machdep.c revision 114987
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 114987 2003-05-14 04:10:49Z peter $
39 */
40
41#include "opt_atalk.h"
42#include "opt_compat.h"
43#include "opt_cpu.h"
44#include "opt_ddb.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_isa.h"
48#include "opt_maxmem.h"
49#include "opt_msgbuf.h"
50#include "opt_perfmon.h"
51#include "opt_kstack_pages.h"
52
53#include <sys/param.h>
54#include <sys/systm.h>
55#include <sys/sysproto.h>
56#include <sys/signalvar.h>
57#include <sys/imgact.h>
58#include <sys/kernel.h>
59#include <sys/ktr.h>
60#include <sys/linker.h>
61#include <sys/lock.h>
62#include <sys/malloc.h>
63#include <sys/mutex.h>
64#include <sys/pcpu.h>
65#include <sys/proc.h>
66#include <sys/bio.h>
67#include <sys/buf.h>
68#include <sys/reboot.h>
69#include <sys/callout.h>
70#include <sys/msgbuf.h>
71#include <sys/sched.h>
72#include <sys/sysent.h>
73#include <sys/sysctl.h>
74#include <sys/ucontext.h>
75#include <sys/vmmeter.h>
76#include <sys/bus.h>
77#include <sys/eventhandler.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_map.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88#include <sys/user.h>
89#include <sys/exec.h>
90#include <sys/cons.h>
91
92#include <ddb/ddb.h>
93
94#include <net/netisr.h>
95
96#include <machine/cpu.h>
97#include <machine/cputypes.h>
98#include <machine/reg.h>
99#include <machine/clock.h>
100#include <machine/specialreg.h>
101#include <machine/md_var.h>
102#include <machine/metadata.h>
103#include <machine/proc.h>
104#ifdef PERFMON
105#include <machine/perfmon.h>
106#endif
107#include <machine/tss.h>
108
109#include <amd64/isa/icu.h>
110#include <amd64/isa/intr_machdep.h>
111#include <isa/rtc.h>
112#include <sys/ptrace.h>
113#include <machine/sigframe.h>
114
115extern void hammer_time(void);
116extern void dblfault_handler(void);
117
118extern void printcpuinfo(void);	/* XXX header file */
119extern void identify_cpu(void);
120extern void panicifcpuunsupported(void);
121extern void initializecpu(void);
122
123#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
124#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
125
126static void cpu_startup(void *);
127static void get_fpcontext(struct thread *td, mcontext_t *mcp);
128static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
129SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
130
131int	_udatasel, _ucodesel, _ucode32sel;
132u_long	atdevbase;
133
134u_int64_t	modulep;	/* phys addr of metadata table */
135u_int64_t	physfree;	/* first free page after kernel */
136u_int64_t	IdlePTD;	/* phys addr of kernel PTD */
137u_int64_t	IdlePDP;	/* phys addr of kernel level 3 */
138u_int64_t	IdlePML4;	/* phys addr of kernel level 4 */
139struct user	*proc0uarea;	/* address of proc 0 uarea space */
140vm_offset_t	proc0kstack;	/* address of proc 0 kstack space */
141
142int cold = 1;
143
144long Maxmem = 0;
145
146vm_paddr_t phys_avail[10];
147
148/* must be 2 less so 0 0 can signal end of chunks */
149#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
150
151struct kva_md_info kmi;
152
153static struct trapframe proc0_tf;
154static struct pcpu __pcpu;
155
156struct mtx icu_lock;
157
158static void
159cpu_startup(dummy)
160	void *dummy;
161{
162	/*
163	 * Good {morning,afternoon,evening,night}.
164	 */
165	startrtclock();
166	printcpuinfo();
167	panicifcpuunsupported();
168#ifdef PERFMON
169	perfmon_init();
170#endif
171	printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
172	    ptoa((uintmax_t)Maxmem) / 1048576);
173	/*
174	 * Display any holes after the first chunk of extended memory.
175	 */
176	if (bootverbose) {
177		int indx;
178
179		printf("Physical memory chunk(s):\n");
180		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
181			vm_paddr_t size;
182
183			size = phys_avail[indx + 1] - phys_avail[indx];
184			printf(
185			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
186			    (uintmax_t)phys_avail[indx],
187			    (uintmax_t)phys_avail[indx + 1] - 1,
188			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
189		}
190	}
191
192	vm_ksubmap_init(&kmi);
193
194	printf("avail memory = %ju (%ju MB)\n",
195	    ptoa((uintmax_t)cnt.v_free_count),
196	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
197
198	/*
199	 * Set up buffers, so they can be used to read disk labels.
200	 */
201	bufinit();
202	vm_pager_bufferinit();
203
204	/* For SMP, we delay the cpu_setregs() until after SMP startup. */
205	cpu_setregs();
206}
207
208/*
209 * Send an interrupt to process.
210 *
211 * Stack is set up to allow sigcode stored
212 * at top to call routine, followed by kcall
213 * to sigreturn routine below.  After sigreturn
214 * resets the signal mask, the stack, and the
215 * frame pointer, it returns to the user
216 * specified pc, psl.
217 */
218void
219sendsig(catcher, sig, mask, code)
220	sig_t catcher;
221	int sig;
222	sigset_t *mask;
223	u_long code;
224{
225	struct sigframe sf, *sfp;
226	struct proc *p;
227	struct thread *td;
228	struct sigacts *psp;
229	char *sp;
230	struct trapframe *regs;
231	int oonstack;
232
233	td = curthread;
234	p = td->td_proc;
235	PROC_LOCK_ASSERT(p, MA_OWNED);
236	psp = p->p_sigacts;
237	mtx_assert(&psp->ps_mtx, MA_OWNED);
238	regs = td->td_frame;
239	oonstack = sigonstack(regs->tf_rsp);
240
241	/* Save user context. */
242	bzero(&sf, sizeof(sf));
243	sf.sf_uc.uc_sigmask = *mask;
244	sf.sf_uc.uc_stack = p->p_sigstk;
245	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
246	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
247	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
248	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
249	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
250	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
251	fpstate_drop(td);
252
253	/* Allocate space for the signal handler context. */
254	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
255	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
256		sp = p->p_sigstk.ss_sp +
257		    p->p_sigstk.ss_size - sizeof(struct sigframe);
258#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
259		p->p_sigstk.ss_flags |= SS_ONSTACK;
260#endif
261	} else
262		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
263	/* Align to 16 bytes. */
264	sfp = (struct sigframe *)((unsigned long)sp & ~0xF);
265
266	/* Translate the signal if appropriate. */
267	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
268		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
269
270	/* Build the argument list for the signal handler. */
271	regs->tf_rdi = sig;			/* arg 1 in %rdi */
272	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
273	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
274		/* Signal handler installed with SA_SIGINFO. */
275		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
276		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
277
278		/* Fill in POSIX parts */
279		sf.sf_si.si_signo = sig;
280		sf.sf_si.si_code = code;
281		regs->tf_rcx = regs->tf_addr;	/* arg 4 in %rcx */
282	} else {
283		/* Old FreeBSD-style arguments. */
284		regs->tf_rsi = code;		/* arg 2 in %rsi */
285		regs->tf_rcx = regs->tf_addr;	/* arg 4 in %rcx */
286		sf.sf_ahu.sf_handler = catcher;
287	}
288	mtx_unlock(&psp->ps_mtx);
289	PROC_UNLOCK(p);
290
291	/*
292	 * Copy the sigframe out to the user's stack.
293	 */
294	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
295#ifdef DEBUG
296		printf("process %ld has trashed its stack\n", (long)p->p_pid);
297#endif
298		PROC_LOCK(p);
299		sigexit(td, SIGILL);
300	}
301
302	regs->tf_rsp = (long)sfp;
303	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
304	regs->tf_rflags &= ~PSL_T;
305	regs->tf_cs = _ucodesel;
306	PROC_LOCK(p);
307	mtx_lock(&psp->ps_mtx);
308}
309
310/*
311 * System call to cleanup state after a signal
312 * has been taken.  Reset signal mask and
313 * stack state from context left by sendsig (above).
314 * Return to previous pc and psl as specified by
315 * context left by sendsig. Check carefully to
316 * make sure that the user has not modified the
317 * state to gain improper privileges.
318 *
319 * MPSAFE
320 */
321int
322sigreturn(td, uap)
323	struct thread *td;
324	struct sigreturn_args /* {
325		const __ucontext *sigcntxp;
326	} */ *uap;
327{
328	ucontext_t uc;
329	struct proc *p = td->td_proc;
330	struct trapframe *regs;
331	const ucontext_t *ucp;
332	long rflags;
333	int cs, error, ret;
334
335	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
336	if (error != 0)
337		return (error);
338	ucp = &uc;
339	regs = td->td_frame;
340	rflags = ucp->uc_mcontext.mc_rflags;
341	/*
342	 * Don't allow users to change privileged or reserved flags.
343	 */
344	/*
345	 * XXX do allow users to change the privileged flag PSL_RF.
346	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
347	 * should sometimes set it there too.  tf_rflags is kept in
348	 * the signal context during signal handling and there is no
349	 * other place to remember it, so the PSL_RF bit may be
350	 * corrupted by the signal handler without us knowing.
351	 * Corruption of the PSL_RF bit at worst causes one more or
352	 * one less debugger trap, so allowing it is fairly harmless.
353	 */
354	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
355		printf("sigreturn: rflags = 0x%lx\n", rflags);
356		return (EINVAL);
357	}
358
359	/*
360	 * Don't allow users to load a valid privileged %cs.  Let the
361	 * hardware check for invalid selectors, excess privilege in
362	 * other selectors, invalid %eip's and invalid %esp's.
363	 */
364	cs = ucp->uc_mcontext.mc_cs;
365	if (!CS_SECURE(cs)) {
366		printf("sigreturn: cs = 0x%x\n", cs);
367		trapsignal(td, SIGBUS, T_PROTFLT);
368		return (EINVAL);
369	}
370
371	ret = set_fpcontext(td, &ucp->uc_mcontext);
372	if (ret != 0)
373		return (ret);
374	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
375
376	PROC_LOCK(p);
377#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
378	if (ucp->uc_mcontext.mc_onstack & 1)
379		p->p_sigstk.ss_flags |= SS_ONSTACK;
380	else
381		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
382#endif
383
384	td->td_sigmask = ucp->uc_sigmask;
385	SIG_CANTMASK(td->td_sigmask);
386	signotify(td);
387	PROC_UNLOCK(p);
388	td->td_pcb->pcb_flags |= PCB_FULLCTX;
389	return (EJUSTRETURN);
390}
391
392#ifdef COMPAT_FREEBSD4
393int
394freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
395{
396
397	return sigreturn(td, (struct sigreturn_args *)uap);
398}
399#endif
400
401
402/*
403 * Machine dependent boot() routine
404 *
405 * I haven't seen anything to put here yet
406 * Possibly some stuff might be grafted back here from boot()
407 */
408void
409cpu_boot(int howto)
410{
411}
412
413/*
414 * Shutdown the CPU as much as possible
415 */
416void
417cpu_halt(void)
418{
419	for (;;)
420		__asm__ ("hlt");
421}
422
423/*
424 * Hook to idle the CPU when possible.  In the SMP case we default to
425 * off because a halted cpu will not currently pick up a new thread in the
426 * run queue until the next timer tick.  If turned on this will result in
427 * approximately a 4.2% loss in real time performance in buildworld tests
428 * (but improves user and sys times oddly enough), and saves approximately
429 * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
430 *
431 * XXX we need to have a cpu mask of idle cpus and generate an IPI or
432 * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
433 * Then we can have our cake and eat it too.
434 *
435 * XXX I'm turning it on for SMP as well by default for now.  It seems to
436 * help lock contention somewhat, and this is critical for HTT. -Peter
437 */
438static int	cpu_idle_hlt = 1;
439SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
440    &cpu_idle_hlt, 0, "Idle loop HLT enable");
441
442/*
443 * Note that we have to be careful here to avoid a race between checking
444 * sched_runnable() and actually halting.  If we don't do this, we may waste
445 * the time between calling hlt and the next interrupt even though there
446 * is a runnable process.
447 */
448void
449cpu_idle(void)
450{
451
452	if (cpu_idle_hlt) {
453		disable_intr();
454  		if (sched_runnable()) {
455			enable_intr();
456		} else {
457			/*
458			 * we must absolutely guarentee that hlt is the
459			 * absolute next instruction after sti or we
460			 * introduce a timing window.
461			 */
462			__asm __volatile("sti; hlt");
463		}
464	}
465}
466
467/*
468 * Clear registers on exec
469 */
470void
471exec_setregs(td, entry, stack, ps_strings)
472	struct thread *td;
473	u_long entry;
474	u_long stack;
475	u_long ps_strings;
476{
477	struct trapframe *regs = td->td_frame;
478	struct pcb *pcb = td->td_pcb;
479	u_int64_t pc;
480
481	wrmsr(MSR_FSBASE, 0);
482	wrmsr(MSR_KGSBASE, 0);	/* User value while we're in the kernel */
483	pcb->pcb_fsbase = 0;
484	pcb->pcb_gsbase = 0;
485	pcb->pcb_kgsbase = rdmsr(MSR_GSBASE);
486	load_ds(_udatasel);
487	load_es(_udatasel);
488	load_fs(_udatasel);
489	critical_enter();
490	pc = rdmsr(MSR_GSBASE);
491	load_gs(_udatasel);	/* Clobbers kernel %GS.base */
492	wrmsr(MSR_GSBASE, pc);
493	critical_exit();
494	pcb->pcb_ds = _udatasel;
495	pcb->pcb_es = _udatasel;
496	pcb->pcb_fs = _udatasel;
497	pcb->pcb_gs = _udatasel;
498
499	bzero((char *)regs, sizeof(struct trapframe));
500	regs->tf_rip = entry;
501	/* This strangeness is to ensure alignment after the implied return address */
502	regs->tf_rsp = ((stack - 8) & ~0xF) + 8;
503	regs->tf_rdi = stack;		/* argv */
504	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
505	regs->tf_ss = _udatasel;
506	regs->tf_cs = _ucodesel;
507
508	/*
509	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
510	 * for why fwait must be trapped at least if there is an npx or an
511	 * emulator).  This is mainly to handle the case where npx0 is not
512	 * configured, since the npx routines normally set up the trap
513	 * otherwise.  It should be done only at boot time, but doing it
514	 * here allows modifying `npx_exists' for testing the emulator on
515	 * systems with an npx.
516	 */
517	load_cr0(rcr0() | CR0_MP | CR0_TS);
518
519	/* Initialize the npx (if any) for the current process. */
520	/*
521	 * XXX the above load_cr0() also initializes it and is a layering
522	 * violation if NPX is configured.  It drops the npx partially
523	 * and this would be fatal if we were interrupted now, and decided
524	 * to force the state to the pcb, and checked the invariant
525	 * (CR0_TS clear) if and only if PCPU_GET(fpcurthread) != NULL).
526	 * ALL of this can happen except the check.  The check used to
527	 * happen and be fatal later when we didn't complete the drop
528	 * before returning to user mode.  This should be fixed properly
529	 * soon.
530	 */
531	fpstate_drop(td);
532}
533
534void
535cpu_setregs(void)
536{
537	register_t cr0;
538
539	cr0 = rcr0();
540	cr0 |= CR0_NE;			/* Done by npxinit() */
541	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
542	cr0 |= CR0_WP | CR0_AM;
543	load_cr0(cr0);
544}
545
546static int
547sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
548{
549	int error;
550	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
551		req);
552	if (!error && req->newptr)
553		resettodr();
554	return (error);
555}
556
557SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
558	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
559
560SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
561	CTLFLAG_RW, &disable_rtc_set, 0, "");
562
563SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
564	CTLFLAG_RW, &wall_cmos_clock, 0, "");
565
566/*
567 * Initialize 386 and configure to run kernel
568 */
569
570/*
571 * Initialize segments & interrupt table
572 */
573
574struct user_segment_descriptor gdt[NGDT];/* global descriptor table */
575static struct gate_descriptor idt0[NIDT];
576struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
577
578static char dblfault_stack[PAGE_SIZE] __aligned(16);
579
580struct amd64tss common_tss;
581
582/* software prototypes -- in more palatable form */
583struct soft_segment_descriptor gdt_segs[] = {
584/* GNULL_SEL	0 Null Descriptor */
585{	0x0,			/* segment base address  */
586	0x0,			/* length */
587	0,			/* segment type */
588	0,			/* segment descriptor priority level */
589	0,			/* segment descriptor present */
590	0,			/* long */
591	0,			/* default 32 vs 16 bit size */
592	0  			/* limit granularity (byte/page units)*/ },
593/* GCODE_SEL	1 Code Descriptor for kernel */
594{	0x0,			/* segment base address  */
595	0xfffff,		/* length - all address space */
596	SDT_MEMERA,		/* segment type */
597	SEL_KPL,		/* segment descriptor priority level */
598	1,			/* segment descriptor present */
599	1,			/* long */
600	0,			/* default 32 vs 16 bit size */
601	1  			/* limit granularity (byte/page units)*/ },
602/* GDATA_SEL	2 Data Descriptor for kernel */
603{	0x0,			/* segment base address  */
604	0xfffff,		/* length - all address space */
605	SDT_MEMRWA,		/* segment type */
606	SEL_KPL,		/* segment descriptor priority level */
607	1,			/* segment descriptor present */
608	1,			/* long */
609	0,			/* default 32 vs 16 bit size */
610	1  			/* limit granularity (byte/page units)*/ },
611/* GUCODE32_SEL	3 32 bit Code Descriptor for user */
612{	0x0,			/* segment base address  */
613	0xfffff,		/* length - all address space */
614	SDT_MEMERA,		/* segment type */
615	SEL_UPL,		/* segment descriptor priority level */
616	1,			/* segment descriptor present */
617	0,			/* long */
618	1,			/* default 32 vs 16 bit size */
619	1  			/* limit granularity (byte/page units)*/ },
620/* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
621{	0x0,			/* segment base address  */
622	0xfffff,		/* length - all address space */
623	SDT_MEMRWA,		/* segment type */
624	SEL_UPL,		/* segment descriptor priority level */
625	1,			/* segment descriptor present */
626	0,			/* long */
627	1,			/* default 32 vs 16 bit size */
628	1  			/* limit granularity (byte/page units)*/ },
629/* GUCODE_SEL	5 64 bit Code Descriptor for user */
630{	0x0,			/* segment base address  */
631	0xfffff,		/* length - all address space */
632	SDT_MEMERA,		/* segment type */
633	SEL_UPL,		/* segment descriptor priority level */
634	1,			/* segment descriptor present */
635	1,			/* long */
636	0,			/* default 32 vs 16 bit size */
637	1  			/* limit granularity (byte/page units)*/ },
638/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
639{
640	0x0,			/* segment base address */
641	sizeof(struct amd64tss)-1,/* length - all address space */
642	SDT_SYSTSS,		/* segment type */
643	SEL_KPL,		/* segment descriptor priority level */
644	1,			/* segment descriptor present */
645	0,			/* long */
646	0,			/* unused - default 32 vs 16 bit size */
647	0  			/* limit granularity (byte/page units)*/ },
648/* Actually, the TSS is a system descriptor which is double size */
649{	0x0,			/* segment base address  */
650	0x0,			/* length */
651	0,			/* segment type */
652	0,			/* segment descriptor priority level */
653	0,			/* segment descriptor present */
654	0,			/* long */
655	0,			/* default 32 vs 16 bit size */
656	0  			/* limit granularity (byte/page units)*/ },
657};
658
659void
660setidt(idx, func, typ, dpl, ist)
661	int idx;
662	inthand_t *func;
663	int typ;
664	int dpl;
665	int ist;
666{
667	struct gate_descriptor *ip;
668
669	ip = idt + idx;
670	ip->gd_looffset = (uintptr_t)func;
671	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
672	ip->gd_ist = ist;
673	ip->gd_xx = 0;
674	ip->gd_type = typ;
675	ip->gd_dpl = dpl;
676	ip->gd_p = 1;
677	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
678}
679
680#define	IDTVEC(name)	__CONCAT(X,name)
681
682extern inthand_t
683	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
684	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
685	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
686	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
687	IDTVEC(xmm), IDTVEC(dblfault),
688	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
689
690void
691sdtossd(sd, ssd)
692	struct user_segment_descriptor *sd;
693	struct soft_segment_descriptor *ssd;
694{
695
696	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
697	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
698	ssd->ssd_type  = sd->sd_type;
699	ssd->ssd_dpl   = sd->sd_dpl;
700	ssd->ssd_p     = sd->sd_p;
701	ssd->ssd_long  = sd->sd_long;
702	ssd->ssd_def32 = sd->sd_def32;
703	ssd->ssd_gran  = sd->sd_gran;
704}
705
706void
707ssdtosd(ssd, sd)
708	struct soft_segment_descriptor *ssd;
709	struct user_segment_descriptor *sd;
710{
711
712	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
713	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
714	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
715	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
716	sd->sd_type  = ssd->ssd_type;
717	sd->sd_dpl   = ssd->ssd_dpl;
718	sd->sd_p     = ssd->ssd_p;
719	sd->sd_long  = ssd->ssd_long;
720	sd->sd_def32 = ssd->ssd_def32;
721	sd->sd_gran  = ssd->ssd_gran;
722}
723
724void
725ssdtosyssd(ssd, sd)
726	struct soft_segment_descriptor *ssd;
727	struct system_segment_descriptor *sd;
728{
729
730	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
731	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xffffff;
732	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
733	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
734	sd->sd_type  = ssd->ssd_type;
735	sd->sd_dpl   = ssd->ssd_dpl;
736	sd->sd_p     = ssd->ssd_p;
737	sd->sd_gran  = ssd->ssd_gran;
738}
739
740
741#define PHYSMAP_SIZE	(2 * 8)
742
743struct bios_smap {
744	u_int64_t	base;
745	u_int64_t	length;
746	u_int32_t	type;
747} __packed;
748
749/*
750 * Populate the (physmap) array with base/bound pairs describing the
751 * available physical memory in the system, then test this memory and
752 * build the phys_avail array describing the actually-available memory.
753 *
754 * If we cannot accurately determine the physical memory map, then use
755 * value from the 0xE801 call, and failing that, the RTC.
756 *
757 * Total memory size may be set by the kernel environment variable
758 * hw.physmem or the compile-time define MAXMEM.
759 *
760 * XXX first should be vm_paddr_t.
761 */
762static void
763getmemsize(caddr_t kmdp, u_int64_t first)
764{
765	int i, physmap_idx, pa_indx;
766	u_int basemem, extmem;
767	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
768	pt_entry_t *pte;
769	char *cp;
770	struct bios_smap *smapbase, *smap, *smapend;
771	u_int32_t smapsize;
772
773	bzero(physmap, sizeof(physmap));
774	basemem = 0;
775	physmap_idx = 0;
776
777	/*
778	 * get memory map from INT 15:E820, kindly supplied by the loader.
779	 *
780	 * subr_module.c says:
781	 * "Consumer may safely assume that size value precedes data."
782	 * ie: an int32_t immediately precedes smap.
783	 */
784	smapbase = (struct bios_smap *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_SMAP);
785	if (smapbase == 0)
786		smapbase = (struct bios_smap *)preload_search_info(kmdp, MODINFO_METADATA | 0x0009);	/* Old value for MODINFOMD_SMAP */
787	if (smapbase == 0) {
788		panic("No BIOS smap info from loader!");
789		goto deep_shit;
790	}
791	smapsize = *((u_int32_t *)smapbase - 1);
792	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
793
794	for (smap = smapbase; smap < smapend; smap++) {
795		if (boothowto & RB_VERBOSE)
796			printf("SMAP type=%02x base=%016lx len=%016lx\n",
797			    smap->type, smap->base, smap->length);
798
799		if (smap->type != 0x01) {
800			continue;
801		}
802
803		if (smap->length == 0) {
804next_run:
805			continue;
806		}
807
808		for (i = 0; i <= physmap_idx; i += 2) {
809			if (smap->base < physmap[i + 1]) {
810				if (boothowto & RB_VERBOSE)
811					printf(
812	"Overlapping or non-montonic memory region, ignoring second region\n");
813				goto next_run;
814			}
815		}
816
817		if (smap->base == physmap[physmap_idx + 1]) {
818			physmap[physmap_idx + 1] += smap->length;
819			continue;
820		}
821
822		physmap_idx += 2;
823		if (physmap_idx == PHYSMAP_SIZE) {
824			printf(
825		"Too many segments in the physical address map, giving up\n");
826			break;
827		}
828		physmap[physmap_idx] = smap->base;
829		physmap[physmap_idx + 1] = smap->base + smap->length;
830	}
831
832	/*
833	 * Perform "base memory" related probes & setup based on SMAP
834	 */
835deep_shit:
836	if (basemem == 0) {
837		for (i = 0; i <= physmap_idx; i += 2) {
838			if (physmap[i] == 0x00000000) {
839				basemem = physmap[i + 1] / 1024;
840				break;
841			}
842		}
843
844		if (basemem == 0) {
845			basemem = rtcin(RTC_BASELO) + (rtcin(RTC_BASEHI) << 8);
846		}
847
848		if (basemem == 0) {
849			basemem = 640;
850		}
851
852		if (basemem > 640) {
853			printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
854				basemem);
855			basemem = 640;
856		}
857
858#if 0
859		for (pa = trunc_page(basemem * 1024);
860		     pa < ISA_HOLE_START; pa += PAGE_SIZE)
861			pmap_kenter(KERNBASE + pa, pa);
862#endif
863	}
864
865	if (physmap[1] != 0)
866		goto physmap_done;
867
868	/*
869	 * Prefer the RTC value for extended memory.
870	 */
871	extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
872
873	/*
874	 * Special hack for chipsets that still remap the 384k hole when
875	 * there's 16MB of memory - this really confuses people that
876	 * are trying to use bus mastering ISA controllers with the
877	 * "16MB limit"; they only have 16MB, but the remapping puts
878	 * them beyond the limit.
879	 *
880	 * If extended memory is between 15-16MB (16-17MB phys address range),
881	 *	chop it to 15MB.
882	 */
883	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
884		extmem = 15 * 1024;
885
886	physmap[0] = 0;
887	physmap[1] = basemem * 1024;
888	physmap_idx = 2;
889	physmap[physmap_idx] = 0x100000;
890	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
891
892physmap_done:
893	/*
894	 * Now, physmap contains a map of physical memory.
895	 */
896	/*
897	 * Maxmem isn't the "maximum memory", it's one larger than the
898	 * highest page of the physical address space.  It should be
899	 * called something like "Maxphyspage".  We may adjust this
900	 * based on ``hw.physmem'' and the results of the memory test.
901	 */
902	Maxmem = atop(physmap[physmap_idx + 1]);
903
904#ifdef MAXMEM
905	Maxmem = MAXMEM / 4;
906#endif
907
908	/*
909	 * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
910	 * for the appropriate modifiers.  This overrides MAXMEM.
911	 */
912	if ((cp = getenv("hw.physmem")) != NULL) {
913		u_int64_t AllowMem, sanity;
914		char *ep;
915
916		sanity = AllowMem = strtouq(cp, &ep, 0);
917		if ((ep != cp) && (*ep != 0)) {
918			switch(*ep) {
919			case 'g':
920			case 'G':
921				AllowMem <<= 10;
922			case 'm':
923			case 'M':
924				AllowMem <<= 10;
925			case 'k':
926			case 'K':
927				AllowMem <<= 10;
928				break;
929			default:
930				AllowMem = sanity = 0;
931			}
932			if (AllowMem < sanity)
933				AllowMem = 0;
934		}
935		if (AllowMem == 0)
936			printf("Ignoring invalid memory size of '%s'\n", cp);
937		else
938			Maxmem = atop(AllowMem);
939		freeenv(cp);
940	}
941
942	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
943	    (boothowto & RB_VERBOSE))
944		printf("Physical memory use set to %ldK\n", Maxmem * 4);
945
946	/*
947	 * If Maxmem has been increased beyond what the system has detected,
948	 * extend the last memory segment to the new limit.
949	 */
950	if (atop(physmap[physmap_idx + 1]) < Maxmem)
951		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
952
953	/* call pmap initialization to make new kernel address space */
954	pmap_bootstrap(first, 0);
955
956	/*
957	 * Size up each available chunk of physical memory.
958	 */
959	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
960	pa_indx = 0;
961	phys_avail[pa_indx++] = physmap[0];
962	phys_avail[pa_indx] = physmap[0];
963	pte = CMAP1;
964
965	/*
966	 * physmap is in bytes, so when converting to page boundaries,
967	 * round up the start address and round down the end address.
968	 */
969	for (i = 0; i <= physmap_idx; i += 2) {
970		vm_paddr_t end;
971
972		end = ptoa((vm_paddr_t)Maxmem);
973		if (physmap[i + 1] < end)
974			end = trunc_page(physmap[i + 1]);
975		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
976			int tmp, page_bad;
977			int *ptr = (int *)CADDR1;
978
979			/*
980			 * block out kernel memory as not available.
981			 */
982			if (pa >= 0x100000 && pa < first)
983				continue;
984
985			page_bad = FALSE;
986
987			/*
988			 * map page into kernel: valid, read/write,non-cacheable
989			 */
990			*pte = pa | PG_V | PG_RW | PG_N;
991			invltlb();
992
993			tmp = *(int *)ptr;
994			/*
995			 * Test for alternating 1's and 0's
996			 */
997			*(volatile int *)ptr = 0xaaaaaaaa;
998			if (*(volatile int *)ptr != 0xaaaaaaaa) {
999				page_bad = TRUE;
1000			}
1001			/*
1002			 * Test for alternating 0's and 1's
1003			 */
1004			*(volatile int *)ptr = 0x55555555;
1005			if (*(volatile int *)ptr != 0x55555555) {
1006			page_bad = TRUE;
1007			}
1008			/*
1009			 * Test for all 1's
1010			 */
1011			*(volatile int *)ptr = 0xffffffff;
1012			if (*(volatile int *)ptr != 0xffffffff) {
1013				page_bad = TRUE;
1014			}
1015			/*
1016			 * Test for all 0's
1017			 */
1018			*(volatile int *)ptr = 0x0;
1019			if (*(volatile int *)ptr != 0x0) {
1020				page_bad = TRUE;
1021			}
1022			/*
1023			 * Restore original value.
1024			 */
1025			*(int *)ptr = tmp;
1026
1027			/*
1028			 * Adjust array of valid/good pages.
1029			 */
1030			if (page_bad == TRUE) {
1031				continue;
1032			}
1033			/*
1034			 * If this good page is a continuation of the
1035			 * previous set of good pages, then just increase
1036			 * the end pointer. Otherwise start a new chunk.
1037			 * Note that "end" points one higher than end,
1038			 * making the range >= start and < end.
1039			 * If we're also doing a speculative memory
1040			 * test and we at or past the end, bump up Maxmem
1041			 * so that we keep going. The first bad page
1042			 * will terminate the loop.
1043			 */
1044			if (phys_avail[pa_indx] == pa) {
1045				phys_avail[pa_indx] += PAGE_SIZE;
1046			} else {
1047				pa_indx++;
1048				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1049					printf(
1050		"Too many holes in the physical address space, giving up\n");
1051					pa_indx--;
1052					break;
1053				}
1054				phys_avail[pa_indx++] = pa;	/* start */
1055				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1056			}
1057			physmem++;
1058		}
1059	}
1060	*pte = 0;
1061	invltlb();
1062
1063	/*
1064	 * XXX
1065	 * The last chunk must contain at least one page plus the message
1066	 * buffer to avoid complicating other code (message buffer address
1067	 * calculation, etc.).
1068	 */
1069	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1070	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1071		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1072		phys_avail[pa_indx--] = 0;
1073		phys_avail[pa_indx--] = 0;
1074	}
1075
1076	Maxmem = atop(phys_avail[pa_indx]);
1077
1078	/* Trim off space for the message buffer. */
1079	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1080
1081	avail_end = phys_avail[pa_indx];
1082}
1083
1084static u_int64_t
1085allocpages(int n)
1086{
1087	u_int64_t ret;
1088
1089	ret = physfree;
1090	bzero((void *)ret, n * PAGE_SIZE);
1091	physfree += n * PAGE_SIZE;
1092	return (ret);
1093}
1094
1095static void
1096create_pagetables(void)
1097{
1098	u_int64_t p0kpa;
1099	u_int64_t p0upa;
1100	u_int64_t KPTphys;
1101	int i;
1102
1103	/* Allocate pages */
1104	KPTphys = allocpages(NKPT);
1105	IdlePML4 = allocpages(NKPML4E);
1106	IdlePDP = allocpages(NKPDPE);
1107	IdlePTD = allocpages(NPGPTD);
1108	p0upa = allocpages(UAREA_PAGES);
1109	p0kpa = allocpages(KSTACK_PAGES);
1110
1111	proc0uarea = (struct user *)(p0upa + KERNBASE);
1112	proc0kstack = p0kpa + KERNBASE;
1113
1114	/* Fill in the underlying page table pages */
1115	/* Read-only from zero to physfree */
1116	/* XXX not fully used, underneath 2M pages */
1117	for (i = 0; (i << PAGE_SHIFT) < physfree; i++) {
1118		((pt_entry_t *)KPTphys)[i] = i << PAGE_SHIFT;
1119		((pt_entry_t *)KPTphys)[i] |= PG_RW | PG_V;
1120	}
1121
1122	/* Now map the page tables at their location within PTmap */
1123	for (i = 0; i < NKPT; i++) {
1124		((pd_entry_t *)IdlePTD)[i + KPTDI] = KPTphys + (i << PAGE_SHIFT);
1125		((pd_entry_t *)IdlePTD)[i + KPTDI] |= PG_RW | PG_V;
1126	}
1127
1128	/* Map from zero to end of allocations under 2M pages */
1129	/* This replaces some of the PTD entries above */
1130	for (i = 0; (i << PDRSHIFT) < physfree; i++) {
1131		((pd_entry_t *)IdlePTD)[i] = i << PDRSHIFT;
1132		((pd_entry_t *)IdlePTD)[i] |= PG_RW | PG_V | PG_PS;
1133	}
1134
1135	/* Now map the page tables at their location within PTmap */
1136	for (i = 0; i < NKPT; i++) {
1137		((pd_entry_t *)IdlePTD)[i] = KPTphys + (i << PAGE_SHIFT);
1138		((pd_entry_t *)IdlePTD)[i] |= PG_RW | PG_V;
1139	}
1140
1141	/* Now map the PTD at the top of the PTmap (ie: PTD[]) */
1142	for (i = 0; i < NPGPTD; i++) {
1143		((pd_entry_t *)IdlePTD)[i + PTDPTDI] = IdlePTD + (i << PAGE_SHIFT);
1144		((pd_entry_t *)IdlePTD)[i + PTDPTDI] |= PG_RW | PG_V;
1145	}
1146
1147	/* And connect up the PTD to the PDP */
1148	for (i = 0; i < NPGPTD; i++) {
1149		((pdp_entry_t *)IdlePDP)[i] = IdlePTD + (i << PAGE_SHIFT);
1150		((pdp_entry_t *)IdlePDP)[i] |= PG_RW | PG_V | PG_U;
1151	}
1152
1153	/* And connect up the PDP to the PML4 */
1154	((pdp_entry_t *)IdlePML4)[0] = IdlePDP;
1155	((pdp_entry_t *)IdlePML4)[0] |= PG_RW | PG_V | PG_U;
1156}
1157
1158void
1159hammer_time(void)
1160{
1161	caddr_t kmdp;
1162	int gsel_tss, off, x;
1163	struct region_descriptor r_gdt, r_idt;
1164	struct pcpu *pc;
1165	u_int64_t msr;
1166
1167	/* Turn on PTE NX (no execute) bit */
1168	msr = rdmsr(MSR_EFER) | EFER_NXE;
1169	wrmsr(MSR_EFER, msr);
1170	create_pagetables();
1171
1172	/* XXX do %cr0 as well */
1173	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
1174	load_cr3(IdlePML4);
1175
1176	proc0.p_uarea = proc0uarea;
1177	thread0.td_kstack = proc0kstack;
1178	thread0.td_pcb = (struct pcb *)
1179	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1180	atdevbase = ISA_HOLE_START + KERNBASE;
1181
1182	/*
1183 	 * This may be done better later if it gets more high level
1184 	 * components in it. If so just link td->td_proc here.
1185	 */
1186	proc_linkup(&proc0, &ksegrp0, &kse0, &thread0);
1187
1188	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1189	preload_bootstrap_relocate(KERNBASE);
1190	kmdp = preload_search_by_type("elf kernel");
1191	if (kmdp == NULL)
1192		kmdp = preload_search_by_type("elf64 kernel");
1193	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1194	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1195
1196	/* Init basic tunables, hz etc */
1197	init_param1();
1198
1199	/*
1200	 * make gdt memory segments
1201	 */
1202	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss;
1203
1204	for (x = 0; x < NGDT; x++) {
1205		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1206			ssdtosd(&gdt_segs[x], &gdt[x]);
1207	}
1208	ssdtosyssd(&gdt_segs[GPROC0_SEL], (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1209
1210	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1211	r_gdt.rd_base =  (long) gdt;
1212	lgdt(&r_gdt);
1213	pc = &__pcpu;
1214
1215	wrmsr(MSR_FSBASE, 0);		/* User value */
1216	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1217	wrmsr(MSR_KGSBASE, 0);		/* User value while we're in the kernel */
1218
1219	pcpu_init(pc, 0, sizeof(struct pcpu));
1220	PCPU_SET(prvspace, pc);
1221	PCPU_SET(curthread, &thread0);
1222
1223	/*
1224	 * Initialize mutexes.
1225	 *
1226	 * icu_lock: in order to allow an interrupt to occur in a critical
1227	 * 	     section, to set pcpu->ipending (etc...) properly, we
1228	 *	     must be able to get the icu lock, so it can't be
1229	 *	     under witness.
1230	 */
1231	mutex_init();
1232	mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_RECURSE);
1233	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1234
1235	/* exceptions */
1236	for (x = 0; x < NIDT; x++)
1237		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1238	setidt(0, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1239	setidt(1, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1240	setidt(2, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 0);
1241 	setidt(3, &IDTVEC(bpt),  SDT_SYSIGT, SEL_KPL, 0);
1242	setidt(4, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1243	setidt(5, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1244	setidt(6, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1245	setidt(7, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1246	setidt(8, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1247	setidt(9, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1248	setidt(10, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1249	setidt(11, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1250	setidt(12, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1251	setidt(13, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1252	setidt(14, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1253	setidt(15, &IDTVEC(rsvd),  SDT_SYSIGT, SEL_KPL, 0);
1254	setidt(16, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1255	setidt(17, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1256	setidt(18, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1257	setidt(19, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1258
1259	r_idt.rd_limit = sizeof(idt0) - 1;
1260	r_idt.rd_base = (long) idt;
1261	lidt(&r_idt);
1262
1263	/*
1264	 * Initialize the console before we print anything out.
1265	 */
1266	cninit();
1267
1268#ifdef DEV_ISA
1269	isa_defaultirq();
1270#endif
1271
1272#ifdef DDB
1273	kdb_init();
1274	if (boothowto & RB_KDB)
1275		Debugger("Boot flags requested debugger");
1276#endif
1277
1278	identify_cpu();		/* Final stage of CPU initialization */
1279	initializecpu();	/* Initialize CPU registers */
1280
1281	/* make an initial tss so cpu can get interrupt stack on syscall! */
1282	common_tss.tss_rsp0 = thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1283
1284	/* doublefault stack space, runs on ist1 */
1285	common_tss.tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1286
1287	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1288	ltr(gsel_tss);
1289
1290	/* Set up the fast syscall stuff */
1291	msr = rdmsr(MSR_EFER) | EFER_SCE;
1292	wrmsr(MSR_EFER, msr);
1293	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1294	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1295	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1296	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1297	wrmsr(MSR_STAR, msr);
1298	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1299
1300	getmemsize(kmdp, physfree);
1301	init_param2(physmem);
1302
1303	/* now running on new page tables, configured,and u/iom is accessible */
1304
1305	/* Map the message buffer. */
1306	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1307		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1308
1309	msgbufinit(msgbufp, MSGBUF_SIZE);
1310
1311	/* transfer to user mode */
1312
1313	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1314	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1315	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1316
1317	/* setup proc 0's pcb */
1318	thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
1319	thread0.td_pcb->pcb_cr3 = IdlePML4;
1320	thread0.td_pcb->pcb_kgsbase = (u_int64_t)pc;
1321	thread0.td_frame = &proc0_tf;
1322}
1323
1324void
1325cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1326{
1327}
1328
1329int
1330ptrace_set_pc(struct thread *td, unsigned long addr)
1331{
1332	td->td_frame->tf_rip = addr;
1333	return (0);
1334}
1335
1336int
1337ptrace_single_step(struct thread *td)
1338{
1339	td->td_frame->tf_rflags |= PSL_T;
1340	return (0);
1341}
1342
1343int
1344fill_regs(struct thread *td, struct reg *regs)
1345{
1346	struct pcb *pcb;
1347	struct trapframe *tp;
1348
1349	tp = td->td_frame;
1350	regs->r_r15 = tp->tf_r15;
1351	regs->r_r14 = tp->tf_r14;
1352	regs->r_r13 = tp->tf_r13;
1353	regs->r_r12 = tp->tf_r12;
1354	regs->r_r11 = tp->tf_r11;
1355	regs->r_r10 = tp->tf_r10;
1356	regs->r_r9  = tp->tf_r9;
1357	regs->r_r8  = tp->tf_r8;
1358	regs->r_rdi = tp->tf_rdi;
1359	regs->r_rsi = tp->tf_rsi;
1360	regs->r_rbp = tp->tf_rbp;
1361	regs->r_rbx = tp->tf_rbx;
1362	regs->r_rdx = tp->tf_rdx;
1363	regs->r_rcx = tp->tf_rcx;
1364	regs->r_rax = tp->tf_rax;
1365	regs->r_rip = tp->tf_rip;
1366	regs->r_cs = tp->tf_cs;
1367	regs->r_rflags = tp->tf_rflags;
1368	regs->r_rsp = tp->tf_rsp;
1369	regs->r_ss = tp->tf_ss;
1370	pcb = td->td_pcb;
1371	return (0);
1372}
1373
1374int
1375set_regs(struct thread *td, struct reg *regs)
1376{
1377	struct pcb *pcb;
1378	struct trapframe *tp;
1379
1380	tp = td->td_frame;
1381	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
1382	    !CS_SECURE(regs->r_cs))
1383		return (EINVAL);
1384	tp->tf_r15 = regs->r_r15;
1385	tp->tf_r14 = regs->r_r14;
1386	tp->tf_r13 = regs->r_r13;
1387	tp->tf_r12 = regs->r_r12;
1388	tp->tf_r11 = regs->r_r11;
1389	tp->tf_r10 = regs->r_r10;
1390	tp->tf_r9  = regs->r_r9;
1391	tp->tf_r8  = regs->r_r8;
1392	tp->tf_rdi = regs->r_rdi;
1393	tp->tf_rsi = regs->r_rsi;
1394	tp->tf_rbp = regs->r_rbp;
1395	tp->tf_rbx = regs->r_rbx;
1396	tp->tf_rdx = regs->r_rdx;
1397	tp->tf_rcx = regs->r_rcx;
1398	tp->tf_rax = regs->r_rax;
1399	tp->tf_rip = regs->r_rip;
1400	tp->tf_cs = regs->r_cs;
1401	tp->tf_rflags = regs->r_rflags;
1402	tp->tf_rsp = regs->r_rsp;
1403	tp->tf_ss = regs->r_ss;
1404	pcb = td->td_pcb;
1405	return (0);
1406}
1407
1408/* XXX check all this stuff! */
1409/* externalize from sv_xmm */
1410static void
1411fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1412{
1413	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1414	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1415	int i;
1416
1417	/* pcb -> fpregs */
1418	bzero(fpregs, sizeof(*fpregs));
1419
1420	/* FPU control/status */
1421	penv_fpreg->en_cw = penv_xmm->en_cw;
1422	penv_fpreg->en_sw = penv_xmm->en_sw;
1423	penv_fpreg->en_tw = penv_xmm->en_tw;
1424	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1425	penv_fpreg->en_rip = penv_xmm->en_rip;
1426	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1427	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1428	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1429
1430	/* FPU registers */
1431	for (i = 0; i < 8; ++i)
1432		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1433
1434	/* SSE registers */
1435	for (i = 0; i < 16; ++i)
1436		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1437}
1438
1439/* internalize from fpregs into sv_xmm */
1440static void
1441set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1442{
1443	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1444	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1445	int i;
1446
1447	/* fpregs -> pcb */
1448	/* FPU control/status */
1449	penv_xmm->en_cw = penv_fpreg->en_cw;
1450	penv_xmm->en_sw = penv_fpreg->en_sw;
1451	penv_xmm->en_tw = penv_fpreg->en_tw;
1452	penv_xmm->en_opcode = penv_fpreg->en_opcode;
1453	penv_xmm->en_rip = penv_fpreg->en_rip;
1454	penv_xmm->en_rdp = penv_fpreg->en_rdp;
1455	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1456	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask;
1457
1458	/* FPU registers */
1459	for (i = 0; i < 8; ++i)
1460		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1461
1462	/* SSE registers */
1463	for (i = 0; i < 16; ++i)
1464		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1465}
1466
1467/* externalize from td->pcb */
1468int
1469fill_fpregs(struct thread *td, struct fpreg *fpregs)
1470{
1471
1472	fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
1473	return (0);
1474}
1475
1476/* internalize to td->pcb */
1477int
1478set_fpregs(struct thread *td, struct fpreg *fpregs)
1479{
1480
1481	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
1482	return (0);
1483}
1484
1485/*
1486 * Get machine context.
1487 */
1488int
1489get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
1490{
1491	struct trapframe *tp;
1492
1493	tp = td->td_frame;
1494
1495	PROC_LOCK(curthread->td_proc);
1496	mcp->mc_onstack = sigonstack(tp->tf_rsp);
1497	PROC_UNLOCK(curthread->td_proc);
1498	mcp->mc_r15 = tp->tf_r15;
1499	mcp->mc_r14 = tp->tf_r14;
1500	mcp->mc_r13 = tp->tf_r13;
1501	mcp->mc_r12 = tp->tf_r12;
1502	mcp->mc_r11 = tp->tf_r11;
1503	mcp->mc_r10 = tp->tf_r10;
1504	mcp->mc_r9  = tp->tf_r9;
1505	mcp->mc_r8  = tp->tf_r8;
1506	mcp->mc_rdi = tp->tf_rdi;
1507	mcp->mc_rsi = tp->tf_rsi;
1508	mcp->mc_rbp = tp->tf_rbp;
1509	mcp->mc_rbx = tp->tf_rbx;
1510	mcp->mc_rcx = tp->tf_rcx;
1511	if (clear_ret != 0) {
1512		mcp->mc_rax = 0;
1513		mcp->mc_rdx = 0;
1514	} else {
1515		mcp->mc_rax = tp->tf_rax;
1516		mcp->mc_rdx = tp->tf_rdx;
1517	}
1518	mcp->mc_rip = tp->tf_rip;
1519	mcp->mc_cs = tp->tf_cs;
1520	mcp->mc_rflags = tp->tf_rflags;
1521	mcp->mc_rsp = tp->tf_rsp;
1522	mcp->mc_ss = tp->tf_ss;
1523	mcp->mc_len = sizeof(*mcp);
1524	get_fpcontext(td, mcp);
1525	return (0);
1526}
1527
1528/*
1529 * Set machine context.
1530 *
1531 * However, we don't set any but the user modifiable flags, and we won't
1532 * touch the cs selector.
1533 */
1534int
1535set_mcontext(struct thread *td, const mcontext_t *mcp)
1536{
1537	struct trapframe *tp;
1538	long rflags;
1539	int ret;
1540
1541	tp = td->td_frame;
1542	if (mcp->mc_len != sizeof(*mcp))
1543		return (EINVAL);
1544	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
1545	    (tp->tf_rflags & ~PSL_USERCHANGE);
1546	if ((ret = set_fpcontext(td, mcp)) == 0) {
1547		tp->tf_r15 = mcp->mc_r15;
1548		tp->tf_r14 = mcp->mc_r14;
1549		tp->tf_r13 = mcp->mc_r13;
1550		tp->tf_r12 = mcp->mc_r12;
1551		tp->tf_r11 = mcp->mc_r11;
1552		tp->tf_r10 = mcp->mc_r10;
1553		tp->tf_r9  = mcp->mc_r9;
1554		tp->tf_r8  = mcp->mc_r8;
1555		tp->tf_rdi = mcp->mc_rdi;
1556		tp->tf_rsi = mcp->mc_rsi;
1557		tp->tf_rbp = mcp->mc_rbp;
1558		tp->tf_rbx = mcp->mc_rbx;
1559		tp->tf_rdx = mcp->mc_rdx;
1560		tp->tf_rcx = mcp->mc_rcx;
1561		tp->tf_rax = mcp->mc_rax;
1562		tp->tf_rip = mcp->mc_rip;
1563		tp->tf_rflags = rflags;
1564		tp->tf_rsp = mcp->mc_rsp;
1565		tp->tf_ss = mcp->mc_ss;
1566		ret = 0;
1567	}
1568	return (ret);
1569}
1570
1571static void
1572get_fpcontext(struct thread *td, mcontext_t *mcp)
1573{
1574	struct savefpu *addr;
1575
1576	/*
1577	 * XXX mc_fpstate might be misaligned, since its declaration is not
1578	 * unportabilized using __attribute__((aligned(16))) like the
1579	 * declaration of struct savemm, and anyway, alignment doesn't work
1580	 * for auto variables since we don't use gcc's pessimal stack
1581	 * alignment.  Work around this by abusing the spare fields after
1582	 * mcp->mc_fpstate.
1583	 *
1584	 * XXX unpessimize most cases by only aligning when fxsave might be
1585	 * called, although this requires knowing too much about
1586	 * npxgetregs()'s internals.
1587	 */
1588	addr = (struct savefpu *)&mcp->mc_fpstate;
1589	if (td == PCPU_GET(fpcurthread) && ((uintptr_t)(void *)addr & 0xF)) {
1590		do
1591			addr = (void *)((char *)addr + 4);
1592		while ((uintptr_t)(void *)addr & 0xF);
1593	}
1594	mcp->mc_ownedfp = npxgetregs(td, addr);
1595	if (addr != (struct savefpu *)&mcp->mc_fpstate) {
1596		bcopy(addr, &mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
1597		bzero(&mcp->mc_spare2, sizeof(mcp->mc_spare2));
1598	}
1599	mcp->mc_fpformat = npxformat();
1600}
1601
1602static int
1603set_fpcontext(struct thread *td, const mcontext_t *mcp)
1604{
1605	struct savefpu *addr;
1606
1607	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
1608		return (0);
1609	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
1610		return (EINVAL);
1611	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
1612		/* We don't care what state is left in the FPU or PCB. */
1613		fpstate_drop(td);
1614	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
1615	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
1616		/* XXX align as above. */
1617		addr = (struct savefpu *)&mcp->mc_fpstate;
1618		if (td == PCPU_GET(fpcurthread) &&
1619		    ((uintptr_t)(void *)addr & 0xF)) {
1620			do
1621				addr = (void *)((char *)addr + 4);
1622			while ((uintptr_t)(void *)addr & 0xF);
1623			bcopy(&mcp->mc_fpstate, addr, sizeof(mcp->mc_fpstate));
1624		}
1625		/*
1626		 * XXX we violate the dubious requirement that npxsetregs()
1627		 * be called with interrupts disabled.
1628		 */
1629		npxsetregs(td, addr);
1630		/*
1631		 * Don't bother putting things back where they were in the
1632		 * misaligned case, since we know that the caller won't use
1633		 * them again.
1634		 */
1635	} else
1636		return (EINVAL);
1637	return (0);
1638}
1639
1640void
1641fpstate_drop(struct thread *td)
1642{
1643	register_t s;
1644
1645	s = intr_disable();
1646	if (PCPU_GET(fpcurthread) == td)
1647		npxdrop();
1648	/*
1649	 * XXX force a full drop of the npx.  The above only drops it if we
1650	 * owned it.
1651	 *
1652	 * XXX I don't much like npxgetregs()'s semantics of doing a full
1653	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
1654	 * We only need to drop to !PCB_INITDONE in sendsig().  But
1655	 * sendsig() is the only caller of npxgetregs()... perhaps we just
1656	 * have too many layers.
1657	 */
1658	curthread->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
1659	intr_restore(s);
1660}
1661
1662int
1663fill_dbregs(struct thread *td, struct dbreg *dbregs)
1664{
1665
1666	return (0);
1667}
1668
1669int
1670set_dbregs(struct thread *td, struct dbreg *dbregs)
1671{
1672
1673	return (0);
1674}
1675
1676#ifndef DDB
1677void
1678Debugger(const char *msg)
1679{
1680	printf("Debugger(\"%s\") called.\n", msg);
1681}
1682#endif /* no DDB */
1683
1684#ifdef DDB
1685
1686/*
1687 * Provide inb() and outb() as functions.  They are normally only
1688 * available as macros calling inlined functions, thus cannot be
1689 * called inside DDB.
1690 *
1691 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1692 */
1693
1694#undef inb
1695#undef outb
1696
1697/* silence compiler warnings */
1698u_char inb(u_int);
1699void outb(u_int, u_char);
1700
1701u_char
1702inb(u_int port)
1703{
1704	u_char	data;
1705	/*
1706	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1707	 * %edx, while gcc generates inferior code (movw instead of movl)
1708	 * if we tell it to load (u_short) port.
1709	 */
1710	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1711	return (data);
1712}
1713
1714void
1715outb(u_int port, u_char data)
1716{
1717	u_char	al;
1718	/*
1719	 * Use an unnecessary assignment to help gcc's register allocator.
1720	 * This make a large difference for gcc-1.40 and a tiny difference
1721	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1722	 * best results.  gcc-2.6.0 can't handle this.
1723	 */
1724	al = data;
1725	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1726}
1727
1728#endif /* DDB */
1729
1730MODULE_VERSION(acpi, 100);
1731