struct reg *regs)
1317{
1318	struct pcb *pcb;
1319	struct trapframe *tp;
1320
1321	tp = td->td_frame;
1322	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
1323	    !CS_SECURE(regs->r_cs))
1324		return (EINVAL);
1325	tp->tf_r15 = regs->r_r15;
1326	tp->tf_r14 = regs->r_r14;
1327	tp->tf_r13 = regs->r_r13;
1328	tp->tf_r12 = regs->r_r12;
1329	tp->tf_r11 = regs->r_r11;
1330	tp->tf_r10 = regs->r_r10;
1331	tp->tf_r9  = regs->r_r9;
1332	tp->tf_r8  = regs->r_r8;
1333	tp->tf_rdi = regs->r_rdi;
1334	tp->tf_rsi = regs->r_rsi;
1335	tp->tf_rbp = regs->r_rbp;
1336	tp->tf_rbx = regs->r_rbx;
1337	tp->tf_rdx = regs->r_rdx;
1338	tp->tf_rcx = regs->r_rcx;
1339	tp->tf_rax = regs->r_rax;
1340	tp->tf_rip = regs->r_rip;
1341	tp->tf_cs = regs->r_cs;
1342	tp->tf_rflags = regs->r_rflags;
1343	tp->tf_rsp = regs->r_rsp;
1344	tp->tf_ss = regs->r_ss;
1345	pcb = td->td_pcb;
1346	return (0);
1347}
1348
1349/* XXX check all this stuff! */
1350/* externalize from sv_xmm */
1351static void
1352fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1353{
1354	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1355	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1356	int i;
1357
1358	/* pcb -> fpregs */
1359	bzero(fpregs, sizeof(*fpregs));
1360
1361	/* FPU control/status */
1362	penv_fpreg->en_cw = penv_xmm->en_cw;
1363	penv_fpreg->en_sw = penv_xmm->en_sw;
1364	penv_fpreg->en_tw = penv_xmm->en_tw;
1365	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1366	penv_fpreg->en_rip = penv_xmm->en_rip;
1367	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1368	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1369	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1370
1371	/* FPU registers */
1372	for (i = 0; i < 8; ++i)
1373		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1374
1375	/* SSE registers */
1376	for (i = 0; i < 16; ++i)
1377		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1378}
1379
1380/* internalize from fpregs into sv_xmm */
1381static void
1382set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1383{
1384	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1385	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1386	int i;
1387
1388	/* fpregs -> pcb */
1389	/* FPU control/status */
1390	penv_xmm->en_cw = penv_fpreg->en_cw;
1391	penv_xmm->en_sw = penv_fpreg->en_sw;
1392	penv_xmm->en_tw = penv_fpreg->en_tw;
1393	penv_xmm->en_opcode = penv_fpreg->en_opcode;
1394	penv_xmm->en_rip = penv_fpreg->en_rip;
1395	penv_xmm->en_rdp = penv_fpreg->en_rdp;
1396	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1397	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask;
1398
1399	/* FPU registers */
1400	for (i = 0; i < 8; ++i)
1401		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1402
1403	/* SSE registers */
1404	for (i = 0; i < 16; ++i)
1405		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1406}
1407
1408/* externalize from td->pcb */
1409int
1410fill_fpregs(struct thread *td, struct fpreg *fpregs)
1411{
1412
1413	fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
1414	return (0);
1415}
1416
1417/* internalize to td->pcb */
1418int
1419set_fpregs(struct thread *td, struct fpreg *fpregs)
1420{
1421
1422	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
1423	return (0);
1424}
1425
1426/*
1427 * Get machine context.
1428 */
1429int
1430get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
1431{
1432	struct trapframe *tp;
1433
1434	tp = td->td_frame;
1435
1436	PROC_LOCK(curthread->td_proc);
1437	mcp->mc_onstack = sigonstack(tp->tf_rsp);
1438	PROC_UNLOCK(curthread->td_proc);
1439	mcp->mc_r15 = tp->tf_r15;
1440	mcp->mc_r14 = tp->tf_r14;
1441	mcp->mc_r13 = tp->tf_r13;
1442	mcp->mc_r12 = tp->tf_r12;
1443	mcp->mc_r11 = tp->tf_r11;
1444	mcp->mc_r10 = tp->tf_r10;
1445	mcp->mc_r9  = tp->tf_r9;
1446	mcp->mc_r8  = tp->tf_r8;
1447	mcp->mc_rdi = tp->tf_rdi;
1448	mcp->mc_rsi = tp->tf_rsi;
1449	mcp->mc_rbp = tp->tf_rbp;
1450	mcp->mc_rbx = tp->tf_rbx;
1451	mcp->mc_rcx = tp->tf_rcx;
1452	if (clear_ret != 0) {
1453		mcp->mc_rax = 0;
1454		mcp->mc_rdx = 0;
1455	} else {
1456		mcp->mc_rax = tp->tf_rax;
1457		mcp->mc_rdx = tp->tf_rdx;
1458	}
1459	mcp->mc_rip = tp->tf_rip;
1460	mcp->mc_cs = tp->tf_cs;
1461	mcp->mc_rflags = tp->tf_rflags;
1462	mcp->mc_rsp = tp->tf_rsp;
1463	mcp->mc_ss = tp->tf_ss;
1464	mcp->mc_len = sizeof(*mcp);
1465	get_fpcontext(td, mcp);
1466	return (0);
1467}
1468
1469/*
1470 * Set machine context.
1471 *
1472 * However, we don't set any but the user modifiable flags, and we won't
1473 * touch the cs selector.
1474 */
1475int
1476set_mcontext(struct thread *td, const mcontext_t *mcp)
1477{
1478	struct trapframe *tp;
1479	long rflags;
1480	int ret;
1481
1482	tp = td->td_frame;
1483	if (mcp->mc_len != sizeof(*mcp))
1484		return (EINVAL);
1485	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
1486	    (tp->tf_rflags & ~PSL_USERCHANGE);
1487	if ((ret = set_fpcontext(td, mcp)) == 0) {
1488		tp->tf_r15 = mcp->mc_r15;
1489		tp->tf_r14 = mcp->mc_r14;
1490		tp->tf_r13 = mcp->mc_r13;
1491		tp->tf_r12 = mcp->mc_r12;
1492		tp->tf_r11 = mcp->mc_r11;
1493		tp->tf_r10 = mcp->mc_r10;
1494		tp->tf_r9  = mcp->mc_r9;
1495		tp->tf_r8  = mcp->mc_r8;
1496		tp->tf_rdi = mcp->mc_rdi;
1497		tp->tf_rsi = mcp->mc_rsi;
1498		tp->tf_rbp = mcp->mc_rbp;
1499		tp->tf_rbx = mcp->mc_rbx;
1500		tp->tf_rdx = mcp->mc_rdx;
1501		tp->tf_rcx = mcp->mc_rcx;
1502		tp->tf_rax = mcp->mc_rax;
1503		tp->tf_rip = mcp->mc_rip;
1504		tp->tf_rflags = rflags;
1505		tp->tf_rsp = mcp->mc_rsp;
1506		tp->tf_ss = mcp->mc_ss;
1507		ret = 0;
1508	}
1509	return (ret);
1510}
1511
1512static void
1513get_fpcontext(struct thread *td, mcontext_t *mcp)
1514{
1515	struct savefpu *addr;
1516
1517	/*
1518	 * XXX mc_fpstate might be misaligned, since its declaration is not
1519	 * unportabilized using __attribute__((aligned(16))) like the
1520	 * declaration of struct savemm, and anyway, alignment doesn't work
1521	 * for auto variables since we don't use gcc's pessimal stack
1522	 * alignment.  Work around this by abusing the spare fields after
1523	 * mcp->mc_fpstate.
1524	 *
1525	 * XXX unpessimize most cases by only aligning when fxsave might be
1526	 * called, although this requires knowing too much about
1527	 * npxgetregs()'s internals.
1528	 */
1529	addr = (struct savefpu *)&mcp->mc_fpstate;
1530	if (td == PCPU_GET(fpcurthread) && ((uintptr_t)(void *)addr & 0xF)) {
1531		do
1532			addr = (void *)((char *)addr + 4);
1533		while ((uintptr_t)(void *)addr & 0xF);
1534	}
1535	mcp->mc_ownedfp = npxgetregs(td, addr);
1536	if (addr != (struct savefpu *)&mcp->mc_fpstate) {
1537		bcopy(addr, &mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
1538		bzero(&mcp->mc_spare2, sizeof(mcp->mc_spare2));
1539	}
1540	mcp->mc_fpformat = npxformat();
1541}
1542
1543static int
1544set_fpcontext(struct thread *td, const mcontext_t *mcp)
1545{
1546	struct savefpu *addr;
1547
1548	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
1549		return (0);
1550	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
1551		return (EINVAL);
1552	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
1553		/* We don't care what state is left in the FPU or PCB. */
1554		fpstate_drop(td);
1555	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
1556	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
1557		/* XXX align as above. */
1558		addr = (struct savefpu *)&mcp->mc_fpstate;
1559		if (td == PCPU_GET(fpcurthread) &&
1560		    ((uintptr_t)(void *)addr & 0xF)) {
1561			do
1562				addr = (void *)((char *)addr + 4);
1563			while ((uintptr_t)(void *)addr & 0xF);
1564			bcopy(&mcp->mc_fpstate, addr, sizeof(mcp->mc_fpstate));
1565		}
1566		/*
1567		 * XXX we violate the dubious requirement that npxsetregs()
1568		 * be called with interrupts disabled.
1569		 */
1570		npxsetregs(td, addr);
1571		/*
1572		 * Don't bother putting things back where they were in the
1573		 * misaligned case, since we know that the caller won't use
1574		 * them again.
1575		 */
1576	} else
1577		return (EINVAL);
1578	return (0);
1579}
1580
1581void
1582fpstate_drop(struct thread *td)
1583{
1584	register_t s;
1585
1586	s = intr_disable();
1587	if (PCPU_GET(fpcurthread) == td)
1588		npxdrop();
1589	/*
1590	 * XXX force a full drop of the npx.  The above only drops it if we
1591	 * owned it.
1592	 *
1593	 * XXX I don't much like npxgetregs()'s semantics of doing a full
1594	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
1595	 * We only need to drop to !PCB_INITDONE in sendsig().  But
1596	 * sendsig() is the only caller of npxgetregs()... perhaps we just
1597	 * have too many layers.
1598	 */
1599	curthread->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
1600	intr_restore(s);
1601}
1602
1603int
1604fill_dbregs(struct thread *td, struct dbreg *dbregs)
1605{
1606
1607	return (0);
1608}
1609
1610int
1611set_dbregs(struct thread *td, struct dbreg *dbregs)
1612{
1613
1614	return (0);
1615}
1616
1617#ifndef DDB
1618void
1619Debugger(const char *msg)
1620{
1621	printf("Debugger(\"%s\") called.\n", msg);
1622}
1623#endif /* no DDB */
1624
1625#ifdef DDB
1626
1627/*
1628 * Provide inb() and outb() as functions.  They are normally only
1629 * available as macros calling inlined functions, thus cannot be
1630 * called inside DDB.
1631 *
1632 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1633 */
1634
1635#undef inb
1636#undef outb
1637
1638/* silence compiler warnings */
1639u_char inb(u_int);
1640void outb(u_int, u_char);
1641
1642u_char
1643inb(u_int port)
1644{
1645	u_char	data;
1646	/*
1647	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1648	 * %edx, while gcc generates inferior code (movw instead of movl)
1649	 * if we tell it to load (u_short) port.
1650	 */
1651	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1652	return (data);
1653}
1654
1655void
1656outb(u_int port, u_char data)
1657{
1658	u_char	al;
1659	/*
1660	 * Use an unnecessary assignment to help gcc's register allocator.
1661	 * This make a large difference for gcc-1.40 and a tiny difference
1662	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1663	 * best results.  gcc-2.6.0 can't handle this.
1664	 */
1665	al = data;
1666	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1667}
1668
1669#endif /* DDB */
1670