machdep.c revision 114951
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 114951 2003-05-12 18:23:04Z peter $
39 */
40
41#include "opt_atalk.h"
42#include "opt_compat.h"
43#include "opt_cpu.h"
44#include "opt_ddb.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_isa.h"
48#include "opt_maxmem.h"
49#include "opt_msgbuf.h"
50#include "opt_perfmon.h"
51#include "opt_kstack_pages.h"
52
53#include <sys/param.h>
54#include <sys/systm.h>
55#include <sys/sysproto.h>
56#include <sys/signalvar.h>
57#include <sys/imgact.h>
58#include <sys/kernel.h>
59#include <sys/ktr.h>
60#include <sys/linker.h>
61#include <sys/lock.h>
62#include <sys/malloc.h>
63#include <sys/mutex.h>
64#include <sys/pcpu.h>
65#include <sys/proc.h>
66#include <sys/bio.h>
67#include <sys/buf.h>
68#include <sys/reboot.h>
69#include <sys/callout.h>
70#include <sys/msgbuf.h>
71#include <sys/sched.h>
72#include <sys/sysent.h>
73#include <sys/sysctl.h>
74#include <sys/ucontext.h>
75#include <sys/vmmeter.h>
76#include <sys/bus.h>
77#include <sys/eventhandler.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_map.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88#include <sys/user.h>
89#include <sys/exec.h>
90#include <sys/cons.h>
91
92#include <ddb/ddb.h>
93
94#include <net/netisr.h>
95
96#include <machine/cpu.h>
97#include <machine/cputypes.h>
98#include <machine/reg.h>
99#include <machine/clock.h>
100#include <machine/specialreg.h>
101#include <machine/md_var.h>
102#include <machine/metadata.h>
103#include <machine/proc.h>
104#ifdef PERFMON
105#include <machine/perfmon.h>
106#endif
107#include <machine/tss.h>
108
109#include <amd64/isa/icu.h>
110#include <amd64/isa/intr_machdep.h>
111#include <isa/rtc.h>
112#include <sys/ptrace.h>
113#include <machine/sigframe.h>
114
115extern void hammer_time(void);
116extern void dblfault_handler(void);
117
118extern void printcpuinfo(void);	/* XXX header file */
119extern void identify_cpu(void);
120extern void panicifcpuunsupported(void);
121extern void initializecpu(void);
122
123#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
124#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
125
126static void cpu_startup(void *);
127static void fpstate_drop(struct thread *td);
128static void get_fpcontext(struct thread *td, mcontext_t *mcp);
129static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
130SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
131
132int	_udatasel, _ucodesel;
133u_long	atdevbase;
134
135u_int64_t	modulep;	/* phys addr of metadata table */
136u_int64_t	physfree;	/* first free page after kernel */
137u_int64_t	IdlePTD;	/* phys addr of kernel PTD */
138u_int64_t	IdlePDP;	/* phys addr of kernel level 3 */
139u_int64_t	IdlePML4;	/* phys addr of kernel level 4 */
140struct user	*proc0uarea;	/* address of proc 0 uarea space */
141vm_offset_t	proc0kstack;	/* address of proc 0 kstack space */
142
143int cold = 1;
144
145long Maxmem = 0;
146
147vm_paddr_t phys_avail[10];
148
149/* must be 2 less so 0 0 can signal end of chunks */
150#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
151
152struct kva_md_info kmi;
153
154static struct trapframe proc0_tf;
155static struct pcpu __pcpu;
156
157struct mtx icu_lock;
158
159static void
160cpu_startup(dummy)
161	void *dummy;
162{
163	/*
164	 * Good {morning,afternoon,evening,night}.
165	 */
166	startrtclock();
167	printcpuinfo();
168	panicifcpuunsupported();
169#ifdef PERFMON
170	perfmon_init();
171#endif
172	printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
173	    ptoa((uintmax_t)Maxmem) / 1048576);
174	/*
175	 * Display any holes after the first chunk of extended memory.
176	 */
177	if (bootverbose) {
178		int indx;
179
180		printf("Physical memory chunk(s):\n");
181		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
182			vm_paddr_t size;
183
184			size = phys_avail[indx + 1] - phys_avail[indx];
185			printf(
186			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
187			    (uintmax_t)phys_avail[indx],
188			    (uintmax_t)phys_avail[indx + 1] - 1,
189			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
190		}
191	}
192
193	vm_ksubmap_init(&kmi);
194
195	printf("avail memory = %ju (%ju MB)\n",
196	    ptoa((uintmax_t)cnt.v_free_count),
197	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
198
199	/*
200	 * Set up buffers, so they can be used to read disk labels.
201	 */
202	bufinit();
203	vm_pager_bufferinit();
204
205	/* For SMP, we delay the cpu_setregs() until after SMP startup. */
206	cpu_setregs();
207}
208
209/*
210 * Send an interrupt to process.
211 *
212 * Stack is set up to allow sigcode stored
213 * at top to call routine, followed by kcall
214 * to sigreturn routine below.  After sigreturn
215 * resets the signal mask, the stack, and the
216 * frame pointer, it returns to the user
217 * specified pc, psl.
218 */
219void
220sendsig(catcher, sig, mask, code)
221	sig_t catcher;
222	int sig;
223	sigset_t *mask;
224	u_long code;
225{
226	struct sigframe sf, *sfp;
227	struct proc *p;
228	struct thread *td;
229	struct sigacts *psp;
230	char *sp;
231	struct trapframe *regs;
232	int oonstack;
233
234	td = curthread;
235	p = td->td_proc;
236	PROC_LOCK_ASSERT(p, MA_OWNED);
237	psp = p->p_sigacts;
238	regs = td->td_frame;
239	oonstack = sigonstack(regs->tf_rsp);
240
241	/* Save user context. */
242	bzero(&sf, sizeof(sf));
243	sf.sf_uc.uc_sigmask = *mask;
244	sf.sf_uc.uc_stack = p->p_sigstk;
245	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
246	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
247	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
248	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
249	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
250	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
251	fpstate_drop(td);
252
253	/* Allocate space for the signal handler context. */
254	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
255	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
256		sp = p->p_sigstk.ss_sp +
257		    p->p_sigstk.ss_size - sizeof(struct sigframe);
258#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
259		p->p_sigstk.ss_flags |= SS_ONSTACK;
260#endif
261	} else
262		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
263	/* Align to 16 bytes. */
264	sfp = (struct sigframe *)((unsigned long)sp & ~0xF);
265	PROC_UNLOCK(p);
266
267	/* Translate the signal if appropriate. */
268	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
269		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
270
271	/* Build the argument list for the signal handler. */
272	regs->tf_rdi = sig;			/* arg 1 in %rdi */
273	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
274	PROC_LOCK(p);
275	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
276		/* Signal handler installed with SA_SIGINFO. */
277		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
278		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
279
280		/* Fill in POSIX parts */
281		sf.sf_si.si_signo = sig;
282		sf.sf_si.si_code = code;
283		regs->tf_rcx = regs->tf_err;	/* arg 4 in %rcx */
284	} else {
285		/* Old FreeBSD-style arguments. */
286		regs->tf_rsi = code;		/* arg 2 in %rsi */
287		regs->tf_rcx = regs->tf_err;	/* arg 4 in %rcx */
288		sf.sf_ahu.sf_handler = catcher;
289	}
290	PROC_UNLOCK(p);
291
292	/*
293	 * Copy the sigframe out to the user's stack.
294	 */
295	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
296#ifdef DEBUG
297		printf("process %ld has trashed its stack\n", (long)p->p_pid);
298#endif
299		PROC_LOCK(p);
300		sigexit(td, SIGILL);
301	}
302
303	regs->tf_rsp = (long)sfp;
304	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
305	regs->tf_rflags &= ~PSL_T;
306	regs->tf_cs = _ucodesel;
307	PROC_LOCK(p);
308}
309
310/*
311 * System call to cleanup state after a signal
312 * has been taken.  Reset signal mask and
313 * stack state from context left by sendsig (above).
314 * Return to previous pc and psl as specified by
315 * context left by sendsig. Check carefully to
316 * make sure that the user has not modified the
317 * state to gain improper privileges.
318 *
319 * MPSAFE
320 */
321int
322sigreturn(td, uap)
323	struct thread *td;
324	struct sigreturn_args /* {
325		const __ucontext *sigcntxp;
326	} */ *uap;
327{
328	ucontext_t uc;
329	struct proc *p = td->td_proc;
330	struct trapframe *regs;
331	const ucontext_t *ucp;
332	long rflags;
333	int cs, error, ret;
334
335	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
336	if (error != 0)
337		return (error);
338	ucp = &uc;
339	regs = td->td_frame;
340	rflags = ucp->uc_mcontext.mc_rflags;
341	/*
342	 * Don't allow users to change privileged or reserved flags.
343	 */
344	/*
345	 * XXX do allow users to change the privileged flag PSL_RF.
346	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
347	 * should sometimes set it there too.  tf_rflags is kept in
348	 * the signal context during signal handling and there is no
349	 * other place to remember it, so the PSL_RF bit may be
350	 * corrupted by the signal handler without us knowing.
351	 * Corruption of the PSL_RF bit at worst causes one more or
352	 * one less debugger trap, so allowing it is fairly harmless.
353	 */
354	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
355		printf("sigreturn: rflags = 0x%lx\n", rflags);
356		return (EINVAL);
357	}
358
359	/*
360	 * Don't allow users to load a valid privileged %cs.  Let the
361	 * hardware check for invalid selectors, excess privilege in
362	 * other selectors, invalid %eip's and invalid %esp's.
363	 */
364	cs = ucp->uc_mcontext.mc_cs;
365	if (!CS_SECURE(cs)) {
366		printf("sigreturn: cs = 0x%x\n", cs);
367		trapsignal(td, SIGBUS, T_PROTFLT);
368		return (EINVAL);
369	}
370
371	ret = set_fpcontext(td, &ucp->uc_mcontext);
372	if (ret != 0)
373		return (ret);
374	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
375
376	PROC_LOCK(p);
377#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
378	if (ucp->uc_mcontext.mc_onstack & 1)
379		p->p_sigstk.ss_flags |= SS_ONSTACK;
380	else
381		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
382#endif
383
384	td->td_sigmask = ucp->uc_sigmask;
385	SIG_CANTMASK(td->td_sigmask);
386	signotify(td);
387	PROC_UNLOCK(p);
388	td->td_pcb->pcb_flags |= PCB_FULLCTX;
389	return (EJUSTRETURN);
390}
391
392/*
393 * Machine dependent boot() routine
394 *
395 * I haven't seen anything to put here yet
396 * Possibly some stuff might be grafted back here from boot()
397 */
398void
399cpu_boot(int howto)
400{
401}
402
403/*
404 * Shutdown the CPU as much as possible
405 */
406void
407cpu_halt(void)
408{
409	for (;;)
410		__asm__ ("hlt");
411}
412
413/*
414 * Hook to idle the CPU when possible.  In the SMP case we default to
415 * off because a halted cpu will not currently pick up a new thread in the
416 * run queue until the next timer tick.  If turned on this will result in
417 * approximately a 4.2% loss in real time performance in buildworld tests
418 * (but improves user and sys times oddly enough), and saves approximately
419 * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
420 *
421 * XXX we need to have a cpu mask of idle cpus and generate an IPI or
422 * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
423 * Then we can have our cake and eat it too.
424 *
425 * XXX I'm turning it on for SMP as well by default for now.  It seems to
426 * help lock contention somewhat, and this is critical for HTT. -Peter
427 */
428static int	cpu_idle_hlt = 1;
429SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
430    &cpu_idle_hlt, 0, "Idle loop HLT enable");
431
432/*
433 * Note that we have to be careful here to avoid a race between checking
434 * sched_runnable() and actually halting.  If we don't do this, we may waste
435 * the time between calling hlt and the next interrupt even though there
436 * is a runnable process.
437 */
438void
439cpu_idle(void)
440{
441
442	if (cpu_idle_hlt) {
443		disable_intr();
444  		if (sched_runnable()) {
445			enable_intr();
446		} else {
447			/*
448			 * we must absolutely guarentee that hlt is the
449			 * absolute next instruction after sti or we
450			 * introduce a timing window.
451			 */
452			__asm __volatile("sti; hlt");
453		}
454	}
455}
456
457/*
458 * Clear registers on exec
459 */
460void
461exec_setregs(td, entry, stack, ps_strings)
462	struct thread *td;
463	u_long entry;
464	u_long stack;
465	u_long ps_strings;
466{
467	struct trapframe *regs = td->td_frame;
468	struct pcb *pcb = td->td_pcb;
469
470	pcb->pcb_fsbase = 0;
471	pcb->pcb_gsbase = 0;
472	wrmsr(MSR_FSBASE, 0);
473	wrmsr(MSR_KGSBASE, 0);	/* User value while we're in the kernel */
474
475	bzero((char *)regs, sizeof(struct trapframe));
476	regs->tf_rip = entry;
477	/* This strangeness is to ensure alignment after the implied return address */
478	regs->tf_rsp = ((stack - 8) & ~0xF) + 8;
479	regs->tf_rdi = stack;		/* argv */
480	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
481	regs->tf_ss = _udatasel;
482	regs->tf_cs = _ucodesel;
483
484	/*
485	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
486	 * for why fwait must be trapped at least if there is an npx or an
487	 * emulator).  This is mainly to handle the case where npx0 is not
488	 * configured, since the npx routines normally set up the trap
489	 * otherwise.  It should be done only at boot time, but doing it
490	 * here allows modifying `npx_exists' for testing the emulator on
491	 * systems with an npx.
492	 */
493	load_cr0(rcr0() | CR0_MP | CR0_TS);
494
495	/* Initialize the npx (if any) for the current process. */
496	/*
497	 * XXX the above load_cr0() also initializes it and is a layering
498	 * violation if NPX is configured.  It drops the npx partially
499	 * and this would be fatal if we were interrupted now, and decided
500	 * to force the state to the pcb, and checked the invariant
501	 * (CR0_TS clear) if and only if PCPU_GET(fpcurthread) != NULL).
502	 * ALL of this can happen except the check.  The check used to
503	 * happen and be fatal later when we didn't complete the drop
504	 * before returning to user mode.  This should be fixed properly
505	 * soon.
506	 */
507	fpstate_drop(td);
508}
509
510void
511cpu_setregs(void)
512{
513	register_t cr0;
514
515	cr0 = rcr0();
516	cr0 |= CR0_NE;			/* Done by npxinit() */
517	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
518	cr0 |= CR0_WP | CR0_AM;
519	load_cr0(cr0);
520}
521
522static int
523sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
524{
525	int error;
526	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
527		req);
528	if (!error && req->newptr)
529		resettodr();
530	return (error);
531}
532
533SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
534	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
535
536SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
537	CTLFLAG_RW, &disable_rtc_set, 0, "");
538
539SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
540	CTLFLAG_RW, &wall_cmos_clock, 0, "");
541
542/*
543 * Initialize 386 and configure to run kernel
544 */
545
546/*
547 * Initialize segments & interrupt table
548 */
549
550struct user_segment_descriptor gdt[NGDT];/* global descriptor table */
551static struct gate_descriptor idt0[NIDT];
552struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
553
554static char dblfault_stack[PAGE_SIZE] __aligned(16);
555
556struct amd64tss common_tss;
557
558/* software prototypes -- in more palatable form */
559struct soft_segment_descriptor gdt_segs[] = {
560/* GNULL_SEL	0 Null Descriptor */
561{	0x0,			/* segment base address  */
562	0x0,			/* length */
563	0,			/* segment type */
564	0,			/* segment descriptor priority level */
565	0,			/* segment descriptor present */
566	0,			/* long */
567	0,			/* default 32 vs 16 bit size */
568	0  			/* limit granularity (byte/page units)*/ },
569/* GCODE_SEL	1 Code Descriptor for kernel */
570{	0x0,			/* segment base address  */
571	0xfffff,		/* length - all address space */
572	SDT_MEMERA,		/* segment type */
573	SEL_KPL,		/* segment descriptor priority level */
574	1,			/* segment descriptor present */
575	1,			/* long */
576	0,			/* default 32 vs 16 bit size */
577	1  			/* limit granularity (byte/page units)*/ },
578/* GDATA_SEL	2 Data Descriptor for kernel */
579{	0x0,			/* segment base address  */
580	0xfffff,		/* length - all address space */
581	SDT_MEMRWA,		/* segment type */
582	SEL_KPL,		/* segment descriptor priority level */
583	1,			/* segment descriptor present */
584	1,			/* long */
585	0,			/* default 32 vs 16 bit size */
586	1  			/* limit granularity (byte/page units)*/ },
587/* GUCODE32_SEL	3 32 bit Code Descriptor for user */
588{	0x0,			/* segment base address  */
589	0xfffff,		/* length - all address space */
590	SDT_MEMERA,		/* segment type */
591	SEL_UPL,		/* segment descriptor priority level */
592	0,			/* segment descriptor present */
593	0,			/* long */
594	1,			/* default 32 vs 16 bit size */
595	1  			/* limit granularity (byte/page units)*/ },
596/* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
597{	0x0,			/* segment base address  */
598	0xfffff,		/* length - all address space */
599	SDT_MEMRWA,		/* segment type */
600	SEL_UPL,		/* segment descriptor priority level */
601	1,			/* segment descriptor present */
602	0,			/* long */
603	1,			/* default 32 vs 16 bit size */
604	1  			/* limit granularity (byte/page units)*/ },
605/* GUCODE_SEL	5 64 bit Code Descriptor for user */
606{	0x0,			/* segment base address  */
607	0xfffff,		/* length - all address space */
608	SDT_MEMERA,		/* segment type */
609	SEL_UPL,		/* segment descriptor priority level */
610	1,			/* segment descriptor present */
611	1,			/* long */
612	0,			/* default 32 vs 16 bit size */
613	1  			/* limit granularity (byte/page units)*/ },
614/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
615{
616	0x0,			/* segment base address */
617	sizeof(struct amd64tss)-1,/* length - all address space */
618	SDT_SYSTSS,		/* segment type */
619	SEL_KPL,		/* segment descriptor priority level */
620	1,			/* segment descriptor present */
621	0,			/* long */
622	0,			/* unused - default 32 vs 16 bit size */
623	0  			/* limit granularity (byte/page units)*/ },
624/* Actually, the TSS is a system descriptor which is double size */
625{	0x0,			/* segment base address  */
626	0x0,			/* length */
627	0,			/* segment type */
628	0,			/* segment descriptor priority level */
629	0,			/* segment descriptor present */
630	0,			/* long */
631	0,			/* default 32 vs 16 bit size */
632	0  			/* limit granularity (byte/page units)*/ },
633};
634
635void
636setidt(idx, func, typ, dpl, ist)
637	int idx;
638	inthand_t *func;
639	int typ;
640	int dpl;
641	int ist;
642{
643	struct gate_descriptor *ip;
644
645	ip = idt + idx;
646	ip->gd_looffset = (uintptr_t)func;
647	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
648	ip->gd_ist = ist;
649	ip->gd_xx = 0;
650	ip->gd_type = typ;
651	ip->gd_dpl = dpl;
652	ip->gd_p = 1;
653	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
654}
655
656#define	IDTVEC(name)	__CONCAT(X,name)
657
658extern inthand_t
659	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
660	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
661	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
662	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
663	IDTVEC(xmm), IDTVEC(dblfault), IDTVEC(int0x80_syscall),
664	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
665
666void
667sdtossd(sd, ssd)
668	struct user_segment_descriptor *sd;
669	struct soft_segment_descriptor *ssd;
670{
671
672	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
673	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
674	ssd->ssd_type  = sd->sd_type;
675	ssd->ssd_dpl   = sd->sd_dpl;
676	ssd->ssd_p     = sd->sd_p;
677	ssd->ssd_long  = sd->sd_long;
678	ssd->ssd_def32 = sd->sd_def32;
679	ssd->ssd_gran  = sd->sd_gran;
680}
681
682void
683ssdtosd(ssd, sd)
684	struct soft_segment_descriptor *ssd;
685	struct user_segment_descriptor *sd;
686{
687
688	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
689	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
690	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
691	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
692	sd->sd_type  = ssd->ssd_type;
693	sd->sd_dpl   = ssd->ssd_dpl;
694	sd->sd_p     = ssd->ssd_p;
695	sd->sd_long  = ssd->ssd_long;
696	sd->sd_def32 = ssd->ssd_def32;
697	sd->sd_gran  = ssd->ssd_gran;
698}
699
700void
701ssdtosyssd(ssd, sd)
702	struct soft_segment_descriptor *ssd;
703	struct system_segment_descriptor *sd;
704{
705
706	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
707	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xffffff;
708	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
709	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
710	sd->sd_type  = ssd->ssd_type;
711	sd->sd_dpl   = ssd->ssd_dpl;
712	sd->sd_p     = ssd->ssd_p;
713	sd->sd_gran  = ssd->ssd_gran;
714}
715
716
717#define PHYSMAP_SIZE	(2 * 8)
718
719struct bios_smap {
720	u_int64_t	base;
721	u_int64_t	length;
722	u_int32_t	type;
723} __packed;
724
725/*
726 * Populate the (physmap) array with base/bound pairs describing the
727 * available physical memory in the system, then test this memory and
728 * build the phys_avail array describing the actually-available memory.
729 *
730 * If we cannot accurately determine the physical memory map, then use
731 * value from the 0xE801 call, and failing that, the RTC.
732 *
733 * Total memory size may be set by the kernel environment variable
734 * hw.physmem or the compile-time define MAXMEM.
735 *
736 * XXX first should be vm_paddr_t.
737 */
738static void
739getmemsize(caddr_t kmdp, u_int64_t first)
740{
741	int i, physmap_idx, pa_indx;
742	u_int basemem, extmem;
743	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
744	pt_entry_t *pte;
745	char *cp;
746	struct bios_smap *smapbase, *smap, *smapend;
747	u_int32_t smapsize;
748
749	bzero(physmap, sizeof(physmap));
750	basemem = 0;
751	physmap_idx = 0;
752
753	/*
754	 * get memory map from INT 15:E820, kindly supplied by the loader.
755	 *
756	 * subr_module.c says:
757	 * "Consumer may safely assume that size value precedes data."
758	 * ie: an int32_t immediately precedes smap.
759	 */
760	smapbase = (struct bios_smap *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_SMAP);
761	if (smapbase == 0)
762		smapbase = (struct bios_smap *)preload_search_info(kmdp, MODINFO_METADATA | 0x0009);	/* Old value for MODINFOMD_SMAP */
763	if (smapbase == 0) {
764		panic("No BIOS smap info from loader!");
765		goto deep_shit;
766	}
767	smapsize = *((u_int32_t *)smapbase - 1);
768	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
769
770	for (smap = smapbase; smap < smapend; smap++) {
771		if (boothowto & RB_VERBOSE)
772			printf("SMAP type=%02x base=%016lx len=%016lx\n",
773			    smap->type, smap->base, smap->length);
774
775		if (smap->type != 0x01) {
776			continue;
777		}
778
779		if (smap->length == 0) {
780next_run:
781			continue;
782		}
783
784		for (i = 0; i <= physmap_idx; i += 2) {
785			if (smap->base < physmap[i + 1]) {
786				if (boothowto & RB_VERBOSE)
787					printf(
788	"Overlapping or non-montonic memory region, ignoring second region\n");
789				goto next_run;
790			}
791		}
792
793		if (smap->base == physmap[physmap_idx + 1]) {
794			physmap[physmap_idx + 1] += smap->length;
795			continue;
796		}
797
798		physmap_idx += 2;
799		if (physmap_idx == PHYSMAP_SIZE) {
800			printf(
801		"Too many segments in the physical address map, giving up\n");
802			break;
803		}
804		physmap[physmap_idx] = smap->base;
805		physmap[physmap_idx + 1] = smap->base + smap->length;
806	}
807
808	/*
809	 * Perform "base memory" related probes & setup based on SMAP
810	 */
811deep_shit:
812	if (basemem == 0) {
813		for (i = 0; i <= physmap_idx; i += 2) {
814			if (physmap[i] == 0x00000000) {
815				basemem = physmap[i + 1] / 1024;
816				break;
817			}
818		}
819
820		if (basemem == 0) {
821			basemem = rtcin(RTC_BASELO) + (rtcin(RTC_BASEHI) << 8);
822		}
823
824		if (basemem == 0) {
825			basemem = 640;
826		}
827
828		if (basemem > 640) {
829			printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
830				basemem);
831			basemem = 640;
832		}
833
834#if 0
835		for (pa = trunc_page(basemem * 1024);
836		     pa < ISA_HOLE_START; pa += PAGE_SIZE)
837			pmap_kenter(KERNBASE + pa, pa);
838#endif
839	}
840
841	if (physmap[1] != 0)
842		goto physmap_done;
843
844	/*
845	 * Prefer the RTC value for extended memory.
846	 */
847	extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
848
849	/*
850	 * Special hack for chipsets that still remap the 384k hole when
851	 * there's 16MB of memory - this really confuses people that
852	 * are trying to use bus mastering ISA controllers with the
853	 * "16MB limit"; they only have 16MB, but the remapping puts
854	 * them beyond the limit.
855	 *
856	 * If extended memory is between 15-16MB (16-17MB phys address range),
857	 *	chop it to 15MB.
858	 */
859	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
860		extmem = 15 * 1024;
861
862	physmap[0] = 0;
863	physmap[1] = basemem * 1024;
864	physmap_idx = 2;
865	physmap[physmap_idx] = 0x100000;
866	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
867
868physmap_done:
869	/*
870	 * Now, physmap contains a map of physical memory.
871	 */
872	/*
873	 * Maxmem isn't the "maximum memory", it's one larger than the
874	 * highest page of the physical address space.  It should be
875	 * called something like "Maxphyspage".  We may adjust this
876	 * based on ``hw.physmem'' and the results of the memory test.
877	 */
878	Maxmem = atop(physmap[physmap_idx + 1]);
879
880#ifdef MAXMEM
881	Maxmem = MAXMEM / 4;
882#endif
883
884	/*
885	 * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
886	 * for the appropriate modifiers.  This overrides MAXMEM.
887	 */
888	if ((cp = getenv("hw.physmem")) != NULL) {
889		u_int64_t AllowMem, sanity;
890		char *ep;
891
892		sanity = AllowMem = strtouq(cp, &ep, 0);
893		if ((ep != cp) && (*ep != 0)) {
894			switch(*ep) {
895			case 'g':
896			case 'G':
897				AllowMem <<= 10;
898			case 'm':
899			case 'M':
900				AllowMem <<= 10;
901			case 'k':
902			case 'K':
903				AllowMem <<= 10;
904				break;
905			default:
906				AllowMem = sanity = 0;
907			}
908			if (AllowMem < sanity)
909				AllowMem = 0;
910		}
911		if (AllowMem == 0)
912			printf("Ignoring invalid memory size of '%s'\n", cp);
913		else
914			Maxmem = atop(AllowMem);
915		freeenv(cp);
916	}
917
918	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
919	    (boothowto & RB_VERBOSE))
920		printf("Physical memory use set to %ldK\n", Maxmem * 4);
921
922	/*
923	 * If Maxmem has been increased beyond what the system has detected,
924	 * extend the last memory segment to the new limit.
925	 */
926	if (atop(physmap[physmap_idx + 1]) < Maxmem)
927		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
928
929	/* call pmap initialization to make new kernel address space */
930	pmap_bootstrap(first, 0);
931
932	/*
933	 * Size up each available chunk of physical memory.
934	 */
935	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
936	pa_indx = 0;
937	phys_avail[pa_indx++] = physmap[0];
938	phys_avail[pa_indx] = physmap[0];
939	pte = CMAP1;
940
941	/*
942	 * physmap is in bytes, so when converting to page boundaries,
943	 * round up the start address and round down the end address.
944	 */
945	for (i = 0; i <= physmap_idx; i += 2) {
946		vm_paddr_t end;
947
948		end = ptoa((vm_paddr_t)Maxmem);
949		if (physmap[i + 1] < end)
950			end = trunc_page(physmap[i + 1]);
951		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
952			int tmp, page_bad;
953			int *ptr = (int *)CADDR1;
954
955			/*
956			 * block out kernel memory as not available.
957			 */
958			if (pa >= 0x100000 && pa < first)
959				continue;
960
961			page_bad = FALSE;
962
963			/*
964			 * map page into kernel: valid, read/write,non-cacheable
965			 */
966			*pte = pa | PG_V | PG_RW | PG_N;
967			invltlb();
968
969			tmp = *(int *)ptr;
970			/*
971			 * Test for alternating 1's and 0's
972			 */
973			*(volatile int *)ptr = 0xaaaaaaaa;
974			if (*(volatile int *)ptr != 0xaaaaaaaa) {
975				page_bad = TRUE;
976			}
977			/*
978			 * Test for alternating 0's and 1's
979			 */
980			*(volatile int *)ptr = 0x55555555;
981			if (*(volatile int *)ptr != 0x55555555) {
982			page_bad = TRUE;
983			}
984			/*
985			 * Test for all 1's
986			 */
987			*(volatile int *)ptr = 0xffffffff;
988			if (*(volatile int *)ptr != 0xffffffff) {
989				page_bad = TRUE;
990			}
991			/*
992			 * Test for all 0's
993			 */
994			*(volatile int *)ptr = 0x0;
995			if (*(volatile int *)ptr != 0x0) {
996				page_bad = TRUE;
997			}
998			/*
999			 * Restore original value.
1000			 */
1001			*(int *)ptr = tmp;
1002
1003			/*
1004			 * Adjust array of valid/good pages.
1005			 */
1006			if (page_bad == TRUE) {
1007				continue;
1008			}
1009			/*
1010			 * If this good page is a continuation of the
1011			 * previous set of good pages, then just increase
1012			 * the end pointer. Otherwise start a new chunk.
1013			 * Note that "end" points one higher than end,
1014			 * making the range >= start and < end.
1015			 * If we're also doing a speculative memory
1016			 * test and we at or past the end, bump up Maxmem
1017			 * so that we keep going. The first bad page
1018			 * will terminate the loop.
1019			 */
1020			if (phys_avail[pa_indx] == pa) {
1021				phys_avail[pa_indx] += PAGE_SIZE;
1022			} else {
1023				pa_indx++;
1024				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1025					printf(
1026		"Too many holes in the physical address space, giving up\n");
1027					pa_indx--;
1028					break;
1029				}
1030				phys_avail[pa_indx++] = pa;	/* start */
1031				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1032			}
1033			physmem++;
1034		}
1035	}
1036	*pte = 0;
1037	invltlb();
1038
1039	/*
1040	 * XXX
1041	 * The last chunk must contain at least one page plus the message
1042	 * buffer to avoid complicating other code (message buffer address
1043	 * calculation, etc.).
1044	 */
1045	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1046	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1047		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1048		phys_avail[pa_indx--] = 0;
1049		phys_avail[pa_indx--] = 0;
1050	}
1051
1052	Maxmem = atop(phys_avail[pa_indx]);
1053
1054	/* Trim off space for the message buffer. */
1055	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1056
1057	avail_end = phys_avail[pa_indx];
1058}
1059
1060static u_int64_t
1061allocpages(int n)
1062{
1063	u_int64_t ret;
1064
1065	ret = physfree;
1066	bzero((void *)ret, n * PAGE_SIZE);
1067	physfree += n * PAGE_SIZE;
1068	return (ret);
1069}
1070
1071static void
1072create_pagetables(void)
1073{
1074	u_int64_t p0kpa;
1075	u_int64_t p0upa;
1076	u_int64_t KPTphys;
1077	int i;
1078
1079	/* Allocate pages */
1080	KPTphys = allocpages(NKPT);
1081	IdlePML4 = allocpages(NKPML4E);
1082	IdlePDP = allocpages(NKPDPE);
1083	IdlePTD = allocpages(NPGPTD);
1084	p0upa = allocpages(UAREA_PAGES);
1085	p0kpa = allocpages(KSTACK_PAGES);
1086
1087	proc0uarea = (struct user *)(p0upa + KERNBASE);
1088	proc0kstack = p0kpa + KERNBASE;
1089
1090	/* Fill in the underlying page table pages */
1091	/* Read-only from zero to physfree */
1092	/* XXX not fully used, underneath 2M pages */
1093	for (i = 0; (i << PAGE_SHIFT) < physfree; i++) {
1094		((pt_entry_t *)KPTphys)[i] = i << PAGE_SHIFT;
1095		((pt_entry_t *)KPTphys)[i] |= PG_RW | PG_V;
1096	}
1097
1098	/* Now map the page tables at their location within PTmap */
1099	for (i = 0; i < NKPT; i++) {
1100		((pd_entry_t *)IdlePTD)[i + KPTDI] = KPTphys + (i << PAGE_SHIFT);
1101		((pd_entry_t *)IdlePTD)[i + KPTDI] |= PG_RW | PG_V;
1102	}
1103
1104	/* Map from zero to end of allocations under 2M pages */
1105	/* This replaces some of the PTD entries above */
1106	for (i = 0; (i << PDRSHIFT) < physfree; i++) {
1107		((pd_entry_t *)IdlePTD)[i] = i << PDRSHIFT;
1108		((pd_entry_t *)IdlePTD)[i] |= PG_RW | PG_V | PG_PS;
1109	}
1110
1111	/* Now map the page tables at their location within PTmap */
1112	for (i = 0; i < NKPT; i++) {
1113		((pd_entry_t *)IdlePTD)[i] = KPTphys + (i << PAGE_SHIFT);
1114		((pd_entry_t *)IdlePTD)[i] |= PG_RW | PG_V;
1115	}
1116
1117	/* Now map the PTD at the top of the PTmap (ie: PTD[]) */
1118	for (i = 0; i < NPGPTD; i++) {
1119		((pd_entry_t *)IdlePTD)[i + PTDPTDI] = IdlePTD + (i << PAGE_SHIFT);
1120		((pd_entry_t *)IdlePTD)[i + PTDPTDI] |= PG_RW | PG_V;
1121	}
1122
1123	/* And connect up the PTD to the PDP */
1124	for (i = 0; i < NPGPTD; i++) {
1125		((pdp_entry_t *)IdlePDP)[i] = IdlePTD + (i << PAGE_SHIFT);
1126		((pdp_entry_t *)IdlePDP)[i] |= PG_RW | PG_V | PG_U;
1127	}
1128
1129	/* And connect up the PDP to the PML4 */
1130	((pdp_entry_t *)IdlePML4)[0] = IdlePDP;
1131	((pdp_entry_t *)IdlePML4)[0] |= PG_RW | PG_V | PG_U;
1132}
1133
1134void
1135hammer_time(void)
1136{
1137	caddr_t kmdp;
1138	int gsel_tss, off, x;
1139	struct region_descriptor r_gdt, r_idt;
1140	struct pcpu *pc;
1141	u_int64_t msr;
1142
1143	/* Turn on PTE NX (no execute) bit */
1144	msr = rdmsr(MSR_EFER) | EFER_NXE;
1145	wrmsr(MSR_EFER, msr);
1146	create_pagetables();
1147
1148	/* XXX do %cr0 as well */
1149	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
1150	load_cr3(IdlePML4);
1151
1152	proc0.p_uarea = proc0uarea;
1153	thread0.td_kstack = proc0kstack;
1154	thread0.td_pcb = (struct pcb *)
1155	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1156	atdevbase = ISA_HOLE_START + KERNBASE;
1157
1158	/*
1159 	 * This may be done better later if it gets more high level
1160 	 * components in it. If so just link td->td_proc here.
1161	 */
1162	proc_linkup(&proc0, &ksegrp0, &kse0, &thread0);
1163
1164	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1165	preload_bootstrap_relocate(KERNBASE);
1166	kmdp = preload_search_by_type("elf kernel");
1167	if (kmdp == NULL)
1168		kmdp = preload_search_by_type("elf64 kernel");
1169	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1170	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1171
1172	/* Init basic tunables, hz etc */
1173	init_param1();
1174
1175	/*
1176	 * make gdt memory segments
1177	 */
1178	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss;
1179
1180	for (x = 0; x < NGDT; x++) {
1181		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1182			ssdtosd(&gdt_segs[x], &gdt[x]);
1183	}
1184	ssdtosyssd(&gdt_segs[GPROC0_SEL], (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1185
1186	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1187	r_gdt.rd_base =  (long) gdt;
1188	lgdt(&r_gdt);
1189	pc = &__pcpu;
1190
1191	wrmsr(MSR_FSBASE, 0);		/* User value */
1192	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1193	wrmsr(MSR_KGSBASE, 0);		/* User value while we're in the kernel */
1194
1195	pcpu_init(pc, 0, sizeof(struct pcpu));
1196	PCPU_SET(prvspace, pc);
1197	PCPU_SET(curthread, &thread0);
1198
1199	/*
1200	 * Initialize mutexes.
1201	 *
1202	 * icu_lock: in order to allow an interrupt to occur in a critical
1203	 * 	     section, to set pcpu->ipending (etc...) properly, we
1204	 *	     must be able to get the icu lock, so it can't be
1205	 *	     under witness.
1206	 */
1207	mutex_init();
1208	mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_RECURSE);
1209	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1210
1211	/* exceptions */
1212	for (x = 0; x < NIDT; x++)
1213		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1214	setidt(0, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1215	setidt(1, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1216	setidt(2, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 0);
1217 	setidt(3, &IDTVEC(bpt),  SDT_SYSIGT, SEL_KPL, 0);
1218	setidt(4, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1219	setidt(5, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1220	setidt(6, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1221	setidt(7, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1222	setidt(8, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1223	setidt(9, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1224	setidt(10, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1225	setidt(11, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1226	setidt(12, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1227	setidt(13, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1228	setidt(14, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1229	setidt(15, &IDTVEC(rsvd),  SDT_SYSIGT, SEL_KPL, 0);
1230	setidt(16, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1231	setidt(17, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1232	setidt(18, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1233	setidt(19, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1234 	setidt(0x80, &IDTVEC(int0x80_syscall), SDT_SYSIGT, SEL_UPL, 0);
1235
1236	r_idt.rd_limit = sizeof(idt0) - 1;
1237	r_idt.rd_base = (long) idt;
1238	lidt(&r_idt);
1239
1240	/*
1241	 * Initialize the console before we print anything out.
1242	 */
1243	cninit();
1244
1245#ifdef DEV_ISA
1246	isa_defaultirq();
1247#endif
1248
1249#ifdef DDB
1250	kdb_init();
1251	if (boothowto & RB_KDB)
1252		Debugger("Boot flags requested debugger");
1253#endif
1254
1255	identify_cpu();		/* Final stage of CPU initialization */
1256	initializecpu();	/* Initialize CPU registers */
1257
1258	/* make an initial tss so cpu can get interrupt stack on syscall! */
1259	common_tss.tss_rsp0 = thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1260
1261	/* doublefault stack space, runs on ist1 */
1262	common_tss.tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1263
1264	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1265	ltr(gsel_tss);
1266
1267	/* Set up the fast syscall stuff */
1268	msr = rdmsr(MSR_EFER) | EFER_SCE;
1269	wrmsr(MSR_EFER, msr);
1270	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1271	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1272	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1273	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1274	wrmsr(MSR_STAR, msr);
1275	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1276
1277	getmemsize(kmdp, physfree);
1278	init_param2(physmem);
1279
1280	/* now running on new page tables, configured,and u/iom is accessible */
1281
1282	/* Map the message buffer. */
1283	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1284		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1285
1286	msgbufinit(msgbufp, MSGBUF_SIZE);
1287
1288	/* transfer to user mode */
1289
1290	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1291	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1292
1293	/* setup proc 0's pcb */
1294	thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
1295	thread0.td_pcb->pcb_cr3 = IdlePML4;
1296	thread0.td_frame = &proc0_tf;
1297}
1298
1299void
1300cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1301{
1302}
1303
1304int
1305ptrace_set_pc(struct thread *td, unsigned long addr)
1306{
1307	td->td_frame->tf_rip = addr;
1308	return (0);
1309}
1310
1311int
1312ptrace_single_step(struct thread *td)
1313{
1314	td->td_frame->tf_rflags |= PSL_T;
1315	return (0);
1316}
1317
1318int
1319fill_regs(struct thread *td, struct reg *regs)
1320{
1321	struct pcb *pcb;
1322	struct trapframe *tp;
1323
1324	tp = td->td_frame;
1325	regs->r_r15 = tp->tf_r15;
1326	regs->r_r14 = tp->tf_r14;
1327	regs->r_r13 = tp->tf_r13;
1328	regs->r_r12 = tp->tf_r12;
1329	regs->r_r11 = tp->tf_r11;
1330	regs->r_r10 = tp->tf_r10;
1331	regs->r_r9  = tp->tf_r9;
1332	regs->r_r8  = tp->tf_r8;
1333	regs->r_rdi = tp->tf_rdi;
1334	regs->r_rsi = tp->tf_rsi;
1335	regs->r_rbp = tp->tf_rbp;
1336	regs->r_rbx = tp->tf_rbx;
1337	regs->r_rdx = tp->tf_rdx;
1338	regs->r_rcx = tp->tf_rcx;
1339	regs->r_rax = tp->tf_rax;
1340	regs->r_rip = tp->tf_rip;
1341	regs->r_cs = tp->tf_cs;
1342	regs->r_rflags = tp->tf_rflags;
1343	regs->r_rsp = tp->tf_rsp;
1344	regs->r_ss = tp->tf_ss;
1345	pcb = td->td_pcb;
1346	return (0);
1347}
1348
1349int
1350set_regs(struct thread *td, struct reg *regs)
1351{
1352	struct pcb *pcb;
1353	struct trapframe *tp;
1354
1355	tp = td->td_frame;
1356	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
1357	    !CS_SECURE(regs->r_cs))
1358		return (EINVAL);
1359	tp->tf_r15 = regs->r_r15;
1360	tp->tf_r14 = regs->r_r14;
1361	tp->tf_r13 = regs->r_r13;
1362	tp->tf_r12 = regs->r_r12;
1363	tp->tf_r11 = regs->r_r11;
1364	tp->tf_r10 = regs->r_r10;
1365	tp->tf_r9  = regs->r_r9;
1366	tp->tf_r8  = regs->r_r8;
1367	tp->tf_rdi = regs->r_rdi;
1368	tp->tf_rsi = regs->r_rsi;
1369	tp->tf_rbp = regs->r_rbp;
1370	tp->tf_rbx = regs->r_rbx;
1371	tp->tf_rdx = regs->r_rdx;
1372	tp->tf_rcx = regs->r_rcx;
1373	tp->tf_rax = regs->r_rax;
1374	tp->tf_rip = regs->r_rip;
1375	tp->tf_cs = regs->r_cs;
1376	tp->tf_rflags = regs->r_rflags;
1377	tp->tf_rsp = regs->r_rsp;
1378	tp->tf_ss = regs->r_ss;
1379	pcb = td->td_pcb;
1380	return (0);
1381}
1382
1383/* XXX check all this stuff! */
1384/* externalize from sv_xmm */
1385static void
1386fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1387{
1388	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1389	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1390	int i;
1391
1392	/* pcb -> fpregs */
1393	bzero(fpregs, sizeof(*fpregs));
1394
1395	/* FPU control/status */
1396	penv_fpreg->en_cw = penv_xmm->en_cw;
1397	penv_fpreg->en_sw = penv_xmm->en_sw;
1398	penv_fpreg->en_tw = penv_xmm->en_tw;
1399	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1400	penv_fpreg->en_rip = penv_xmm->en_rip;
1401	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1402	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1403	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1404
1405	/* FPU registers */
1406	for (i = 0; i < 8; ++i)
1407		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1408
1409	/* SSE registers */
1410	for (i = 0; i < 16; ++i)
1411		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1412}
1413
1414/* internalize from fpregs into sv_xmm */
1415static void
1416set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1417{
1418	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1419	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1420	int i;
1421
1422	/* fpregs -> pcb */
1423	/* FPU control/status */
1424	penv_xmm->en_cw = penv_fpreg->en_cw;
1425	penv_xmm->en_sw = penv_fpreg->en_sw;
1426	penv_xmm->en_tw = penv_fpreg->en_tw;
1427	penv_xmm->en_opcode = penv_fpreg->en_opcode;
1428	penv_xmm->en_rip = penv_fpreg->en_rip;
1429	penv_xmm->en_rdp = penv_fpreg->en_rdp;
1430	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1431	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask;
1432
1433	/* FPU registers */
1434	for (i = 0; i < 8; ++i)
1435		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1436
1437	/* SSE registers */
1438	for (i = 0; i < 16; ++i)
1439		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1440}
1441
1442/* externalize from td->pcb */
1443int
1444fill_fpregs(struct thread *td, struct fpreg *fpregs)
1445{
1446
1447	fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
1448	return (0);
1449}
1450
1451/* internalize to td->pcb */
1452int
1453set_fpregs(struct thread *td, struct fpreg *fpregs)
1454{
1455
1456	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
1457	return (0);
1458}
1459
1460/*
1461 * Get machine context.
1462 */
1463int
1464get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
1465{
1466	struct trapframe *tp;
1467
1468	tp = td->td_frame;
1469
1470	PROC_LOCK(curthread->td_proc);
1471	mcp->mc_onstack = sigonstack(tp->tf_rsp);
1472	PROC_UNLOCK(curthread->td_proc);
1473	mcp->mc_r15 = tp->tf_r15;
1474	mcp->mc_r14 = tp->tf_r14;
1475	mcp->mc_r13 = tp->tf_r13;
1476	mcp->mc_r12 = tp->tf_r12;
1477	mcp->mc_r11 = tp->tf_r11;
1478	mcp->mc_r10 = tp->tf_r10;
1479	mcp->mc_r9  = tp->tf_r9;
1480	mcp->mc_r8  = tp->tf_r8;
1481	mcp->mc_rdi = tp->tf_rdi;
1482	mcp->mc_rsi = tp->tf_rsi;
1483	mcp->mc_rbp = tp->tf_rbp;
1484	mcp->mc_rbx = tp->tf_rbx;
1485	mcp->mc_rcx = tp->tf_rcx;
1486	if (clear_ret != 0) {
1487		mcp->mc_rax = 0;
1488		mcp->mc_rdx = 0;
1489	} else {
1490		mcp->mc_rax = tp->tf_rax;
1491		mcp->mc_rdx = tp->tf_rdx;
1492	}
1493	mcp->mc_rip = tp->tf_rip;
1494	mcp->mc_cs = tp->tf_cs;
1495	mcp->mc_rflags = tp->tf_rflags;
1496	mcp->mc_rsp = tp->tf_rsp;
1497	mcp->mc_ss = tp->tf_ss;
1498	mcp->mc_len = sizeof(*mcp);
1499	get_fpcontext(td, mcp);
1500	return (0);
1501}
1502
1503/*
1504 * Set machine context.
1505 *
1506 * However, we don't set any but the user modifiable flags, and we won't
1507 * touch the cs selector.
1508 */
1509int
1510set_mcontext(struct thread *td, const mcontext_t *mcp)
1511{
1512	struct trapframe *tp;
1513	long rflags;
1514	int ret;
1515
1516	tp = td->td_frame;
1517	if (mcp->mc_len != sizeof(*mcp))
1518		return (EINVAL);
1519	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
1520	    (tp->tf_rflags & ~PSL_USERCHANGE);
1521	if ((ret = set_fpcontext(td, mcp)) == 0) {
1522		tp->tf_r15 = mcp->mc_r15;
1523		tp->tf_r14 = mcp->mc_r14;
1524		tp->tf_r13 = mcp->mc_r13;
1525		tp->tf_r12 = mcp->mc_r12;
1526		tp->tf_r11 = mcp->mc_r11;
1527		tp->tf_r10 = mcp->mc_r10;
1528		tp->tf_r9  = mcp->mc_r9;
1529		tp->tf_r8  = mcp->mc_r8;
1530		tp->tf_rdi = mcp->mc_rdi;
1531		tp->tf_rsi = mcp->mc_rsi;
1532		tp->tf_rbp = mcp->mc_rbp;
1533		tp->tf_rbx = mcp->mc_rbx;
1534		tp->tf_rdx = mcp->mc_rdx;
1535		tp->tf_rcx = mcp->mc_rcx;
1536		tp->tf_rax = mcp->mc_rax;
1537		tp->tf_rip = mcp->mc_rip;
1538		tp->tf_rflags = rflags;
1539		tp->tf_rsp = mcp->mc_rsp;
1540		tp->tf_ss = mcp->mc_ss;
1541		ret = 0;
1542	}
1543	return (ret);
1544}
1545
1546static void
1547get_fpcontext(struct thread *td, mcontext_t *mcp)
1548{
1549	struct savefpu *addr;
1550
1551	/*
1552	 * XXX mc_fpstate might be misaligned, since its declaration is not
1553	 * unportabilized using __attribute__((aligned(16))) like the
1554	 * declaration of struct savemm, and anyway, alignment doesn't work
1555	 * for auto variables since we don't use gcc's pessimal stack
1556	 * alignment.  Work around this by abusing the spare fields after
1557	 * mcp->mc_fpstate.
1558	 *
1559	 * XXX unpessimize most cases by only aligning when fxsave might be
1560	 * called, although this requires knowing too much about
1561	 * npxgetregs()'s internals.
1562	 */
1563	addr = (struct savefpu *)&mcp->mc_fpstate;
1564	if (td == PCPU_GET(fpcurthread) && ((uintptr_t)(void *)addr & 0xF)) {
1565		do
1566			addr = (void *)((char *)addr + 4);
1567		while ((uintptr_t)(void *)addr & 0xF);
1568	}
1569	mcp->mc_ownedfp = npxgetregs(td, addr);
1570	if (addr != (struct savefpu *)&mcp->mc_fpstate) {
1571		bcopy(addr, &mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
1572		bzero(&mcp->mc_spare2, sizeof(mcp->mc_spare2));
1573	}
1574	mcp->mc_fpformat = npxformat();
1575}
1576
1577static int
1578set_fpcontext(struct thread *td, const mcontext_t *mcp)
1579{
1580	struct savefpu *addr;
1581
1582	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
1583		return (0);
1584	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
1585		return (EINVAL);
1586	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
1587		/* We don't care what state is left in the FPU or PCB. */
1588		fpstate_drop(td);
1589	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
1590	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
1591		/* XXX align as above. */
1592		addr = (struct savefpu *)&mcp->mc_fpstate;
1593		if (td == PCPU_GET(fpcurthread) &&
1594		    ((uintptr_t)(void *)addr & 0xF)) {
1595			do
1596				addr = (void *)((char *)addr + 4);
1597			while ((uintptr_t)(void *)addr & 0xF);
1598			bcopy(&mcp->mc_fpstate, addr, sizeof(mcp->mc_fpstate));
1599		}
1600		/*
1601		 * XXX we violate the dubious requirement that npxsetregs()
1602		 * be called with interrupts disabled.
1603		 */
1604		npxsetregs(td, addr);
1605		/*
1606		 * Don't bother putting things back where they were in the
1607		 * misaligned case, since we know that the caller won't use
1608		 * them again.
1609		 */
1610	} else
1611		return (EINVAL);
1612	return (0);
1613}
1614
1615static void
1616fpstate_drop(struct thread *td)
1617{
1618	register_t s;
1619
1620	s = intr_disable();
1621	if (PCPU_GET(fpcurthread) == td)
1622		npxdrop();
1623	/*
1624	 * XXX force a full drop of the npx.  The above only drops it if we
1625	 * owned it.
1626	 *
1627	 * XXX I don't much like npxgetregs()'s semantics of doing a full
1628	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
1629	 * We only need to drop to !PCB_INITDONE in sendsig().  But
1630	 * sendsig() is the only caller of npxgetregs()... perhaps we just
1631	 * have too many layers.
1632	 */
1633	curthread->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
1634	intr_restore(s);
1635}
1636
1637int
1638fill_dbregs(struct thread *td, struct dbreg *dbregs)
1639{
1640
1641	return (0);
1642}
1643
1644int
1645set_dbregs(struct thread *td, struct dbreg *dbregs)
1646{
1647
1648	return (0);
1649}
1650
1651#ifndef DDB
1652void
1653Debugger(const char *msg)
1654{
1655	printf("Debugger(\"%s\") called.\n", msg);
1656}
1657#endif /* no DDB */
1658
1659#ifdef DDB
1660
1661/*
1662 * Provide inb() and outb() as functions.  They are normally only
1663 * available as macros calling inlined functions, thus cannot be
1664 * called inside DDB.
1665 *
1666 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1667 */
1668
1669#undef inb
1670#undef outb
1671
1672/* silence compiler warnings */
1673u_char inb(u_int);
1674void outb(u_int, u_char);
1675
1676u_char
1677inb(u_int port)
1678{
1679	u_char	data;
1680	/*
1681	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1682	 * %edx, while gcc generates inferior code (movw instead of movl)
1683	 * if we tell it to load (u_short) port.
1684	 */
1685	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1686	return (data);
1687}
1688
1689void
1690outb(u_int port, u_char data)
1691{
1692	u_char	al;
1693	/*
1694	 * Use an unnecessary assignment to help gcc's register allocator.
1695	 * This make a large difference for gcc-1.40 and a tiny difference
1696	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1697	 * best results.  gcc-2.6.0 can't handle this.
1698	 */
1699	al = data;
1700	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1701}
1702
1703#endif /* DDB */
1704